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ABSTRACT: We briefly summarize the background of the HeLP method for
torsion units in group rings and present some functionality of a GAP package
implementing it.

1. THE ZASSENHAUS CONJECTURE AND THE PRIME GRAPH QUESTION. As we
consider the integral group ring ZG of a finite group G, one question that arises
naturally is: “What does the unit group U(ZG) look like?” For example, what
are the torsion units, i.e., the units of finite order? Clearly, there are the so-called
trivial units ±g for g ∈ G. Already in G. Higman’s PhD thesis [1940], it was
proved that all the torsion units are of this form, provided G is abelian. As we are
not interested in the torsion coming solely from the ring, but rather in the torsion
coming from the group-ring interplay, we consider the group of normalized units
V(ZG), i.e., the units mapping to 1 under the augmentation homomorphism

ε : ZG→ Z :
∑
g∈G

ugg 7→
∑
g∈G

ug.

Then U(ZG)=±V(ZG).
In the noncommutative case, there are in general, of course, more torsion units

than the trivial ones, e.g., conjugates of group elements by units of QG which end
up in ZG again. H. J. Zassenhaus conjectured more than 40 years ago that these
are all the torsion units.

Zassenhaus conjecture (ZC) [1974]. Let G be a finite group and u a torsion unit
in V(ZG). Then there exists a unit x in QG such that x−1ux = g for some g ∈ G.

Elements u, v ∈ ZG which are conjugate by a unit x ∈QG are called rationally
conjugate, denoted by u ∼QG v. The Zassenhaus conjecture is nowadays one of the
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main open questions in the area of integral group rings. A highlight was certainly
Weiss’ proof of this conjecture for nilpotent groups [Weiss 1991].

As a first step towards the Zassenhaus conjecture, W. Kimmerle formulated a
weaker version which has attracted attention.

Prime graph question (PQ) [Kimmerle 2006]. Let G be a finite group and p
and q different primes such that V(ZG) contains an element of order pq . Does G
then possess an element of order pq?

Given a group G the prime graph of G is defined to be the graph whose vertices
are labeled by primes appearing as orders of elements in G, and two vertices p
and q are connected by an edge if and only if G contains an element of order pq.
Thus (PQ) asks whether G and V(ZG) have the same prime graph.

A method to attack these questions, known as the HeLP method, was introduced
by Luthar and Passi [1989] and later extended by Hertweck [2007]. The name
HeLP (Hertweck Luthar Passi) is due to A. Konovalov. The method can be applied
algorithmically to a concrete group or, if one has generic characters at hand, a
series of groups.

The present note presents a GAP package implementing this method [HeLP
package]. The main motivation for this program is to make the algorithm available
to researchers working in the field, and to enable readers of papers using the method
to check results obtained by the method. We describe the method in Section 2 and
discuss several aspects of our implementation in Sections 3 and 4.

2. THE HELP CONSTRAINTS. Let G always be a finite group.
The possible orders of torsion units in ZG are restricted:

Proposition 2.1. Let u ∈ V(ZG) be a torsion unit.

(a) The order of u divides the exponent of G [Cohn and Livingstone 1965, Corol-
lary 4.1].

(b) If G is solvable, then the order of u coincides with the order of an element
of G [Hertweck 2008, Theorem].

Definition 2.2. Let u =
∑

g∈G ugg ∈ ZG, x ∈ G and denote by xG its conjugacy
class. Then

εx(u)=
∑
g∈xG

ug

is called the partial augmentation of u with respect to x (or, rather, the conjugacy
class of x).

The following proposition by Marciniak, Ritter, Sehgal and Weiss connects (ZC)
to partial augmentations.
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Proposition 2.3 [Marciniak et al. 1987, Theorem 2.5]. Let u ∈V(ZG) be a torsion
unit of order k. Then u is rationally conjugate to a group element if and only if
εx(ud)≥ 0 for all divisors d of k and all x ∈ G.

Certain partial augmentations vanish a priori:

Proposition 2.4. Let u ∈ V(ZG) be a torsion unit and x ∈ G.

(a) If o(u) 6= 1, then ε1(u)= 0 (Berman and Higman; see [Sehgal 1993, Proposi-
tion 1.4]).

(b) If o(x)-o(u), then εx(u)= 0 [Hertweck 2007, Theorem 2.3].

Let ψ be a character of the group G. A representation afforded by ψ can be ex-
tended linearly to a representation of QG and then restricted to a representation D
of the group of units U(QG). We will denote its character also by ψ . Now consider
for a torsion unit u ∈ V(ZG) of order k, a linear character χ : Ck ' 〈u〉 → C given
by χ(u)= ζ `, with ζ ∈ C× a primitive k-th root of unity, ` ∈ Z. Then we have that
the multiplicity of ζ ` as an eigenvalue of D(u) is given by

〈χ,ψ〉〈u〉 ∈ Z≥0,

where 〈−,−〉〈u〉 denotes the inner product on the class functions of Ck ' 〈u〉.
Working out an explicit formula for this, one obtains part (a) of the following
proposition.

Proposition 2.5. Let G be a finite group and u ∈ V(ZG) a torsion unit of order k.
Let ζ ∈ C× be a primitive k-th root of unity, ` ∈ Z.

(a) [Luthar and Passi 1989, Theorem 1] Let χ be an ordinary character of G and
let D be a representation afforded by χ . Then the multiplicity of ζ ` as an
eigenvalue of D(u) is given by

µ`(u, χ)=
1
k

∑
d | k

TrQ(ζ d )/Q(χ(u
d)ζ−d`). (1)

(b) [Hertweck 2007, Section 4] Let p be a prime not dividing k, and ζ 7→ ζ be a
fixed isomorphism between the group of k-th roots of unity in characteristic 0
and those in characteristic p. Let ϕ be a p-Brauer character of G and P be a
representation afforded by ϕ. Then the multiplicity of ζ

`
as an eigenvalue of

P(u) is given by

µ`(u, ϕ)=
1
k

∑
d | k

TrQ(ζ d )/Q(ϕ(u
d)ζ−d`). (2)

This proposition is the linchpin of the HeLP method. Let u ∈ V(ZG) be again a
torsion unit of order k. For an ordinary character χ we have χ(u)=

∑
xG εx(u)χ(x).

By [Hertweck 2007, Theorem 3.2], an analogous statement holds for p-Brauer
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characters and p-regular units u, where the sum is taken only over the conjugacy
classes of p-regular elements in G (an element is called p-regular if its order is not
divisible by p). Assume for an ordinary or a Brauer character ψ in characteristic
p -k one knows inductively the character values of ψ(ud). Then the following
condition on the εx(u) holds for every `:∑

xG

TrQ(ζ )/Q(ψ(x)ζ−`)
k

εx(u)+ a`(u, ψ) ∈ Z≥0, (3)

where the a`(u, ψ)= 1
k

∑
16=d | k TrQ(ζ d )/Q(ψ(ud)ζ−d`) are assumed to be “known”.

By Proposition 2.4 it is enough to take the sum (3) over classes of elements having
an order dividing k.

Remarks 2.6.
• By [Hales et al. 1990, Corollary 2.3], the partial augmentations are bounded

and thus solving the inequalities is a finite problem. These bounds are, however,
encoded in the ordinary character table, so they will not add new information to
the algorithm.

• It is intrinsic in the formula that the µ`’s sum up to the degree of the character.

3. THE EXTENDED WAGNER TEST. The program uses also a criterion proved
in a special form by Roland Wagner in his Diplomarbeit [1995]. Proposition 3.1,
the more general case, is recorded in [Bovdi and Hertweck 2008, Remark 6] and
follows from [Sehgal 1993, Lemma 7.1], which is well known. For the sake of com-
pleteness, we include a proof since no short complete proof seems to be available
in the literature. We write g ∼ h if g and h are conjugate in a group G.

Proposition 3.1. Let G be a finite group, s ∈ G and u ∈ V(ZG). Let p be a prime
and j a nonnegative integer. Then∑

xG , x p j
∼s

εx(u)≡ εs(u p j
) mod p.

Proof. Let u =
∑

g∈G ugg ∈ V(ZG), set q = p j and v = uq. By definition,

εs(v)=
∑

(g1,...,gq )∈Gq

g1···gq∼s

q∏
j=1

ug j . (4)

The set over which the sum is taken can be decomposed into M={(g, . . . , g)∈Gq
:

gq
∼ s} and N = {(g1, . . . , gq) ∈ Gq

: g1 · · · gq ∼ s and there exists r, r ′ : gr 6= gr ′}.
The cyclic group Cq = 〈t〉 of order q acts on the set N by letting the generator

t shift the entries of a tuple to the left, i.e.,

(g1, g2, g3, . . . , gq) · t = (g2, g3, . . . , gq , g1).
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Note that all orbits have length pi with i ≥ 1. For elements in the same orbit, the
same integer is summed up in (4). Hence using Fermat’s little theorem we have

εs(v)=
∑

(g,...,g)∈M

uq
g +

∑
(g1,...,gq )∈N

q∏
j=1

ug j

≡

∑
(g,...,g)∈M

uq
g ≡

∑
(g,...,g)∈M

ug ≡
∑

xG , x p j
∼s

εx(u) mod p. �

By induction and the Berman–Higman result (Proposition 2.4 (a)), Wagner ob-
tained the following. For units of prime power order the result also follows from
[Cohn and Livingstone 1965, Theorem 4.1].

Corollary 3.2 (Wagner). Let G be a finite group, u ∈ V(ZG), o(u)= p j m with p
a prime and m 6= 1. Then ∑

xG , o(x)=p j

εx(u)≡ 0 mod p.

Example 3.3. Let G be the Mathieu group of degree 11. There exists only one con-
jugacy class of involutions in G, call it 2a. After applying HeLP (i.e., Proposition 2.5)
for a unit u of order 12 in V(ZG), one obtains two possible partial augmentations
for u. One of these possibilities satisfies ε2a(u) = 1 while the other satisfies
ε2a(u) = −1 [Bovdi and Konovalov 2007]. Neither possibility satisfies the con-
straints of Wagner’s result and thus there are no torsion units of order 12 in V(ZG)
and the order of any torsion unit in V(ZG) coincides with the order of an element
in G.

4. IMPLEMENTATION.

4A. Further results. We used several results in our implementation, which are
not consequences of the HeLP method and which we list here. The first one is a
direct consequence of the Fong–Swan–Rukolaine theorem [Curtis and Reiner 1981,
Theorem 22.1].

Proposition 4.1. Let G be a p-solvable group and u ∈ V(ZG) a torsion unit of
order prime to p. Then the restrictions on the possible partial augmentations of u
one can obtain using the p-Brauer table of G are the same as when using the
ordinary character table of G.

To avoid redundant calculations, our implementation also uses the following
results instead of solving any inequalities in these situations.

Proposition 4.2. (a) (ZC) holds for nilpotent groups [Weiss 1991].

(b) (PQ) has an affirmative answer for solvable groups [Kimmerle 2006].
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Remark 4.3. There are other results about (ZC) and (PQ). For example, (ZC) is
known for cyclic-by-abelian groups [Caicedo et al. 2013], while (PQ) is known for
PSL(2, p) where p denotes a prime [Hertweck 2007]. However, we decided for
simplicity only to use the results in Proposition 4.2 in the package.

4B. Main functions of the HeLP package. The function HeLP_ZC checks whether
(ZC) can be verified using the character tables and Brauer tables available in GAP.
For a potential element u of order k whose partial augmentations we want to com-
pute, and p and q different prime divisors of k, we call partial augmentations of
u p and uq compatible if (u p)q and (uq)p have the same partial augmentations.

Algorithm 1: HeLP_ZC

Input: group or ordinary character table of a group
Output: true or false
if G nilpotent then

return true (see Proposition 4.2)
end
if G solvable then

OrdersToCheck := orders of elements in G (see Proposition 2.1)
else

OrdersToCheck := divisors of exp G
end
for k = o(u) in OrdersToCheck do

for all prime divisors p of o(u) and all possible partial augmentations
of u p do

if partial augmentations are compatible then
Construct and solve the HeLP systems for all relevant
character tables

end
end
Apply the Wagner test for order k
Save the resulting possibilities for partial augmentations of units of

order k in the global variable HeLP_sol
end
if only “trivial” partial augmentations are admissible then return true
else return false

The function HeLP_PQ checks whether (PQ) can be verified using the character
tables and Brauer tables available in GAP. It works in a similar way to HeLP_ZC
but only checks the orders relevant for the prime graph question.

The package contains other functions, such as one that allows the user to check
whether units of a given order occur; for further details, see the reference manual.
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4C. Nonstandard characters. Unfortunately, not all known character tables and
Brauer tables are available in GAP, so the package cannot be applied in those cases.
However, there are some workarounds.

Example 4.4. The Brauer table modulo 7 of PSL(2, 49) is known generically, but
not yet included in the GAP Character Table Library [CTblLib]. However, our
implementation allows the use of class functions of a group provided by the user.
In this way, any class function may be used and it is, among other things, possible
to prove (ZC) for PSL(2, 49).

Example 4.5. Let G be the projective unitary group PSU(3, 8) and A its automor-
phism group. Assume the goal is to check (PQ) for A. To obtain that one needs to
exclude the existence of units of order 2 · 19 and 7 · 19 in V(ZA). The character
table of G is available in GAP while that of A is not. However, inducing the second
and third irreducible characters of G to characters of A, one obtains two characters
of A. The HeLP constraints following from these two characters are strong enough
to prove (PQ) for A.

4D. Solving the inequalities. Applying the HeLP method involves solving the
integral linear inequalities described after Proposition 2.5. This is a hard task
in general: although theoretically possible, it may take a lot of time when there
are many inequalities and variables involved. A good solver of such systems is
the main requirement here. Our implementation allows the use of two solvers;
the software system [4ti2, version ≥1.6.5], and/or the system [Normaliz, version
≥3.1.0] for rational cones and affine models (see also [Bruns et al. 2016]). We
chose those solvers because they are good solvers and there exist GAP interfaces
for them [4ti2Interface; NormalizInterface]. To reduce the size of the system that
must be solved, the package uses the algorithm “redund” from [lrslib, version ≥4.3]
for reverse-search vertex enumeration. When using 4ti2, in many cases this leads
to a remarkable speedup; however, it may slow down the calculations, so there is
an option implemented to switch the use of “redund” on and off.

4E. p-constant characters. If one is interested especially in solving (PQ) there
is often a way to reduce the system one has to solve, which was introduced by
V. Bovdi and A. Konovalov [2010]. Assume one is studying the possible partial
augmentations of units of order p · q, where p and q are different primes. Let χ
be a character which is constant on all conjugacy classes of elements of order p,
a so called p-constant character. Then the coefficients appearing in the HeLP
constraints provided by χ at partial augmentations of elements order p are always
the same. Thus one can reduce the number of variables involved by replacing all
the partial augmentations of elements of order p by their sum. This way one also
does not need to know the partial augmentations of elements of order p — their sum
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is 1 in any case. Often it suffices to study only p-constant characters to exclude the
possibility of existence of units of order p ·q and this functionality is also provided
by the package.

The package is available as an online supplement.
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A software package to compute
automorphisms of graded algebras

SIMON KEICHER

ABSTRACT: We present autgradalg.lib, a Singular library to compute auto-
morphisms of integral, finitely generated C-algebras that are graded pointedly by
a finitely generated abelian group. The library implements algorithms of Hausen,
Keicher and Wolf (Math. Comp. 86 (2017), 2955–2974). We apply these to Mori
dream spaces and investigate the automorphism groups of a series of Fano varieties.

1. INTRODUCTION AND SETTING. Consider an integral, finitely generated C-
algebra R that is graded by a finitely generated abelian group K; i.e., we have a
decomposition

R =
⊕
w∈K

Rw with f f ′ ∈ Rw+w′ for all f ∈ Rw, f ′ ∈ Rw′ .

Let the grading be effective (so that the monoid ϑR ⊆ K of all w ∈ K with Rw 6= {0}
generates K as a group) and pointed. This means that we have R0 = C and the
polyhedral cone in K ⊗Q generated by ϑR is pointed.

We are interested in the automorphism group AutK (R): it consists of all pairs
(ϕ, ψ) such that ϕ : R → R is an automorphism of C-algebras, ψ : K → K
is an automorphism of groups and ϕ(Rw) = Rψ(w) holds for all w ∈ K. Not
only is AutK (R) an important invariant of the algebra R, but the methods used to
compute it can be applied to compute symmetries of homogeneous ideals I. Once
given explicitly, knowledge of these symmetries accelerates further computations
involving I; see [Jensen 2017; Boehm et al. 2016; Steidel 2013] for examples.

This article introduces autgradalg.lib, an implementation in Singular (see
http://www.singular.uni-kl.de) of the algorithms given in [Hausen et al. 2017] to
compute AutK (R). Section 2 describes the algorithms and explains their implemen-
tation through examples. Section 3 is devoted to the application of our algorithms

MSC2010: 13A02, 13P10, 14J50, 14L30, 14Q15, 13A50.
Keywords: graded algebras, automorphisms, symmetries, Cox rings, Mori dream spaces,

computing, Singular.
autgradalg.lib version 4.1.1.0

11

http://dx.doi.org/10.2140/jsag.2018.8-1
http://msp.org/jsag
http://dx.doi.org/10.2140/jsag.2018.8.11
http://msp.org/jsag
http://msp.org/jsag/2018/8-1/jsag-v8-n1-x01-autgradalg.lib
https://doi.org/10.1090/mcom/3185
http://www.singular.uni-kl.de
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to Mori dream spaces; we determine in Proposition 3.1 information on the auto-
morphism groups of a class of Fano threefolds listed in [Bechtold et al. 2016]. The
software is available in the online supplement or at [Keicher 2017].

2. AUTOMORPHISMS OF GRADED ALGEBRAS. Let us fix the assumptions on
the algebra R for our algorithms. Firstly, we assume the grading group K to be
of shape Zk

⊕Z/a1Z⊕ · · ·⊕Z/alZ. In particular, k and the list a1, . . . , al ∈ Z>1

encode K. The K -grading is determined by the degree matrix Q = [q1, . . . , qr ]

which has the qi := deg(Ti ) as its columns. Moreover, we expect R to be given
explicitly in terms of generators and relations:

R = S/I, S := C[T1, . . . , Tr ] I := 〈g1, . . . , gs〉 ⊆ S.

As one can remove linear equations, it is no restriction to assume that R is min-
imally presented, i.e., I ⊆ 〈T1, . . . , Tr 〉

2 holds and the generating set {g1, . . . , gs}

for I is minimal. From an implementation point of view, it is convenient to impose
the following slight restrictions:

• The homogeneous components Iq1, . . . , Iqr are all trivial.

• The set {q0
1 , . . . , q0

r } ⊆ Zk of the free parts q0
i ∈ Zk of the qi contains a lattice

basis for Zk.

Example 2.1 (autgradalg.lib I ). Let K :=Z3
⊕Z/2Z. In [Hausen and Keicher

2015, Example 2.1] and [Keicher 2014] we considered this K -graded C-algebra R:

R = S/I, S := C[T1, . . . , T8], I := 〈T1T6+ T2T5+ T3T4+ T7T8〉,

Q :=


1 1 0 0 –1 –1 2 –2
0 1 1 –1 –1 0 1 –1
1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0

 .
Then the K -grading given by Q is effective and pointed, as suggested in the picture.

To use autgradalg.lib, download it from the online supplement, unpack it
and start Singular in the same directory. We enter R with the commands

q1

q4q5

q6 q7

q8

(0, 0, 0)

q2q3

> LIB "autgradalg.lib";
> intmat Q[4][8] =
> 1,1,0,0,-1,-1,2,-2,
> 0,1,1,-1,-1,0,1,-1,
> 1,1,1,1,1,1,1,1,
> 1,0,1,0,1,0,1,0;
> list TOR = 2; // torsion part of K

http://msp.org/jsag/2018/8-1/jsag-v8-n1-x02-autgradalg-lib.zip
http://msp.org/jsag/2018/8-1/jsag-v8-n1-x02-autgradalg-lib.zip
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> ring S = 0,T(1..8),dp;
> setBaseMultigrading(Q); // grading

Let us recall briefly the steps of the algorithm to compute AutK (R); for details,
we refer to [Hausen et al. 2017]. The overall idea is to present AutK (R) as a
stabilizer in the automorphism group AutK (S) of the K -graded polynomial ring S.
In a first step, we will compute a presentation AutK (S)⊆GL(n) for some n ∈ Z≥1.
The set �S := {q1, . . . , qr } of generator weights will play a major role. We make
use of the following GL(n)-action.

Construction 2.2 [Hausen et al. 2017, Construction 3.3]. Write�S={w1, . . . , ws}

for the duplicate-free set of all qi . Determine a C-vector space basis Bi for Swi

consisting of monomials. Then the concatenation B := (B1, . . . ,Bs) is a basis for
V =

⊕
i Swi . With n := |B|, in terms of B, each A ∈ GL(n) defines a linear map

ϕA : V → V. We obtain an algebraic action

GL(n)× S→ S, (A, f ) 7→ A · f := f (ϕA(T1), . . . , ϕA(Tr )).

For the second step, the idea is to determine equations cutting out those matrices
in GL(n) that permute the homogeneous components Sw of same dimension where
w ∈ �S . As �S must be fixed by each automorphism, it suffices to consider the
finite set

Aut(�S) := {ψ ∈ Aut(K ); ψ(�S)=�S} ⊆ Aut(K ).

It can be computed by tracking a lattice basis among the set of free parts q0
i of

the qi ; see [Hausen et al. 2017, Remark 3.1].

Algorithm 2.3 (computing AutK (S)). See [Hausen et al. 2017, Algorithm 3.7].

Input : the K -graded polynomial ring S.

• Determine �S = {w1, . . . , ws}. Compute a basis B as in Construction 2.2.

• Define the polynomial ring S′ := C[Yi j ; 1≤ i, j ≤ n].

• Compute an ideal J ⊆ S′ whose equations ensure the multiplicative condition
A · ( f1 f2)= (A · f1)(A · f2), where fi ∈ S, for each A ∈ V (J )⊆ GL(n).

• Compute Aut(�S) ⊆ Aut(K ). Determine the subset 00 ⊆ Aut(�S) of those
B that map Bi bijectively to B j , where w j = B ·wi .

• For each B ∈ 00,
– compute an ideal JB ⊆ S′ ensuring that each matrix in V (JB) ⊆ GL(n)

maps the component Sw to the component SB·w where w ∈�S , and
– redefine J := J · JB .

Output : the ideal J ⊆ S′. Then V (J )⊆ GL(n) is an algebraic subgroup isomor-
phic to AutK (S).
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Remark 2.4. (i) The third step of Algorithm 2.3 is finite; Definition 3.4(i) of
[Hausen et al. 2017] for details.

(ii) The ring S′ in Algorithm 2.3 is K -graded by defining deg(Yi j ) as the degree
of the i-th element of B.

(iii) The isomorphism S → S given by A = (ai j ) ∈ V (J ) ⊆ GL(n) is as in
Construction 2.2; explicitly, it is given by Ti 7→

∑
j ai j (Bi ) j .

Example 2.5 (autgradalg.lib II ). Let us apply Algorithm 2.3 to Example 2.1.
Here, B = (T1, . . . , T8) and all bases Bi = (Ti ) are one-dimensional. Since no
weight appears multiple times, �S = {q1, . . . , q8}. Next, the algorithm will com-
pute Aut(�R). In our implementation one can also trigger this step manually if
desired:

> list origs = autGenWeights(Q, TOR);

The result, origs, is a list of four integral matrices (intmats) standing for the
automorphisms of the generator weights

Aut(�S) =

id,


1 –2 0 0
0 –1 0 0
0 0 1 0
0 1 0 1

 ,


–1 2 0 0
0 1 0 0
0 0 1 0
0 1 1 1

 ,


–1 0 0 0
0 –1 0 0
0 0 1 0
0 0 1 1


 . (1)

q1

q4q5

q6 q7

q8

(0, 0, 0)

q2q3

Note that Aut(�R) is isomorphic to the symmetry group Z/2Z× Z/2Z of a
2-dimensional rhombus. We now compute AutK (S) with the command

> def Sprime = autKS(TOR);
> setring Sprime;

Closer inspection shows that Sprime stands for the ring S′ =Q[Y1, . . . , Y64, Z ].
A list autKSexported will be exported: each element is a triple (AB, B, JB)

where B runs through the four elements of Aut(�R) and AB is a formal matrix
over Sprime that encodes isomorphisms of S as in Remark 2.4(iii). For instance,
for autKSexported[2], the second entry in the triple (AB, B, JB) is the second
matrix listed in (1) and the matrix AB is

> print(autKSexported[2][1]);
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Y (1) 0 0 0 0 0 0 0
0 0 0 0 Y (13) 0 0 0
0 0 0 0 0 0 0 Y (24)
0 0 0 0 0 0 Y (31) 0
0 Y (34) 0 0 0 0 0 0
0 0 0 0 0 Y (46) 0 0
0 0 0 Y (52) 0 0 0 0
0 0 Y (59) 0 0 0 0 0

The equations obtained from the zero entries in AB and its invertible-condition are
stored in the ideal JB . The third entry is
> print(autKSexported[2][3]);

Y (2), Y (3), . . . , Y (63), Y (64), −Y (1)Y (13)Y (24)Y (31)Y (34)Y (46)Y (52)Y (59)Z − 1

Moreover, an ideal Iexported, called J in Algorithm 2.3, is being exported that
is the product over all the ideals JB where B runs through Aut(�R). This means
AutK (S)∼= S′/J is isomorphic to Sprime modulo Iexported; the degree matrix
of Sprime can be obtained via getVariableWeights().

We come to AutK (R). Restricting the group action of Construction 2.2 to
AutK (S)⊆ GL(n), we have an algebraic subgroup given as the stabilizer

StabI (AutK (S)) := {A ∈ AutK (S); A · I = I } ⊆ AutK (S).

Provided Iw = {0} holds for all w ∈�S , Hausen et al. [2017] have shown that we
have an isomorphism

StabI (AutK (S)) ∼= AutK (R).

The final step then is the following. Define the set �I := {deg(g1), . . . , deg(gs)}

of ideal generator degrees. The idea is to compute (linear) equations ensuring that
the vector spaces Iu , where u ∈�I , are mapped to one another.

Algorithm 2.6 (computing AutK (R)). See [Hausen et al. 2017, Algorithm 3.8].

Input: the K -graded polynomial ring S and the defining ideal I ⊆ S of R.
• Let J ⊆ S′ := C[Yi j ; 1≤ i, j ≤ n] be the output of Algorithm 2.3.

• Compute �I and form the C-vector space W :=
⊕

�I
Su .

• For the vector space IW = I ∩W ⊆W, compute
– a C-basis (h1, . . . , hl) and
– a description IW = V (`1, . . . , `m) with linear forms `i ∈W ∗.

• With the GL(n)-action from Construction 2.2 and Y = (Yi j ), we obtain the
ideal

J ′ := 〈`i (Y · h j ); 1≤ i ≤ m, 1≤ j ≤ l〉 ⊆ S′.
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Output: the ideal J+ J ′⊆ S′. Then V (J+ J ′)⊆GL(n) is an algebraic subgroup
isomorphic to AutK (R).

Remark 2.7. (i) Algorithms 2.3 and 2.6 do not make use of Gröbner basis com-
putations. However, in Singular, it usually is quicker to compute J∩ JB instead
of J · JB .

(ii) Computing G :=AutK (R)⊆GL(n) with Algorithm 2.6 enables us to directly
compute the number of irreducible components [G : G0

] and the dimension
of G by Gröbner basis computations.

Example 2.8 (autgradalg.lib III ). Continuing Example 2.5, let us compute
AutK (R). We first switch back to S, enter the defining ideal I for R = S/I and
start the computation of AutK (R):

> setring S;
> ideal I = T(1)*T(6) + T(2)*T(5) + T(3)*T(4) + T(7)*T(8);
> def Sres = autGradAlg(I, TOR);
> setring Sres;

The resulting ring Sres is identical to Sprime. A list stabExported is being
exported; the interpretation of the entries is identical to that of the list listAutKS
from Example 2.5, with the difference that the ideal part now contains additional
equations describing the stabilizer: for example

> stabExported[2][3];

Y (2), Y (3), . . . Y (63), Y (64), −Y (1)Y (13)Y (24)Y (31)Y (34)Y (46)Y (52)Y (59)Z − 1,

−Y (24)Y (31)+ Y (52)Y (59), Y (13)Y (34)− Y (52)Y (59), −Y (13)Y (34)+ Y (1)Y (46)

Moreover, an ideal Jexported is being exported that is the product over all JB as
before. Then Sres modulo Jexported is isomorphic to AutK (R). The grading is
obtained as before with getVariableWeights().

3. APPLICATION: MORI DREAM SPACES. In this section, we briefly recall from
[Hausen et al. 2017] how the algorithms from the last section can be applied to a
class of varieties in algebraic geometry.

To a normal algebraic variety X over C with finitely generated class group Cl(X)
one can assign a Cl(X)-graded C-algebra, its so-called Cox ring,

Cox(X) =
⊕

[D]∈Cl(X)

0(X,O(D));

see, e.g., [Arzhantsev et al. 2015] for details on this theory. If X is finitely gen-
erated, X is called a Mori dream space. For example, each toric variety or each
smooth Fano variety is a Mori dream space [Cox 1995; Birkar et al. 2010]. The Cox
ring has strong implications on the underlying Mori dream space. More precisely,
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X can be recovered as a good quotient

Spec(R)=: X ⊇ X̂ //H
−→ X (2)

of an open subset X̂ by the characteristic quasitorus H := Spec(C[K ]). In fact,
X̂ is determined by an ample class w ∈ Cl(X). This opens up a computer algebra
based approach [Hausen and Keicher 2015; Keicher 2014] to Mori dream spaces.
In [Arzhantsev et al. 2014], it has been shown that (2) translates to automorphisms
of X as follows:

AutCl(X)(Cox(X))∼= AutH (X)⊇ AutH (X̂)
/H
−→Aut(X) (3)

Here, by AutH (Y ) we mean the group of H-equivariant automorphisms of Y ; these
are pairs (ϕ, ψ) with ϕ :Y→Y being an automorphism of varieties and ψ : H→ H
an automorphism of affine algebraic groups such that ϕ(h · y)=ψ(h)· y holds for all
h ∈ H and y ∈ Y. By (3), we can directly compute AutH (X) with Algorithm 2.6.
In the following proposition, we investigate the symmetries of the list of Fano
varieties [Bechtold et al. 2016].

Proposition 3.1. Let X i be the nontoric terminal Fano threefold of Picard number
one with an effective two-torus action from the classification in [Bechtold et al.
2016, Theorem 1.1].

(i) For all 1≤ i ≤ 41, Algorithm 2.6 is able to compute a presentation of Gi :=

AutH (X i ) as an affine algebraic subgroup V (Ji )⊆ GL(ni ).

(ii) Using (i), these are the dimensions dim(Gi ) and the number of components
[Gi : G0

i ] of a selection of Gi ⊆ GL(ni ):

X i Aut(
�

S
)

dim
G i

[G
i
:
G

0
i
]

dim
Aut(

X i)

X i Aut(
�

S
)

dim
G i

[G
i
:
G

0
i
]

dim
Aut(

X i)

X3 Z/4Z 3 4 2 X26 Z/2Z 3 2
X6 {1} 5 4 X28 {1} 4 1 3
X7 {1} 5 4 X33 {1} 6 2 5
X10 {1} 4 1 3 X34 {1} 6 2 5
X12 {1} 6 5 X36 {1} 5 1 4
X13 {1} 4 1 3 X37 {1} 4 2 3
X14 {1} 3 2 X38 {1} 4 3 3
X15 {1} 5 4 X39 {1} 3 2
X16 {1} 3 2 X40 {1} 3 1 2
X18 {1} 6 5 X42 {1} 3 2 2
X19 {1} 4 1 3 X45 {1} 4 2 3
X20 {1} 5 4 X46 {1} 4 1 3
X21 {1} 3 2 2 X47 {1} 3 1 2
X25 {1} 4 1 3
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Proof. This is an application of Algorithm 2.6 and of the Singular commands to
compute dimension and absolute components; see, for example, [Greuel and Pfister
2008]. We performed the computations on an older machine (Intel celeron CPU,
4 GB RAM) and canceled them after several seconds. The files are available at
[Keicher 2017]. �

In [Hausen et al. 2017], the authors have also presented algorithms to compute
AutH (X̂) and generators for the Hopf algebra O(Aut(X)). Both algorithms are
also implemented in our library. However, the case O(Aut(X)) involves a Hilbert
basis computation that usually renders the computation infeasible. We therefore
finish this note with an example.

Example 3.2 (autgradalg.lib IV ). In Example 2.8, the algebra R is the Cox
ring of a Mori dream space: fix an ample class, say, w := (0, 0, 2) ∈ K ⊗Q, then
R and w define a Mori dream space X = X (R, w). The characteristic quasitorus
is H = (C∗)3×{±1}.

In Example 2.8, we have already computed AutH (X)∼= G := AutK (R). From
it, we obtain AutH (X̂) as follows: first, w defines a certain polyhedral cone, the
GIT-cone λ(w). Then AutH (X̂) is obtained from G by choosing only those ele-
ments (AB, B, JB) of the list stabExported where B ∈ Aut(�S) fixes λ(w). In
our library, you can compute it as follows (making use of gitfan.lib [Boehm
et al. 2016]):

w

q1

q2q3

q4q5

q6

q7

q8

λ(w)

> intvec w = 1,9,16,0; // drawn in blue
> setring S; // from before, R=S/I
> def RR = autXhat(I, w, TOR);
> setring RR;

Then a list RES will be exported, identical to stabExported from Example 2.8
with the difference that it contains only the element stabExported[1] as the other
matrices B do not fix λ(w). The computation of generators for O(Aut(X)) is not
feasible here, but in principle, the command is autX(I, w, TOR).

SUPPLEMENT. The online supplement contains version 4.1.1.0 of autgradalg.lib.
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A package for computations with classical resultants

GIOVANNI STAGLIANÒ

ABSTRACT: We present the Macaulay2 package Resultants, which provides
commands for the effective computation of multivariate resultants, discriminants,
and Chow forms. We provide some background for the algorithms implemented
and show, with a few examples, how the package works.

INTRODUCTION. The resultant characterizes the existence of nontrivial solutions
for a square system of homogeneous polynomial equations as a condition on the co-
efficients. One of its important features is that it can be used to compute elimination
ideals and to solve polynomial equations. Indeed, it provides one of the two main
tools in elimination theory, along with Gröbner bases. The resultant of the system
of equations given by the partial derivatives of a complex homogeneous polyno-
mial F is called (up to a constant factor) the discriminant of F. It characterizes
the existence of singular points in the projective hypersurface V (F) as a condition
on the coefficients of F. In this special case, all polynomial equations have the
same total degree. Every time the system of equations consists of n+1 polynomial
equations of the same total degree d , the resultant has a further interesting property:
it can be expressed as a polynomial of degree dn in the (n+1)×(n+1)minors of an
(n+1)×

(n+d
n

)
matrix, the coefficient matrix of the system of equations. This allows

us to write down a generic resultant in a more compact form. The polynomial of
degree dn so obtained is geometrically interpreted as the Chow form of the d-th
Veronese embedding of Pn.

The package Resultants, included with [Macaulay2], provides commands for
the explicit computation of resultants and discriminants. The main algorithm used
is based on the so-called Poisson formula, which reduces the computation of the
resultant of n+ 1 equations to the product of the resultant of n equations with the
determinant of an appropriate matrix. This algorithm requires a certain genericity
condition on the input polynomials, achievable with a generic change of coordi-
nates. The package also includes tools for working with Chow forms and more
generally with tangential Chow forms.
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Keywords: resultant, discriminant, Chow form.
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In Section 1, from a more computational point of view, we give some back-
ground information on the general theory of resultants, discriminants, and Chow
forms. In Section 2, we briefly illustrate how to use the package with the help
of some examples; more detailed information and examples can be found in its
documentation.

1. OVERVIEW OF CLASSICAL RESULTANTS. We present an overview of some
classically well known facts on the theory of resultants for forms in several vari-
ables. For details and proofs, we refer mainly to [Gelfand et al. 1994; Cox et al.
2005]; other references are [Jouanolou 1991; 1997; van der Waerden 1950; De-
mazure 2012; Emiris and Mourrain 1999; Bajaj et al. 1988; Busé and Jouanolou
2014], and [Cox et al. 2007] for the case of two bivariate polynomials.

Resultants. Suppose we are given n+ 1 homogeneous polynomials F0, . . . , Fn in
n+1 variables x0, . . . , xn over the complex field C. For i = 0, . . . , n, let di denote
the total degree of Fi so that we can write Fi =

∑
|α|=di

ci,αxα, where xα denotes
xα0

0 · · · x
αn
n . For each pair of indices i, α, we introduce a variable ui,α and form

the universal ring of coefficients Ud0,...,dn := Z[ui,α : i = 0, . . . , n, |α| = di ]. If
P ∈ Ud0,...,dn , we denote by P(F0, . . . , Fn) the element in C obtained by replacing
each variable ui,α with the corresponding coefficient ci,α.

Theorem 1.1 [Gelfand et al. 1994; Cox et al. 2005]. If we fix positive degrees
d0, . . . , dn , then there is a unique polynomial Res = Resd0,...,dn ∈ Ud0,...,dn which
has the following properties:

(1) If F0, . . . , Fn ∈ C[x0, . . . , xn] are homogeneous of degrees d0, . . . , dn , then
the equations

F0 = 0, . . . , Fn = 0

have a nontrivial solution over C (i.e., ∅ 6= V (F0, . . . , Fn)⊂ Pn
C

) if and only
if Res(F0, . . . , Fn)= 0.

(2) Res is irreducible, even when regarded as a polynomial over C.

(3) Res(xd0
0 , . . . , xdn

n )= 1.

Definition 1.2. We call Res(F0, . . . , Fn) the resultant of F0, . . . , Fn .

Remark 1.3. If A is any commutative ring, we define the resultant of n+1 homoge-
neous polynomials F0, . . . , Fn ∈ A[x0, . . . , xn] again as Res(F0, . . . , Fn) ∈ A, i.e.,
by specializing the coefficients of the integer polynomial Res. Thus, the formation
of resultants commutes with specialization.

Example 1.4. The resultant is a direct generalization of the determinant. Indeed,
if d0 = · · · = dn = 1, then Res(F0, . . . , Fn) equals the determinant of the (n+ 1)×
(n+ 1) coefficient matrix.
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Proposition 1.5 [Jouanolou 1991; Jouanolou 1997]. The following hold:

(1) (homogeneity) For a fixed j between 0 and n, Res is homogeneous in the vari-
ables u j,α , |α| = d j , of degree d0 · · · d j−1d j+1 · · · dn; hence its total degree is∑n

j=0 d0 · · · d j−1d j+1 · · · dn .

(2) (symmetry) If σ is a permutation of {0, . . . , n}, then

Res(Fσ(0), . . . , Fσ(n))= sign(σ )d0···dn Res(F0, . . . , Fn).

(3) (multiplicativity) If F j = F ′j F ′′j , then we have

Res(F0, . . . , F j , . . . , Fn)= Res(F0, . . . , F ′j , . . . , Fn) Res(F0, . . . , F ′′j , . . . , Fn).

(4) (SL(n+1)-invariance) For each (n+ 1)× (n+ 1) matrix A over C, we have

Res(F0(Ax), . . . , Fn(Ax))= det(A)d0···dn Res(F0(x), . . . , Fn(x)),

where Ax denotes the product of A with the column vector (x0, . . . , xn)
t .

(5) (elementary transformation) If Hi is homogeneous of degree d j − di , then

Res(F0, . . . , F j +
∑
i 6= j

Hi Fi , . . . , Fn)= Res(F0, . . . , F j , . . . , Fn).

Remark 1.6. On the product AM
× Pn

= Spec(C[ui,α]) × Proj(C[x0, . . . , xn]),
where M =

∑n
i=0

(n+di
n

)
, we have an incidence variety

W :=
{
((ci,α), p) ∈ AM

×Pn
: p ∈ V

( ∑
|α|=d0

c0,αxα, . . . ,
∑
|α|=dn

cn,αxα
)}
.

The first projection π1 : W → AM is birational onto its image, whereas all the
fibers of the second projection π2 : W → Pn are linear subspaces of dimension
M − n− 1. It follows that W is a smooth irreducible variety which is birational to
π1(W )= π1(W )= V (Resd0,...,dn )⊂ AM.

The following result is called the Poisson formula and allows one to compute
resultants inductively.

Theorem 1.7 [Jouanolou 1991; Cox et al. 2005]. Let

fi (x0, . . . , xn−1) := Fi (x0, . . . , xn−1, 1)

and Fi (x0, . . . , xn−1) := Fi (x0, . . . , xn−1, 0). If Res(F0, . . . , Fn−1) 6= 0, then the
quotient ring A = C[x0, . . . , xn−1]/( f0, . . . , fn−1) has dimension d0 · · · dn−1 as a
vector space over C, and

Res(F0, . . . , Fn)= Res(F0, . . . , Fn−1)
dn det(m fn : A→ A), (1-1)

where m fn : A→ A is the linear map given by multiplication by fn .
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With the same hypotheses as Theorem 1.7, a monomial basis for A over C

(useful in the implementation) can be constructed as explained in [Cox et al. 2005,
Chapter 2, §2]. Note also that we have

det(m fn : A→ A)=
∏
p∈V

fn(p)multp(V ), (1-2)

where V = V ( f0, . . . , fn−1).
We now describe the most popular way to compute resultants, which is due to

Macaulay [1903]. Let

δ =

n∑
i=0

di − n and N =
(

n+ δ
n

)
.

We can divide the monomials xα of total degree δ into the n+ 1 mutually disjoint
sets

Si := {xα : |α| = δ, min{ j : xd j
j |x

α
} = i}, for i = 0, . . . , n.

A monomial xα of total degree δ is called reduced if xdi
i divides xα for exactly

one i . Consider the following N homogeneous polynomials of degree δ:

xα/xdi
i Fi , for i = 0, . . . n and xα ∈ Si . (1-3)

By regarding the monomials of total degree δ as unknowns, the polynomials in
(1-3) form a system of N linear equations in N unknowns. Let

D= D(F0, . . . , Fn)

denote the coefficient matrix of this linear system, and let D′(F0, . . . , Fn) denote
the submatrix of D obtained by deleting all rows and columns corresponding to re-
duced monomials. The following result is called the Macaulay formula and allows
one to compute the resultant as a quotient of two determinants.

Theorem 1.8 [MacAulay 1903; Jouanolou 1997; Cox et al. 2005]. The following
formula holds:

det(D(F0, . . . , Fn))= Res(F0, . . . , Fn) det(D′(F0, . . . , Fn)). (1-4)

In several special cases, the resultant can be expressed as a single determinant
(see [Gelfand et al. 1994, Chapter 13, Proposition 1.6]). We also mention that be-
sides (1-4), there are other ways to represent resultants as quotients: these include
Bezoutians [Elkadi and Mourrain 1998] and Dixon matrices [Kapur et al. 1994];
see also [Emiris and Mourrain 1999] and [Cox et al. 2005, p. 110]. However, all
these matrices are usually of much larger size than those involved by the Poisson
formula (1-1), as shown in the following simple example (see [Emiris and Mourrain
1999], for a comparison between Macaulay and other resultant matrices).
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Example 1.9. Let F0= x3
+y2z, F1= xy+y2

+xz+yz, F2= y4
+z4
∈C[x, y, z].

The Poisson formula expresses Res(F0, F1, F2) as the following product of deter-
minants:

Res(F0, F1, F2)=

12 det

1 0 0
1 1 0
0 1 1


4

· det



1 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 1 0 1 0 0
1 0 0 0 2 0
0 −1 0 1 0 2


= 16.

The Macaulay formula yields the same result as a quotient det(D)/det(D′), where
D and D′ are square matrices of size 36× 36 and 10× 10, respectively.

Discriminants. Let F =
∑
|α|=d cαxα ∈ C[x0, . . . , xn] be a homogeneous polyno-

mial of a certain degree d. As above, for each index α we introduce a variable uα
and form the universal ring of coefficients Ud := C[uα : |α| = d]. Then one can
show that, up to sign, there is a unique polynomial Disc= Discd ∈ Ud which has
the following properties:

(1) If F ∈ C[x0, . . . , xn] is homogeneous of degrees d , then the equations

∂F/∂x0 = 0, . . . , ∂F/∂xn = 0

have a nontrivial solution over C (i.e., the hypersurface defined by F is singu-
lar) if and only if Disc(F)= 0;

(2) Disc is irreducible, even when regarded as a polynomial over C.

Proposition 1.10 [Gelfand et al. 1994]. Up to sign, we have the formula

Disc(F)= cd,n Res
(
∂F
∂x0

, . . . ,
∂F
∂xn

)
, where cd,n = d

(−1)n+1
−(d−1)n+1

d . (1-5)

Definition 1.11. We call the polynomial defined by (1-5) the discriminant of F.

Proposition 1.12 [Gelfand et al. 1994]. The following hold:

(1) The polynomial Disc is homogeneous of degree (n+ 1)(d − 1)n .

(2) For each (n+ 1)× (n+ 1) matrix A over C, we have

Disc(F(Ax))= det(A)d(d−1)n Disc(F(x)),

where Ax denotes the product of A with the column vector (x0, . . . , xn)
t .

Geometrically, we have the following interpretation.

Proposition 1.13 [Gelfand et al. 1994]. The discriminant hypersurface V (Discd)

in the space of forms of degree d on Pn coincides with the dual variety of the d-th
Veronese embedding of Pn .
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Chow forms. Let X ⊂Pn be an irreducible subvariety of dimension k and degree d .
Consider the subvariety Z(X) in the Grassmannian G(n−k−1,Pn) of all (n−k−1)-
dimensional projective subspaces of Pn that intersect X . It turns out that Z(X) is
an irreducible hypersurface of degree d; thus Z(X) is defined by the vanishing of
some element RX , unique up to a constant factor, in the homogeneous component
of degree d of the coordinate ring of the Grassmannian G(n − k − 1,Pn) in the
Plücker embedding. This element is called the Chow form of X . It is notable that
X can be recovered from its Chow form. See [Gelfand et al. 1994, Chapter 3, §2]
for details.

Consider the product Pk
× X as a subvariety of P(k+1)(n+1)−1 via the Segre

embedding. Identify P(k+1)(n+1)−1 with the projectivization P(Mat(k+ 1, n+ 1))
of the space of (k + 1) × (n + 1) matrices and consider the natural projection
ρ : P(Mat(k + 1, n + 1)) 99K G(k, n) ' G(n − k − 1, n). The following result is
called the Cayley trick.

Theorem 1.14 [Gelfand et al. 1994; Weyman and Zelevinsky 1994]. The dual
variety of Pk

× X coincides with the closure ρ−1(Z(X)), where

Z(X)⊂ G(n− k− 1, n)

is the hypersurface defined by the Chow form of X.

The defining polynomial of the hypersurface ρ−1(Z(X))⊂P(Mat(k+1, n+1))
is called X-resultant; it provides another way of writing the Chow form of X .

Now, let F0, . . . , Fn be n+ 1 generic homogeneous polynomials on Pn of the
same degree d > 0, and let M=M(F0, . . . , Fn) be the (n+ 1)× N matrix of the
coefficients of these polynomials, N =

(n+d
n

)
. We consider the projection ρn,d :

P(Mat(n+1, N )) 99K G(n, N −1)'G(N −n−2, N −1) defined by the maximal
minors of M.

Proposition 1.15 [Gelfand et al. 1994; Cox et al. 2005]. The hypersurface of
degree (n + 1)dn in P(Mat(n + 1, N )) defined by the resultant Res(F0, . . . , Fn)

coincides with the closure ρ−1
n,d(V (Rn,d)), where Rn,d denotes the Chow form of the

d-th Veronese embedding of Pn. In particular, Res(F0, . . . , Fn) is a polynomial in
the maximal minors of M.

2. IMPLEMENTATION. In this section, we illustrate briefly some of the methods
available in the package Resultants, included with [Macaulay2]. We refer to the
package documentation (which can be viewed with viewHelp Resultants) for
more details and examples.

One of the main methods is resultant, which accepts as input a list of n+ 1
homogeneous polynomials in n+1 variables with coefficients in some commutative
ring A and returns an element of A, the resultant of the polynomials. There are

https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/Resultants.m2
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no limitations on the ring A because of Remark 1.3. The algorithms implemented
are the Poisson formula (Theorem 1.7) and the Macaulay formula (Theorem 1.8).
The former is used by default since it is typically faster, while for the latter one has
to set the Algorithm option: resultant(...,Algorithm=>"Macaulay"). The
method can also be configured to involve interpolation of multivariate polynomials
(see [Manocha and Canny 1993]), i.e., it can reconstruct the polynomial resultant
from its values at a sufficiently large number of points, which in turn are evaluated
using the same formulas. The main derived method is discriminant, which
applies the formula (1-5) to compute discriminants of homogeneous polynomials.

Example 2.1. In the following code, we take two forms F,G of degree 6 on P3. We
first verify that Disc(F)= 0 and Disc(G) 6= 0 and then we compute the intersection
of the pencil generated by F and G with the discriminant hypersurface in the space
of forms of degree 6 on P3, which is a hypersurface of degree 500 in P83. (The
algorithm behind these calculations is the Poisson formula; this is one of the cases
where the Macaulay formula is much slower).
Macaulay2, version 1.10
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone
i1 : loadPackage "Resultants";
i2 : ZZ[w,x,y,z]; (F,G) = (w^6+x^6+y^6+w*x*y^4,w^6+x^6+y^6+z^6)

6 6 4 6 6 6 6 6
o3 = (w + x + w*x*y + y , w + x + y + z )
o3 : Sequence
i4 : time discriminant F

-- used 0.0179806 seconds
o4 = 0
i5 : time discriminant G

-- used 0.0310744 seconds
o5 = 140570811483169199470638017932788358544282187717397844656324826769552160278476332
56406502145120855236676811697488882435760217714078399664105019672381338748228576388801
69042329841357623161361759778624522173244483459194112043602458289220741512289591637737
14466361681597648097658753070739833449997864683601657856
i6 : R := ZZ[t,u][w,x,y,z]; pencil = t*sub(F,R) + u*sub(G,R)

6 6 4 6 6
o7 = (t + u)w + (t + u)x + t*w*x*y + (t + u)y + u*z
o7 : ZZ[t, u][w, x, y, z]
i8 : time D = discriminant pencil

-- used 7.05101 seconds
375 125 374 126 ...

11918167904272470982401...000t u + 44811489377450403137211...000t u ...
o8 : ZZ[t, u]
i9 : factor D

125 195 3 2 2 3 30 3 2 2 3 30
o9 = (u) (t + u) (25t + 81t u + 81t*u + 27u ) (29t + 81t u + 81t*u + 27u ) (
18453098603344854356045130076201433820906084922117987408631404035314583354936784858690
19666668055428407222803144055042891867966935429959336227999512218285981355846846846364
626801397625813957058058834010980828766582924640256)
o9 : Expression of class Product
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In particular, we deduce that the pencil 〈F,G〉 intersects the discriminant hyper-
surface in F with multiplicity 125, in F −G with multiplicity 195, and in another
six distinct points with multiplicity 30.

The package also provides methods for working with Chow forms and more
generally tangential Chow forms of projective varieties (see [Gelfand et al. 1994,
p. 104] and [Green and Morrison 1986]). In the following example, we apply some
of these methods.

Example 2.2. Take C ⊂ P3 to be the twisted cubic curve.

i10 : C = kernel veronese(1,3)
2 2

o10 = ideal (x - x x , x x - x x , x - x x )
2 1 3 1 2 0 3 1 0 2

o10 : Ideal of QQ[x , x , x , x ]
0 1 2 3

The Chow form of C in G(1, 3) can be obtained as follows:

i11 : w = chowForm C
3 2 2

o11 = x - x x x + x x + x x - 2x x x - x x x
1,2 0,2 1,2 1,3 0,1 1,3 0,2 2,3 0,1 1,2 2,3 0,1 0,3 2,3

QQ[x , x , x , x , x , x ]
0,1 0,2 1,2 0,3 1,3 2,3

o11 : --------------------------------------
x x - x x + x x
1,2 0,3 0,2 1,3 0,1 2,3

We can recover C from its Chow form by taking the so-called Chow equations;
see [Gelfand et al. 1994, p. 102; Catanese 1992].

i12 : C == saturate chowEquations w
o12 = true

The X -resultant of C can be obtained applying first the duality isomorphism
G(1,P3)= G(1,P3∗) and then passing from the Plücker to the Stiefel coordinates.

i13 : w’ = dualize w
3 2 2

o13 = x - x x x + x x + x x - x x x - 2x x x
0,3 0,2 0,3 1,3 0,1 1,3 0,2 2,3 0,1 1,2 2,3 0,1 0,3 2,3

QQ[x , x , x , x , x , x ]
0,1 0,2 1,2 0,3 1,3 2,3

o13 : --------------------------------------
x x - x x + x x
1,2 0,3 0,2 1,3 0,1 2,3

i14 : fromPluckerToStiefel w’
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3 3 2 2 2 2 2 3 ...
o14 = - x x + x x x x - x x x x + x x x - ...

0,3 1,0 0,2 0,3 1,0 1,1 0,1 0,3 1,0 1,1 0,0 0,3 1,1 ...

o14 : QQ[x , x , x , x , x , x , x , x ]
0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3

The method cayleyTrick returns a pair consisting of the defining ideal of
P1
×C ⊂P7

'P(Mat(2, 4)) and the X -resultant of C , considered as a hypersurface
Z ⊂ P(Mat(2, 4)). Theorem 1.14 ensures that Z is the dual variety of P1

×C . We
can check this using the method dualVariety.

i15 : (P1xC,Z) = cayleyTrick C;
i16 : dualVariety(P1xC) == Z
o16 = true

Some overlapping packages. There are two further packages related to resultant
computations, which are included in Macaulay2: [Elimination] by M. E. Stillman,
and [EliminationMatrices] by N. Botbol, L. Busé and M. Dubinsky. The former
contains functions to compute Sylvester resultants. The latter can compute different
resultant matrices; in particular, it contains an implementation of the Macaulay
formula.

A further package for working with Chow forms is Coisotropy, by K. Kohn
(see [Kohn 2016]), which, in particular, contains a useful function to compute the
degrees of all tangential Chow forms of a given projective variety.

For all these overlapping functions, it does not seem easy to rank implementa-
tions in terms of efficiency because this generally depends on the problem. They
also differ in how they handle input and output. For instance, the discriminant of
a binary form computed using the package Elimination lies again in the same ring,
rather than in the ring of coefficients, and the Chow form of a projective variety
computed using Coisotropy lies in a polynomial ring, rather than in a quotient ring.

SUPPLEMENT. The online supplement contains version 1.2.1 of Resultants.
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The SpaceCurves package in Macaulay2

MENGYUAN ZHANG

ABSTRACT: This note introduces the Macaulay2 package SpaceCurves.m2 with
illustration. The 1.0 version of the package, provided in the accompanying online
supplement, is devoted to the generation of three types of curves in P3: smooth
curves, ACM curves and curves that are minimal in the even liaison class.

1. INTRODUCTION. The SpaceCurves project was initiated by R. Hartshorne,
F. Schreyer and M. Stillman during the 2017 Macaulay2 workshop at UC Berkeley.
Since the workshop, Zhang has improved old code and developed the package into
the present version. The goal of the SpaceCurves package is to generate three
types of curves in P3; smooth curves, ACM curves, and minimal curves in a given
even liaison class.

In Section 2 we illustrate how to produce smooth curves exhausting all possibil-
ities of (degree, genus) pairs. The philosophy is the following: first we construct
three types of surfaces; the smooth quadric surface, smooth cubic surfaces and
rational quartic surfaces with a double line. Next, we construct divisors on these
surfaces. Finally, we generate a random curve in a given divisor class.

In Section 3 we illustrate the stratification of the Hilbert scheme of ACM curves
in P3 using Betti tables. We illustrate how to produce ACM curves exhausting all
possibilities of Betti tables. First, we list all the possible Hilbert functions of ACM
curves of a given degree, then we produce all Betti tables of ACM curves with a
given Hilbert function. Finally, we generate a matrix of random forms with degrees
specified by the Hilbert–Burch degree matrix and take the ideal of maximal minors.

In Section 4 we explain the construction of a curve that is minimal in its even
liaison class from a given finite length module. The even liaison class can be
specified by either the ideal of a curve in the even liaison class, or by a finite length
module called the Hartshorne–Rao module. The implementation of the minimal
curve algorithm follows the paper by Guarrera et al. [1997].

To make our computations exact, and to avoid coefficient explosion, we work
over large finite fields Z/pZ in Macaulay2. Over a small prime field, such as Z/2Z

MSC2010: 14-04, 14H50, 14HXX.
Keywords: space curves, minimal curves, Rao module, liaison theory, ACM curves, smooth curves.
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or Z/3Z, many of the curves produced will be singular. In these cases we refer the
readers to the package RandomCurvesOverVerySmallFiniteFields.m2 by C.
Bopp and F. Schreyer.

2. SMOOTH CURVES IN PROJECTIVE THREE-SPACE. For which pairs of integers
(d, g) does there exist a connected smooth curve in P3 of degree d and genus g?
G. Halphen gave partial answers in his prize winning treatise in 1882, and the com-
plete solution to this question was given by Gruson and Peskine almost a century
later in characteristic 0 and extended to characteristic p by Hartshorne.

(1) There are smooth plane curves of genus g = 1
2(d − 1)(d − 2) for any d ≥ 1.

(2) (Castelnuovo) If a smooth curve does not lie on any plane, we must have

g ≤
⌊ 1

4 d2
− d + 1

⌋
.

Any curve obtaining this bound lies on a quadric surface.

(3) For each a, b> 0, there are smooth curves on the smooth quadric surface with
degree d = a+ b and genus g = (a− 1)(b− 1).

(4) On the quadric cone, if d = 2a is even, there are smooth complete intersections
of the quadric cone with another surface of degree a. If d = 2a + 1 is odd,
then any degree d curve on the quadric cone has genus g = a2

− a.

(5) [Halphen 1882] If a curve does not lie on any plane or quadric surface, then

g ≤ 1
6 d(d − 3)+ 1.

(6) [Gruson and Peskine 1982, Corollary 2.3] For d ≥ 1 and
1
√

3
d3/2
− d + 1< g ≤ 1

6 d(d − 3)+ 1,

there is a smooth curve with degree d and genus g on a smooth cubic surface.

(7) [Gruson and Peskine 1982, Theorem 1.1; Hartshorne 1982, Theorem 0.2] For
d ≥ 1 and

0≤ g ≤ 1
8(d − 1)2,

there is a smooth curve with degree d and genus g on a smooth quartic surface
with a double line.

The SpaceCurves package generates curves on the surfaces mentioned above.
Let us start from curves on the smooth quadric surface.

2.1. Curves on a smooth quadric surface. To create a smooth quadric surface Q,
we use the method function quadricSurface(Ring) where the input ring is
taken as the ambient coordinate ring of P3. The output is a type of hashtable called
QuadricSurface. It contains the following information:

https://www.math.uni-sb.de/ag/schreyer/images/data/computeralgebra/M2/doc/Macaulay2/RandomCurvesOverVerySmallFiniteFields/html/index.html
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i1 : needsPackage "SpaceCurves";
i2 : R = ZZ/101[x_0..x_3];
i3 : Q = quadricSurface(R)
o3 = ideal(- x x + x x )

1 2 0 3
o3 : QuadricSurface
i4 : peek Q
o4 = QuadricSurface{CanonicalClass => {-2, -2} }

HyperplaneClass => {1, 1}
Ideal => ideal(- x x + x x )

1 2 0 3
IntersectionPairing => | 0 1 |

| 1 0 |

Since Q ∼= P1
×P1, a basis of Pic(Q) consists of π∗1 (OP1(1)) and π∗2 (OP1(1)),

where π1 and π2 are the two canonical projections to P1. In this basis, the intersec-
tion pairing matrix is

[ 0
1

1
0

]
and the canonical class has coordinates {−2,−2}. The

divisor class {1, 1} in the given basis defines the embedding of Q in P3.
The method function divisor(List,QuadricSurface) produces divisors on

the quadric surface Q. The output is a type of hashtable called Divisor, which
carries a list that encodes the coordinates of the divisor as well as the surface it is
on. The intersection number is computed from the coordinates of D and E using
the intersection matrix of Q.

i5 : D = divisor({2,3},Q)
o5 = {2, 3}
o5 : Divisor
i6 : peek D
o6 = Divisor{Coordinate => {2, 3} }

Surface => ideal(- y*z + x*w)
i7 : E = divisor({1,2},Q);
i8 : D*E
o8 = 7

Since we can compute the intersection number of any two divisors on Q, we
can compute the degree and arithmetic genus of a divisor using Bezout’s theorem
and the adjunction formula:

deg D = D.H,

2pa(D)− 2= D.(D+ K ),

where H and K denote the hyperplane class and the canonical class, respectively.
The advantage of computing the degree and genus of a divisor abstractly is that the
coordinates of the divisor can be in any ring that supports rational arithmetic. In
particular, we can verify the formula for the degree and genus of a divisor of type
(a, b) on Q.
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i9 : S = QQ[a,b];
i10 : F = divisor({a,b},Q);
i11 : degree F
o11 = a + b
o11 : S
i12 : genus F
o12 = a*b - a - b + 1
o12 : S

We use the method function curve(Divisor) to produce a random curve in
a given divisor class. The output type is called Curve, which is a hashtable that
encodes the ideal of the curve as well as the Divisor it comes from. To extract
the ideal, one could use the method ideal(Curve) or equivalently the key Ideal
of the hashtable Curve.

i13 : C = curve D;
i14 : I = ideal C;
i15 : (degree I, degree D, genus I, genus D)
o15 = (5, 5, 2, 2)
o15 : Sequence

Here is how the method curve(Divisor) works for divisors on a smooth
quadric surface. If D has coordinates {a, b}, we generate a random form f of
bidegree (a, b) in the Cox ring

Cox= k[s, t]⊗k k[u, v]

and create the Segre map ψ : R = k[x, y, z, w] → Cox /( f ) where

x 7→ s⊗ u, y 7→ s⊗ v, z 7→ t ⊗ u, w 7→ t ⊗ v.

The kernel of the map ψ will be the ideal of a curve in the divisor class (a, b) on
the quadric surface. Since we are using random bihomogeneous forms, the output
is typically smooth.

2.2. Curves on a smooth cubic surface. Although it is easy to produce a smooth
cubic surface, it is not straightforward to generate curves of a given degree and
genus on the given cubic surface. Instead, we realize the cubic surface as a blowup
π : X → P2 at six general points, anticanonically embedded into P3. Since the
automorphisms of P2 act transitively on four distinct points, we fix four points,

P1 = [1 : 0 : 0], P2 = [0 : 1 : 0], P3 = [0 : 0 : 1], P4 = [1 : 1 : 1],

and choose points P5 and P6 randomly. Then Pic(X)∼= Z7 with a basis given by
L ,−E1, . . . ,−E6, where L = π∗(OP2(1)) and Ei is the exceptional divisor of the
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point Pi . The intersection matrix of X in this basis is given by[
1 0
0 − Id

]
,

where Id is the 6×6 identity matrix. The complete linear system |3L−E1−· · ·−E6|

is very ample and embeds X into P3 as a smooth cubic surface. The canonical class
of X is −3L + E1+ · · ·+ E6. See [Hartshorne 1977, V.4] for a treatment of these
well known facts.

We can use the method function cubicSurface(Ring) to generate a smooth
cubic surface. The output is a type of hashtable called CubicSurface. The key
BlowUpPoints stores the list of ideals of the six points. The key MapToP3 stores
the rational map from P2 to P3 which comes from the restriction of the embedding
X ↪→ P3.

i5 : X = cubicSurface(R)
o5 = ideal(...)
o5 : CubicSurface
i6 : peek X
o6 = CubicSurface{BlowUpPoints => {...} }

CanonicalClass => {-3, -1, -1, -1, -1, -1, -1}
HyperplaneClass => {3, 1, 1, 1, 1, 1, 1}
IntersectionPairing => | 1 0 0 0 0 0 0 |

| 0 -1 0 0 0 0 0 |
| 0 0 -1 0 0 0 0 |
| 0 0 0 -1 0 0 0 |
| 0 0 0 0 -1 0 0 |
| 0 0 0 0 0 -1 0 |
| 0 0 0 0 0 0 -1 |

Ideal => ideal(...)
MapToP3 => ...

The equation of X in P3 is computed in the following way: let I be the ideal of
the union of the six points P1, . . . , P6. Since P5 and P6 are chosen randomly, we
can presume that no three of Pi are collinear and that the points Pi do not all lie
on any quadric. The Hilbert–Burch theorem thus determines the shape of the free
resolution of I as

0→ R(−4)3 φ
→ R(−3)4→ I → 0,

where R = k[y0, y1, y2] is the coordinate ring of P2. Now φ is a 4× 3 matrix of
linear forms in three variables, which can be thought of as a 4×3×3 tensor. There
is a canonical way to consider φ as a 3× 3× 4 tensor, and think of it as a 3× 3
matrix of linear forms in four variables denoted by M ′. The determinant of M ′

gives the defining equation of X in P3.
We can create divisors on X using divisor(List,CubicSurface). Let us

compute the degree and genus of a divisor on the smooth cubic surface.
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i17 : S = QQ[a,b_1..b_6];
i18 : D = divisor(gens S,X);
i19 : degree D
o19 = 3a - b - b - b - b - b - b

1 2 3 4 5 6
i20 : genus D
o20 = ...

2.3. Curves on a rational quartic surface. Let us recall the construction of the
quartic surface with a double line singularity from [Gruson and Peskine 1982].
Consider the blowup of P2 at nine general points P1, . . . , P9 given by π : Y → P2.
Let L denote the class π∗(O1

P(1)) on Y, and let Ei denote the class of the ex-
ceptional divisor corresponding to the point Pi . Then Pic(Y ) is isomorphic to
the free abelian group generated by L ,−E1, . . . ,−E9. There is a unique smooth
cubic curve 00 on P2 passing through the nine points, and let 0 denote its proper
transform on Y. We have 0= 3L−E1−· · ·−E9, and−0 is the canonical class of Y.
If we set C = L−E1, then the complete linear system |C+0| is basepoint-free and
maps Y into P3 as a quartic hypersurface. One can verify that the linear system
|C +0| separates points and tangent vectors for points in Y −0, and restricts to
a degree 2 linear system on the elliptic curve 0. As a result, Y − 0 is mapped
isomorphically onto its image, and 0 is mapped 2-1 to a line. The image of Y is a
rational quartic surface with a double line singularity, where the double line is the
scheme-theoretical image of the elliptic curve 0. For proofs of these statements,
see [Gruson and Peskine 1982, §1].

We use the method function quarticSurfaceRational(Ring) to create such
a surface. We can verify that the singular locus of the image of Y is indeed the
image of the elliptic 0 in Macaulay2.

i21 : Y = quarticSurfaceRational(R)
o21 = ideal(...)
o21 : QuarticSurfaceRational
i22 : peek Y
o22 = QuarticSurfaceRational{BlowUpPoints => {...

CanonicalClass => {-3, -1, -1, -1, -1, -1, -1, -1, -1, -1}
HyperplaneClass => {4, 2, 1, 1, 1, 1, 1, 1, 1, 1}
IntersectionPairing => | 1 0 0 0 0 0 0 0 0 0 |

| 0 -1 0 0 0 0 0 0 0 0 |
| 0 0 -1 0 0 0 0 0 0 0 |
| 0 0 0 -1 0 0 0 0 0 0 |
| 0 0 0 0 -1 0 0 0 0 0 |
| 0 0 0 0 0 -1 0 0 0 0 |
| 0 0 0 0 0 0 -1 0 0 0 |
| 0 0 0 0 0 0 0 -1 0 0 |
| 0 0 0 0 0 0 0 0 -1 0 |
| 0 0 0 0 0 0 0 0 0 -1 |
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MapToP3 => ...
Ideal => ...

i26 : pts = intersect(Y.BlowUpPoints);
i31 : S = ring pts;
i27 : hilbertFunction(3,module pts)
o27 = 1
i28 : G = gens trim pts;
i32 : gamma0 = ideal (G*random(source G,S^{-3}));

-- This produces the unique plane cubic passing the 9 points.
o32 : Ideal of S
i36 : phi = map(S/gamma0,S);
i37 : psi = Y.MapToP3;
i39 : L = kernel (phi*psi)
o39 = ideal (y + 9918z - 2540w, x + 2540z - 11757w)
o39 : Ideal of R

-- This is the image of Gamma
i44 : radical ideal jacobian Y.Ideal
o44 = ideal (y + 9918z - 2540w, x + 2540z - 11757w)
o44 : Ideal of R

-- This is the singular locus of the image of Y
i45 : radical ideal jacobian Y.Ideal == L
o45 = true

The method function divisor(List,QuarticSurfaceRational) creates a
divisor on the quartic surface with a double line. We explain how the method
function curve(Divisor) turns Divisors into Curves on the CubicSurface
and the QuarticSurfaceRational. Given a divisor D = (a, b1, . . . , bn) where
n = 6 or 9, we generate a random plane curve C0 of degree a with multiplicity bi

at the point Pi and compute the equations of its image under the rational map
P2 99K P3.

Note that the produced curves have no components supported on the exceptional
curves.

2.4. Generating smooth curves. We say a divisor class is smooth if its general
members have smooth images in P3. The method function smoothDivisors gen-
erates all smooth divisors of a given degree on a given surface. So far the valid input
surfaces are QuadricSurface, CubicSurface and QuarticSurfaceRational.
On the smooth quadric surface as well as the smooth cubic surface, there are ex-
act numerical criteria to decide whether D is smooth [Hartshorne 1977, Exam-
ple V.4.8]. On the rational quartic surface however, we do not know of such a
criterion, and thus our list is not exhaustive. One sufficient condition for D to be
smooth is that D is basepoint-free and its restriction to 0 does not contain any pair
of involution points as basepoints.

The following code generates smooth divisors of degree 4 on all the supported
surfaces. Note that the output is a list of Divisors.
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i2 : R = ZZ/32003[x_0..x_3];
i3 : Q = quadricSurface(R); X = cubicSurface(R);
i5 : Y = quarticSurfaceRational(R);
i6 : L = smoothDivisors(4,Q) | smoothDivisors(4,X) | smoothDivisors(4,Y);
i7 : netList L

+------------------------------+
o7 = |{1, 3} |

+------------------------------+
|{2, 2} |
+------------------------------+
|{2, 1, 1, 0, 0, 0, 0} |
+------------------------------+
|{3, 1, 1, 1, 1, 1, 0} |
+------------------------------+
|{2, 0, 1, 1, 1, 1, 0, 0, 0, 0}|
+------------------------------+
|{3, 1, 1, 1, 1, 1, 1, 1, 0, 0}|
+------------------------------+

Now we take the list of Divisors and turn them into Curves, and verify that
the curves we get are indeed smooth and have the correct degrees and genera.

i8 : LC = apply(L,D->curve D);
i9 : netList apply(LC,C-> (degree C,genus C, isSmooth C))

+------------+
o9 = |(4, 0, true)|

+------------+
|(4, 1, true)|
+------------+
|(4, 0, true)|
+------------+
|(4, 1, true)|
+------------+
|(4, 0, true)|
+------------+
|(4, 1, true)|
+------------+

The method function curve(ZZ,ZZ) takes a pair of integers (d, g), generates
divisors of degree d on all the surfaces, and selects one (if any) of genus g and
returns it as a Curve.

i11 : C = curve(8,5);
i12 : degree C, genus C
o12 = (8, 5)
o12 : Sequence

The following code generated 608 curves up to degree 15 in around three min-
utes on a desktop with quad cores Intel i5-7400 CPU at 3.00GHz.
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i2 : R = ZZ/101[x_0..x_3];
i3 : X = quadricSurface(R);
i4 : Y = cubicSurface(R);
i5 : Z = quarticSurfaceRational(R);
i6 : dmax = 15;
i7 : time LD = flatten apply(splice{1..dmax},d->

smoothDivisors(d,X) | smoothDivisors(d,Y) | smoothDivisors(d,Z));
-- used 2.3459 seconds

i8 : time LC = apply(LD,D -> curve D);
-- used 185.549 seconds

i9 : #LC
o9 = 608

We use the method function dgTable to tally the number of curves by the degree
(horizontal axis) and genus (vertical axis).

i10 : dgTable LC
o10 = 42 | . . . . . . . . . . . . . 1

41 | . . . . . . . . . . . . . .
40 | . . . . . . . . . . . . . 1
39 | . . . . . . . . . . . . . .
38 | . . . . . . . . . . . . . .
37 | . . . . . . . . . . . . . .
36 | . . . . . . . . . . . . 1 1
35 | . . . . . . . . . . . . 1 .
34 | . . . . . . . . . . . . . .
33 | . . . . . . . . . . . . . .
32 | . . . . . . . . . . . . 1 .
31 | . . . . . . . . . . . . . 1
30 | . . . . . . . . . . . 1 . 2
29 | . . . . . . . . . . . . . 1
28 | . . . . . . . . . . . 1 . 1
27 | . . . . . . . . . . . . 1 3
26 | . . . . . . . . . . . . 1 1
25 | . . . . . . . . . . 1 . 1 3
24 | . . . . . . . . . . 1 1 2 3
23 | . . . . . . . . . . . . 1 3
22 | . . . . . . . . . . . 1 2 3
21 | . . . . . . . . . . 1 1 2 5
20 | . . . . . . . . . 1 . 2 4 3
19 | . . . . . . . . . . 1 1 2 3
18 | . . . . . . . . . 1 1 3 3 4
17 | . . . . . . . . . . 1 2 3 4
16 | . . . . . . . . 1 . 2 3 5 4
15 | . . . . . . . . 1 1 3 2 3 6
14 | . . . . . . . . . 2 1 3 4 3
13 | . . . . . . . . . 2 3 3 3 2
12 | . . . . . . . 1 2 1 3 4 4 5
11 | . . . . . . . . 1 2 3 2 3 2
10 | . . . . . . . 2 2 2 2 4 3 2
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9 | . . . . . . 1 1 1 3 5 4 4 4
8 | . . . . . . 1 1 2 4 3 3 5 3
7 | . . . . . . 1 1 4 3 4 3 3 4
6 | . . . . . 1 2 5 5 3 6 5 6 6
5 | . . . . . 1 4 2 3 4 5 4 6 5
4 | . . . . 3 3 4 3 6 4 5 5 7 4
3 | . . . . 3 3 3 4 5 4 8 5 5 5
2 | . . . 3 3 2 5 3 5 4 6 3 7 6
1 | . 1 3 2 3 3 5 3 5 4 5 5 8 5
0 | 3 3 3 3 6 4 5 6 8 6 9 8 9 10

---+-------------------------------------------
g/d| 2 3 4 5 6 7 8 9 10 11 12 13 14 15

We close this section with a study of H sm
8,5 , the restricted Hilbert scheme of smooth

curves of degree 8 and genus 5 in P3. It is known that H sm
8,5 is irreducible; see for

example [Ein 1986, Theorem 4]. In [Gruson and Peskine 1978, §4], we find a
complete stratification of H sm

8,5 into locally closed families A, B, C, D, E, as well
as the Betti tables of each family. The following shows that the free resolutions for
the families E, C, B, A (in this order) are indeed correct.

i13 : L = select(LC, C -> degree C == 8 and genus C == 5);
i14 : L / ideal / res / betti

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
o14 = {total: 1 6 8 3, total: 1 5 5 1, total: 1 4 4 1, total: 1 7 8 2}

0: 1 . . . 0: 1 . . . 0: 1 . . . 0: 1 . . .
1: . 1 . . 1: . . . . 1: . . . . 1: . . . .
2: . . . . 2: . 1 . . 2: . 1 . . 2: . . . .
3: . . . . 3: . 3 3 . 3: . 3 2 . 3: . 7 8 2
4: . . . . 4: . 1 2 1 4: . . 2 1
5: . 5 8 3

o14 : List

We note that curves in family D are missing from our program because they do
not lie on any of the surfaces we constructed. In fact, they all lie on the ruled cubic
surface with a double line. In the upcoming 2.0 version of the package, we will
include curves on this surface and much more.

3. ACM CURVES IN PROJECTIVE THREE-SPACE. In this section we consider
arithmetically Cohen–Macaulay (ACM) curves in P3. The literature on ACM
curves in P3 is very rich and we do not aim to give a survey in this article. We
shall illustrate the stratification of Hilbert schemes of ACM curves by Betti tables.

3.1. Hilbert functions of ACM curves. Let H CM denote the points of the Hilbert
scheme (without fixing a Hilbert polynomial) of curves in P3 that correspond to
ACM curves. Ellingsrud [1975] shows that H CM is an open smooth subscheme of
the Hilbert scheme. Let H CM

H denote the points that correspond to ACM curves
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with Hilbert function H , then we have a stratification

H CM
=

⊔
H

H CM
H .

Furthermore, it is shown in [Ellingsrud 1975] that the spaces H CM
H form disjoint

irreducible connected components of H CM.
What are all the possible Hilbert functions of ACM curves in P3?
There are many notions that encode information which is equivalent to that en-

coded by the Hilbert function, e.g., numerical characters as in [Gruson and Peskine
1978, §2], postulation characters as in [Martin-Deschamps and Perrin 1990, I.2]
and h-vectors as in [Migliore 1998, §1.4]. For computational reasons that we will
explain later, we will use the postulation character of a curve C, which is defined
to be the negative of the third discrete difference of its Hilbert function.

A theorem of Gruson and Peskine [1978, §2] says that the postulation charac-
ters of ACM curves are exactly the positive characters. A positive character is a
function γ : Z→ Z of finite support, such that the following hold:

(1)
∑

n γ (n)= 0,

(2) γ (n)= 0 for n < 0,

(3) γ (0)=−1,

(4) If we set s = s(γ )= inf{n|γ (n) 6= −1}, then γ (s)≥ 0,

(5) γ (n)≥ 0 for n ≥ s.

The degree of a positive character γ is defined to be
∑

n nγ (n). If γ is the
postulation character of a curve C , then the degree of γ is the degree of C , and
s(γ ) is the least degree surface C lies on.

Given d and s, the enumeration of all positive characters becomes a familiar
problem: what are the different ways to make d −

∑
n<s n cents in total using

s coins where each coin can have value n for every n ≥ s? Macaulay2 solves
this efficiently by creating a bigraded ring and enumerating monomials of a fixed
bidegree. The method function positiveChars(ZZ,ZZ) does exactly that, and
enumerates all positive characters with a given degree d and s. By looping s from 1
to d − 1, the method function positiveChars(ZZ) then enumerates all positive
characters of a given degree d .

i2 : positiveChars(6,2)
o2 = {{-1, -1, 1, 0, 0, 1}, {-1, -1, 0, 1, 1}}
o2 : List
i3 : positiveChars(6)
o3 = {{-1, -1, 1, 0, 0, 1}, {-1, -1, 0, 1, 1}, {-1, -1, -1, 3}}
o3 : List

We can produce all 121 positive characters up to degree 16 within 0.05 seconds.
The efficiency is one of the main reasons why we chose the postulation character
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to represent the Hilbert function.

i4 : time L = flatten apply(15, d -> positiveChars(d+1));
-- used 0.0492106 seconds

i5 : #L
o5 = 121

3.2. Betti tables of ACM curves. We define a further stratification

H CM
H =

⊔
B

H CM
H,B,

where H CM
H,B consists of points that correspond to ACM curves with Hilbert func-

tion H and Betti table B.
What are all the Betti tables B of an ACM curve in P3?
A necessary and sufficient condition for a Betti table B of a homogeneous ideal

to be that of an ACM curve in P3 is the following: B has n + 1 generators of
degrees a1 ≥ · · · ≥ an+1 and n syzygies of degrees b1 ≥ · · · ≥ bn and no higher
syzygies, such that the diagonal entries of the matrix M = (ai − b j )i, j are positive.
See, for example, [Eisenbud 2005, Propositions 3.8 and 3.14]. We call M the
Hilbert–Burch degree matrix.

For a given Hilbert function H , let BH denote the set of Betti tables B such that
H CM

H,B is nonempty. We partially order BH by the number of generators (equiv-
alently syzygies) and write B >n B ′ if B has n more generators than B ′. Since
the Hilbert function H is fixed, the fourth discrete difference 14 H is equal to the
alternating sum of the Betti numbers

∑
i (−1)i Bi,n for every B ∈BH . Therefore

B >1 B ′ if and only if B is obtained from B ′ by adding one generator and one
syzygy of the same degree, and B >n B ′ if and only if B can be obtained from B ′

by n successive additions of one generator and one syzygy of the same degree. By
the previous paragraph, if we remove a generator and a syzygy of the same degree
from some B ∈BH to obtain B ′, then B ′ ∈BH also. Thus B is minimal in BH if
and only if no generator and syzygy of B share the same degree, but in this case B
is determined uniquely by 14 H =

∑
i (−1)i Bi,n . In conclusion: BH has a smallest

element denoted by b, and every B ∈BH can be obtained from b by successively
adding one generator and one syzygy of the same degree (although not all ways of
doing so yield a Betti table in BH ).

The main theorem of [Ellingsrud 1975] states that the downward closed strata⊔
B≤B ′ H

CM
H,B is open and irreducible (hence smooth) in H CM

H . Further, for two Betti
tables B, B ′ ∈BH , we have B ≥ B ′ if and only if H CM

H,B ′ ⊃H CM
H,B . In other words,

the partial order on BH corresponds to the partial order of specialization among
the strata H CM

H,B .
The method function generalACMBetti(List) takes a postulation character γ

corresponding to the Hilbert function H and returns the smallest element b of BH .
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i2 : generalACMBetti {-1,-1,-1,2,1}
0 1 2

o2 = total: 1 3 2
0: 1 . .
1: . . .
2: . 3 1
3: . . 1

o2 : BettiTally

The method function specializeACMBetti(BettiTally) takes a Betti table
B ∈ BH and returns the list of all B ′ ∈BH such that B ′ >1 B.

i3 : specializeACMBetti oo
0 1 2

o3 = {total: 1 4 3}
0: 1 . .
1: . . .
2: . 3 2
3: . 1 1

o3 : List

Applying this iteratively on b, we exhaust all of BH in layers. The method
function allACMBetti(List) takes a postulation character, and returns all Betti
tables of ACM curves having that character. The following are all the Betti tables
of ACM curves of degree 8. Each row corresponds to a distinct Hilbert function,
and along each row the Betti tables are more special as we go from left to right.
Note that these outputs are only Betti tables, no curves are produced yet.

i5 : netList (positiveChars(6) / allACMBetti)
+------------+------------+
| 0 1 2| |

o5 = |total: 1 3 2| |
| 0: 1 . .| |
| 1: . 2 1| |
| 2: . . .| |
| 3: . . .| |
| 4: . 1 1| |
+------------+------------+
| 0 1 2| 0 1 2|
|total: 1 2 1|total: 1 3 2|
| 0: 1 . .| 0: 1 . .|
| 1: . 1 .| 1: . 1 .|
| 2: . 1 .| 2: . 1 1|
| 3: . . 1| 3: . 1 1|
+------------+------------+
| 0 1 2| |
|total: 1 4 3| |
| 0: 1 . .| |
| 1: . . .| |
| 2: . 4 3| |
+------------+------------+
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The method function degreeMatrix(BettiTally) takes the Betti table of an
ACM curve, and returns its Hilbert–Burch degree matrix. The method function
randomDeterminantalIdeal(Ring,Matrix) computes the ideal of maximal
minors of a matrix of random forms with specified degrees. Together, these method
functions allow us to generate ACM curves. The following code generates an ACM
curve for each of the Betti table given above, and shows that they do indeed have
the predicted Betti tables.

i7 : L = positiveChars(6) / allACMBetti;
i8 : netList apply(L, H -> H / (B ->

betti res randomDeterminantalIdeal(ZZ/101[x,y,z,w],degreeMatrix B)))
+------------+------------+
| 0 1 2| |

o8 = |total: 1 3 2| |
| 0: 1 . .| |
| 1: . 2 1| |
| 2: . . .| |
| 3: . . .| |
| 4: . 1 1| |
+------------+------------+
| 0 1 2| 0 1 2|
|total: 1 2 1|total: 1 3 2|
| 0: 1 . .| 0: 1 . .|
| 1: . 1 .| 1: . 1 .|
| 2: . 1 .| 2: . 1 1|
| 3: . . 1| 3: . 1 1|
+------------+------------+
| 0 1 2| |
|total: 1 4 3| |
| 0: 1 . .| |
| 1: . . .| |
| 2: . 4 3| |
+------------+------------+

Here is an example of two layers of specializations. The second and the third
families are incomparable, and they both specialize to the fourth family.

i9 : gamma = (positiveChars(9))#5
o9 = {-1, -1, -1, 1, 1, 1}
o9 : List
i10 : allACMBetti gamma

0 1 2 0 1 2 0 1 2 0 1 2
o10 = {total: 1 2 1, total: 1 3 2, total: 1 3 2, total: 1 4 3}

0: 1 . . 0: 1 . . 0: 1 . . 0: 1 . .
1: . . . 1: . . . 1: . . . 1: . . .
2: . 2 . 2: . 2 1 2: . 2 . 2: . 2 1
3: . . . 3: . 1 . 3: . . 1 3: . 1 1
4: . . 1 4: . . 1 4: . 1 1 4: . 1 1

o10 : List
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We end this section with a short comment on smoothness. When does H CM
H,B

have a point that corresponds to a smooth ACM curve? The answer is given by
[Geramita and Migliore 1989, Proposition 1.3]: if and only if the Hilbert–Burch
degree matrix has positive upper diagonal. We leave it as an exercise to the reader
to check which of the four families above have a smooth ACM curve.

4. MINIMAL CURVES IN AN EVEN LIAISON CLASS. The Hartshorne–Rao mod-
ule (or deficiency module) of a curve C is defined to be the graded module

MC := H 1
∗
(IC)=

⊕
n∈Z

H 0(IC(n))

over the polynomial ring S = H 0
∗
(OP3). Since the curves we consider are locally

Cohen–Macaulay and equidimensional, one can show that MC is of finite length.
The method raoModule(Ideal) computes the Hartshorne–Rao module from

the ideal of a curve using local duality. We compute a free resolution F• of S/IC ,
then dualize and take the cokernel of the last term to compute Ext3S(S/IC , S). Then
we resolve Ext3S(S/IC , S) by G• and again dualize and take the cokernel of the last
term to obtain MC . The following is an example of the rational quartic curve.

ii78 : I = monomialCurveIdeal(R,{1,3,4});
oo78 : Ideal of R
ii79 : betti res I

0 1 2 3
oo79 = total: 1 4 4 1

0: 1 . . .
1: . 1 . .
2: . 3 4 1

oo79 : BettiTally
ii80 : M = raoModule I
oo80 = cokernel {1} | w -z y -x |

1
oo80 : R-module, quotient of R
ii81 : betti res M

0 1 2 3 4
oo81 = total: 1 4 6 4 1

1: 1 4 6 4 1
oo81 : BettiTally

Rao [1978/79] made the beautiful discovery that there is a bijection between the
even liaison classes of curves and isomorphism classes of finite length modules up
to a shift in grading. We say a curve C is minimal if for every curve D in the even
liaison class of C , we have MD ∼=MC [h] for some h≥ 0. It turns out that a minimal
curve also has the minimal degree and genus among all curves in its even liaison
class, and they are unique up to deformation with constant cohomology. Further-
more, all curves in the even liaison class can be obtained from C by finitely many
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basic double links and a deformation with constant cohomology. In particular, the
possible degrees and genera of all curves in the even liaison class can be computed
from the minimal curve C alone. This vastly generalizes the case of ACM curves
where H 1

∗
(IC)= 0. We refer the readers to [Martin-Deschamps and Perrin 1990]

for details.
Given a finite length graded S-module M, we wish to construct a minimal

curve C such that MC ∼= M[h] for some smallest possible integer h. A suitable
algorithm is outlined in [Martin-Deschamps and Perrin 1990] and improved by
[Guarrera et al. 1997]. We give a simplified account here. Consider the short exact
sequence of S-modules

0→ S/IC → H 0
∗
(IC)→ MC → 0.

If F• and G• are minimal free resolutions of S/IC and H 0
∗
(IC), respectively, and

α : F•→G• is an induced map, then the mapping cone C(α)• is a resolution of MC .
By [Martin-Deschamps and Perrin 1990, Theorems 3.7 and 4.1], if C is a minimal
curve, then C(α)• is actually minimal. Since H 0

∗
(IC) has depth 2, it has projective

dimension 2 by the Auslander–Buchsbaum formula. We see that F2 ∼= L4, F1 ∼= L3

and F0 is a summand of L2.
We turn this observation around, and start with a minimal free resolution L• of

a finite length module M and ask: what are the conditions on the projections π
such that coker d = coker(π ◦ d3) is the ideal of a curve in P3 after shifting by an
integer h?

The Buchsbaum–Eisenbud criterion of exactness tells us that if the lower com-
plex in

0 // L4 // L3
d3
// L2

π

��

// �2 M

��

// 0

0 // L4 // L3
d
// P // coker d // 0

is a free resolution of an ideal (up to shift), then rk P = rk L3 + 1 − rk L4 =

rk d+1 and grade I (d)≥ 2. It turns out that this is also sufficient. We rephrase the
grade I (d)≥ 2 condition in terms of the ideal of maximal nonvanishing minors: this
is if and only if I (d) is not contained in any principal ideal, i.e., rk d⊗S S/( f )= rk d
for all f ∈ S. Since the alternating sum of the degrees of the free modules must
be zero for the free resolution of a curve by the Herzog–Kühl equations, we can
easily determine h whenever the degrees of P are known. To summarize, we are
looking for projections π satisfying the above conditions such that the resulting
shift h is as small as possible.

The key observation of [Guarrera et al. 1997] is that the rank and the rank in codi-
mension 1 of a matrix M over a PID can be easily read off from its Smith normal
form. Furthermore, if we evaluate the matrix d in a PID k[T ], then for a general
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choice of evaluations k[x0, . . . , x3] → k[t], the rank and rank in codimension 1 of
d are preserved. The method function minimalCurve(Module) implements this
method to find a projection π corresponding to a minimal curve.

Let us generate a minimal curve in the even liaison class of the rational quartic.

ii82 : J = minimalCurve M;
oo82 : Ideal of R
ii83 : betti res J

0 1 2 3
oo83 = total: 1 4 4 1

0: 1 . . .
1: . 4 4 1

oo83 : BettiTally

Indeed, the rational quartic curve has Hartshorne–Rao module k concentrated
in degree 1, and lies on a smooth quadric with three other cubic generators. The
complete intersection of the quadric with a general linear combination of the cubic
generators is a divisor of type (3, 3) on the quadric surface. Since the rational
quartic is of type (1, 3), the residual would have type (2, 0)— the union of two
skew lines. The latter has Hartshorne–Rao module k concentrated in degree 0, and
is obviously of minimal degree in its even liaison class.

Finally, here is a remark about the function minimalCurve(Module). Once
the matrix d is computed, there are two ways to obtain the equations of the ideal
IC : the first is to compute the kernel of the transposition of d , the second is to take
maximal minors and saturate by the irrelevant ideal. Unfortunately, both would
take a long time if d is a large matrix. To get partial information, the method func-
tion minimalCurveBetti(Module) outputs the Betti table of a minimal curve
corresponding to a finite length module without explicitly computing the ideal of
the curve.
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The ReesAlgebra package in Macaulay2

DAVID EISENBUD

ABSTRACT: This note introduces Rees algebras and some of their uses, with
illustrations from version 2.2 of the Macaulay2 package ReesAlgebra.m2.

INTRODUCTION. A central construction in modern commutative algebra starts
from an ideal I in a commutative ring R, and produces the Rees algebra

R(I ) := R⊕ I ⊕ I 2
⊕ I 3
⊕ · · · ∼= R[I t] ⊂ R[t],

where R[t] denotes the polynomial algebra in one variable t over R. For basics
on Rees algebras, see [Vasconcelos 1994] and [Swanson and Huneke 2006], and
for some other research, see [Eisenbud and Ulrich 2018; Kustin and Ulrich 1992;
Ulrich 1994], and [Valabrega and Valla 1978].

From the point of view of algebraic geometry, the Rees algebra R(I ) is a homo-
geneous coordinate ring for the graph of a rational map whose total space is the
blowup of Spec R along the scheme defined by I. (In fact, the “Rees algebra” is
sometimes called the “blowup algebra”.)

Rees algebras were first studied in the algebraic context by David Rees, in the
now-famous paper [Rees 1958]. Actually, Rees mainly studied the ring R[I t, t−1

],
now also called the extended Rees algebra of I.

Mike Stillman and I wrote a Rees algebra script for Macaulay classic. It was aug-
mented, and made into the [Macaulay2] package ReesAlgebra.m2 around 2002,
to study a generalization of Rees algebras to modules described in [Eisenbud et al.
2003]. Subsequently Amelia Taylor, Sorin Popescu, the present author, and, at the
Macaulay2 Workgroup in July 2017, Ilir Dema, Whitney Liske, and Zhangchi Chen
contributed routines for computing many of the invariants of an ideal or module
defined in terms of Rees algebras. These routines comprise the package’s primary
utility, since Rees algebras of modules other than ideals are comparatively little
studied.

The author is grateful to the National Science Foundation for partial support.
MSC2010: primary 13A30, 13B22, 13D02; secondary 14C17, 14E15.
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ReesAlgebra.m2 version 2.2

49

http://dx.doi.org/10.2140/jsag.2018.8-1
http://msp.org/jsag
http://dx.doi.org/10.2140/jsag.2018.8.49
http://msp.org/jsag
http://www.math.uiuc.edu/Macaulay2


50 Eisenbud :::: The ReesAlgebra package in Macaulay2

We first describe the construction and an example from [Eisenbud et al. 2003].
Then we list some of the functionality the package now has and illustrate it with
a theorem of Morey and Ulrich. Finally we give examples of how Rees algebras
appear in the Fulton–MacPherson intersection theory and in the resolution of sin-
gularities.

1. THE REES ALGEBRA OF A MODULE. There are several possible ways of ex-
tending the Rees algebra construction from ideals to modules. For simplicity we
will henceforward only consider finitely generated modules over Noetherian rings.
Huneke and Ulrich and I argued in [Eisenbud et al. 2003] that the most natural way
to extend the definition is to think of R[I t] as the image of the map of symmetric
algebras Sym(φ) : SymR(I )→ SymR(R)= R[t], and to generalize it to the case
of an arbitrary finitely generated module M by setting

R(M)= image Sym(φ),

where φ is a versal map from M to a free module. Such a versal map may be
computed as the composition of the diagonal embedding

M→⊕m
i=1 M,

with the map
⊕

m
i=1φi : ⊕

m
i=1 M→ Rm,

where φ1, . . . , φm generate HomR(M, R).
Though this is not immediate, the Rees algebra of an ideal in a Noetherian ring,

in this sense, is the same as the Rees algebra in the classical sense, and in most cases
one can take any embedding of the module into a free module in the definition:

Theorem 1.1 [Eisenbud et al. 2003, Theorems 0.2 and 1.4]. Let R be a Noetherian
ring and let M be a finitely generated R-module. Let φ : M→ G be a versal map
of M to a free module. Suppose that φ is an inclusion, and let ψ : M→ G ′ be any
inclusion of M into a free module G ′. If R is torsion-free over Z or R is unmixed
and generically Gorenstein or M is free locally at each associated prime of R,
or G ′ = R, then the image of Sym(φ) and the image of Sym(ψ) are naturally
isomorphic.

Nevertheless some examples do violate the conclusion of Theorem 1.1. Here is
one from [Eisenbud et al. 2003] in characteristic 5 (any finite characteristic would
work similarly).
i1 : p = 5;
i2 : R = ZZ/p[x,y,z]/(ideal(x^p,y^p)+(ideal(x,y,z))^(p+1));
i3 : M = module ideal(z);

It is easy to check that M ∼= R1/(x, y, z)p. We write ι : M→ R1 for the embedding
as an ideal and ψ for the embedding M→ R2 sending z to the vector (x, y).



Eisenbud :::: The ReesAlgebra package in Macaulay2 51

i4 : iota = map(R^1,M,matrix{{z}});
i5 : psi = map(R^2,M,matrix{{x},{y}});

Finally, we choose a versal embedding M→ R3. It sends z to the vector (x, y, z):

i6 : phi = versalEmbedding(M);

We now compute the kernels of the three maps on symmetric algebras:

i7 : Iiota = symmetricKernel iota;
i8 : Ipsi = symmetricKernel psi;
i9 : Iphi = symmetricKernel phi;

and check that the ones corresponding to φ and ι are equal, whereas the ones
corresponding to ψ and φ are not — they differ in degree p.

i10 : Iiota == Iphi
o10 = true
i11 : Ipsi == Iphi
o11 = false
i12 : numcols basis(p,Iphi)
o12 = 3
i13 : numcols basis(p,Ipsi)
o13 = 1

2. THE REES ALGEBRA AND ITS RELATIONS. The central routine, reesIdeal
(with synonym: reesAlgebraIdeal), computes an ideal defining the Rees algebra
R(M) as a quotient of a polynomial ring over R from a free presentation of M.
From the Rees ideal we immediately get reesAlgebra M. In the case when M
is an ideal in R we also compute the important associatedGradedRing M =
R(M)/M (and the more geometric sounding but identical normalCone M ). If I
is a (homogeneous) ideal primary to the maximal ideal of a standard graded ring R
we compute the Hilbert–Samuel multiplicity of I with the routine multiplicity.

We now describe the basic computation. Suppose that M has a set of generators
represented by a map from a free module,

F α
−→M→ 0,

and suppose F = Rn. The symmetric algebra of F over R is then a polynomial
ring SymR(F)= R[t1, . . . , tn] on n new indeterminates t1, . . . , tn . By the universal
property of the symmetric algebra there is a canonical surjection SymR(F)→
SymR(M), so we may compute the Rees algebra of M as a quotient of SymR(F).
The expression

I = reesIdeal M

first uses versalEmbedding M to compute a versal map from M to a free module
β : M→ G. The expression symmetricKernel α ◦β then constructs the map of
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symmetric algebras β ◦α : SymR(F)→ SymR(G) and uses the built-in Macaulay2
routine to compute the kernel

I = reesIdeal M = ker Sym(β ◦α) : SymR(F)→ SymR(G).

There is a different way of computing the Rees algebra that is often much more
efficient. It begins by constructing the symmetric algebra of M, and uses the obser-
vation that the construction of the Rees algebra commutes with localization. See
[Eisenbud 1995, Appendix 2] for the necessary facts about symmetric algebras.

Suppose that M has a free presentation,

G φ
−→ F α

−→M→ 0.

The right exactness of the symmetric algebra functor implies that the symmetric
algebra of M is the quotient of SymR(F) by an ideal I0 that is generated by the
entries of the matrix

(t1 · · · tn) ◦φ,

(where we have identified φ with SymR(F)⊗R φ). Thus I0 is generated by poly-
nomials that are linear in the variables ti (and because M is the degree 1 part of
R(M), these are the only linear forms in the ti in the Rees ideal).

If f ∈ R is an element such that M[ f −1
] is free on generators g1, . . . , gn , it

follows that after inverting f , the Rees algebra of M becomes a polynomial ring
over R[ f −1

] on indeterminates corresponding to the gi :

R(M)[ f −1
] = SymR(M[ f

−1
])= R[G1, . . . ,Gn].

Now suppose in addition that f is a non-zerodivisor in R. In the diagram

SymR(F)
α

//

��

SymR(M)
β

//

��

SymR(G)

��

SymR(F)[ f
−1
]

α
// SymR(M)[ f

−1
]

β
// SymR(G)[ f

−1
]

the two outer vertical maps are inclusions, and it follows that the Rees ideal, which
is the kernel of the map R(F)= SymR(F)→R(M), is equal to the intersection
of R(F) with the kernel of

SymR(F)[ f
−1
]

β
−→ SymR(G)[ f

−1
].

This intersection may be computed as I0 : f∞. The command

reesIdeal(I, f )

computes the Rees ideal in this way.
More generally, we say that a module N is of linear type if the Rees ideal of M

is equal to the ideal of the symmetric algebra of M ; for example, any complete
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intersection ideal is of linear type, and the condition can be tested by the command

isLinearType M.

The procedure above really requires only that f be a non-zerodivisor in R and that
M[ f −1

] be of linear type over R[ f −1
].

3. REDUCTIONS AND THE SPECIAL FIBER. A reduction J of an ideal I is a
subideal J ⊂ I over which I is integrally dependent. In concrete terms this means
that there is some integer r such that J I r

= I r+1, and the minimal r with this
property is called the reduction number. The property of being a reduction is tested
by isReduction I, and reductionNumber I computes the reduction number.

Now suppose that m is a maximal ideal containing I. The special fiber ring is
by definition R(I )/mR(I ). It is a standard graded algebra over the field k := R/m,
a quotient of SymR(F)/m= k[t1, . . . , tn] where, as before, F is a free module of
rank n with a surjection to M. The defining ideal of the special fiber ring, and the
ring itself, are computed using specialFiberIdeal I and specialFiberRing I.

The dimension of the special fiber ring is called the analytic spread of I, usually
denoted

`(I )= analyticSpread I.

Northcott and Rees [1954] proved that if k is infinite then there always exist re-
ductions generated by `(I ) elements, and this is the minimum possible number;
these are called minimal reductions. The smallest possible reduction number for I
with respect to a minimal reduction is by definition reductionNumber I. (This is
always achieved by any ideal generated by `(I ) sufficiently general scalar linear
combinations of the generators of I ; but note that when I is homogeneous but has
generators of different degrees such linear combinations are sometimes necessarily
inhomogeneous.)

An interesting special case occurs when R is a graded ring over k = R0 and the
generators g1, . . . , gn of I are all homogeneous of the same degree. In this case
the special fiber ring is easily seen to be equal to the subring k[g1, . . . , gn] (usually
not a polynomial ring) generated by the elements gi .

For example, if I is the ideal of p× p minors of a p× (p+ q) matrix, then the
special fiber ring is equal to the homogeneous coordinate ring G of the Grassman-
nian of p-planes in p+ q space. It follows that `(I ) = dim G = pq + 1, and the
reduction number of I is (p− 1)(q − 1).

4. FINDING ELEMENTS OF THE REES IDEAL. Let M be an R-module and let φ :
Rs
→ Rm be its presentation matrix. We identify SymR(R

m) with the polynomial
ring R[t1, . . . , tm]. By the universality of the symmetric algebra construction, the
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symmetric algebra of I has the form

SymR(I )= R[t1, . . . , tm]/(Tφ),

where we have written T for the vector (t1 . . . tm) ∈ R[t1, . . . , tm]m, whose entries
correspond to the generators of I, and written (Tφ) for the ideal generated by the
entries of the product

(t1 · · · tm)φ.

If J := (x1, . . . , xn)⊂ R is an ideal containing I, and we write

X = (x1 · · · xn) ∈ R[t1, . . . , tm]n,

then there is a matrix ψ defined over R[t1, . . . , tm], called the Jacobian dual of φ
with respect to X, such that Tφ = Xψ . (The matrix ψ is generally not unique;
Macaulay2 computes it using Gröbner division with remainder.)

If I, J each contain a non-zerodivisor then J will have grade ≥ 1 on the Rees
algebra R(I ). Since (Tφ) is contained in the defining ideal of the Rees algebra,
the vector X is annihilated by the matrix ψ when regarded over the Rees algebra,
and the relation Xψ ≡ 0 in R(I ) implies that the m ×m minors of ψ are in the
Rees ideal of I.

In very favorable circumstances, one may even have the equality

reesIdeal I == ideal(Tφ)+ minors(m, ψ).

We illustrate with a theorem of Morey and Ulrich. Recall that an ideal I is said
to satisfy the condition G` if the number of generators of the localized ideal IP

is ≤ codim P for every prime ideal P of codimension < `; equivalently, if I has
presentation matrix φ as above,

codim Im−p(φ) > p
for 1≤ p < `.

Theorem 4.1 [Morey and Ulrich 1996]. Let R be a local Gorenstein ring with
infinite residue field, let I be a perfect ideal of grade 2 with m generators, let φ be
the presentation matrix of I, and let ψ be the Jacobian dual matrix. Let `= `(I )
be the analytic spread. Suppose that I satisfies the condition G`. The following
conditions are equivalent:

(1) R(I ) is Cohen–Macaulay and I(m−`)(φ)= I1(φ)
m−`.

(2) r(I ) < ` and Im+1−`φ = (I1φ)
m+1−`.

(3) The ideal of R(I ) is equal to the sum of the ideal of Sym(I ) with the Jacobian
dual minors, Imψ .

We can check all these conditions with functions in the package. We start with
the presentation matrix φ of an m=n+1-generator perfect ideal such that the first
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row consists of the n variables of the ring, and the rest of the rows are reasonably
general (in this case random quadrics):

i2 : setRandomSeed 0
i3 : n=3;
i4 : kk = ZZ/101;
i5 : S = kk[a_0..a_(n-2)];
i6 : phi = transpose map(S^(n-1),S^{-1,(n-1):-2},

(i,j) -> if j == 0 then a_i else random(2,S));
3 2

o6 : Matrix S <--- S
i7 : I = minors(n-1,phi);

This is a perfect codimension 2 ideal, as we see from the Betti table:

i8 : betti (F = res I)
0 1 2

o8 = total: 1 3 2
0: 1 . .
1: . . .
2: . 2 .
3: . 1 2

We compute the analytic spread ` and the reduction number r :

i12 : ell = analyticSpread I
o12 = 2
i13 : r = reductionNumber(I, minimalReduction I)
o13 = 1

Now we can check the condition G`, first probabilistically:

i15 : whichGm I >= ell
o15 = true

and now deterministically:

i17 : apply(toList(1..ell-1),
p-> {p+1, codim minors(n-p, phi)})

o17 = {{2, 2}}

We now check the three equivalent conditions of the Morey–Ulrich theorem. Since
` = n − 1 in this case, the second parts of conditions (1) and (2) are vacuously
satisfied, and since r < ` the conditions must all be satisfied. We first check that
R(I ) is Cohen–Macaulay:

i19 : reesI = reesIdeal I;
o19 : Ideal of S[w , w , w ]

0 1 2
i20 : codim reesI
o20 = 2
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i21 : betti res reesI
0 1 2

o21 = total: 1 3 2
0: 1 . .
1: . . .
2: . 2 .
3: . 1 2

Finally, we wish to see that reesIdeal I is generated by the ideal of the symmetric
algebra together with the Jacobian dual:

i23 : psi = jacobianDual phi;
2 2

o23 : Matrix (S[w , w , w ]) <--- (S[w , w , w ])
0 1 2 0 1 2

We now compute the ideal J of the symmetric algebra; we do this by hand, since
the command symmetricAlgebra I would return the ideal over a different ring.

i25 : ST = ring psi
i26 : T = vars ST
o26 = | w_0 w_1 w_2 |
i27 : J = ideal(T*promote(phi, ST))
i28 : betti res J

0 1 2
o28 = total: 1 2 1

0: 1 . .
1: . . .
2: . 2 .
3: . . .
4: . . 1

i29 : J1 = minors(ell, psi)

We compute the resolution of G := J + J1, to see that the resulting ideal is perfect,
which also shows that it is the full ideal of the Rees algebra. We also check directly
that it has the same resolution as the computed Rees ideal of I :

i30 : betti (G = res trim (J+J1))
0 1 2

o30 = total: 1 3 2
0: 1 . .
1: . . .
2: . 2 .
3: . 1 2

i31 : betti res reesIdeal I
0 1 2

o31 = total: 1 3 2
0: 1 . .
1: . . .
2: . 2 .
3: . 1 2
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5. DISTINGUISHED SUBVARIETIES. The key construction in the Fulton–MacPherson
definition of the refined intersection product [Fulton 1998, Section 6.1] involves
normal cones, and is easy to implement using the tools in this package. The sim-
plest case is the intersection of two subvarieties X, V ⊂ Y. If X and V meet in the
expected dimension, defined to be dim V − codimY X, and the ambient variety Y
is smooth, then one can assign multiplicities mi to the components Wi of X ∩ V,
and the intersection product has the form [X ][V ] =

∑
mi [Wi ]. The astonishing

result of the Fulton–MacPherson theory is that if X ⊂ Y is locally a complete
intersection, then, no matter how singular Y and no matter how strange the actual
intersection X ∩ V, the intersection product X · V can be given a meaning as a
rational equivalence class of cycles of the expected dimension on X, or even on
certain distinguished subvarieties Zi of X ∩ V. This class comes with a canonical
decomposition

∑
i miαi , where the mi are positive integers, and αi is a cycle of the

expected dimension (possibly 0) on Zi ⊂ X ∩ V (the same Zi can appear several
times, with different multiplicities and cycles).

In the general case, the subvariety V is replaced by a morphism f : V → Y from
a variety V, and this is the key to the functoriality of the intersection product. The
routines in this package work in the general setting, but for simplicity we will stick
with the basic case in this description.

We now describe the distinguished subvarieties and their multiplicities. This
part of the construction sheafifies, so (as in the package) we work in the affine
case. We do not require any hypothesis on X, Y or V.

Let S be a ring (for example, the coordinate ring of Y ) and let I ⊂ S be an ideal
(for example, the ideal of X ). Write

T := grI S = S/I ⊕ I/I 2
⊕ · · ·

for the associated graded ring of I, and let π be the inclusion of S/I into T as the
degree 0 part.

Let f : S→ R be a ring homomorphism (for example, representing the projection
S→ S/(I (V ))). Let K ⊂ T be the kernel of the induced map grI S→ gr f (I )R R.

Let P1, . . . , Pm be the minimal primes over K in grI R. We define pi to be the
degree 0 part of Pi ; that is, pi := Pi ∩ S/I . These are the distinguished prime ideals
of S/I , and they clearly contain the kernel of f : S/I → R/ f (I )R, so in the case
where R = S/J they contain I + J. Thus, in this case, they represent subvarieties
of X ∩ V.

Let mi be the multiplicity with which Pi appears in the primary decomposition
of K — that is,

mi := lengthκ(Pi )
Pi Pi /K Pi ,

where κ(Pi )= TPi /PiPi
is the residue field at Pi . Returning to geometric language,

and the case where X ⊂ Y is locally a complete intersection in a quasiprojective
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variety, the cycle class αi in the Chow group of the variety Zi corresponding to pi

is defined as the Gysin image of the class of the subvariety corresponding to Pi

in the projectivized normal bundle of X in Y — a construction not included in this
package.

Here are some simple examples in which distinguished is used to compute
the distinguished varieties of intersections in An, via the function intersectInP.
First, the familiar multiplicity 2 intersection of a conic with a tangent line.
i2 : kk = ZZ/101;
i3 : P = kk[x,y];
i4 : I = ideal"x2-y";J=ideal y;
i6 : intersectInP(I,J)
o6 = {{2, ideal (y, x)}}

Slightly more interesting, the following shows what happens when the intersections
aren’t rational:
i7 : I = ideal"x4+y3+1";
i8 : intersectInP(I,J)

2 2
o8 = {{1, ideal (y, x + 10)}, {1, ideal (y, x - 10)}}

The real interest in the construction is in the case of improper intersections. Here
are some typical results:
i9 : I = ideal"x2y";J=ideal"xy2";
i11 : intersectInP(I,J)
o11 = {{2, ideal x}, {5, ideal (y, x)}, {2, ideal y}}
i12 : intersectInP(I,I)
o12 = {{1, ideal y}, {4, ideal x}, {4, ideal (y, x)}}

6. REES ALGEBRAS AND DESINGULARIZATION. We conclude with an example
illustrating a general result about projective birational maps of varieties. Recall
that a map B → X of varieties is projective if it is the composition of a closed
embedding B ⊂ X ×Pn with the projection to X. It is birational if it is generically
an isomorphism. The inclusion of a ring into the Rees algebra of an ideal corre-
sponds to a map from Proj of the Rees algebra to Spec of the ring, called a blowup,
that is such a proper birational transformation, and in fact every proper birational
transformation to an affine variety (or more generally to any scheme, if one works
with sheaves of ideals) can be realized in this way.

The theorem of embedded resolution of singularities (proven by Hironaka in
characteristic 0 and conjectured in general) says that, given any subvariety X of a
smooth variety Y, there is a finite sequence of blowups

Bn→ · · · → B2→ B1→ Y

of smooth subvarieties that lie over the singular set of X, and a component of the
preimage of X in Bn that is smooth and maps birationally to X. In the case of



Eisenbud :::: The ReesAlgebra package in Macaulay2 59

plane curves, this can be done with a sequence of blowups of closed points. But
in fact any sequence of blowups of a quasiprojective variety can be replaced with
a single blowup [Hartshorne 1977, Theorem II.7.17] of a more complicated ideal.
We illustrate this with the desingularization of a tacnode (the union of two smooth
curves that meet with a simple tangency).

Example 6.1. Blowing-up (x2, y) in k[x, y] desingularizes the tacnode x2
− y4 in

a single step.

i1 : R = ZZ/32003[x,y];
i2 : tacnode = ideal(x^2-y^4);
i3 : mm = ideal(x,y^2);
i4 : B = first flattenRing reesAlgebra mm;
i5 : irrelB = ideal(w_0,w_1);
i6 : proj = map(B,R,{x,y});
i7 : totalTransform = proj tacnode

4 2
o7 = ideal(- y + x )
i8 : netList (D = decompose totalTransform)

+-----------------------+
o8 = |ideal (y, x) |

+-----------------------+
| 2 |
|ideal (y + x, w + w )|
| 0 1 |
+-----------------------+
| 2 |
|ideal (y - x, w - w )|
| 0 1 |
+-----------------------+

i9 : exceptional = proj mm
2

o9 = ideal (x, y )
i10 : strictTransform = saturate(

totalTransform, exceptional);

i11 : netList decompose strictTransform
+-----------------------+
| 2 |

o11 = |ideal (y + x, w + w )|
| 0 1 |
+-----------------------+
| 2 |
|ideal (y - x, w - w )|
| 0 1 |
+-----------------------+

i12 : sing0 = sub(ideal singularLocus strictTransform, B);
i13 : sing = saturate(sing0,irrelB)
o13 = ideal 1
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The last line asserts that the singular locus of the strict transform is empty; that is,
the scheme defined by strictTransform is smooth (in this case it is the union of
two disjoint smooth curves).

SUPPLEMENT. The online supplement contains version 2.2 of ReesAlgebra.m2.
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ABSTRACT: The Macaulay2 package Cremona.m2 performs some computa-
tions on rational and birational maps between irreducible projective varieties.
For instance, it provides methods to compute degrees and projective degrees of
rational maps without any theoretical limitation, from which is derived a general
method to compute the push-forward to projective space of Segre classes. More-
over, the computations can be done both deterministically and probabilistically.
We give here a brief description of the methods and algorithms implemented.

INTRODUCTION. In this note we describe the computational package Cremona.m2,
included with [Macaulay2] since version 1.9. A first rudimentary version of this
package has been already used in an essential way in [Staglianò 2016] (it was
originally named bir.m2), and recent applications can be found in [Staglianò 2018;
Russo and Staglianò 2017]. Here we describe version 4.2.2 of the package.

Cremona.m2 performs computations on rational and birational maps between
absolutely irreducible projective varieties over a field K. Among other things, it
provides general methods to compute projective degrees of rational maps, from
which, as is well known (see Proposition 1.2), one can interpret them as methods
to compute the push-forward to projective space of Segre classes. The algorithms
are naively derived from the mathematical definitions, with the advantages of being
obvious, quite general and easily implemented. Moreover, all the methods (where
this may make sense) are available both in a probabilistic version and in a deter-
ministic version, and one can switch from one to the other with a boolean option
named MathMode.

In Section 1, we will describe the main methods provided by the package and the
algorithms implemented. Most of these have already been described in [Staglianò
2016, Section 2], but here we will consider a more general setting. For instance,
Algorithm 1.3 for computing homogeneous components of kernels of homoge-
neous ring maps was presented in [Staglianò 2016, Algorithm 2.5] requiring that
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the map was between polynomial rings. In Section 2, we will show how these
methods work in some particular examples, concluding with an experimental com-
parison of the running times of one of these methods with the corresponding ones
proposed in [Helmer 2016] and [Harris 2017] (see also [Jost 2015]). For further
technical details we refer to the documentation of the package, which can be shown
using the command viewHelp Cremona.

We mention that the package RationalMaps.m2, by K. Schwede, D. Smolkin,
S. H. Hassanzadeh, and C. J. Bott, is another package included with Macaulay2
for working with rational maps. It mainly focuses on providing a general method
for inverting birational maps, which in some cases turns out to be competitive with
the corresponding method of Cremona.m2.

1. DESCRIPTION OF THE MAIN METHODS. Throughout, we shall use the follow-
ing notation. Let K denote a field; in practice, it can be for instance Q, a finite field,
or a fraction field of a polynomial ring over these. Let φ : X 99K Y be a rational
map from a subvariety X = V (I ) ⊆ Pn

= Proj(K[x0, . . . , xn]) to a subvariety
Y = V (J ) ⊆ Pm

= Proj(K[y0, . . . , ym]), which can be represented, although not
uniquely, by a homogeneous ring map

ϕ : K[y0, . . . , ym]/J → K[x0, . . . , xn]/I

of quotients of polynomial rings by homogeneous ideals. Sometimes we will de-
note by F0, . . . , Fm ∈K[x0, . . . , xn] homogeneous forms of the same degree such
that Fi := Fi + I = ϕ(yi ), for i = 0, . . . ,m. The common degree of these elements
will be denoted by δ.

From algebraic geometry to computational algebra. For each homogeneous ideal
a ⊆ K[x0, . . . , xn]/I (resp. b ⊆ K[y0, . . . , ym]/J ), we have a closed subscheme
V (a)⊆ X (resp. V (b)⊆ Y ), and the following basic formulae hold:1

φ(V (a))=V (ϕ−1(a)) and φ−1(V (b))=V ((ϕ(b)):(ϕ(y0), . . . ,ϕ(ym))
∞). (1-1)

In particular, the (closure of the) image of φ is defined by the kernel of ϕ. Several
issues concerning rational maps lead naturally to an examination of the left-hand
sides of (1-1), and the right-hand sides of (1-1) can be determined using Gröbner
basis techniques, whenever a and b are explicitly given. Furthermore, Macaulay2
provides useful commands such as preimage, kernel and saturate, so that the
required user skill level is quite low. The aim of the package Cremona.m2 is to
provide further tools.

1By abuse of notation, we consider φ as a morphism defined on the open set X \ V (F0, . . . , Fm).

https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/RationalMaps.m2
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Computing projective degrees. The projective degrees are the most basic invari-
ants of a rational map. Many others can be derived from them, such as, for instance,
the dimension and the degree of the base locus. For more details on the subject,
see [Harris 1992, Example 19.4, p. 240].

Definition 1.1 (projective degrees, [Harris 1992]). (1) The projective degrees
d0(φ), d1(φ), . . . , ddim X (φ) of the map φ are defined as the components of
the multidegree of the closure of the graph 0φ ⊂ Pn

×Pm .

(2) Equivalently, the i-th projective degree di (φ) can be defined in terms of dimen-
sion and degree of the closure of φ−1(L), where L is a general (m− dim X +i)-
dimensional linear subspace of Pm ; more precisely, di (φ)= degφ−1(L) if
dim φ−1(L)= i , and di (φ)= 0 otherwise.

In common computer algebra systems such as Macaulay2, it is easy to translate
Definition 1.1 into code. We now describe in more detail how this can be done.
All of this is implemented in the method projectiveDegrees; see Example 2.2
for an example using it.

Deterministic approach. Taking into account Definition 1.1(1), a bihomogeneous
ideal for 0φ in K[x0, . . . , xn, y0, . . . , ym] can be, for instance, obtained as

(I + ({yi F j − y j Fi , 0≤ i, j ≤ m})) : (F0, . . . , Fm)
∞. (1-2)

Therefore its multidegree can be computed in Macaulay2 with multidegree, which
implements an algorithm according to [Miller and Sturmfels 2005, p. 165].

Probabilistic approach. (See also [Staglianò 2016, Remark 2.4].) Taking into ac-
count Definition 1.1(2), if L is defined by an ideal IL , the second formula of (1-1)
tells us that φ−1(L) is defined by the saturation of the ideal (ϕ(IL)) by (F0, . . . , Fm)

in the ring K[x0, . . . , xn]/I. So replacing the word general with random in the
definition, we get a probabilistic algorithm that computes all the projective degrees.
Moreover, we can considerably speed up this algorithm by taking into account two
remarks: firstly, the saturation

ϕ(IL) : (F0, . . . , Fm)
∞

is the same as
ϕ(IL) : (λ0 F0+ · · ·+ λm Fm)

∞
,

where λ0, . . . , λm ∈K are general scalars; secondly, the i-th projective degree of
φ coincides with the (i−1)-th projective degree of the restriction of φ to a general
hyperplane section of X.

An alternative deterministic approach. Replacing the word general with symbolic
in Definition 1.1(2) gives us a deterministic algorithm for computing projective
degrees. For instance, in the case in which φ : Pn 99K Pn is a dominant rational
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map, extending K to the fractional field of a polynomial ring K[a0, . . . , an], we
have that d0(φ) is the degree of the fiber of φ at the symbolic point [a0, . . . , an].

Some applications using projective degrees.
The degree of a rational map. The degree of the map φ : X 99K Y is the number of
isolated points in the inverse image of a general point of φ(X) over the algebraic
closure of K. This is the same as the ratio of d0(φ) and degφ(X), and thus it can
be explicitly computed. Let us note, however, that in several cases we do not need
to compute the kernel of ϕ. For instance, if X is a projective space, we are able to
pick an abundance of rational points of ϕ(X) and then we apply the second formula
of (1-1). Another special case is when d0(φ) is a prime number: here we have only
to establish if the image of φ is a linear subspace (e.g., applying Algorithm 1.3
with d = 1). The method provided by Cremona.m2 for this computation is named
degreeOfRationalMap.2

Methods related to this are isBirational and isDominant, with obvious
meaning. The latter does not compute the kernel of ϕ, but it uses an algorithm
that looks for dr (φ), where r = dim X − dim Y. More precisely, the algorithm is
based on the following fact: let Z ⊂ Y be a random 0-dimensional linear section
of Y ; if dim φ−1(Z)= dim X − dim Y ≥ 0, then φ is certainly dominant, otherwise
it is probably not dominant (see [Mumford 1988, Chapter I, § 8] or [Hartshorne
1977, Chapter II, Exercise 3.22]). When this last case occurs, it is generally easy
to find a nonzero element in the kernel of ϕ, and so this method turns out to be
very effective even in its deterministic version (see Example 2.1).

The Segre class. It is well known that one can deduce an algorithm computing the
push-forward to projective space of Segre classes from an algorithm computing
projective degrees of rational maps between projective varieties and vice versa.
Indeed, with our notation, we have the following:

Proposition 1.2 ([Fulton 1984, Proposition 4.4]; see also [Dolgachev 2011, Section
2.3; Aluffi 2003, Section 3]). Let B⊂ X be the subscheme defined by F0, . . . , Fm

and let ν : X ↪→ Pn be the inclusion. If H denotes the hyperplane class of Pn and
r = dim X, then the push-forward ν∗(s(B, X)) of the Segre class of B in X is

ν∗(s(B, X))=
dimB∑
k=0

((−1)r−k−1
r−k∑
i=0

(−1)i
(

r − k
i

)
δr−k−i dr−i (ϕ)) H n−k . (1-3)

The general method SegreClass, provided by Cremona.m2 for computing the
push-forward to projective spaces of Segre classes, does basically nothing more

2Notice that, in general, if the result of the probabilistic algorithm for degreeOfRationalMap is
wrong, it can be either too small or too large. However, as a consequence of [Hartshorne 1977, Chap-
ter III, Exercise 10.9], it should always provide a lower bound when the map is dominant between
smooth varieties.
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than apply (1-3); see Example 2.3 for an example using this method. Furthermore,
applying one of the main results in [Aluffi 2003], a method is derived to com-
pute the push-forward to projective space of the Chern–Schwartz–MacPherson
class CSM(W ) of the support of a projective scheme W ; recall that the compo-
nent of dimension 0 of CSM(W ) is the topological Euler characteristic of the
support of W.

Computing homogeneous components of kernels. To compute, using Macaulay2,
the homogeneous component of degree d of the kernel of phi (= ϕ), one can
perform the command ideal image basis(d,kernel phi). This is equivalent
to the command kernel(phi,d) provided by Cremona.m2, but the latter uses the
following obvious algorithm.

Algorithm 1.3. Input: the ring map ϕ and an integer d .

Output: homogeneous component of degree d of the kernel of ϕ.

• Find vector space bases G0, . . . ,Gr of (K[y0, . . . , ym]/J )d and H0, . . . , Hs

of Id δ, where subscripts stand for homogeneous components.

• Take generic linear combinations G=
∑r

i=0 ai Gi and H=
∑s

j=0 b j H j , and
find a basis of solutions for the homogeneous linear system obtained by re-
quiring that the polynomial

G(F0, . . . , Fm)−H ∈ K[a0, . . . , ar , b0, . . . , bs][x0, . . . , xn]

vanishes identically.

• For each vector (â0, . . . , âr , b̂0, . . . , b̂s) ∈ Kr+s+2 obtained in the previous
step, replace in G the coefficients a0, . . . , ar with â0, . . . , âr ; return all these
elements.

For small values of d, applying Algorithm 1.3 may turn out to be much faster
than computing a list of generators of the kernel of the map; see for instance
Example 2.1 below.

Inverting birational maps. General algorithms for inverting birational maps are
known. One of them is implemented in the package Parametrization.m2 by
J. Boehm, and the method inverseMap of Cremona.m2 uses the same one for
the general case as well. However, when the source X of the rational map φ is
a projective space and a further technical condition is satisfied, then it uses the
following powerful algorithm.

Algorithm 1.4 ([Russo and Simis 2001]; see also [Simis 2004]). Input: the
ring map ϕ (assuming that φ is birational and further conditions are satisfied).

Output: a ring map representing the inverse map of φ.

https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/Parametrization.m2
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• Find generators {(L0, j , . . . , Lm, j )} j=1,...,q for the module of linear syzygies
of (F0, . . . , Fm).

• Compute the Jacobian matrix 2 of the bihomogeneous forms{ m∑
i=0

yi L i, j

}
j=1,...,q

with respect to the variables x0, . . . , xn and consider the map of graded free
modules (2 mod J ) : (k[y0, . . . , ym]/J )n+1

→ (k[y0, . . . , ym]/J )q .

• Return the map defined by a generator G = (G0, . . . ,Gn) for the kernel of
(2 mod J ).

Remark 1.5. One of the main features of the package RationalMaps.m2, by
Schwede, Smolkin, Hassanzadeh, and Bott, is a method for inverting birational
maps, which, in the case when Algorithm 1.4 does not apply, appears to be quite
competitive with the method inverseMap of Cremona.m2.

Heuristic approach. The method approximateInverseMap provides a heuristic
approach to compute the inverse of a birational map modulo a change of coordinate.
The idea of the algorithm is to try to construct the base locus of the inverse by
looking for the images of general linear sections. Consider, for simplicity, the case
in which φ : Pn 99K Pn ′ is a Cremona transformation. Then, by taking the images
of n+ 1 general hyperplanes in Pn, we form a linear system of hypersurfaces in
Pn ′ of degree d1(φ) which defines a rational map ψ : Pn ′ 99K Pn such that ψ ◦φ is
a (linear) isomorphism; i.e., we find an approximation of φ−1. Next, we can fix the
error of the approximation by observing that we have φ−1

= (ψ ◦φ)−1
◦ψ . It is sur-

prising that this method turns to be effective in examples where other deterministic
algorithms seem to run endlessly; see for instance Example 2.1 below.

2. EXAMPLES. In this section, we show how the methods described in Section 1
can be applied in some particular examples. We note that the package Cremona.m2
provides the data type RationalMap, but here we will use the more familiar type
RingMap. For brevity, we will omit irrelevant output lines. We start with an ex-
ample reviewing the construction given in [Staglianò 2016] of a quadro-quadric
Cremona transformation of P20.

Example 2.1. The code below constructs a ring map psi representing a rational
map ψ : P16 99K P20. Precisely, the algorithm for constructing ψ is as follows:
take E ⊂ P7 to be a 3-dimensional edge variety of degree 7, namely, the residual
intersection of P1

×P3
⊂ P7 with a general quadric in P7 containing one of the

P3’s of the rulings of P1
×P3

⊂ P7; next, see E ⊂ P7 embedded in a hyperplane
of P8 and take the birational map φ : P8 99K P16 defined by the quadrics of P8

containing E ; take ψ : P16 99K P20 to be the map defined by the quadrics of P16

https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/RationalMaps.m2
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containing the image of φ. For the first part of this construction, we use the package
Cremona.m2 only to shorten the code.
Macaulay2, version 1.11
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone
i1 : loadPackage "Cremona";
i2 : K = ZZ/70001;
i3 : P8 = K[t_0..t_8]; E = saturate(minors(2,genericMatrix(P8,4,2))+sum(

(ideal(t_0..t_7)*ideal(t_0..t_3))_*,u->random(K)*u),ideal(t_0..t_3)) + t_8;
i5 : psi = toMap kernel(toMap(E,2),2);

Up to this point, the computation was standard. But now we want to determine
the homogeneous ideal of Z := ψ(P16)⊂ P20, which turns out to be generated by
quadrics. Computing this using kernel psi seems an impossible task, but it is
elementary using kernel(psi,2). So we can consider ψ as a dominant rational
map ψ : P16 99K Z ⊂ P20.
i6 : time Z = kernel(psi,2);

-- used 2.84998 seconds
i7 : psi = toMap(psi,Dominant=>Z);

The map ψ turns out to be not only dominant but birational.
i8 : time degreeOfRationalMap psi

-- used 2.11216 seconds
o8 = 1

We now want to compute the inverse of ψ . This is a case where inverseMap
can apply Algorithm 1.4, but the running time is several hours. We can perform
this computation in seconds by using approximateInverseMap.
i9 : time psi’ = approximateInverseMap(psi,CodimBsInv=>10,MathMode=>true);

-- used 15.9724 seconds

A Cremona transformation ω of P20 is then obtained combining ψ−1 and Z as
follows.
i10 : omega = toMap(lift(matrix psi’,ring Z)|gens Z);

Even checking just the dominance of ω, by computing kernel omega, seems
an impossible task, but it can be done quickly with isDominant.
i11 : time isDominant(omega,MathMode=>true)

-- used 0.100369 seconds
o11 = true

We now check that our map is birational and find its inverse using Algorithm 1.4.
i12 : time isBirational omega

-- used 0.0366468 seconds
o12 = true
i13 : time inverseMap omega;

-- used 0.0717518 seconds

Example 2.2. Here, we use the probabilistic versions of some methods. Take M
to be a generic 3× 5 matrix of linear forms on P6, and, let φ : P6 99K G(2, 4)⊂ P9
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be the rational map defined by the 3× 3 minors of M (its base locus is a smooth
threefold scroll over a plane).

i14 : P6 = K[x_0..x_6]; M = matrix pack(5,for i from 1 to 15 list random(1,P6));
i16 : phi = toMap(minors(3,M),Dominant=>2);

We check that the map is birational and compute its inverse.
i17 : time isBirational phi

-- used 0.217607 seconds
o17 = true
i18 : time psi = inverseMap phi;

-- used 1.39511 seconds

Now we compute the multidegrees of φ and φ−1.
i19 : time (projectiveDegrees phi, projectiveDegrees psi)

-- used 1.37582 seconds
o19 = ({1, 3, 9, 17, 21, 15, 5}, {5, 15, 21, 17, 9, 3, 1})

We also compute the push-forward to P6 (resp. P9) of the Segre class of the
base locus of φ (resp. φ−1) in P6 (resp. in G(2, 4)). As usual, H denotes the
hyperplane class.
i20 : time (SegreClass phi, SegreClass psi)

-- used 1.43359 seconds
6 5 4 3 9 8 7 6 5

o20 = (- 680H + 228H - 60H + 10H , 728H - 588H + 276H - 98H + 24H )

Example 2.3. In this example, we use the deterministic version of the method
SegreClass. We take Y ⊂ P11 to be the dual quartic hypersurface of

P1
× Q4

⊂ P11∗,

where Q4
⊂P5 is a smooth quadric hypersurface, and take X ⊂ Y to be the singular

locus of Y. We then compute the push-forward to the Chow ring of P11 of the Segre
class both of X in Y and of X in P11 working over the Galois field GF(3312).
i21 : P11 = GF(331^2)[x_0..x_11];
i22 : Y = ideal sum(first entries gens minors(2,genericMatrix(P11,6,2)),t->t^2);
i23 : X = sub(ideal jacobian Y,P11/Y);
i24 : time SegreClass(X, MathMode=>true) -- push-forward of s(X,Y)

-- used 0.789986 seconds
11 10 9 8 7 6 5 4 3

o24 = 507384H - 137052H + 35532H - 9018H + 2340H - 658H + 204H - 64H + 16H
i25 : time SegreClass(lift(X,P11), MathMode=>true) -- push-forward of s(X,P^11)

-- used 0.846234 seconds
11 10 9 8 7 6 5 4 3

o25 = 313568H - 101712H + 30636H - 8866H + 2532H - 720H + 198H - 48H + 8H

Example 2.4. Here we experimentally measure the probability of obtaining an in-
correct answer using the probabilistic version of the method projectiveDegrees
with a simple example of a birational map φ : G(1, 3) 99K P4 defined over K. We
define a procedure which computes this probability as a function of the field K.
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field Q Z/70001 GF(38) Z/101 Z/31
probability 0.0 0.0 0.002 0.074 0.253

Table 1. Incorrect outputs of a probabilistic method.

In Table 1, we report the results obtained by running the procedure with various
fields.
i26 : p = (K) -> (

x := local x; R := K[x_0..x_4];
phi := inverseMap toMap(minors(2,matrix{{x_0..x_3},{x_1..x_4}}),Dominant=>2);
m := projectiveDegrees(phi,MathMode=>true);
0.1 * # select(1000,i -> projectiveDegrees phi != m));

Example 2.5. Lastly, we deal with an experimental comparison of the method
SegreClass of Cremona.m2 and the corresponding ones of other Macaulay2 pack-
ages. Precisely, we want to compare the method SegreClass against the corre-
sponding methods of the packages CharacteristicClasses.m2 version 2.0, by
M. Helmer and C. Jost (see [Helmer 2016; Jost 2015]), which provides a probabilis-
tic method; and FMPIntersectionTheory.m2 version 0.1, by C. Harris [2017],
which provides a deterministic method. Since the former puts restrictions on the
ambient variety, we will only consider examples where the ambient is a projective
space. We are unable to determine precisely which is the fastest among all the
methods and which, in the probabilistic case, has highest probability of giving the
correct answer. We just summarize in Table 2 the running times for some special
examples. Below is the code from which we obtained the first row of the table.
i27 : loadPackage "CharacteristicClasses"; loadPackage "FMPIntersectionTheory";
i29 : X = last(P5=ZZ/16411[vars(0..5)],ideal(random(3,P5),random(3,P5),random(4,P5)));
i30 : (time Segre X,time SegreClass X,time segreClass X,time SegreClass(X,MathMode=>true));

-- used 0.1511 seconds
-- used 1.00936 seconds
-- used 34.1471 seconds
-- used 74.572 seconds

input CC
Cremona
(prob.) FMPIntTh

Cremona
(det.)

complete int. of type (3, 3, 4) in P5 0.15 1.01 34.15 74.57
rational normal surface S(1, 4)⊂ P6

Q
1.41 0.74 5.32 0.06

Grassmannian G(1, 4)⊂ P9
Q

0.16 0.09 0.42 0.02
base locus of φ in Ex. 2.2 0.23 0.44 6.49 663.79
X ⊂ P11 in Ex. 2.3 over F3312 65.76 83.66 – 0.85
X ⊂ P11 in Ex. 2.3 over Z/16411 3.62 11.61 198.92 0.74

Table 2. Run-times to compute Segre classes in
CharacteristicClasses.m2, FMPIntersectionTheory.m2,
and Cremona.m2 (all times given in seconds).

https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/CharacteristicClasses.m2
https://github.com/coreysharris/FMPIntersectionTheory-M2
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SUPPLEMENT. The online supplement contains version 4.2.2 of Cremona.m2.
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ExteriorIdeals: a package for computing
monomial ideals in an exterior algebra

LUCA AMATA AND MARILENA CRUPI

ABSTRACT: Let K be a field, V a K -vector space with basis e1, . . . , en , and E
the exterior algebra of V. We introduce a Macaulay2 package that allows one
to deal with classes of monomial ideals in E . More precisely, we implement in
Macaulay2 some algorithms in order to easily compute stable, strongly stable and
lexsegment ideals in E . Moreover, an algorithm to check whether an (n+1)-tuple
(1, h1, . . . , hn) (h1 ≤ n = dimK V ) of nonnegative integers is the Hilbert function
of a graded K -algebra of the form E/I , with I a graded ideal of E , is given. In
particular, if HE/I is the Hilbert function of a graded K -algebra E/I , the package
is able to construct the unique lexsegment ideal I lex such that HE/I = HE/I lex .

1. INTRODUCTION. Monomial ideals are a bridge between algebra and com-
binatorial algebra. It is well known that, even if such ideals are, in some sense,
among the simplest structures in commutative algebra, they are the main objects
of combinatorial commutative algebra. Many authors have focused their attention
on classes of monomials ideals in an exterior algebra [Aramova et al. 1997; 2000;
Crupi and Utano 1999; 2007; Crupi and Ferró 2015; Eisenbud et al. 2003; Crupi
2015; Gasharov 1997; Murai 2011; Shakin 2004; 2005] and on the behavior of
certain invariants, such as for instance, the Hilbert function.

In this paper, we introduce ExteriorIdeals.m2 — a new package written for
[Macaulay2] for manipulating special classes of monomial ideals in an exterior al-
gebra of a finite-dimensional vector space over a field. More precisely, the package
provides functions to check whether a monomial ideal is stable, strongly stable, or
lexsegment, and, respectively, to compute the smallest stable, strongly stable, or
lexsegment ideal containing a given monomial ideal. Moreover, given an exterior
algebra, the package allows the computation of all the Hilbert sequences of quo-
tients of the exterior algebra. Some utility functions are necessary to simplify and
optimize the implementation of the main algorithms, such as the Macaulay expan-
sion, the initial degree of a graded ideal, the support of a monomial and the shadow
of a set of monomials. Most of the algorithms must work in an exterior algebra
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endowed with the lexicographic order, so that such an ordering is forced within
routines. Nevertheless, the ideals obtained by our algorithms are made compatible
with the native exterior algebra to allow further computations.

2. MATHEMATICAL BACKGROUND. Let K be a field. We denote by

E = K 〈e1, . . . , en〉

the exterior algebra of a K -vector space V with basis e1, . . . , en . For any subset
σ = {i1, . . . , id} of {1, . . . , n}, with i1 < i2 < · · ·< id , we write eσ = ei1 ∧· · ·∧eid ,
and call eσ a monomial of degree d . We set eσ = 1, if σ =∅. The set of monomials
in E forms a K -basis of E of cardinality 2n.

In order to simplify the notation, we write f g = f ∧ g for any two elements
f and g in E . An element f ∈ E is called homogeneous of degree j if f ∈ E j ,

where E j =
∧ j V. An ideal I is called graded if I is generated by homogeneous

elements. If I is graded, then I = ⊕ j≥0 I j , where I j is the K -vector space of all
homogeneous elements f ∈ I of degree j. We denote by indeg(I ) the initial degree
of I, i.e., the least degree of a homogeneous generator of I.

If I is a graded ideal in E , then the function HI : N→ N given by HI (d) =
dimK Id (i ≥ 0) is called the Hilbert function of I.

Now let eσ = ei1 · · · eid 6= 1 be a monomial in E . We define

supp(eσ )= σ = { j : e j divides eσ }, m(eσ )=max{i : i ∈ supp(eσ )}.

Moreover, we set m(eσ )= 0 if eσ = 1.
If M is a set of monomials of degree d < n of E , the set of monomials of

degree d + 1,

Shad(M)= {(−1)α(σ, j)e j eσ : eσ ∈ M, j /∈ supp(eσ ), j = 1, . . . , n},

where α(σ, j) = |{r ∈ σ : r < j}|, is called the shadow of M and is denoted by
Shad(M) [Crupi and Ferró 2015, Definition 2.4].

Definition 2.1. Let I be a monomial ideal of E . I is called stable if for each
monomial eσ ∈ I and each j <m(eσ ) one has e j eσ\{m(eσ )} ∈ I. I is called strongly
stable if for each monomial eσ ∈ I and each j ∈ σ one has ei eσ\{ j} ∈ I, for all i < j.

If I is a monomial ideal of E , we denote by G(I ) the unique minimal set of
monomial generators of I.

Remark 2.2. One can observe that the defining property of a strongly stable ideal
needs to be checked only for the set of monomial generators of a monomial ideal.
Indeed, let I be a monomial ideal and suppose that for all eσ ∈ G(I ), and for all
integers 1 ≤ i < j ≤ n such that j ∈ σ , one has ei eσ\{ j} ∈ I. Then I is strongly
stable.



Amata and Crupi :::: ExteriorIdeals: for monomial ideals in an exterior algebra 73

Let eτ ∈ I be a monomial and 1≤ i < j ≤ n be integers such that j ∈ τ . There
exist eσ ∈ G(I ) and a monomial eµ ∈ E such that eτ = eσ eµ in E .

We distinguish two cases: j ∈σ , j ∈µ. If j ∈σ , then ei eσ\{ j} ∈ I by assumption,
and so ei eτ\{ j} = ei eσ\{ j}eµ ∈ I.

If j ∈ µ, then ei eτ\{ j} = ei eσ eµ\{ j} ∈ I.

Another class of monomial ideals which plays a relevant role in combinatorial
commutative algebra is the class of lexsegment ideals. The lexsegment ideals pro-
vide an upper bound for the graded Betti numbers of graded ideals with given
Hilbert function [Aramova et al. 1997, Theorem 4.4].

Let Mond(E) be the set of all monomials of degree d ≥ 1 in E . Denote by >lex

the lexicographic order on Mond(E), i.e., if eσ = ei1ei2 · · · eid and eτ = e j1e j2 · · · e jd
are monomials belonging to Mond(E), with 1 ≤ i1 < i2 < · · · < id ≤ n and
1 ≤ j1 < j2 < · · · < jd ≤ n, then eσ >lex eτ if i1 = j1, . . . , is−1 = js−1 and
is < js for some 1≤ s ≤ d.

Definition 2.3. A nonempty subset M of Mond(E) is called a lexsegment of degree
d if for all v ∈ M and all u ∈Mond(E) such that u >lex v, we have that u ∈ M.

Definition 2.4. A monomial ideal I of E is called a lexsegment ideal (lex ideal,
for short) if for all monomials u ∈ I and all monomials v ∈ E with deg u = deg v
and v >lex u, we have v ∈ I.

Equivalently, a monomial ideal I in E is called a lex ideal if Mond(I ) is a
lexsegment for all d; Mond(I ) is the set of all monomials of degree d in I.

Remark 2.5. Every lex ideal of E is obviously a strongly stable ideal, and conse-
quently a stable ideal.

Now let a and i be two positive integers. Then a has the unique i-th Macaulay
expansion [Herzog and Hibi 2011, Lemma 6.3.4]

a =
(

ai

i

)
+

(
ai−1

i − 1

)
+ · · ·+

(
a j

j

)
with ai > ai−1 > · · · a j ≥ j ≥ 1. We define

a(i) =
(

ai

i + 1

)
+

(
ai−1

i

)
+ · · ·+

(
a j

j + 1

)
.

We also set 0(i) = 0 for all i ≥ 1.
The next theorem describes the possible Hilbert functions of graded K -algebras

of the form E/I , with I a graded ideal in E . It is the precise analogue to Macaulay’s
theorem [Bruns and Herzog 1993; Eisenbud 1995] which describes the possible
Hilbert functions of standard graded K -algebras.
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Theorem 2.6 [Aramova et al. 1997, Theorem 4.1]. Let (h1, . . . , hn) be a sequence
of nonnegative integers. Then the following conditions are equivalent:

(a) 1+
∑n

i=1 hi t i is the Hilbert series of a graded K -algebra E/I .

(b) 0< hi+1 ≤ h(i)i , 0< i ≤ n− 1.

Theorem 2.6 is known as the Kruskal–Katona theorem. Its proof points out that
if I is a graded ideal of E , then there exists a unique lex ideal of E , usually denoted
by I lex, such that HE/I = HE/I lex .

More precisely, if (1, h1, . . . , hn) is a sequence of nonnegative integers such that

(i) h1 ≤ n,

(ii) 0< hi+1 ≤ h(i)i , 0< i ≤ n− 1,

then there exists a unique lex ideal J (indegJ ≥ 1) of an exterior algebra E with n
generators over a field K such that HE/J (d)= hd (d = 0, . . . , n).

If 1+
∑n

i=1 hi t i is the Hilbert series of a graded K -algebra E/I , then the se-
quence (1, h1, . . . , hn) is called the Hilbert sequence of E/I .

From the Kruskal–Katona theorem, one can deduce that a sequence of nonneg-
ative integers (h0, h1, . . . , hn) is the Hilbert sequence of a graded K -algebra E/I ,
with I ( E a graded ideal of initial degree ≥ 1, if h0 = 1, and (i) and (ii) hold.

From now on, when we speak about Hilbert sequences we refer to Hilbert se-
quences of quotients of an exterior algebra.

3. EXAMPLES. In this section, we collect some examples in order to describe the
algorithms. Our implementation works in any characteristic.

Example 3.1. Given a monomial ideal I in an exterior algebra E , we illustrate how
some functions from our package allow one to check whether I is stable, strongly
stable, or lex, and to produce stable or strongly stable ideals containing I. The
core of the algorithms is based on the fact that the minimal monomial generators
of a stable or strongly stable ideal must satisfy the criterion in Definition 2.1 (see
Remark 2.2) and on the fact that the shadow of a lexsegment of monomials is again
a lexsegment [Herzog and Hibi 2011].

Macaulay2, version 1.10
with packages: ConwayPolynomials, Elimination, IntegralClosure,
InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra,
TangentCone

i1 : loadPackage "ExteriorIdeals"
i2 : E=QQ[e_1..e_5,SkewCommutative=>true]
i3 : I=ideal {e_2*e_3,e_3*e_4*e_5}
o3 = ideal (e e , e e e )

2 3 3 4 5
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o3 : Ideal of E
i4 : isStableIdeal I
o4 = false

The ideal I is not stable. Indeed, the monomial e1e2 is not in I even though
e2e3 is. Hence, by the function stableIdeal(ideal), we compute the smallest
stable ideal (I s) containing I :

i5 : Is=stableIdeal I
o5 = ideal (e e , e e e , e e , e e e )

1 2 1 3 4 2 3 3 4 5
o5 : Ideal of E
i6 : isStableIdeal Is
o6 = true
i7 : isStronglyStableIdeal Is
o7 = false

The ideal I s is stable but not strongly stable in E . Note that the monomial e1e3

is not in I s even though e2e3 is.
Using the function stronglyStableIdeal(ideal), we compute the smallest

strongly stable ideal (I ss) containing I s, and consequently I :

i8 : Iss=stronglyStableIdeal Is
o8 = ideal (e e , e e , e e e , e e , e e e , e e e )

1 2 1 3 1 4 5 2 3 2 4 5 3 4 5
o8 : Ideal of E
i9 : isStronglyStableIdeal Iss
o9 = true
i10 : Iss2=stronglyStableIdeal I
o10 = ideal (e e , e e , e e e , e e , e e e , e e e )

1 2 1 3 1 4 5 2 3 2 4 5 3 4 5
o10 : Ideal of E
i11 : Iss==Iss2
o11 = true

The ideal I ss is not a lex ideal in E . Indeed, the monomial e1e4 does not belong
to I ss, but e1e4>lex e2e3. One can verify this by the function isLexIdeal(ideal):

i12 : isLexIdeal Iss
o12 = false

Example 3.2. Letting E be an exterior algebra with n generators over a field K
and h = (h0, h1, . . . , hn) be a sequence of nonnegative integers, we describe how
one can verify if h is a Hilbert sequence.

The key tools in our algorithm are the functions isHilbertSequence(list,
exterior algebra) and lexIdeal(list,exterior algebra). The first func-
tion verifies if a list of nonnegative integers of length n+1 is a Hilbert function; the
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second one returns a lex ideal of E if and only if the list is a Hilbert sequence. In
more detail, if (h0, h1, . . . , hn) is a Hilbert sequence, the lex ideal of E produced
by the function lexIdeal({h0, . . . , hn}, E) is the unique lex ideal I of E with
HE/I (d)= hd (d = 0, . . . , n). The procedure for the computation of the required
lex ideal is based on the constructive proof of Theorem 2.6 (see [Aramova et al.
1997, Theorem 4.1, (b)⇒ (a)]).

We start with some examples of sequences which are not Hilbert sequences.
The property is verified by using either isHilbertSequence(list,exterior
algebra) or lexIdeal(list,exterior algebra):

Macaulay2, version 1.10
with packages: ConwayPolynomials, Elimination, IntegralClosure,
InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra,
TangentCone

i1 : loadPackage "ExteriorIdeals"
i2 : E=QQ[e_1..e_5,SkewCommutative=>true]
i3 : isHilbertSequence({2,4,3,0,0,0},E)
o3 = false
i4 : isHilbertSequence({0,4,3,0,0,0},E)
o4 : false
i5 : lexIdeal({1,6,3,0,0,0,0},E)
stdio:24:1:(3): error: expected a Hilbert sequence
i6 : lexIdeal({1,5,10,10,5,1,0},E)
stdio:26:1:(3): error: expected a Hilbert sequence

Moreover, the next statements provide some examples of the lex ideal produced
by a Hilbert sequence. The length of the sequence can be at most n + 1; if the
length is less than n+ 1, then the sequence will be completed by adding zeros on
the right.

i6 : lexIdeal({1,4,3,0,0,0},E)
o6 = ideal (e , e e , e e , e e , e e e )

1 2 3 2 4 2 5 3 4 5
o6 : Ideal of E
i7 : lexIdeal({1,4,4},E)
o7 = ideal (e , e e , e e , e e e )

1 2 3 2 4 3 4 5
o7 : Ideal of E
i8 : lexIdeal({1,5,7,4,0,0},E)
o9 = ideal (e e , e e , e e , e e e e )

1 2 1 3 1 4 2 3 4 5
o9 : Ideal of E

The function lexIdeal(list,exterior algebra), defined above, also plays
a relevant role in the next algorithm.
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Example 3.3. Given an exterior algebra E and a graded ideal I in E , we illustrate
how to obtain the unique lex ideal I lex with the same Hilbert function as I. In more
detail, we describe two different methods for computing such a lex ideal.

Macaulay2, version 1.10
with packages: ConwayPolynomials, Elimination, IntegralClosure,
InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra,
TangentCone

i1 : loadPackage "ExteriorIdeals";
i2 : E=QQ[e_1..e_5,SkewCommutative=>true]
i3 : I=ideal {e_1*e_2*e_3+e_3*e_4*e_5,e_1*e_3+e_4*e_5,e_2*e_3*e_4}
o3 = ideal (e e e + e e e , e e + e e , e e e )

1 2 3 3 4 5 1 3 4 5 2 3 4
o3 : Ideal of E
i4 : hilbSeq=hilbertSequence(I)
o4 = {1, 5, 9, 3, 0, 0}
o4 : List

A first way for computing the lex ideal we are looking for is to use the function
lexIdeal(list,exterior algebra):

i5 : Ilex1=lexIdeal(hilbSeq,E)
o5 = ideal (e e , e e e , e e e , e e e , e e e)

1 2 1 3 4 1 3 5 1 4 5 2 3 4
o5 : Ideal of E
i6 : isLexIdeal Ilex1
o6 = true
i7 : hilbertSequence(Ilex1)
o7 = {1, 5, 9, 3, 0, 0}
o7 : List

and a second one is via the new function lexIdeal(ideal), which returns
directly the required lex ideal:

i8 : Ilex2=lexIdeal(I)
o8 = ideal (e e , e e e , e e e , e e e , e e e)

1 2 1 3 4 1 3 5 1 4 5 2 3 4
o8 : Ideal of E
i9 : hilbertSequence(Ilex2)
o9 = {1, 5, 9, 3, 0, 0}
o9 : List

Finally, our last example is related to the algorithm for the computation of
Hilbert sequences.

Example 3.4. Given an exterior algebra E , we illustrate how to get all the Hilbert
sequences of quotients of E .
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Macaulay2, version 1.10
with packages: ConwayPolynomials, Elimination, IntegralClosure,
InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra,
TangentCone

i1 : loadPackage "ExteriorIdeals";
i2 : E=QQ[e_1..e_4,SkewCommutative=>true]
i3 : hilbSeqs=allHilbertSequences(E)
o3 = {{1, 4, 6, 4, 1}, {1, 4, 6, 4, 0}, {1, 4, 6, 3, 0}, {1, 4, 6,2, 0},

---------------------------------------------------------------------
{1, 4, 6, 1, 0}, {1, 4, 6,0, 0}, {1, 4, 5, 2, 0}, {1, 4, 5, 1, 0},
---------------------------------------------------------------------
{1, 4, 5, 0, 0}, {1, 4, 4, 1, 0}, {1, 4, 4, 0, 0}, {1,4, 3, 1, 0},
---------------------------------------------------------------------
{1, 4, 3, 0, 0}, {1, 4, 2, 0, 0}, {1, 4, 1, 0, 0}, {1, 4, 0, 0, 0},
---------------------------------------------------------------------
{1, 3, 3, 1,0}, {1, 3, 3, 0, 0}, {1, 3, 2, 0, 0}, {1, 3, 1, 0, 0},
---------------------------------------------------------------------
{1, 3, 0, 0, 0}, {1, 2, 1, 0, 0}, {1, 2,0, 0, 0}, {1, 1, 0, 0, 0},
---------------------------------------------------------------------
{1, 0, 0, 0, 0}}

o3 : List
i4 : transpose matrix hilbSeqs
o4 = | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |

| 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 2 2 1 0 |
| 6 6 6 6 6 6 5 5 5 4 4 3 3 2 1 0 3 3 2 1 0 1 0 0 0 |
| 4 4 3 2 1 0 2 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 |
| 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |

5 25
o4 : Matrix ZZ <--- ZZ

Note that the method allHilbertSequences returns an object of type List;
for a more compact view it could be displayed as a matrix.

4. CONCLUSIONS AND PERSPECTIVES. The algorithms described in the exam-
ples above are part of a Macaulay2 package ExteriorIdeals.m2, which has been
tested with Macaulay2 version 1.10. We are confident that this package may prove
useful for further applications. Indeed, to the best of our knowledge, it seems
that no packages for manipulating monomial ideals in an exterior algebra have
been implemented, though functions for computing monomial ideals in a polyno-
mial ring are available in many computer algebra systems (for instance, [CoCoA],
[Macaulay2] and [Singular]).

We believe it would be nice to implement such a package for monomial modules
over an exterior algebra. This task is currently under investigation by the authors.
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Software for computing conformal block divisors on M0,n

DAVID SWINARSKI

ABSTRACT: We introduce the packages LieTypes.m2 and ConformalBlocks.m2
for Macaulay2. LieTypes.m2 contains basic types for working with Lie algebras
and Lie algebra modules. ConformalBlocks.m2 computes ranks and first Chern
classes of vector bundles of conformal blocks on M0,n .

1. INTRODUCTION. The moduli stacks Mg,n of Deligne–Mumford stable n-pointed
curves of genus g are central objects of study in algebraic geometry and mathe-
matical physics. The WZW model of conformal field theory can be interpreted as
defining vector bundles on Mg,n whose fibers are the so-called vector spaces of
conformal blocks. These vector bundles were first constructed by Tsuchiya, Ueno
[2008], and Yamada; their ranks are computed by the famous Verlinde formula.

We omit the lengthy full definition of conformal blocks (see the references
[Beauville 1996] and [Ueno 2008]) and instead merely describe the input required
to specify a conformal block. Let g be a simple Lie algebra, and let ` be a positive
integer called the level. Choose a set of simple roots for the root system associated
to g, and let θ be the highest root. Let (−,−) denote the Killing form, normalized
so that (θ, θ)= 2.

Proposition 1.1. Let g and n be nonnegative integers satisfying 3g − 3+ n ≥ 0.
Let ` be a positive integer. Let Eλ = (λ1, . . . , λn) be an n-tuple of weights with
(λi , θ)≤ ` for each i = 1, . . . , n. For each such triple (g, `, Eλ), we may construct
a vector bundle V(g, `, Eλ) on Mg,n , called the vector bundle of conformal blocks.

In 2008, Fakhruddin gave formulas for the Chern classes of these vector bundles
[Fakhruddin 2012]. We will refer to the first Chern class of a conformal block bun-
dle as a conformal block divisor. The package ConformalBlocks.m2 implements
some of Fakhruddin’s main formulas in the genus 0 case.

Several quantities from representation theory appear in Fakhruddin’s formulas,
and the earliest version of ConformalBlocks.m2 contained several functions for

MSC2010: primary 14D21; secondary 14D22, 81T40.
Keywords: conformal blocks, fusion product, moduli of curves.
ConformalBlocks.m2 version 2.4
LieTypes.m2 version 0.5
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representation theory calculations. At the suggestion of Grayson and Stillman,
these were moved into a separate package, LieTypes.m2.

2. THE LIETYPES.M2 PACKAGE. The LieTypes.m2 package defines two new
classes, LieAlgebra and LieAlgebraModule; objects of these classes are hash
tables. Currently, only simple Lie algebras over C are implemented. (Volunteers
who would like to extend the functionality of this package are invited to contact the
author.) Simple Lie algebras over C are specified by their rank and root system type.
Irreducible Lie algebra modules are specified by their underlying Lie algebra and
highest weight, and a general Lie algebra module is specified by the multiplicities
of the irreducible submodules it contains.

The LieTypes.m2 package contains several functions implementing basic Lie
algebra data, such as the Cartan matrix. The documentation within the package con-
tains references for formulas and/or sources of reference data for each of these func-
tions. This package uses Macaulay2’s combinatorial and linear algebra functions.

2.1. Tensor coefficients and fusion coefficients. One notable feature of the pack-
age LieTypes.m2 is that it computes tensor product decompositions and fusion
product decompositions for all irreducible root system types.

Let Vλ denote the irreducible g-module with highest weight λ. Define the tensor
product coefficients N ν

λ,µ by

Vλ⊗ Vµ =
⊕

V
⊕N ν

λ,µ
ν .

The LieTypes.m2 package uses the Racah–Speiser algorithm for computing tensor
product coefficients [Di Francesco et al. 1997, 13.5.2].

In type A (that is, g= slk), the tensor product coefficients are the Littlewood–
Richardson coefficients. These coefficients have been previously implemented in
other Macaulay2 packages (e.g., SchurRings.m2).

The fusion product ⊗` is a product for integrable level ` modules over an affine
Lie algebra ĝ. The fusion coefficients N (`)ν

λ,µ are defined by the decomposition of
the fusion product, and can be computed using the Kac–Walton algorithm (see
[Di Francesco et al. 1997, § 16.2.2]). The Kac–Walton algorithm is closely related
to the Racah–Speiser algorithm for tensor products, and it is defined entirely using
the combinatorics of the root system of the underlying finite-dimensional Lie alge-
bra. Therefore, we can abuse notation and use the Kac–Walton algorithm to define
a product ⊗` on Lie algebra modules as well as affine Lie algebra modules.

Fusion coefficients have previously been implemented in KAC and Magma; but,
to the author’s knowledge, the implementation in LieTypes.m2 in Macaulay2 is
the first free, open-source implementation of fusion coefficients.

As an example, let g= sl3. Let ω1 and ω2 be the fundamental dominant weights,
and λ= 2ω1+ω2 = (2, 1), µ= ω1+ 2ω2 = (1, 2). The calculation below shows
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that the tensor product V(2,1)⊗V(1,2) contains two copies of V(1,1), while the level 3
fusion product V(2,1)⊗3 V(1,2) contains one copy of V(1,1). The information com-
puted by the tensor product and fusion product functions is sufficient to determine
the characters of these products, though characters are not implemented in this
version of LieTypes.m2.

i1 : loadPackage("LieTypes");
i2 : sl_3=simpleLieAlgebra("A",2)
o2 = Simple Lie algebra, type A, rank 2
o2 : LieAlgebra
i3 : U=irreducibleLieAlgebraModule({2,1},sl_3);
i4 : V=irreducibleLieAlgebraModule({1,2},sl_3);
i5 : W=irreducibleLieAlgebraModule({1,1},sl_3);
i6 : tensorCoefficient(U,V,W)
o6 = 2
i7 : fusionCoefficient(U,V,W,3)
o7 = 1

3. THE CONFORMALBLOCKS.M2 PACKAGE. The ConformalBlocks.m2 pack-
age implements some of Fakhruddin’s formulas for conformal block divisors on
the moduli space of pointed genus 0 curves M0,n . Its three main functions compute
(1) the rank of a conformal block bundle,

(2) the intersection number of a conformal block divisor with an F-curve,

(3) the divisor class of the symmetrization of a conformal block divisor.
The version of this package described here uses Macaulay2’s combinatorial and
linear algebra functions.

Some references for divisors and curves on M0,n include [Keel and McKernan
2013; Keel 1992; Arap et al. 2012]. The boundary 1 = ∂M0,n (that is, the lo-
cus parametrizing nodal curves) consists of irreducible components 1I . These
span Pic(M0,n,Q). Moreover, the symmetrizations of the classes 1I yield a basis
{B2, . . . , Bbn/2c} of Pic(M0,n,Q)Sn. The ConformalBlocks.m2 package imple-
ments Sn-symmetric divisors in a new class called SymmetricDivisorM0nbar.
Divisors may be entered/viewed as linear polynomials in the classes Bi . For in-
stance, the divisor B2 + B3 + 2B4 on M0,8 could be created with the command
symmetricDivisorM0nbar(8,B_2+B_3+2*B_4). There are methods, for the
SymmetricDivisorM0nbar class, for creating and comparing divisors, as well
as addition, negation, scalar multiplication, and printing.

We will also be interested in certain combinatorially defined curves in the moduli
space called F-curves. These are denoted FI1,I2,I3,I4 , where I1 t I2 t I3 t I4 is a
partition of {1, . . . , n} into four nonempty subsets. Averaging such a curve with
its Sn translates gives a symmetric curve class; if #I1= a, #I2= b, #I3= c, #I4= d ,
we write Fa,b,c,d for this class. The classes {F j,1,1,n− j−2}

bn/2c−1
j=1 form an ordered

basis of H2(M0,n,Q)Sn.
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3.1. Ranks of conformal block bundles. The function conformalBlockRank in
ConformalBlocks.m2 computes ranks of conformal block bundles recursively us-
ing propagation and factorization (see [Beauville 1996, Corollary 2.4 and page 84]).
We abbreviate rEλ = rank V(g, `, Eλ) if this will cause no confusion.

In practice, propagation means that if one of the weights is zero, we may drop it.
Specifically, let Eλ = (λ1, . . . , λn), and suppose that λn = 0. Then V(g, `, Eλ) =

π∗n V(g, `, λ̂), where λ̂ = (λ1, . . . , λn−1) and πn : M0,n → M0,n−1 is the map
forgetting the n-th marked point. In particular, rEλ = rλ̂.

The factorization rules for conformal block bundles refer to a specific direct sum
decomposition of each fiber. We merely state the consequence of factorization for
ranks: Let Eµ∪Eν be a partition of the vector Eλ= (λ1, . . . , λn) into two vectors, each
of length at least 2. Then

rEλ =
∑
β∈P`

r Eµ∪βrEν∪β∗ .

Here ∗ denotes the involution on the root system given by −w0, where w0 is
the longest word in the Weyl group. Formulas for the action of this involution
for the simple Lie algebras are given in [Di Francesco et al. 1997, page 511] and
implemented in LieTypes.m2 with the starInvolution function.

To seed the recursion, we must know the ranks of conformal block bundles for
n=3. We get these from the fusion coefficients by rank V(g, `, (λ, µ, ν))= N (`)ν∗

λ,µ .

As an example, we compute rank V(sl2, 3, (ω1, . . . , ω1)) on M0,8:

i8 : loadPackage("ConformalBlocks");
i9 : sl_2=simpleLieAlgebra("A",1);
i10 : V=conformalBlockVectorBundle(sl_2,3,{{1},{1},{1},{1},{1},{1},{1},{1}},0);
i11 : conformalBlockRank(V)
o11 = 13

3.2. Intersection numbers with F-curves. Fakhruddin uses factorization to ex-
press intersection numbers of c1V(g, `, Eλ) with an F-curve in terms of degrees
of conformal blocks on M0,4 ∼= P1 and ranks of conformal blocks on M0,n′ with
n′ < n [Fakhruddin 2012, Proposition 2.7]. This formula is implemented in the
function FCurveDotConformalBlockDivisor.
i12 : w={{1},{1},{1},{1},{1},{1}};
i13 : V=conformalBlockVectorBundle(sl_2,1,w,0)
o13 = V
o13 : Conformal block vector bundle on M-0-6-bar
i14 : conformalBlockRank(V)
o14 = 1
i15 : FCurveDotConformalBlockDivisor({{1,2,3},{4},{5},{6}},V)
o15 = 1
i16 : FCurveDotConformalBlockDivisor({{1,2},{3,4},{5},{6}},V)
o16 = 0
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Line o14 tells us that the vector bundle V(sl2, 1, (ω1, . . . , ω1)) is a line bundle.
The intersection numbers computed in o15 and o16 allow us to give a geometric
interpretation of this divisor (see [Alexeev et al. 2014, Theorem 7.2] for details):
Let f : M0,6/S6

∼=
→H2 be the map which identifies a smooth genus 2 curve with the

branch points of its g1
2 . This extends to a map f : M0,6/S6

∼=
→ H 2 using the theory

of admissible covers. By comparing the intersection numbers computed above to
those of the pullback f ∗λ of the λ class on M2, we see that V(sl2, 1, (ω1, . . . , ω1))

is a multiple of f ∗λ.

3.3. Divisor classes of symmetric or symmetrized bundles. The Sn-symmetric di-
visors play an important role in the study of the birational geometry of M0,n . In
addition, they are much easier to study, since dim Pic(M0,n,Q)= 2n−1

−
(n

2

)
− 1

while dim Pic(M0,n,Q)Sn = bn/2c− 1.
Fakhruddin [2012, Corollary 3.6] gives a formula for computing the symmetriza-

tion
∑

σ∈Sn
c1V(g, `, σ Eλ) of a conformal block divisor over its Sn-translates. This

is implemented in the function symmetrizedConformalBlockDivisor for an
arbitrary n-tuple of weights Eλ. This function can also be used and is even faster if
the set of weights is already Sn-symmetric.

In the example below, we compute c1V(sl6, 1, (ω2, . . . , ω2)) for n = 6:
i17 : sl_6=simpleLieAlgebra("A",5);
i18 : w2={0,1,0,0,0};
i19 : V=conformalBlockVectorBundle(sl_6,1,apply(6, i -> w2),0);
i20 : D=symmetrizedConformalBlockDivisor(V)
o20 = 288*B + 864*B

2 3
o20 : S_6-symmetric divisor on M-0-6-bar
i21 : coefficientList D
o21 = {288, 864}
o21 : List
i22 : coefficientList scale D
o22 = {1, 3}
o22 : List

We see that c1V(sl6, 1, (ω2, . . . , ω2)) is a multiple of B2+ 3B3. The pullback
to M0,6 of the distinguished polarization on the GIT quotient (P1)6// SL2 with the
symmetric linearization is also a multiple of B2+ 3B3; GIT divisors of this form
are studied in [Alexeev and Swinarski 2012].
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Divisor Package for Macaulay2

KARL SCHWEDE AND ZHAONING YANG

ABSTRACT: This note describes a Macaulay2 package for handling divisors.
Group operations for divisors are included. There are methods for converting
divisors to reflexive or invertible sheaves. Additionally, there are methods for
checking whether divisors are Cartier, Q-Cartier, simple normal crossings, or
generate base point free linear systems, or satisfy numerous other conditions.

1. INTRODUCTION. Divisors are fundamental objects of study within algebraic
geometry and commutative algebra. In the Divisor.m2 package for [Macaulay2],
we provide a wrapper object for studying Weil and Cartier divisors. We include
tools for studying divisors on both affine and projective varieties.

In this package, divisors are stored (roughly) as formal linear combinations of
height-1 prime ideals, with coefficients from Z, Q, or R. We include group and
scaling operations for divisors, as well as various methods for constructing modules
OX (D) from divisors D (and vice versa). We also include code for determining
whether divisors are linearly or Q-linearly equivalent, and for checking whether
divisors are Cartier or Q-Cartier (or finding the non-Cartier locus). Finally, we
also include a number of functions for handling reflexive modules, ideals and their
powers.

We realize there is a Divisor class defined in a tutorial in the Macaulay2 help
system. In that implementation, divisors are given as a pair of ideals — an ideal
corresponding to the positive part and an ideal corresponding to the negative part.
Our approach offers the advantage that it is easier for the user to see the structure
of the divisor. Additionally, certain operations are much faster in our approach.

We warn the user that when a divisor is created, Gröbner bases are constructed
for each prime ideal defining a component of the divisor. Hence, the construction
phase may be slower than other potential implementations (and in fact slower than
our initial implementation). However, we feel that this choice offers advantages of
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execution speed for several functions as well as substantial improvements in code
readability.

Within the package, it is tacitly assumed that the ambient ring on which we are
working is normal. This includes the projective case, so care should be taken to
make sure the graded ring you are working on satisfies Serre’s second condition, see
for example [Hartshorne 1977, Theorem 8.22A] or [Bruns and Herzog 1993, Propo-
sition 2.2.21]. While one can talk about subvarieties of codimension 1 on more gen-
eral schemes, the correspondence between divisors and reflexive sheaves is much
more complicated, so we restrict ourselves to the normal case. For an introduc-
tion to the theory of rank-1-reflexive sheaves on “nice” schemes, see [Hartshorne
1994; 2007]; and for a more basic introduction see, for instance, [Hartshorne 1977,
Chapter II, Sections 5–7].

This paper is structured as follows. We first give a brief introduction to the con-
struction, conversion, and group operation functions in Section 2. We then discuss
the methods for converting divisors D to modules OX (D) and converting modules
back to divisors in Section 3. Section 4 describes how to determine if divisors
satisfy various properties (for instance isCartier or isSNC). We conclude with
a section on future plans.

2. CONSTRUCTION, CONVERSION AND GROUP OPERATIONS FOR DIVISORS.
This package includes a number of ways to construct a divisor (an object of class
WeilDivisor), illustrated here.

i1 : needsPackage "Divisor";
i2 : R = QQ[x,y,u,v]/ideal(x*y-u*v);
i3 : D = divisor({2, 3}, {ideal(x,u), ideal(x, v)})
o3 = 3*Div(x, v) + 2*Div(x, u)
o3 : WeilDivisor on R
i4 : E = divisor(x)
o4 = Div(u, x) + Div(v, x)
o4 : WeilDivisor on R
i5 : F = divisor( (ideal(x,u))^2*(ideal(x,v))^3 )
o5 = 3*Div(v, x) + 2*Div(u, x)
o5 : WeilDivisor on R

The output is a formal sum of height-1 prime ideals. The first method requires a
list of integers and a list of prime ideals. The third construction method finds a
divisor defined by the given ideal in codimension 1.

We have different classes for Q-divisors and R-divisors (QWeilDivisor and
RWeilDivisor respectively); these are constructed via the divisor function with
the CoeffType => option set or by multiplying a WeilDivisor by a rational or
real number. See the documentation.

All types of divisors are ancestors of the HashTable class. Internally, they are
hash tables where each key is a list of Gröbner basis generators for a prime height-1
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ideal and each associated value is a list, the first entry of which is the coefficient
of the prime divisor and the second entry is the prime ideal used to display the
divisor (it tries to match how the user entered it for ease of reading). Besides the
keys corresponding prime divisors, there is a key that specifies the ambient ring
and another key that points to a CacheTable.

One can convert one type of divisor to another more general class, either by
multiplication by appropriate coefficients or by calling appropriate functions.

i2 : R = QQ[x,y,u,v]/ideal(x*y-u*v);
i3 : D = divisor({1, -3}, {ideal(x,u), ideal(y,u)});
o3 : WeilDivisor on R
i4 : 1/1*D
o4 = -3*Div(y, u) + Div(x, u)
o4 : QWeilDivisor on R
i5 : toQWeilDivisor(D)
o5 = Div(x, u) + -3*Div(y, u)
o5 : QWeilDivisor on R

One can convert Q or R-divisors back to Weil divisors as follows.
i3 : D = divisor( {2/3, -1/2}, {ideal(x,u), ideal(y, v)}, CoeffType=>QQ)
o3 = 2/3*Div(x, u) + -1/2*Div(y, v) of R
o3 : QDiv
i4 : isWDiv(D)
o4 = false
i5 : isWDiv(6*D)
o5 = true
i6 : toWDiv(6*D)
o6 = 4*Div(x, u) + -3*Div(y, v) of R
o6 : WDiv

See the documentation for more examples. Alternatively, the functions ceiling
and floor will convert any Q or R-divisor to a Weil divisor by taking the ceiling
or floor of the coefficients, respectively. More generally, one can call the method
applyToCoefficients to apply any function to the coefficients of a divisor (since
divisors are a type of HashTable, this is just done via the applyValues function).

Divisors form an abelian group and one can add WeilDivisor/QWeilDivisor/
RWeilDivisor to each other to obtain new divisors. Likewise one can scale by
integers, rational numbers or real numbers.
i3 : D = divisor({1, -2}, {ideal(x,u), ideal(x, v)}); E = divisor(u);
o3 : WeilDivisor on R
o4 : WeilDivisor on R
i5 : 3*D+E
o5 = 4*Div(x, u) + -6*Div(x, v) + Div(u, y)
o5 : WeilDivisor on R
i6 : D - (1/2)*E
o6 = -2*Div(x, v) + 1/2*Div(x, u) + -1/2*Div(u, y)
o6 : QWeilDivisor on R
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Since divisors are implemented as subclasses of hash tables, these operations
are easily executed internally via the merge and applyValues commands.

3. MODULES, IDEALS, DIVISORS AND APPLICATIONS. It is well known that
divisors are so useful because of their connections with invertible and reflexive
sheaves. This package includes many functions for conversion between these types
of objects. For instance, we have the following:
i2 : R = QQ[x,y,z]/ideal(x*y-z^2); needsPackage "Divisor";
i3 : D = divisor(ideal(x, z));
o3 : WeilDivisor on R
i4 : OO(D)
o4 = image {-1} | x z |

{-1} | z y |
o4 : R-module, submodule of R
i5 : divisor(o4)
o5 = -Div(z, x)
o5 : WeilDivisor on R
i6 : divisor(o4, IsGraded=>true)
o6 = Div(z, x)
o6 : WeilDivisor on R

The function OO produces a module M so that M̃ ∼= OX (D) (and the gradings
of M are set appropriately). The function divisor(M) only produces a divisor
E such that OX (E) is isomorphic to M̃ . In particular, divisor(OO(D)) will only
produce a divisor linearly equivalent to D.

We use a straightforward strategy to compute OO(D). If D=
∑m

i=1 ai Pi where
the ai are integers and the Pi are primes, then we can compute

⊗
P−ai

i (keeping in
mind negative exponents mean applying HomR(−, R)) and compute the reflexifica-
tion (see the method reflexify). We do several things to make this computation
faster. Firstly, we break up the divisor into the positive and negative parts, and han-
dle them separately (applying the reflexify method as little as possible). Then,
instead of computing P |ai |

i , which can have many generators, we form an ideal
generated by the generators of Pi raised to the |ai |-th powers. Since this agrees
with P |ai |

i in codimension 1, it will give the correct answer up to reflexification.
We have noticed substantial speed improvements using this technique.

The function divisor(Module) works as follows. First, it embeds the module
as an ideal I ⊆ R via the function embedAsIdeal. After we have an ideal I, we
call divisor(I). This finds a divisor D such that OX (D) is isomorphic to the
given ideal I (in a nongraded sense). The function divisor(Ideal) does this by
looking at the minimal height-1 primes Qi of the ideal I and finding the maximum
power ni such that I ⊆ Q(ni )

i (the symbolic power). Note that because Qi has
height 1, we know Q(ni )

i = (Qni
i )∗∗ where −∗∗ denotes reflexification/S2-ification

of the ideal. Finding this maximal power is done by a binary search. Again, for
speed, we compute (Qni

i )∗∗ as (Q[ni ]
i )∗∗. If the IsGraded flag is set to true,
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divisor(Module) corrects the degree of the divisor by adding or subtracting
the divisor of an element of appropriate degree (you can see this being done in
the example above). Finding the element of appropriate degree is accomplished
via the function findElementOfDegree, which uses Smith normal form in the
multidegree setting to solve the system of linear diophantine equations and find a
monomial of the given multidegree.

Remark 3.1. A variant of the function embedAsIdeal appeared in the Macaulay2
documentation in the Divisor tutorial; it also appeared in the work of Moty Katz-
man. Our version is slightly more robust than those as it tries to embed the module
into the ring in several ways, including some random attempts (see the documenta-
tion for how to control the number of random attempts).

Instead of calling divisor(Module), one can call divisor(Module, Section
=> f). This function finds the unique effective divisor D corresponding to a global
section f ∈ M of our module. The function divisor(Ideal, Section => f)
behaves similarly. The strategy is the same as above, and additionally one tracks
the section and adds a divisor corresponding to the section at the end.

It is worth mentioning that the function canonicalDivisor simply computes
the canonical module via an appropriate Ext and then calls divisor(Module). If
you wish to construct a canonical divisor on a projective variety, make sure to set
the IsGraded option to true.

Pulling back divisors. Utilizing the module and divisor correspondence pullBack
pulls back a divisor along a map Spec S→ Spec R induced by a ring map R→
S. The user has a choice of two algorithms built into this function. The first
works for nearly any map, provided that the divisor is Cartier, and it also works
for arbitrary divisors in the flat or finite case. The second, which is the default
strategy, only gives accurate answers if the map is flat, or if the map is finite (or
if the prime components of the divisor are Cartier). It can be faster than the first
algorithm, especially for divisors with large coefficients. To use the first algorithm,
use Strategy => Sheaves, to use the second, use Strategy => Primes.

Let us briefly describe these two strategies. The first algorithm pulls back the
sheaf O(D), keeping track of a section appropriately. The second algorithm ex-
tends each prime ideal defining a prime divisor of D to an ideal of S, then it calls
divisor(Ideal) on each such ideal and sums them keeping track of coefficients
appropriately.

Consider the following example where we look at pulling back a divisor after
blowing up the origin (we only consider one chart of the blowup).
i2 : R = QQ[x,y];
i3 : S = QQ[a,b];
i4 : f = map(S, R, {a*b, b});
o4 : RingMap S <--- R
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i5 : D = divisor(x*y*(x+y)*(x-y))
o5 = Div(x+y) + Div(-x+y) + Div(x) + Div(y)
o5 : WeilDivisor on R
i6 : pullback(f, D)
o6 = Div(a+1) + Div(a-1) + 4*Div(b) + Div(a)
o6 : WeilDivisor on S

Note one of the components was lost in this pull-back, as it should have been.
The coefficient of the exceptional divisor is also 4, as it should be.

Global sections. There are only a few built-in functions for dealing with global sec-
tions of modules corresponding to divisors in the current version (in the future we
hope to add more tools to do this). Of course, the user may call basis(0, OO(D))
to get the global sections of a module corresponding to a divisor. In this section,
we describe briefly two functions for handling global properties of divisors.

The function mapToProjectiveSpace gets the global sections of O(D) and
then computes the corresponding map to projective space. This of course assumes
the divisor is graded. In the example below we project P1

×P1 to one of its terms
by calling mapToProjectiveSpace along a divisor of one of the rulings.

i2 : R = QQ[x,y,u,v]/ideal(x*y-u*v);
i3 : D = divisor(ideal(x,u));
o3 : WeilDivisor on R
i4 : mapToProjectiveSpace(D)
o4 = map(R,QQ[YY , YY ],{v, x})

1 2
o4 : RingMap R <--- QQ[YY , YY ]

1 2

Still assuming the divisor is graded, the function baseLocus finds a defining
ideal for the locus where O(D) is not generated by global sections. This is done
by computing the cokernel of O⊕n

→O(D) where H 0(X,O(D)) has a basis of n
distinct global sections and the map is the obvious one. In the following example,
we compute the base locus of a point on an elliptic curve, and also two times a
point on an elliptic curve (which is degree 2 and hence base point free).

i2 : R = QQ[x,y,z]/ideal(y^2*z-x*(x+z)*(x-z));
i3 : D = divisor( ideal(x,y) );
o3 : WeilDivisor on R
i4 : baseLocus(D)
o4 = ideal (y, x)
o4 : Ideal of R
i5 : baseLocus(2*D)
o5 = ideal 1
o5 : Ideal of R

4. CHECKING PROPERTIES OF DIVISORS. The package Divisor.m2 can check
divisors for several properties. First, we describe the method isCartier.
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i2 : R = QQ[x,y,z]/ideal(x^2-y*z);
i3 : D = divisor(ideal(x,y));
i4 : isCartier(D)
o4 = false
i5 : nonCartierLocus(D)
o5 = ideal (z, y, x)
o5 : Ideal of R
i6 : isCartier(2*D)
o6 = true
i7 : isCartier(D, IsGraded => true)
o7 = true

The algorithm behind this function is as follows. We compute OX (−D) ·OX (D)

and check if it is equal to OX . In general, OX (−D) ·OX (D) always defines an
ideal defining the non-Cartier locus of D, hence the command nonCartierLocus.
If the option IsGraded => true, then the relevant functions saturate the ideals
with respect to the irrelevant ideal.

We also briefly describe the method isQCartier.

i8 : isQCartier(5, D)
o8 = 2

This checks whether any multiples n · D of a Weil divisor or Q-divisor D are
Cartier for any integer n less than or equal to the first argument (in this case n ≤ 5).
It may actually search a little higher than the first argument in the Q-Cartier case
due to rounding issues. If it finds that nD is Cartier, it returns the integer n. If it
doesn’t find any Cartier divisors, it returns 0.

Some other useful functions include isPrincipal and isLinearEquivalent.
Checking whether a divisor is principal just comes down to checking whether
OX (D) is a free module and checking whether D ∼ E just boils down to checking
whether D − E is principal. In the graded case, we can do this via Macaulay2
using the prune and isFreeModule commands. Unfortunately, we do not know
an algorithm for deciding if a nongraded module is free (although we still try to
prune the module and more). Therefore isPrincipal and isLinearEquivalent
can give a false negative for non-graded divisors (the function warns you when this
is the case). In the same way, the option IsGraded can be applied within isLinear
Equivalent, which checks that OX (D− E) is principal of degree zero.

We can also check whether a divisor D has simple normal crossings by calling
isSNC. This first checks that the ambient space of D is regular, then it checks that
each prime divisor of D defines a regular scheme, and finally it checks that every
intersection of prime divisors of D also defines a regular scheme of the appropriate
dimension.

5. FUTURE PLANS. There are a number of ways that this package should be ex-
panded. One of the most important things to be done is to further develop the
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global methods related to divisors. We have recently added the ability to check
whether a divisor is very ample via the isVeryAmple function, which uses the
RationalMaps package. However, there is much more to be done. Some basic
intersection theory between divisors and smooth curves would be natural to include.

While the latest version of the package stores the outputs of some functions in
the cache, this can still be improved. For example, there are likely ways to take
advantage of knowing that a given divisor is Cartier or Q-Cartier.

ACKNOWLEDGEMENTS. We thank Tommaso de Fernex, David Eisenbud, Daniel
Grayson, Anurag Singh, Greg Smith, Mike Stillman, and the referees for useful
conversations and comments on the development of this package. We also thank
the referee for numerous useful comments on this paper.

SUPPLEMENT. The online supplement contains version 0.3 of Divisor.m2.
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