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Strongly stable ideals and Hilbert polynomials
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ABSTRACT: The StronglyStableIdeals.m2 package for Macaulay2 provides
a method to compute all saturated strongly stable ideals in a given polynomial ring
with a fixed Hilbert polynomial. A description of the main method and auxiliary
tools is given.

INTRODUCTION. Strongly stable ideals are a key tool in commutative algebra
and algebraic geometry. These ideals have nice combinatorial properties that make
them well suited for both theoretical and computational applications. In the case
of polynomial rings with coefficients in a field of characteristic zero, the notion
of strongly stable ideals coincides with the notion of Borel-fixed ideals. Such
ideals are fixed by the action of the Borel subgroup of triangular matrices and
play a special role in the theory of Gröbner bases because initial ideals in generic
coordinates are of this type [Galligo 1974].

In the context of parameter spaces of algebraic varieties, Galligo’s theorem says
that each component and each intersection of components of a Hilbert scheme
contains at least one point corresponding to a scheme defined by a Borel-fixed
ideal. Hence, these ideals are distributed throughout the Hilbert scheme and can be
used to study its local structure. To this end, in recent years several authors [Lella
and Roggero 2011; 2016; Cioffi and Roggero 2011; Bertone et al. 2013a; 2017a;
2017b] developed algorithmic methods based on the use of strongly stable ideals
to construct flat families corresponding to special loci of the Hilbert scheme. In
particular, a new open cover of the Hilbert scheme has been defined using strongly
stable ideals and the action of the projective linear group [Bertone et al. 2013b;
Brachat et al. 2016]. In this construction, the list of all points corresponding to
Borel-fixed ideals in a given Hilbert scheme is needed. The main feature of the
package StronglyStableIdeals.m2 is a method to compute this set of points,
i.e., the list of all saturated strongly stable ideals in a polynomial ring with a given

The second author is a member of GNSAGA .
MSC2010: primary 13P10; secondary 13P99.
Keywords: strongly stable ideal, Borel-fixed ideal, Hilbert polynomial, Gotzmann number, Hilbert

scheme.
StronglyStableIdeals.m2 version 1.1

1

http://dx.doi.org/10.2140/jsag.2019.9-1
http://msp.org/jsag
http://dx.doi.org/10.2140/jsag.2019.9.1
http://msp.org/jsag


2 Alberelli and Lella :::: Strongly stable ideals and Hilbert polynomials

Hilbert polynomial. The method has been theoretically introduced in [Cioffi et al.
2011] and improved in [Lella 2012]. Several other tools are developed and pre-
sented in the current paper.

1. STRONGLY STABLE IDEALS. Let us denote by K[x] the polynomial ring in
n + 1 variables K[x0, . . . , xn] with coefficients in a field K. We assume that
x0 > x1 > · · ·> xn . We use the multi-index notation to describe monomials, i.e.,
xα
:= xα0

0 · · · x
αn
n for every α = (α0, . . . , αn) ∈ Zn+1

>0 , and we denote by Tn,s the set
of monomials of K[x] of degree s. For any monomial xα, we denote by min xα

and max xα the indices of the minimal and maximal variable dividing xα.
Following [Green 2010], increasing and decreasing elementary moves are de-

fined as the multiplications

e+i (x
α) :=

xi−1

xi
· xα, i > 0, and e−j (x

α) :=
x j+1

x j
· xα, j < n.

We say that an elementary move e+/−
i is admissible for a monomial xα if αi > 0,

that is, e+/−
i (xα) is a monomial of K[x].

Definition 1.1. An ideal I ⊂ K[x] is called strongly stable if

(i) I is a monomial ideal;

(ii) for every xα
∈ I and for every admissible increasing move e+i , the monomial

e+i (x
α) is contained in I.

We recall that a strongly stable ideal is a Borel-fixed ideal. We now summarize
some properties holding in general for Borel-fixed ideals and useful in this context.

Proposition 1.2 [Green 2010, Section 2]. Let I ⊂ K[x] be a strongly stable ideal.

(i) The regularity of I is equal to the maximal degree of a generator.

(ii) Let m be the irrelevant ideal of K[x]. Then, (I : m) = (I : xn), so that the
ideal I is saturated if no generator involves the last variable xn .

(iii) The last variable xn is a regular element for I, i.e., the multiplication by xn

induces the short exact sequence

0 −→
K[x]

I
(t − 1) ·xn

−→
K[x]

I
(t) −→

K[x]
(xn, I )

(t) −→ 0.

2. HILBERT POLYNOMIALS. The Hilbert polynomial p(t) of a homogeneous
ideal I ⊂ K[x] is the numerical polynomial such that for s sufficiently large

dimK

(
K[x]

I

)
s
= dimK

(
K[x]s

Is

)
=

(
n+ s

n

)
− dimK Is = p(s).
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Obviously, not every numerical polynomial is a Hilbert polynomial of some homo-
geneous ideal. Those being Hilbert polynomials have been completely described
by Gotzmann [1978].

Gotzmann’s decomposition. A numerical polynomial p(t) ∈ Q[t] is a Hilbert
polynomial if , and only if , it can be written as

p(t)=
(n+a1

a1

)
+

(n+a2−1
a2

)
+· · ·+

(n+ar−(r−1)
ar

)
, a1 > · · ·>ar >0. (1)

This decomposition is strictly related to Macaulay’s decomposition

p(t)=
d∑

k=0

[( t+k
k+1

)
−

( t+k−mk
k+1

)]
,

where d = deg p(t). For all n > d + 1 the saturated lexicographic ideal within
K[x0, . . . , xn] with Hilbert polynomial p(t) is

(x0, . . . , xn−d−2, xbd+1
n−d−1, xbd

n−d−1xbd−1+1
n−d , . . . , xbd

n−d−1xbd−1
n−d · · · x

b0
n−1),

where

bd = #{a j | a j = d} = md and bk = #{a j | a j = k} = mk −mk+1, 0 6 k < d.

The description of the lexicographic ideal in terms of Gotzmann’s decomposi-
tion gives an insight to the following theorem.

Gotzmann’s regularity theorem. The regularity of a saturated ideal I ⊂ K[x]
with Hilbert polynomial p(t) is at most r , where r is the number of terms in the
decomposition (1) and it is called the Gotzmann number of p(t).

Example 2.1. The package StronglyStableIdeals.m2 provides the method
isHilbertPolynomial to determine if a numerical polynomial is a Hilbert poly-
nomial.

Macaulay2, version 1.11
with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, LLLBases, PrimaryDecomposition,
ReesAlgebra, TangentCone

i1 : loadPackage "StronglyStableIdeals";

i2 : QQ[t];

i3 : isHilbertPolynomial (4*t)

o3 = true

i4 : isHilbertPolynomial (5*t-6)

o4 = false

Gotzmann’s and Macaulay’s decompositions of a Hilbert polynomial can be com-
puted using gotzmannDecomposition and macaulayDecomposition. These
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methods return the list of terms in the decompositions. The summand
(t+e

c

)
is

constructed with the command projectiveHilbertPolynomial(c,c-e).

i5 : gotzmannDecomposition (4*t)

o5 = {P , - P + P , - 2*P + P , - 3*P + P , P , P }
1 0 1 0 1 0 1 0 0

o5 : List

i6 : macaulayDecomposition (4*t)

o6 = {- P + P , 7*P - P , - P + P , - 10*P + 5*P - P }
0 1 0 1 1 2 0 1 2

o6 : List

Finally, the saturated lexicographic ideal L with Hilbert polynomial p(t) in the
polynomial ring K[x] can be computed with the method lexIdeal and its regu-
larity is equal to the Gotzmann number of p(t).

i7 : L = lexIdeal (4*t, QQ[x,y,z,w])

5 4 2
o7 = ideal (x, y , y z )

o7 : Ideal of QQ[x, y, z, w]

i8 : regularity L == gotzmannNumber (4*t)

o8 = true

3. THE MAIN ALGORITHM. In this section, we outline the strategy of the main
algorithm. This algorithm was firstly described in [Cioffi et al. 2011] and then
optimized in [Lella 2012]. The same problem has been previously discussed in
[Reeves 1992] and an alternative algorithm was later presented in [Moore and
Nagel 2014].

We need to relate the properties of a strongly stable ideal with its Hilbert poly-
nomial. If I is a strongly stable ideal, for each s ∈ N the monomial basis of
the homogeneous piece Is of the ideal is a subset of Tn,s closed by increasing
elementary moves. We call Borel sets such subsets of Tn,s (see Figure 1 for an
example). Proposition 1.2(i) implies that the monomial basis of Is for a saturated
strongly stable ideal I ⊂K[x] with Hilbert polynomial p(t) and regularity at most s
is a Borel set with q(s) :=

(n+s
n

)
− p(s) elements. Thus, we consider the map{

saturated strongly stable ideals in K[x] with
Hilbert polynomial p(t) and regularity 6 s

}
↪→

{
Borel sets of Tn,s

with q(s) elements

}
. (2)

Moreover, Gotzmann’s regularity theorem suggests considering s equal to the Gotz-
mann number of p(t) to determine all saturated strongly stable ideals with Hilbert
polynomial p(t). Obviously, there are many Borel sets in Tn,s with q(s) elements
not corresponding to an ideal with Hilbert polynomial p(t). To identify the image
of the previous map, we recall a definition and a proposition by Mall.
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Figure 1. The Borel sets defined in T2,3 and T2,4 by the ideal
(x2

0 , x0x1, x4
1)⊂ K[x0, x1, x2].

Definition 3.1 [Mall 1997, Definition 2.7]. Let B ⊂ Tn,s be a Borel set. The set
B(i) := {xα

∈ B |min xα
= n− i} is called the i -growth class of B. The sequence

gv(B) := (|B(0)|, . . . , |B(n)|) is called the growth vector of B.

Proposition 3.2 [Mall 1997, Proposition 3.2]. Let I ⊂ K[x] be a strongly stable
ideal generated by the monomials of a Borel set B ⊂ Tn,s and let p(t) be its Hilbert
polynomial. Then,

p(t)=
(n+t

n

)
−

n∑
k=0

|B(k)|
(k+t−s

k

)
, for all t > s. (3)

We can use this result to determine the growth vector of a Borel set B ⊂ Tn,s

starting from the Hilbert polynomial. The i-th difference polynomial of p(t) is

(1i p)(t)= (1i−1 p)(t)− (1i−1 p)(t −1)=
(

n+t−i
n−i

)
−

n∑
k=i

|B(k)|
(

k+t−s−i
k−i

)
.

Evaluating these identities at t = s, we obtain the linear system

∑n
k=0|B

(k)
| =

(n+s
n

)
− p(s),

...∑n
k=i |B

(k)
| =

(n+s−i
n−i

)
− (1i p)(s),

...

|B(n)| =
(s

0

)
− (1n p)(s),

(4)

whose solution is

|B(i)|=
n∑

k=i

|B(k)|−
n∑

k=i+1

|B(k)|=
(n+s−i−1

n−i

)
−(1i p)(s)+(1i+1 p)(s), i<n,

and |B(n)| = 1 (recall that (1i p)(t)≡ 0 for i > deg p(t) and deg p(t) < n). Let us
call the growth vector of p(t) in degree s the solution of the linear system (4) and
let us denote it by gvs(p(t)).
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Figure 2. Borel sets in T2,5 corresponding to the saturated strongly
stable ideals (x3

0 , x2
0 x1, x0x4

1) (on the left) and (x3
0 , x2

0 x2
1 , x0x3

1) (on
the right) in 3 variables with Hilbert polynomial t + 6 and regularity
at most 5.

Proposition 3.3 (cf. [Lella 2012, Theorem 3.3]). Let p(t) be a Hilbert polynomial.
There is a bijective map

saturated strongly stable ideals
in K[x] with Hilbert polynomial

p(t) and regularity 6 s

 1:1
←→


Borel sets of Tn,s

with q(s) elements and
growth vector gvs(p(t))

 ,
I −→ monomial basis of Is,

saturation of (B) ←− B.

(5)

In order to determine the Borel sets of Proposition 3.3, we use a recursive algo-
rithm based on Proposition 1.2(iii). Indeed, if I ⊂K[x0, . . . , xn] is a strongly stable
ideal with Hilbert polynomial p(t) and B is the associated Borel set in Tn,s , then
the subset B ′ = {xα

∈ B |min xα > n} ⊂ B is a Borel set in Tn−1,s corresponding
to the strongly stable ideal I ′ = (xn, I )∩K[x0, . . . , xn−1] ⊂ K[x0, . . . , xn−1] with
Hilbert polynomial (1p)(t).

Example 3.4. We want to determine the set of strongly stable ideals in the poly-
nomial ring K[x0, x1, x2] with regularity at most 5 defining schemes with Hilbert
polynomial p(t)= t + 6. The Gotzmann number of p(t) is 6 and its growth vector
in degree 5 is gv5(t + 6)= (5, 4, 1). We start considering the set of strongly stable
ideals in K[x0, x1] with Hilbert polynomial 1p(t) = 1 and regularity at most 5
corresponding to Borel sets with growth vector gv5(1p(t)) = (4, 1). There is a
unique Borel set

B ′ =
{

x5
0 , x4

0 x1, x3
0 x2

1 , x2
0 x3

1 , x0x4
1
}
.

Since x5
1 is not contained in B ′, a Borel set B ⊂ T2,5 with growth vector (5, 4, 1)

does not contain monomials obtained from x5
1 by applying decreasing elementary

moves, i.e., x4
1 x2, x3

1 x2
2 , x2

1 x3
2 , x1x4

2 and x5
2 . Hence, we need to select five mono-

mials divisible by both x0 and x2 producing a set closed by increasing elementary
moves (see Figure 2).
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Our package provides the method stronglyStableIdeals to compute the set
of strongly stable ideals of a given polynomial ring with fixed Hilbert polynomial
and bounded regularity.

i9 : stronglyStableIdeals (4*t, QQ[x,y,z,w])

5 4 2 2 4 5
o9 = {ideal (x, y , y z ), ideal (x*z, x*y, x , y z, y ),

2 2 4 2 3
ideal (x*y, x , x*z , y ), ideal (x*y, x , y )}

o9 : List

i10 : stronglyStableIdeals (4*t, QQ[x,y,z,w], MaxRegularity => 4)

2 2 4 2 3
o10 = {ideal (x*y, x , x*z , y ), ideal (x*y, x , y )}

o10 : List

4. SEGMENT IDEALS. The transitive closure of the order relation

xα >B xβ
⇐⇒ xβ

= e−i (x
α) (6)

induces a partial order on the set of monomials of any degree called the Borel order.
Every graded term ordering is a refinement of this partial order. Since a Borel set B
is closed with respect to the Borel order, i.e., xα >B xβ, xβ

∈ B ⇒ xα
∈ B, it is

natural to ask whether there exists a term ordering ≺ with the same property. For
instance, for the lexicographic ideal, the graded lexicographic order separates, in
each degree, monomials contained in the ideal from those outside. In [Cioffi et al.
2011], several notions of segment ideals are introduced.

Definition 4.1 [Cioffi et al. 2011, Definitions 3.1 and 3.7]. A Borel set B ⊂ Tn,s is
called a segment if there exists a term ordering ≺ such that xα

� xβ, for all xα
∈ B

and xβ
∈ Tn,s \ B.

Let I ⊂ K[x] be a saturated strongly stable ideal.

(i) I is called a hilb-segment if the Borel set I ∩Tn,r is a segment, where r is the
Gotzmann number of the Hilbert polynomial of I.

(ii) I is called a reg-segment if the Borel set I ∩Tn,m is a segment, where m is
the regularity of I.

(iii) I is called a gen-segment if there exists a term ordering ≺ such that xα
� xβ

for each minimal generator xα of degree s of I and for all xβ
∈ Tn,s \ Is .

These notions are very important in the construction of flat families based on
properties of Gröbner bases and in general for the study of the Hilbert scheme.
The StronglyStableIdeals.m2 package provides three methods for determin-
ing whether a strongly stable ideal may be some type of segment (and, in case, gives
the term ordering). These methods use tools of the package gfanInterface.m2
and the term ordering is given as a weight vector.
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i11 : sevenPointsP2 = stronglyStableIdeals (7, 3, MaxRegularity => 5)

2 2 5 2 4 3
o11 = {ideal (x , x x , x ), ideal (x , x , x x ),

0 0 1 1 0 1 0 1

2 2 3 4
ideal (x x , x x , x , x )}

0 1 0 1 0 1

o11 : List

i12 : for J in sevenPointsP2 list isHilbSegment J

o12 = {(true, {7, 3, 1}), (false, ), (true, {4, 3, 1})}

o12 : List

i13 : for J in sevenPointsP2 list isRegSegment J

o13 = {(true, {7, 3, 1}), (false, ), (true, {4, 3, 1})}

o13 : List

i14 : for J in sevenPointsP2 list isGenSegment J

o14 = {(true, {6, 3, 1}), (true, {4, 3, 1}), (true, {4, 3, 1})}

o14 : List

SUPPLEMENT. Version 1.1 of StronglyStableIdeals.m2 is contained in the
online supplement.
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DiffAlg: a Differential algebra package

MANUEL DUBINSKY, CÉSAR MASSRI,
ARIEL MOLINUEVO AND FEDERICO QUALLBRUNN

ABSTRACT: In this article we present DiffAlg.m2, a differential algebra
package for Macaulay2. It can perform the following operations: wedge
products and exterior differentials of differential forms, contraction and Lie
derivatives of differential forms with respect to a vector field and Lie brackets
between vector fields.

Given a homogeneous differential operator of degree one D, the lack of
an algebraic module structure attached to the kernel or image of D hinders
the study of D. The main purpose of DiffAlg.m2 is to handle these spaces
degree-wise.

MOTIVATION AND DESCRIPTION OF THE PACKAGE. Algebraic and differential
operations arise naturally when working with differential forms and vector fields,
e.g., wedge products and exterior differentials of differential forms, contraction and
Lie derivatives of differential forms with respect to a vector field and Lie brack-
ets between vector fields. Some important statements involving these operations
include the following:

(a) A differential r-form ω in the affine space Kn+1 descends to the projective
space Pn

K if it satisfies the equation

iRω = 0,

where K is a field, R is the radial vector field R =
∑

xi
∂
∂xi

and iR denotes the
contraction; see [Hartshorne 1977, Theorem 8.13, p. 176].

(b) If ω is a differential 1-form, then ω defines a foliation in Kn+1 if it satisfies
the Frobenius integrability condition given by the equation

ω∧ dω = 0;

see [Suwa 1995, Definition 2.2, p. 823].

The authors were supported by CONICET, Argentina.
MSC2010: 14-04, 53-04.
Keywords: differential operators, exterior algebra, vector fields.
DiffAlg.m2 version 1.5
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(c) Let ω be an integrable 1-form and L Xω be the Lie derivative of ω with respect
to a vector field X. Then, the solutions of the equation

L Xω = 0

define all the infinitesimal automorphisms of the foliation given by ω; see
[Suwa 1995, Proposition 7.7, p. 845].

(d) Let ω be an integrable 1-form. Then the tangent space of the space of folia-
tions at ω is given by the differential 1-forms η that satisfy the equation

ω∧ dη+ dω∧ η = 0;

see [Cukierman et al. 2009, Section 2.1. p. 709].

(e) Let D be a bracket generating distribution. Some important invariants of D
are the ranks of the derived sequence

a(p) := rank D(p)
= rank(D(p−1)

+ [D, D(p−1)
]);

see [Tanaka 1970, §1, pp. 8–9].

(f) A symplectic structure in a variety of dimension 2r is given by a 2-form ω

such that dω = 0 and ωr
6= 0; see [Bryant et al. 1991, p. 41].

For a clear understanding of how DiffAlg.m2 deals with such equations, let us
fix some notation.

Let S = K[x0, . . . , xn] be the polynomial ring in n + 1 variables and let � =⊕
r≥0�

r be the exterior algebra of differential forms of S over K. Let �r (d)
denote the space of r -forms with polynomial coefficients of homogeneous degree d ,
where we assign degree 1 to each xi and degree 0 to each dxi .

Therefore ω ∈�r (d) can be written as

ω =
∑

I⊂{0,...,n}
#I= r

∑
α∈Nn+1

|α|= d

aα,I xα dx I , aα,I ∈ K, (1)

where, for each I of the form I = {i1, . . . , ir } ⊂ {0, . . . , n}, we let dx I denote
dxi1 ∧ · · · ∧ dxir and for each α = (α0, . . . , αn) ∈ Nn+1 we denote |α| :=

∑n
i=0 αi

and xα := xα0
0 . . . . .x

αn
n .

Let T be the module of vector fields with coefficients in S. Let T (e) denote
the homogeneous vector fields with polynomial coefficients of degree e, where
we assign degree 1 to each xi and degree 0 to each ∂

∂xi
and, analogously to (1),

X ∈ T (e) can be written as

X =
n∑

i=0

∑
β∈Nn+1

|β|=e

bβ,i xβ
∂

∂xi
, bβ,i ∈ K.
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Current algebraic software systems implement functionality to deal with differ-
ential forms and vector fields, but usually scalar parameters aα,I and bβ,i must be
specified as fixed elements in K. Instead, DiffAlg.m2 treats homogeneous forms
and vector fields in a completely symbolic environment by considering the scalar
coefficient rings

K[aα,I ] and K[bβ,i ].

Scalar coefficients can be systematically obtained by looking at the coordinates of
differential forms and vector fields written in the standard bases

Br,d = {xαdx I }#I=r
|α|=d

and Be =
{

xβ ∂
∂xi

}
|β|=e

of the spaces �r (d) and T (e), respectively.
Importantly, when using DiffAlg.m2, each object is expected to be defined in

its own coefficient ring. Then, certain operations, such as contraction or computing
the wedge product, involve different input and output rings, producing a modifica-
tion of the coefficients rings K[aα,I ] or K[bβ,i ]. For greater clarity, consider the
following example. Fix ω ∈ �r (d) and X ∈ T (e) and consider the contraction
iXω ∈�

r−1(d + e). Then, the following will be taking place:

(ω, X) 7→ iXω

Ring K[aα,I ]×K[bβ,i ] K[aα,I , bβ,i ]
Basis Br,d ×Be Br−1,d+e

As mentioned before, the main purpose of DiffAlg.m2 is to find algebraic
solutions to equations in the context of differential algebra. Equations are treated
differently in the linear and nonlinear cases:

(a) In the linear case, for example iRω = 0, DiffAlg.m2 can compute a basis of
the solutions of the equation. Once this is done, it can also compute a generic
linear combination of the elements of the basis; see Example 1.

(b) In the nonlinear case, for example ω∧ dω = 0, the coordinates will be poly-
nomial. In this case, DiffAlg.m2 would compute the ideal generating the
space of solutions. This ideal can be obtained in two different ways: taking
coordinates in the basis Br,d or Be, or taking coordinates in the basis {dx I }

or
{
∂
∂xi

}
; see Examples 2 and 4.

DiffAlg.m2 can also be a valuable tool for studying differential operators. The
lack of algebraic theory to deal with such objects can be mitigated by nonconclusive
computations easily made by DiffAlg.m2. As a first example, one could consider
computing solutions of a differential operator degree-wise for low degrees.
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SOME EXAMPLES.

Example 1. In the following example we obtain a basis of the space of projective
differential 2-forms in P3

K. Then, we define a generic projective differential 2-form
to be possibly used in further computations.

i1 : loadPackage "DiffAlg";

i2 : R = radial 3

o2 = x ax + x ax + x ax + x ax
0 0 1 1 2 2 3 3

o2 : DiffAlgField

i3 : w = newForm(3,2,1,"a");

o3 = (a x +a x +a x +a x )dx dx +(a x + a x + a x + a x )dx dx
0 0 6 1 12 2 18 3 0 1 1 0 7 1 13 2 19 3 0 2

+ (a x + a x + a x + a x )dx dx + (a x + a x + a x +
3 0 9 1 15 2 21 3 1 2 2 0 8 1 14 2

a x )dx dx + (a x + a x + a x + a x )dx dx +(a x +a x +
20 3 0 3 4 0 10 1 16 2 22 3 1 3 5 0 11 1

a x + a x )dx dx
17 2 23 3 2 3

o3 : DiffAlgForm

i4 : pretty ring w

QQ[i]
o4 = ------[][a , a , a , a , a , a , a , a , a , a , a , a , a ,

2 0 1 2 3 4 5 6 7 8 9 10 11 12
i + 1

a , a , a , a , a , a , a , a , a , a , a ][x , x ,
13 14 15 16 17 18 19 20 21 22 23 0 1

x , x ][dx , dx , dx , dx ]
2 3 0 1 2 3

i5 : K = genKer (R _ w, w);

i6 : length K

o6 = 4

i7 : v = linearComb(K,"a")

o7 = (a x - a x )dx dx +(- a x + a x )dx dx + (a x + a x )dx dx +
0 2 1 3 0 1 0 1 2 3 0 2 0 0 3 3 1 2

(a x - a x )dx dx + (-a x - a x )dx dx + (a x + a x )dx dx
1 1 2 2 0 3 1 0 3 2 1 3 2 0 3 1 2 3

o7 : DiffAlgForm

i8 : pretty ring v

QQ[i]
o8 = ------[][a , a , a , a ][x , x , x , x ][dx , dx , dx , dx ]

2 0 1 2 3 0 1 2 3 0 1 2 3
i + 1
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Let us explain part of the code:

i2. Creates the radial vector field in four variables. We are denoting the basic
field ∂/∂xi as ax_i .

i3. Creates a generic linear 2-form in �2
K4(1), with the coefficients indexed as ai .

i4. Shows the ring of definition of w.

i5. Gets a basis (as a Macaulay2 list) of forms in�2
K4(1) that descend to projective

space. The operation R_w computes the contraction of the differential form w

with the vector field R.

i6. Gets the dimension of �2
P3(1) in projective 3-space.

i7. Defines a generic projective form with coefficients ai .

i8. Shows the ring of definition of v.

Example 2. In the finite-dimensional K-vector space �1(d), the solutions of the
equation ω∧dω= 0 determine an algebraic variety; its points are the integrable dif-
ferential 1-forms of degree d . In the following example, we compute the equations
of the variety of integrable 1-forms of degree 1 in 3-dimensional space.

It is worth mentioning that, for n ≥ 3 and d > 5, it is an open problem to classify
the irreducible components of this varieties; see [Cukierman et al. 2009].

i1 : loadPackage "DiffAlg";

i2 : w = newForm (2,1,1,"a")

o2 = (a x + a x + a x )dx + (a x + a x + a x )dx +(a x + a x + a x )dx
0 0 3 1 6 2 0 1 0 4 1 7 2 1 2 0 5 1 8 2 2

o2 : DiffAlgForm

i3 : moduliIdeal (w ^ (diff w))

o3 = ideal (- a a + a a + a a - a a , - a a + a a + a a - a a ,
2 3 0 5 1 6 0 7 2 4 1 5 4 6 3 7

a a - a a + a a - a a )
5 6 2 7 1 8 3 8

QQ[i]
o3 : Ideal of ------[][a , a , a , a , a , a , a , a , a ]

2 0 1 2 3 4 5 6 7 8
i + 1

About the code:

i2. Creates a generic linear 1-form in �1
K3(1), with coefficients ai .

i3. Returns the ideal of the scalar coefficients given by w∧ dw = 0.

Example 3. Let D be a 2-dimensional distribution generated by vector fields X
and Y in 5-dimensional space. In the following example we compute the ranks of
the derived distributions D(p). We verify that this derived series eventually spans
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the entire tangent space. A distribution D satisfying this condition is called bracket-
generating.

i2 : X = newField "x_0^2*ax_0+x_1^2*ax_1+x_2^2*ax_2+x_3^2*ax_3";

i3 : Y = newField "x_5*ax_0+x_4*ax_1+x_3*ax_2+x_2*ax_3+x_1*ax_4+x_0*ax_5";

i4 : D_0 = {X,Y};

i5 : for b in 1..3 do (
for a in D_(b-1) do (
D_b = join(D_(b-1),{a|Y,a|X})

)
);

i6 : {rank dist D_0, rank dist D_1, rank dist D_2, rank dist D_3}

o6 = 2, 3, 5, 6

o6 : List

About the code:

i5. Computes the derived sequence.

i6. Prints the ranks of the derived series.

Example 4. In the following example, we generate a random rational 1-form of
type (1,2) in P2

K. First, we compute (the dimension of) the space of its integrating
factors; see [Suwa 1995, pp. 828–829]. Then, we compute the ideal of its singular
locus (the ideal where it vanishes).

i2 : w = random logarithmicForm (2,{1,2},"a",Projective => true);

i3 : f = newForm (2,0,3,"a");

i4 : length genKer(w^(diff f) + f*(diff w), f)

o4 = 2

i5 : I = singularIdeal w

2 2 2
o6 = ideal (- 9x x + 63x - 36x x - 54x x - 54x , 9x - 63x x -

0 1 1 0 2 1 2 2 0 0 1

2 2 2
27x x -45x x - 54x , 36x + 81x x + 45x + 54x x + 54x x )

0 2 1 2 2 0 0 1 1 0 2 1 2

QQ[i]
o6 : Ideal of ------[][x , x , x ]

2 0 1 2
i + 1

SUPPLEMENT. The online supplement contains version 1.5 of DiffAlg.m2.

http://msp.org/jsag/2019/9-1/jsag-v9-n1-x02-DiffAlg.m2
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Matroids: a Macaulay2 package

JUSTIN CHEN

ABSTRACT: We give an overview of the Macaulay2 package Matroids.m2,
which introduces functionality to create and compute with matroids into Macaulay2.
Examples highlighting the use of many functions in the package are provided,
including applications of matroids to other areas.

INTRODUCTION. A matroid is a combinatorial object which abstracts the notions
of (linear algebraic, graph-theoretic) independence. Since their introduction by
Whitney [1935], matroids have found diverse applications in combinatorics, graph
theory, optimization, and algebraic geometry, in addition to being studied as inter-
esting objects in their own right.

We describe here the Macaulay2 package Matroids.m2, which is available at
https://github.com/jchen419/Matroids-M2. For the reader already familiar with
matroids, it provides capabilities to form matroids from a matrix, graph, or ideal;
convert between various representations of matroids; create and detect existence
of minors; compute Tutte polynomials and Chow rings; as well as applications of
matroids to polyhedral and algebraic geometry, commutative algebra, optimization,
and even group theory. Each will in turn be illustrated with examples. Virtually all
notation and results mentioned below can be found in [Oxley 2011].

One striking feature of matroids is the multitude of distinct ways to define them.
This variety of equivalent — or cryptomorphic — ways to characterize matroids is
a great strength of matroid theory, and one of the reasons for its ubiquity. From
the perspective of this package, the key definition is via bases:

Definition. Let E be a finite set, and ∅ 6= B ⊆ 2E a set of subsets of E . The
pair (E,B) is a matroid if for any B1, B2 ∈ B and b1 ∈ B1 \ B2, there exists
b2 ∈ B2 \ B1 with B1 \ {b1} ∪ {b2} ∈ B.

The set E is called the ground set of the matroid M = (E,B), and B is the set of
bases of M. All bases have the same cardinality, called the rank of M . Any subset
of a basis is an independent set. A subset of E that is not independent is dependent.

MSC2010: primary 05-04, 05B35; secondary 05C31, 52B40.
Keywords: matroids, circuits, Tutte polynomial.
Matroids.m2 version 0.9.7
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The minimal (with respect to inclusion) dependent sets are circuits. It is easy to
see that any of bases, independent sets, dependent sets, and circuits determines
the others.

As any subset of an independent set is independent, the set of independent sets
of a matroid forms a simplicial complex on E , called the independence complex
of M, denoted by 1M . Via Stanley–Reisner theory, 1M corresponds to a squarefree
monomial ideal I1M :=

〈∏
i∈C xi | C circuit

〉
, inside a polynomial ring k[xi | i ∈ E]

(since faces of 1M are independent sets, the minimal nonfaces are precisely the
minimal dependent sets, i.e., circuits). We call I1M the (circuit) ideal of M : in-
ternally, many algorithms in this package work directly with this ideal, to exploit
Macaulay2’s facility with monomial ideals.

A FIRST EXAMPLE. The most basic way to create a matroid is by specifying the
ground set and list of bases:
i1 : needsPackage "Matroids";

i2 : M = matroid({a,b,c,d},{{a,b},{a,c}})

o2 = a matroid of rank 2 on 4 elements

o2 : Matroid

This creates a matroid of rank 2 on the ground set {a, b, c, d} with two bases. We can
peek at the matroid to see more of its internal structure:
i3 : peek M

o3 = Matroid{bases => {set {0, 1}, set {0, 2}}}

cache => CacheTable{...2...}

groundSet => set {0, 1, 2, 3}

rank => 2

Two things should be noticed: first, groundSet is a set of integers {0, . . . , 3} (instead
of the given list {a, b, c, d}). Second, the bases consist of a list of subsets of groundSet.
This convention is by design: internally, the ground set is always identified with the
set {0, . . . , |E | − 1}, and all sets associated to the structure of the matroid are subsets
of the ground set. One should think of the integers in groundSet as indices of the actual
elements, so 0 is the index of the first element (in this case a), 1 is the index of the second
element, etc.

The actual elements of the user-inputted ground set are not lost though; they have been
cached in the CacheTable, and can be accessed by using indices as subscripts on M, or all
at once with an asterisk:
i4 : (M_3, M_{0,1}, M_(set{1,2}), M_*)

o4 = (d, {a, b}, {b, c}, {a, b, c, d})

So far, no attempt has been made to check that M is actually a matroid. We verify this
now using the method isWellDefined (which internally checks the circuit elimination
axiom), and also give a nonexample.
i5 : (isWellDefined M, isWellDefined matroid({a,b,c,d},{{a,b},{c,d}}))

o5 = (true, false)
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We can obtain plenty of matroid-theoretic information for this example. Recall:

Definition. A loop in M is a 1-element circuit, and a coloop in M is an element contained
in every basis. For A ⊆ E , the rank of A is the size of the largest independent subset of A,
and the closure of A is A := {x ∈ E | rank(A) = rank(A ∪ {x})}. A flat of M is a closed
subset, i.e., A = A. A hyperplane of M is a flat of rank equal to rank M − 1.
i6 : (rank M, rank(M, set{0,3}))

o6 = (2, 1)

i7 : (circuits M, independentSets(M, 1))

o7 = ({set {1, 2}, set {3}}, {set {0}, set {1}, set {2}})

i8 : (loops M, coloops M, closure(M, set{2,3}), hyperplanes M)

o8 = ({3}, {0}, set {1, 2, 3}, {set {0, 3}, set {1, 2, 3}})

i9 : flats M -- sorted by increasing size

o9 = {set {3}, set {0, 3}, set {1, 2, 3}, set {0, 1, 2, 3}}

i10 : fVector M -- number of flats of rank i, for 0 <= i <= rank M

o10 = HashTable{0 => 1}

1 => 2

2 => 1

CONSTRUCTING TYPES OF MATROIDS. The simplest family of matroids is the family
of uniform matroids, where the set of bases equals all subsets of a fixed size:
i11 : U = uniformMatroid(2,4); bases U

o12 = {set {0, 1}, set {0, 2}, set {1, 2}, set {0, 3}, set {1, 3}, set {2, 3}}

Another family of fundamental importance is the class of linear matroids, which arise
naturally from a matrix. The columns of the matrix form the ground set, and a set of
column vectors is declared independent if they are linearly independent in the vector space
spanned by the columns.
i13 : A = matrix{{0,4,-1,6},{0,2/3,7,1}},; MA = matroid A; representationOf MA

o15 = | 0 4 -1 6 |

| 0 2/3 7 1 |

An abstract matroid M is called representable or realizable over a field k if M is isomor-
phic to a linear matroid over k, where an isomorphism of matroids is a bijection between
ground sets that induces a bijection on bases. We verify that the matroid M we started with
is isomorphic to M A, hence is representable over Q:
i16 : areIsomorphic(M, MA)

o16 = true

A matroid can also be constructed by specifying its circuit ideal, which we do for the
same M above. Here two matroids are considered equal if they have the same set of bases
and same size ground sets; or, equivalently, the identity permutation is an isomorphism
between them.
i17 : R = QQ[x,y,z,w]; MI = matroid ideal(y*z, w)

o18 = a matroid of rank 2 on 4 elements

i19 : M == MI

o19 = true
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An important class of representable matroids (over any field) is the class of graphic ma-
troids, derived from a graph. If G is an (undirected) graph, then the graphic matroid M(G)

has ground set equal to the edge set of G, and circuits given by cycles in G, including loops
and parallel edges.
i20 : K5 = completeGraph 5; M5 = matroid K5

o21 = a matroid of rank 4 on 10 elements

i22 : #bases M5 -- == n^(n-2) for M(K_n), by Cayley’s theorem

o22 = 125

In this package, the graphic matroid is created by specifying circuits. This can be done
for an abstract matroid as well, using the optional argument EntryMode => "circuits"
in the constructor function. Regardless of the value of EntryMode, the bases are automat-
ically computed upon creation. We recreate the matroid M from before, by specifying its
circuits (note the similarity with specifying the circuit ideal):
i23 : M == matroid({a,b,c,d},{{b,c},{d}}, EntryMode => "circuits")

o23 = true

Certain common matroids are close to uniform, in the sense that relatively few subsets
of size rank M are dependent, so the set of nonbases (= dependent sets of size rank M) can
also be specified:
i24 : nb = {{0,2,4},{1,3,4},{1,2,5},{0,3,5},{0,1,6},{2,3,6},{4,5,6}}/set;

i25 : F7 = matroid(toList(0..6), nb, EntryMode => "nonbases")

o25 : a matroid of rank 3 on 7 elements

i26 : (#bases F7, #circuits F7)

o26 = (28, 14)

A few specific matroids of theoretical importance are also built-in. Currently these are
F7, F−7 , V8, V+8 , AG(3, 2), R10, and the Pappus and non-Pappus matroids. A library of all
matroids on up to eight elements is included as well:
i27 : F7 == specificMatroid "fano"

o27 = true

i28 : L7 = allMatroids 7 -- non-isomorphic matroids on 7 elements

o28 = {a matroid of rank 0 on 7 elements, a matroid of rank 1 on 7 elements, ...

i29 : (#L7, #flatten apply(6, allMatroids))

o29 = (306, 70)

One can also construct a new matroid from smaller ones by taking direct sums: if M1 =

(E1,B1), M2 = (E2,B2) are matroids, then their direct sum is

M1⊕M2 := (E1 t E2, {B1 t B2 | B1 ∈ B1, B2 ∈ B2}).

A matroid that cannot be written as a direct sum of nonempty matroids is called connected.
Every matroid is a direct sum of connected matroids, its connected components, which are
unique up to rearrangement:
i30 : S = U ++ matroid completeGraph 3

o30 = a matroid of rank 4 on 7 elements
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i31 : C = components S

o31 = {a matroid of rank 2 on 4 elements, a matroid of rank 2 on 3 elements}

i32 : S == C#0 ++ C#1 and C#0 == U and C#1 == matroid completeGraph 3

o32 = true

DUALITY AND MINORS. One of the most important features of matroid theory is the
existence of a duality. It is straightforward to check that if M = (E,B) is a matroid, then
{E \ B | B ∈ B} is the set of bases of a matroid on E , called the dual matroid of M, denoted
by M∗.
i33 : D = dual M; (bases M, bases D)

o34 = ({set {0, 1}, set {0, 2}}, {set {2, 3}, set {1, 3}})

i35 : M == dual D

o35 = true

Virtually any matroid-theoretic property or operation can be enriched by considering
its dual version — for instance, loops of M∗ are coloops of M, and circuits of M∗ are
complements of hyperplanes of M (this is in fact how the method hyperplanes works).
Another operation is deletion, which dualizes to contraction:

Definition. Let M = (E,B) be a matroid, and S ⊆ E . The restriction of M to S, de-
noted M |S , is the matroid on S with bases {B ∩ S | B ∈ B, |B ∩ S| = rank S}. The
deletion of S, denoted M \ S, is the restriction of M to E \ S. The contraction of M
by S, denoted M/S, is defined as (M∗ \ S)∗.

i36 : N1 = M \ set{3}; (N1_*, bases N1)

o37 = ({a, b, c}, {set {0, 1}, set {0, 2}})

i38 : N2 = M / set{1}; (N2_*, bases N2)

o39 = ({a, c, d}, {set {0}})

A minor of M is any matroid which can be obtained from M by a sequence of deletions
and contractions. It is a fact that any minor of M is of the form (M/X) \ Y for disjoint
subsets X, Y ⊆ E .
i40 : minorM5 = minor(M5, set{9}, set{3,5,8}) -- contracts {9}, then deletes {3,5,8}

o40 = a matroid of rank 3 on 6 elements

i41 : (minorM5_*, #bases minorM5)

o41 = ({set {0, 1}, set {0, 2}, set {0, 3}, set {1, 2}, set {1, 4}, set {2, 3}}, 16)

Minors can be used to describe many important classes of matroids. For example, a class
M of matroids is said to be minor-closed if every minor of a matroid in M is again in M.
The classes of uniform, k-representable (for any field k), and graphic matroids are all minor-
closed. Various classes of matroids can be characterized by their forbidden or excluded
minors: namely the matroids not in the class, but with every proper minor in the class.

Theorem 1 (Tutte 1958a; 1958b; 1959). Let M be a matroid. We denote by U2,4 the
uniform matroid of rank 2 on 4 elements, and by F7 the Fano matroid.

(i) M is binary (= representable over F2) if and only if M has no U2,4 minor (i.e., no
minor of M is isomorphic to U2,4).



24 Chen :::: Matroids: a Macaulay2 package

(ii) M is regular (= representable over any field) if and only if M has no U2,4, F7, or F∗7
minor.

(iii) M is graphic if and only if M has no U2,4, F7, F∗7 , M(K5)
∗, or M(K3,3)

∗ minor.

We illustrate this by verifying that M(K5) is regular (alternatively, note that for any
graph G, the signed incidence matrix of any orientation of G represents M(G) over any field):
i42 : any({U, F7, dual F7}, forbidden -> hasMinor(M5, forbidden))

o42 = false

Every minor of M is in fact of the form (M/I ) \ I ∗, where I, I ∗ are disjoint, I is
independent, and I ∗ is coindependent (= independent in M∗). Such a minor has rank equal
to that of M/I , which is equal to rank M−|I |. Thus checking existence of a minor N in M
can be realized as a two-step process, where the first step contracts independent sets of M
of a fixed size down to the rank of N, and the second step deletes coindependent sets down
to the size of N.
i43 : M4 = matroid completeGraph 4; hasMinor(M5, M4)

o44 = true

i45 : minorM5 == M4

o45 = true

Finally, the Tutte polynomial TM(x, y) of a matroid is an invariant which is universal
with respect to satisfying a deletion-contraction recurrence. It is a bivariate polynomial
over Z which can be defined by the relation

TM(x, y)= TM\e(x, y)+ TM/e(x, y), e ∈ E not a loop or coloop,

with the initial condition TM(x, y)= xa yb if M consists of a coloops and b loops. Any nu-
merical invariant of matroids which satisfies a (weighted) deletion-contraction recurrence
is an evaluation of the Tutte polynomial, up to a scale factor. For instance, the number of
bases is equal to TM(1, 1):
i46 : tuttePolynomial M5

6 5 4 3 4 3 2 2 3 2 2
o46 = y + 4y + x + 5x*y + 10y + 6x + 10x y + 15x*y + 15y + 11x + 20x*y + 15y · · ·

i47 : tutteEvaluate(M5, 1, 1)

o47 = 125

For graphic matroids, the Tutte polynomial contains a wealth of information about the
graph; e.g., the Tutte polynomial specializes to the chromatic polynomial. Even evaluations
at specific points contain nontrivial information: e.g., TM(G)(2, 1) counts the number of
spanning forests in G, and TM(G)(2, 0) counts the number of acyclic orientations of G.
i48 : (tutteEvaluate(M5, 2, 1), tutteEvaluate(M5, 2, 0), factor chromaticPolynomial K5)

o48 = (291, 120, (x)(x - 4)(x - 3)(x - 2)(x - 1))

CONNECTIONS. We now present some connections of matroids to other areas of math-
ematics. First, polyhedral geometry: let M = ([n],B) be a matroid on {1, . . . , n}. In
Euclidean space Rn with standard basis {e1, . . . , en}, define the matroid polytope PM by
taking the convex hull of the indicator vectors of the bases of M :
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PM := conv
(∑

i∈B

ei | B ∈ B
)

.

The matroid polytope can be created as follows:
i49 : needsPackage "Polyhedra"; P = convexHull basisIndicatorMatrix M4

o50 = {ambient dimension => 6 }

dimension of lineality space => 0

dimension of polyhedron => 5

number of facets => 16

number of rays => 0

number of vertices => 16

o50 : Polyhedron

A theorem of Gelfand, Goresky, MacPherson, and Serganova [Gelfand et al. 1987] clas-
sifies the subsets B ⊆ 2[n] which are the bases of a matroid on [n] in terms of the polytope
PM .

Next is optimization: let E be a finite set, and I ⊆ 2E a set of subsets that is downward
closed: if X ∈ I and Y ⊆ X, then Y ∈ I. Let w be a weight function on E , i.e., a function
w : E → R, extended to w : 2E

→ R by setting w(X) :=
∑

x∈X w(x). Consider the
optimization problem (∗) of finding a maximal member of I of maximum weight, with
respect to w. One attempt to solve (∗) is to apply the greedy algorithm: namely, after
having already selected elements {x1, . . . , xi }, choose an element xi+1 ∈ E of maximum
weight such that {x1, . . . , xi , xi+1} ∈ I, and repeat. It turns out that the greedy algorithm
will work if and only if I is the set of independent sets of a matroid:

Theorem 2 [Borůvka 1926]. Let E be a finite set, and I ⊆ 2E. Then I is the set of
independent sets of a matroid on E if and only if I is downward closed and for all weight
functions w : E→ R, the greedy algorithm successfully solves (∗).

A solution to (∗) provided by the greedy algorithm can be obtained using the method
maxWeightBasis (the weight function w is specified by its list of values on E):
i51 : w = {0, log(2), 4/3, 1, -4, 2, pi_RR}; maxWeightBasis(F7, w)

o52 = set {3, 5, 6}

Another application to optimization comes from the operation of matroid union: if
M1, M2 are matroids with independent sets I1, I2, then the independent sets of the union
are of the form I1 ∪ I2, where I1 ∈ I1, I2 ∈ I2 (and thus coincides with the direct sum if the
ground sets are disjoint).
i53 : matroid({a,b,c,d}, {{a},{b},{c}}) + matroid({a,b,c,d}, {{b},{c},{d}}) == U

o53 : true

i54 : F7 + F7 == uniformMatroid(6, 7)

o54 : true

Matroid union is an important operation in combinatorial optimization, and is closely
related to transversal and matching problems: a matroid is transversal if and only if it is a
union of rank 1 matroids, and gammoids (a class of matroids defined from vertex paths in
directed graphs) are the minor-closure of the transversal matroids.
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One can also find connections to group theory via the method getIsos, which com-
putes all isomorphisms between two matroids. Many interesting groups can be realized as
automorphism groups of small matroids:
i55 : aut = getIsos(F7, F7)

o55 : {{0, 1, 2, 3, 4, 5, 6}, {1, 0, 2, 3, 4, 6, 5}, {0, 2, 1, 3, 5, 4, 6}, {2, 0, 1, ...

i56 : #aut

o56 : 168

The above output is an explicit permutation representation of Aut(P2
F2

) = PGL(3, F2)

as a subgroup of S7. For a larger example, the automorphism group of the Steiner system
S(5, 6, 12) is the Mathieu group M12, a sporadic simple group of order 95040= 26

·33
·5·11.

This in turn is also equal to the automorphism group of the realizable matroid associated
to a particular 6 × 12 matrix over F3 ([Oxley 2011], p. 367), and a high-performance
computing cluster took just under 2 hours to compute the entire permutation representation
of this group inside S12.

For an application to commutative algebra: matroids are closely related to the Cohen–
Macaulay property, for symbolic powers of squarefree monomial ideals. Indeed, from
[Terai and Trung 2012] we know that if I is a squarefree monomial ideal, then I is the
circuit ideal of a matroid if and only if every symbolic power I (n) is Cohen–Macaulay, for
n ≥ 1 (in fact, this is equivalent to requiring just I (3) to be Cohen–Macaulay). As one can
quickly check whether an ideal is the ideal of a matroid, this can give a quick proof that a
particular symbolic power is Cohen–Macaulay:
i57 : M6 = matroid completeGraph 6; L = (irreducibleDecomposition ideal M6)/(P -> P^3);

i59 : try ( alarm 10; I3 = intersect L; ) -- doesn’t finish in 10 seconds

i60 : time isWellDefined M6

-- used 0.359306 seconds

o60 : true

Last but not least is algebraic geometry; in particular the emerging field of combinatorial
Hodge theory. For a matroid M on ground set E with no loops, one can define a Chow ring
associated to M : for a field k, set

R := k[xF | F proper, nonempty flat]/(I1+ I2),

I1 :=

(∑
i1∈F

xF −
∑
i2∈F

xF

∣∣∣ i1, i2 ∈ E distinct
)
,

I2 := (xF xF ′ | F, F ′ incomparable),

where F, F ′ run over all nonempty proper flats of M. Then R is a standard graded Artinian
k-algebra of Castelnuovo–Mumford regularity r := rank M − 1. A result of Adiprasito,
Katz, and Huh [Adiprasito et al. 2018] states that R is a Poincaré duality algebra (in
particular, is Gorenstein) and has the strong Lefschetz property: for general l ∈ R1 and
j ≤ r/2, multiplication by lr−2 j is an isomorphism R j −→

∼ Rr− j . We illustrate the Goren-
stein property for the Vamos matroid (which is a smallest matroid not realizable over any
field), and conclude by computing the dual socle generator or volume polynomial (which
generates the Macaulay inverse system of R) for M(K4):
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i61 : V = specificMatroid("vamos"); (rank V, #V.groundSet, #bases V, #flats V)

o62 = (4, 8, 65, 79)

i63 : I = idealChowRing V; apply(0..<rank V, i -> hilbertFunction(i, I))

o63 : Ideal of QQ[x , x , x , x , x , x , x , x , x , x , ...
{7} {6} {5} {4} {3} {0} {2} {1} {6, 7} {5, 7}

o64 = (1, 70, 70, 1)

i65 : cogeneratorChowRing M4

2 2 2 2 2 2
o65 = 2t + 2t + 2t + 2t + 2t + 2t - 2t t - 2t t + ...

{5} {4} {3} {2} {1} {0} {5} {0, 5} {0} {0, 5}
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Computing quasidegrees of A-graded modules
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ABSTRACT: We describe the main functions of the Macaulay2 package
Quasidegrees.m2. The purpose of this package is to compute the quasi-
degree set of a finitely generated Zd -graded module presented as the cokernel
of a monomial matrix. We provide examples with motivation coming from
A-hypergeometric systems.

1. INTRODUCTION. Throughout, R = k[x1, . . . , xn] is a Zd -graded polynomial
ring over a field k and m= 〈x1, . . . , xn〉 denotes the homogeneous maximal ideal
in R. Let M =

⊕
β∈Zd Mβ be a Zd -graded R-module. The true degree set of M is

tdeg(M)= {β ∈ Zd
| Mβ 6= 0}.

The quasidegree set of M, denoted qdeg(M), is the Zariski closure in Cd of tdeg(M).
The purpose of the Macaulay2 package Quasidegrees.m2 (provided as an

online supplement) is to compute the quasidegree set of a finitely generated Zd-
graded module presented as the cokernel of a monomial matrix. By a monomial
matrix, we mean a matrix where each entry is either zero or a monomial in R. The
initial motivation for Quasidegrees.m2 was to compute the quasidegree sets of
certain local cohomology modules supported at m of Zd-graded R-modules, so
there are some methods in the package specific to local cohomology. Recall that
the i -th local cohomology module of M with support at the ideal I ⊂ R is the i-th
right derived functor of the left exact I -torsion functor

0I (M)= {m ∈ M | I t m = 0 for some t ∈ N}

on the category of R-modules.
By the vanishing theorems of local cohomology [Eisenbud 1995], the quasi-

degree sets of the local cohomology modules supported at m of M can be seen
as measuring how far the module is from being Cohen–Macaulay. From the A-
hypergeometric systems point of view, the quasidegree set of the non-top local
cohomology modules supported at m of R/IA, where IA is the toric ideal associated
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to A in R, determine the parameters β where the A-hypergeometric system HA(β)

has rank higher than expected (see Section 3).

2. QUASIDEGREES. The main function of Quasidegrees.m2 is quasidegrees,
which computes the quasidegree set of a module that is presented by a monomial
matrix.

We use the idea of standard pairs of monomial ideals to compute the quasidegree
set of a Zd -graded R-module. Given a monomial xu and a subset Z ⊂ {x1, . . . , xn},
the pair (xu, Z) indexes the monomials xu

· xv where supp(xv) ⊂ Z. A standard
pair of a monomial ideal I ⊂ R is a pair (xu, Z) satisfying:

(1) supp(xu)∩ Z =∅.

(2) All of the monomials indexed by (xu, Z) are outside of I.

(3) (xu, Z) is maximal in the sense that (xu, Z) * (xv, Y ) for any other pair
(xv, Y ) satisfying the first two conditions.

To compute the quasidegree set of M we first find a monomial presentation of M
so that M is the cokernel of a monomial matrix φ. We then compute the standard
pairs of the ideals generated by the rows of φ and to each standard pair we associate
the degrees of the corresponding variables. Algorithm 1 below is implemented in
Quasidegrees.m2. The input is an R-module presented by a monomial matrix

φ : Rs
→ Rt.

As in Macaulay2, we write the degree of the k-th factor of Rt next to the k-th row
of the matrix φ.

In the Macaulay2 implementation of the algorithm, we represent the output as a
list of pairs (u, Z) with u ∈Qd and Z ⊂Qd , where the pair (u, Z) represents the
plane

u+
∑
v∈Z

C · v.

Input: R-module M presented by monomial matrix φ = αi [c j,k xu j,k ] : Rs
→ Rt

Output: qdeg(M)

Q =∅
for 1≤ k ≤ t do

S P = {standard pairs of 〈ck,1xuk,1, ck,2xuk,2, . . . , ck,s xuk,s 〉}

Q = Q ∪ {deg(xu)+αk +
∑

xi∈F C · deg(xi ) | (xu, Z) ∈ S P}
end for
return Q

Algorithm 1. Compute qdeg(M).
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The union of these planes over all such pairs in the output is the quasidegree set
of M.

The following is an example of Quasidegrees.m2 computing the quasidegree
set of an R-module:

i1 : R=QQ[x,y,z]
o1 = R
o1 : PolynomialRing
i2 : I=ideal(x*y,y*z)
o2 = ideal (x*y, y*z)
o2 : Ideal of R
i3 : M=R^1/I
o3 = cokernel | xy yz |

1
o3 : R-module, quotient of R
i4 : Q = quasidegrees M
o4 = {{0, {| 1 |}}, {0, {| 1 |, | 1 |}}}
o4 : List

The above example displays a caveat of quasidegrees in that there may be
some redundancies in the output. By a redundancy, we mean when one plane in
the output is contained in another. The redundancy above is clear:

qdeg(k[x, y, z]/〈xy, yz〉)= C= {z1+ z2 ∈ C | z1, z2 ∈ C}.

The function removeRedundancy gets rid of redundancies in the list of planes:

i5 : removeRedundancy Q
o5 = {{0, {| 1 |, | 1 |}}}
o5 : List

3. QUASIDEGREES AND HYPERGEOMETRIC SYSTEMS. In this section, we dis-
cuss the motivation for Quasidegrees.m2 and the methods therein which aid us
in our studies. Let A = [a1 a2 · · · an] be an integer (d×n)-matrix with ZA = Zd

and such that the cone over its columns is pointed. There is a natural Zd-grading
of R by the columns of A given by deg(x j )= a j , the j -th column of A. A module
that is homogeneous with respect to this grading is said to be A-graded. By the
assumptions on A, R is positively graded by A, that is, the only polynomials of
degree 0 are the constants. Given such a matrix A and a polynomial ring R in n
variables, the method toGradedRing gives R an A-grading. For example, let

A =

1 1 1 1 1
0 0 1 1 0
0 1 1 0 −2

.
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We make the A-graded polynomial ring Q[x1, x2, x3, x4, x5]:

i6 : A=matrix{{1,1,1,1,1},{0,0,1,1,0},{0,1,1,0,-2}}
o6 = | 1 1 1 1 1 |

| 0 0 1 1 0 |
| 0 1 1 0 -2 |

3 5
o6 : Matrix ZZ <--- ZZ
i7 : R=QQ[x_1..x_5]
o7 = R
o7 : PolynomialRing
i8 : R=toGradedRing(A,R)
o8 = R
o8 : PolynomialRing
i9 : describe R
o9 = QQ[x , x , x , x , x , Degrees => {{1}, {1}, {1}, {1}, {1 }},

1 2 3 4 5 {0} {0} {1} {1} {0 }
{0} {1} {1} {0} {-2}

Heft=>{1, 2:0},MonomialOrder=>{MonomialSize=>32},DegreeRank=>3]
{GRevLex=>{5:1}}
{Position=>Up}

The toric ideal associated to A in R is the binomial ideal

IA = 〈xu
− xv

: Au = Av〉.

The method toricIdeal computes the toric ideal associated to A in the ring R.
We continue with the A and R from the above example and compute the toric ideal
IA associated to A in R:

i10 : I=toricIdeal(A,R)
2 2 2 3 2

o10 = ideal (x x - x x , x x - x x , x x - x x x , x - x x )
1 3 2 4 1 4 3 5 1 4 2 3 5 1 2 5

o10 : Ideal of R

We now introduce A-hypergeometric systems. Given a matrix A∈Zd×n as above
and a β∈Cd, the A-hypergeometric system with parameter β∈Cd [Saito et al. 2000],
denoted HA(β), is the system of partial differential equations:

∂ |v|

∂xv
φ(x)=

∂ |u|

∂xuφ(x) for all u, v, Au = Av,

n∑
j=1

ai j x j
∂

∂x j
φ(x)= βiφ(x), for i = 1, . . . , d.
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Such systems are sometimes called GKZ-hypergeometric systems. The function
gkz in the Macaulay2 package Dmodules computes this system as an ideal in the
Weyl algebra. The rank of HA(β) is

rank(HA(β))= dimC

{
germs of holomorphic solutions of HA(β)

near a generic nonsingular point

}
.

The function holonomicRank in Dmodules computes the rank of an A-hyper-
geometric system. In general, rank is not a constant function of β. Denote vol(A) to
be d! times the Euclidean volume of conv(A∪{0}), the convex hull of the columns
of A and the origin in Rd. The following theorem gives the parameters β for which
rank(HA(β)) is higher than expected:

Theorem 3.1 [Matusevich et al. 2005]. Let HA(β) be an A-hypergeometric system
with parameter β. If β ∈ qdeg(

⊕d−1
i=0 H i

m(R/IA)) then rank(HA(β)) > vol(A).
Otherwise, rank(HA(β))= vol(A).

Since Theorem 3.1 was the initial motivation for Quasidegrees.m2, the pack-
age has a method quasidegreesLocalCohomology (abbreviated qlc) to com-
pute the quasidegree set of the local cohomology modules H i

m(R/IA). If the input
is an integer i and the R-module R/IA, then the method computes qdeg(H i

m(R/IA)).
If the input is only the module R/IA, the method computes the quasidegree set in
Theorem 3.1.

We use graded local duality to compute the local cohomology modules of a
finitely generated A-graded R-module supported at the maximal ideal m:

Theorem 3.2 (graded local duality [Bruns and Herzog 1993; Miller 2002]). Given
an A-graded R-module M, there is an A-graded vector space isomorphism

Extn−i
R (M, R)α ∼= Homk(H i

m(M)−α−εA , k),

where m= 〈x1, . . . , xn〉 and εA =
∑n

j=1 a j .

The algorithm implemented for quasidegreesLocalCohomology is essentially
Algorithm 1 applied to the Ext-modules of M with the additional twist of εA coming
from local duality. For our purposes, we exploit the fact that the higher syzygies
of R/IA are generated by monomials in Rm (see [Miller and Sturmfels 2005],
Chapter 9).

Continuing our running example, we use quasidegreesLocalCohomology to
compute the quasidegree set of

⊕d−1
i=0 H i

m(R/IA):

i11 : M=R^1/I
o11 = cokernel | x_1x_3-x_2x_4 x_1x_4^2-x_3^2x_5
x_1^2x_4-x_2x_3x_5 x_1^3-x_2^2x_5 |

1
o11 : R-module, quotient of R
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i12 : quasidegreesLocalCohomology M
o12 = {{| 0 |, {| 1 |}}}

| 0 | | 0 |
| 1 | | -2 |

o12 : List

Thus

qdeg
(d−1⊕

i=0

H i
m(R/IA)

)
=

0
0
1

+C ·

 1
0
−2

 . (1)

As a check, we use the methods gkz and holonomicRank from the package
Dmodules to compute rank(HA(0)) and rank(HA(β)) for two different β in (1)
and demonstrate a rank jump:

i13 : holonomicRank gkz(A,{0,0,0}) -- vol A in this case
o13 = 4
i14 : holonomicRank gkz(A,{0,0,1})
o14 = 5
i15 : holonomicRank gkz(A,{3/2,0,-2})
o15 = 5

SUPPLEMENT. The online supplement contains version 1.0 of Quasidegrees.m2.
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An algorithm for enumerating difference sets

DYLAN PEIFER

ABSTRACT: The DifSets package for GAP implements an algorithm for enu-
merating all difference sets in a group up to equivalence and provides access to
a library of results. The algorithm functions by finding difference sums, which
are potential images of difference sets in quotient groups of the original group,
and searching their preimages. In this way, the search space can be dramatically
decreased, and searches of groups of relatively large order (such as order 64 or
order 96) can be completed.

1. INTRODUCTION. Let G be a finite group of order v and D a subset of G with k
elements. Then D is a (v,k,λ)-difference set if each nonidentity element of G can be
written as di d−1

j for di , d j ∈ D in exactly λ different ways. Difference sets were
first studied in relation to finite geometries [Singer 1938] and have connections to
symmetric designs, coding theory, and many other fields of mathematics [Moore
and Pollatsek 2013; Davis and Jedwab 1996; Colbourn and Dinitz 1996; Beth et al.
1999].

Large libraries of difference sets are useful for developing conjectures and build-
ing examples. Gordon provides an extensive library of difference sets in abelian
groups [Gordon], but has no results for nonabelian groups, which do show distinct
behavior [Smith 1995]. A wide variety of techniques can be used to construct
difference sets for these libraries (see, for example, [Dillon 1985] and [Davis and
Jedwab 1997]), but fully enumerating all difference sets in a given group requires
some amount of exhaustive search, which can quickly become computationally
infeasible. Kibler [1978] performed the first major exhaustive enumeration of dif-
ference sets, and considered groups where difference sets could be found with
k < 20. In recent years, AbuGhneim [2013; 2016] has performed almost complete
enumerations for all groups of order 64, and several authors have found difference
sets in groups of order 96 [Golemac et al. 2005; 2007; AbuGhneim and Smith
2007]. The DifSets package for the computer algebra system [GAP] efficiently
and generally implements the techniques used by these and many other authors to
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exhaustively enumerate all difference sets up to equivalence in a group. With the
package loaded, a search of a given group can be performed with a single command.

gap> DifferenceSets(CyclicGroup(7));
[ [ 1, 2, 4 ] ]

The package has been used to give the first complete enumeration of all differ-
ence sets up to equivalence in groups of order 64 and 96, and in total provides a
library of results for 1006 of the 1032 groups of order less than 100. Results are
organized by their id in the SmallGroups library [SmallGrp] and can be easily
loaded by GAP.

gap> LoadDifferenceSets(16,5); # results for SmallGroup(16,5)
[ [ 1, 2, 3, 4, 8, 15 ], [ 1, 2, 3, 4, 11, 13 ] ]

The ease of use of these top-level functions is the primary interface difference
between the DifSets package and a similar GAP package [RDS], which provides
a variety of tools to search for difference sets. The functions involving coset sig-
natures in RDS provide similar functionality to the DifSets package, but require
substantial user interaction to perform efficient searches, and are not feasible for
searching most groups of order 64 and 96. In addition, RDS provides no precom-
puted results, though it does provide significant additional functionality related to
relative difference sets, partial difference sets, and projective planes.

2. DIFFERENCE SETS. For notational purposes it is useful to consider a subset
D ⊆ G as an element of the group ring Z[G]. We will abuse notation to define the
group ring elements

G =
∑
g∈G

g, D=
∑
d∈D

d, D(−1)
=

∑
d∈D

d−1, gD=
∑
d∈D

gd, Dφ
=

∑
d∈D

φ(d),

where g ∈ G and φ is a homomorphism from G. Then the statement that D is a
(v, k, λ)-difference set is equivalent to the equation

DD(−1)
= (k− λ)1G + λG,

where D is an element of Z[G] with coefficients in {0, 1}. With this definition it
is a quick exercise to prove the following (see page 298 of [Beth et al. 1999] and
Theorem 4.2 and 4.11 of [Moore and Pollatsek 2013]).

Proposition 1. Let G be a group of order v. Then:

(1) Any one element subset of G is a (v, 1, 0)-difference set.

(2) The complement of a (v, k, λ)-difference set in G is a (v, v− k, λ+ v− 2k)-
difference set in G.

(3) If D is a (v, k, λ)-difference set in G, g ∈ G, and φ ∈ Aut(G), then gDφ is
also a (v, k, λ)-difference set in G.
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In addition, an immediate consequence of the definition is that k(k−1)=λ(v−1)
for any valid set of parameters of a difference set, so that for a given value of v
there are typically only a few possible values of k and λ. More sophisticated results,
such as the Bruck–Ryser–Chowla theorem, can reduce the number of possibilities
even further.

As a result of Proposition 1, in enumerating difference sets we ignore the trivial
one element difference sets, only take the smaller of each complementary pair of
sets, and only consider sets distinct up to an equivalence given by part (3).

Definition 2. Let D1 and D2 be difference sets in G. Then D1 and D2 are equiva-
lent difference sets if D1 = gDφ

2 for some g ∈ G and φ ∈ Aut(G).

In the DifSets package, difference sets are stored as lists of integers. These
integers represent indices in the list returned by the GAP function Elements(G),
which is a sorted1 list of elements of the group G. For example, consider the group
C7 = 〈x | x7

= 1〉. In GAP we have

gap> C7 := CyclicGroup(7);;
gap> Elements(C7);
[ <identity> of ..., f1, f1^2, f1^3, f1^4, f1^5, f1^6 ]

where clearly f1 is the generator corresponding to our x . Then the subset D =
{x, x2, x4

} corresponds to the set consisting of the second, third, and fifth elements
of Elements(C7), which we can represent in indices as [2, 3, 5]. We can check
that this is a difference set and also note that it is equivalent to the difference set
x D = {x2, x3, x5

}, which is represented as [3, 4, 6].

gap> IsDifferenceSet(C7, [2, 3, 5]);
true
gap> IsEquivalentDifferenceSet(C7, [2, 3, 5], [3, 4, 6]);
true

3. DIFFERENCE SUMS. A basic method for enumerating all difference sets in a
group G is to enumerate all subsets of G and check if each is a difference set by
definition. But since the number of subsets in a group is exponential in its order,
we cannot feasibly enumerate and test all subsets for groups of even a modest size.
The key to decreasing the search space is the following well-known lemma, which
motivates our definition of a difference sum.2

1Element comparison (and thus the list Elements(G)) is instance-independent in GAP for per-
mutation and pc groups, which includes, for example, all groups in the SmallGroups library.

2Concepts similar to difference sums are elsewhere referred to as difference lists, intersection
numbers, or signatures. However, difference sums require both a group G and normal subgroup N,
not just the group structure of the quotient G/N used in some other definitions. This precision is
needed for specifying induced automorphisms in Definition 7 so that we can prove Lemma 8.
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1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 G/N3

3 1 1 1 1 G/N2

7 G/N1

Figure 1. A difference set of size 7 in the group G of order 15 and
the difference sums it induces in G/Ni where G= N1FN2FN3={1}.
Each row in the diagram is a group, with each block a coset.

Lemma 3. Suppose D is a (v, k, λ)-difference set in G and θ is a homomorphism
of G with |ker(θ)| = w. Let S = Dθ and H = Gθ. Then

SS(−1)
= (k− λ)1H + λwH.

Definition 4. Given a finite group G and normal subgroup N, a (v, k, λ)-difference
sum is an element S of Z[G/N ] such that SS(−1)

= (k− λ)1G/N + λ|N |G/N and
the coefficients of S have values in {0, 1, . . . , |N |}.

By construction, any difference set in G induces difference sums under the nat-
ural projection in quotients of G, as seen in Figure 1. Precisely, we have:

Lemma 5. Suppose G is a finite group with normal subgroup N and natural pro-
jection π : G→ G/N. Then any (v, k, λ)-difference set D in G induces a (v, k, λ)-
difference sum Dπ in G/N.

Lemma 6. Suppose G is a finite group with normal subgroups N1 and N2 such
that N2 ⊆ N1 and π : G/N2→ G/N1 is the natural projection. Then any (v, k, λ)-
difference sum S in G/N2 induces a (v, k, λ)-difference sum Sπ in G/N1.

Lemma 5 means that our search for difference sets only requires checking the
subsets of G that induce difference sums in some quotient. In finding these differ-
ence sums, Lemma 6 additionally allows us to only test sums that induce difference
sums in further quotients. In each case the search space is dramatically decreased.
Since our search is for difference sets up to equivalence, we also define a comple-
mentary equivalence of difference sums such that equivalent difference sums are
induced by equivalent collections of difference sets.

Definition 7. Let S1 and S2 be difference sums in G/N. Then S1 and S2 are equiv-
alent difference sums if S1 = gSφ2 for some g ∈ G/N and φ an automorphism
of G/N induced by an automorphism of G.

Lemma 8. Suppose S1 and S2 are equivalent difference sums in G/N. Then if D1

is any difference set in G that induces S1, there exists a difference set D2 in G that
induces S2 such that D1 and D2 are equivalent.

In the DifSets package, difference sums are stored as lists of integers represent-
ing the coefficients of the group ring elements, with position in the list given by the
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position of the coset in the list returned by the GAP function Elements(G/N). For
example, [3, 1, 1, 1, 1] represents a difference sum in SmallGroup(15, 1)
mod its normal subgroup of order 3 with coefficient 3 on the identity coset and
coefficient 1 on all other cosets.
gap> G := SmallGroup(15, 1);; N := NormalSubgroups(G)[2];;
gap> IsDifferenceSum(G, N, [3, 1, 1, 1, 1]);
true

4. ALGORITHM. The basic structure of the algorithm is to start at the bottom of
Figure 1 and travel upwards. Given a group G, first compute v = |G| and then find
all values of k that give solutions satisfying the Bruck–Ryser–Chowla theorem to
the equation k(k− 1)= λ(v− 1) mentioned in Section 2. For example,
gap> G := SmallGroup(15, 1);;
gap> PossibleDifferenceSetSizes(G);
[ 7 ]

Each value of k will be handled separately. The algorithm starts with the normal
subgroup N1 = G, where the only difference sum of size k in G/N1 = {1} is [k].
gap> N1 := G;;
gap> difsums := [ [7] ];;

Given a normal subgroup N2 of G such that N2 ⊆ N1, first enumerate all preim-
ages in G/N2 of current difference sums in G/N1 and return those that are them-
selves difference sums. Then remove all but one representative of each equivalence
class from this collection.
gap> N2 := NormalSubgroups(G)[2];;
gap> difsums := AllRefinedDifferenceSums(G, N1, N2, difsums);
[ [ 1, 1, 1, 1, 3 ], [ 1, 1, 1, 3, 1 ], [ 1, 1, 3, 1, 1 ],

[ 1, 3, 1, 1, 1 ], [ 3, 1, 1, 1, 1 ] ]
gap> difsums := EquivalentFreeListOfDifferenceSums(G, N2, difsums);
[ [ 3, 1, 1, 1, 1 ] ]

In the general case, the above step is repeated along a chief series

G = N1 F · · · F Nr = {1}

of G with Nr−1 a nontrivial normal subgroup of minimal possible size in G. At
Nr−1, enumerate sets and remove equivalents to leave the final result.
gap> difsets := AllRefinedDifferenceSets(G, N2, difsums);
[ [ 1, 2, 4, 3, 8, 11, 12 ], [ 1, 2, 4, 3, 10, 13, 12 ],

[ 1, 2, 4, 5, 6, 9, 14 ], [ 1, 2, 4, 5, 10, 13, 14 ],
[ 1, 2, 4, 7, 6, 9, 15 ], [ 1, 2, 4, 7, 8, 11, 15 ] ]

gap> difsets := EquivalentFreeListOfDifferenceSets(G, difsets);
[ [ 1, 2, 4, 7, 8, 11, 15 ] ]
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These steps are encapsulated in the function DifferenceSets mentioned in
Section 1, with two modifications. First, since every difference set is equivalent
to some difference set containing the identity, the algorithm does not enumerate
some preimages that are guaranteed to be equivalent to others. Second, the fi-
nal elimination of all but one representative of equivalence classes of difference
sets uses the SmallestImageSet function [Linton 2004] from the GAP package
[GRAPE]. Although roughly 20% slower than the function given above for most
cases, SmallestImageSet gives a unique minimal result and handles groups with
large automorphism groups much more efficiently.

5. RESULTS. The DifSets package successfully computed results for 1006 of
the 1032 groups of order less than 100, including all groups of order 64 and 96.
Full results with timings and comments can be found in the package and its doc-
umentation. Here we include a summary for order 64 and 96. All computations
were performed with GAP 4.9.1 on a 4.00GHz i7-6700K using 8GB of RAM.

Order Groups Difference sets Median time per group Total time
64 267 330159 0.415 hours 295.811 hours
96 231 2627 3.133 hours 1568.746 hours

Timing comparisons with the RDS package mentioned in Section 1 are difficult
since RDS provides a variety of tools rather than a single algorithm. Ordered coset
signatures in RDS correspond to difference sums in DifSets, but, unlike difference
sums, coset signatures cannot be refined through multiple stages, which makes the
generation of good coset signatures in RDS infeasible for most order 64 and order 96
groups. However, if an ordered signature is available, building difference sets
through partial difference sets in RDS can in some cases be much faster than search-
ing the corresponding difference sum using DifSets. In particular, replacing the
final step in Section 4 with a search using RDS can significantly improve times for
some groups of order 96. Further work to combine the refining of difference sums
used by DifSets and the generation of difference sets through partial difference
sets used by RDS could lead to significantly better times than either package could
manage alone.

ACKNOWLEDGEMENTS. The author thanks Ken Smith, Alexander Hulpke, and
an anonymous reviewer for helpful comments that improved the DifSets package
and this article.

SUPPLEMENT. The online supplement contains version 2.2.0 of DifSets.
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Hyperplane arrangements in CoCoA

ELISA PALEZZATO AND MICHELE TORIELLI

ABSTRACT: We introduce the package arrangements for the software CoCoA.
This package provides a data structure and the necessary methods for working
with hyperplane arrangements. In particular, the package implements methods to
generate several known families of arrangements, to perform operations on them,
and to calculate various invariants associated to them.

1. INTRODUCTION. An arrangement of hyperplanes is a finite collection of codi-
mension one affine subspaces in a finite dimensional vector space. Associated
to these spaces, there is a plethora of algebraic, combinatorial and topological
invariants. Arrangements are easily defined but they lead to deep and beautiful
results connecting various area of mathematics. We refer the reader to [Orlik and
Terao 1992] for a comprehensive account of this subject.

One of the main goals in the study of hyperplane arrangements is to decide
whether a given invariant is combinatorially determined, and, if so, to express it
explicitly in terms of the intersection lattice of the arrangement.

We describe the new package arrangements for CoCoA [CoCoA; CoCoALib;
Abbott and Bigatti 2018]). This package computes several combinatorial invariants
(like the lattice of intersections and its flats, the Poincaré, the characteristic and the
Tutte polynomials) and algebraic ones (like the Orlik–Terao and the Solomon–
Terao ideals) of hyperplane arrangements. Moreover, several functions for the
class of free hyperplane arrangements are implemented. In addition, this package
also allows computations with multiarrangements. Finally, several known fami-
lies of arrangements (like classic reflection arrangements, Shi arrangements, Cata-
lan arrangements, Shi–Catalan arrangements, graphical arrangements and signed
graphical ones) can be easily constructed: in CoCoA type ?ArrFamily for the
complete list. Some of the functions that compute combinatorial invariants rely on
the CoCoA package posets, which we implemented for this purpose.

We introduce the package arrangements via several examples. Specifically,
in Section 2 we first recall the definitions of various combinatorial invariants of
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a given arrangement and then describe how to compute them. In Section 3, we
describe how to work with free hyperplane arrangements, and in Section 4 how
to define the Orlik–Terao and Solomon–Terao ideals. Finally, in Section 5 we
describe the class of multiarrangements with particular emphasis on the free ones.

This package is part of the official release CoCoA-5.2.4, and has been used
during the tutorials of the Hokkaido Summer Institute 2018 course “Hyperplane
arrangements and computations with CoCoA” held at Hokkaido University from
the 13th to the 17th of August 2018.

2. COMBINATORICS OF ARRANGEMENTS. Let V be a vector space of dimen-
sion l over a field K. Fix a system of coordinates (x1, . . . , xl) of V ∗. We denote by
S = S(V ∗) = K [x1, . . . , xl] the symmetric algebra. A finite set of affine hyper-
planes A= {H1, . . . , Hn} in V is called a hyperplane arrangement.

For each hyperplane Hi we fix a polynomial αi ∈ S such that Hi = α
−1
i (0),

and let
Q(A)=

n∏
i=1

αi .

An arrangement A is called central if each Hi contains the origin of V. In this case,
the polynomial αi ∈ S is linear homogeneous, and hence Q(A) is a homogeneous
polynomial of degree n.

The operation of coning allows one to transform any arrangement A of V with n
hyperplanes into a central arrangement cA with n+1 hyperplanes in a vector space
of dimension l + 1; see [Orlik and Terao 1992].

Notice that in CoCoA to compute the cone of an arrangement A, the homoge-
nizing variable needs to be already present in the ring in which the equation of A
is defined. For example, we can construct the cone of the Shi arrangement of type
A as follows:

/**/ use S ::= QQ[x, y, z, w];
/**/ A := ArrShiA (S, 3); A;
[x-y, x-z, y-z, x-y-1, x-z-1, y-z -1]
/**/ ArrCone (A, w);
[x-y, x-z, y-z, x-y-w, x-z-w, y-z-w, w]

Let L(A)=
{⋂

H∈B H | B ⊆A
}

be the intersection poset of A. Define a partial
order on L(A) by X ≤ Y if and only if Y ⊆ X, for all X, Y ∈ L(A). Note that
this is the reverse inclusion. In addition, if A is central, L(A) is a geometric
lattice. The elements of L(A) are called flats of A. Define a rank function on
L(A) by rk(X) = codim(X). The poset L(A) plays a fundamental role in the
study of hyperplane arrangements; in fact it determines the combinatorics of the
arrangement.
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We can compute the flats in the intersection lattice of the reflection arrangement
of type D in the following way:

/**/ use S ::= QQ[x, y, z];
/**/ A := ArrTypeD (S, 3); A;
[x-y, x+y, x-z, x+z, y-z, y+z]
/**/ ArrFlats (A);
[[ ideal (0)] ,

[ideal(x-y), ideal(x+y), ideal(x-z), ideal(x+z),
ideal(y-z), ideal(y+z)],

[ideal(x, y), ideal(x-z, y-z), ideal(x+z, y+z),
ideal(x-z, y+z), ideal(x+z, y-z), ideal(x, z),
ideal(y, z)],

[ideal(x, y, z)]]

In the rest of the section, we will introduce the Poincaré polynomial, the char-
acteristic polynomial and the Tutte polynomial, and the restriction of an arrange-
ment A. Notice that, contrary to the operation of coning, in CoCoA these opera-
tions introduce new variables that do not need to be already present in the ring in
which the equation of A is defined.

Let µ : L(A)→ Z be the Möbius function of L(A) defined by

µ(X)=
{

1 for X = V,
−
∑

Y<X µ(Y ) if X > V .

The Poincaré polynomial of A is defined by

π(A, t)=
∑

X∈L(A)

µ(X)(−t)rk(X),

and it satisfies the formula
π(cA, t)= (t + 1)π(A, t).

We now verify the previous result for the Shi arrangement of type A.

/**/ use S ::= QQ[x, y, z, w];
/**/ A := ArrShiA (S, 3);
/**/ pi_A := ArrPoincarePoly (A); pi_A;
9*t^2 +6*t +1
/**/ cA := ArrCone (A, w);
/**/ pi_cA := ArrPoincarePoly (cA); pi_cA;
9*t ^3+15* t^2+7*t+1
/**/ t := indet( RingOf (pi_A), 1);
/**/ pi_cA = (1+t)* pi_A;
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true

For any flat X ∈ L(A) define the localization of A to X as the subarrangement
AX of A by

AX = {H ∈A | X ⊆ H}.

Similarly, define the restriction of A to X as the arrangement AX in X ,

AX
= {X ∩ H | H ∈A\AX and X ∩ H 6=∅}.

The characteristic polynomial of A is

χ(A, t)= t lπ(A,−t−1)=
∑

X∈L(A)

µ(X)tdim(X).

The characteristic polynomial is characterized by the recursive relation

χ(A, t)= χ(A\H, t)−χ(AH , t),

for any H ∈A. See [Orlik and Terao 1992, Corollary 2.57] for more details.
We verify the previous result for A[−1,2] the Shi–Catalan arrangement of type A.

/**/ use S ::= QQ[x, y, z];
/**/ A := ArrShiCatalanA (S, 3, [-1, 2]); A;
[x-y, x-z, y-z, x-y-1, x-z-1, y-z-1, x-y+1, x-y+2, x-z+1,

x-z+2, y-z+1, y-z+2]
/**/ ArrLocalization (A, [x-y, x-z]);
[x-y, x-z, y-z]
/**/ A_minusH := ArrDeletion (A, x-y -1); A_minusH ;
[x-y, x-z, y-z, x-z-1, y-z-1, x-y+1, x-y+2, x-z+1, x-z+2,

y-z+1, y-z+2]
/**/ A_restrH := ArrRestriction (A, x-y -1); A_restrH ;
[y[1]-y[2]+1 , y[1]-y[2], y[1]-y[2]-1, y[1]-y[2]+2 ,

y[1]-y [2]+3]
/**/ ArrCharPoly (A) = ArrCharPoly ( A_minusH ) -

ArrCharPoly ( A_restrH );
true

For i = 0, . . . , l we define the i -th Betti number bi (A) to be the coefficients of
χ(A, t) as in the formula

χ(A, t)=
l∑

i=0

(−1)i bi (A)t l−i .

The following statement is the combination of three different results from [Crapo
and Rota 1970], [Orlik and Solomon 1980] and [Zaslavsky 1975], and it describes
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x = 0 x = 1

y = 0

y = 1

x = y

Figure 1. A line arrangement in R2.

the connection between the characteristic polynomial in combinatorics, and geo-
metrical and topological aspects of arrangements.

Theorem 2.1. (1) If A is an arrangement in Fl
q (vector space over a finite field Fq ),

then |Fl
q \
⋃

H∈A H | = χ(A, q).

(2) If A is an arrangement in Cl, then the topological i-th Betti number of the
complement of A is bi (C

l
\
⋃

H∈A H)= bi (A).

(3) If A is an arrangement in Rl, then |χ(A,−1)| is the number of chambers and
|χ(A, 1)| is the number of bounded chambers.

Using the previous statements, we can compute the Betti numbers, the number
of chambers and the number of bounded chambers of the arrangement in Figure 1.

/**/ use S ::= QQ[x, y];
/**/ A := [x, x-1, y, y-1, x-y];
/**/ ArrBettiNumbers (A);
[1, 5, 6]
/**/ NumChambers (A);
12
/**/ NumBChambers (A);
2

Associated to each hyperplane arrangement, we can naturally define a third poly-
nomial. The Tutte polynomial of A is

TA(x, y)=
∑
B⊆A

B central

(x − 1)rk(A)−rk(B)(y− 1)|B|−rk(B).

As shown in [Ardila 2007], it turns out that the Tutte and the characteristic poly-
nomials are related by

χ(A, t)= (−1)rk(A)t l−rk(A)TA(1− t, 0).
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We verify the previous result for the reflection arrangement of type D. Notice
that here, since the Tutte and the characteristic polynomials live in different rings,
we need to construct a ring homomorphism, with the command PolyAlgebraHom,
to check the required equality.

/**/ use S ::= QQ[x, y, z];
/**/ A := ArrTypeD (S, 3);
/**/ Tutte_A := ArrTuttePoly (A); Tutte_A ;
t [1]^3+ t [2]^3+3* t [1]^2+4* t[1]*t [2]+3* t [2]^2+2* t [1]+2* t[2]
/**/ char_A := ArrCharPoly (A); char_A ;
t^3 -6*t ^2+11*t-6
/**/ QQt1t2 := RingOf ( Tutte_A ); QQt := RingOf ( char_A );
/**/ t := indet(QQt , 1);
/**/ phi := PolyAlgebraHom (QQt1t2 , QQt , [1-t, 0]);
/**/ char_A = ( -1)^3*t^( dim(S) -3)* phi( Tutte_A );
true

3. FREE HYPERPLANE ARRANGEMENTS. In the theory of hyperplane arrange-
ments, the freeness of an arrangement is a very important algebraic property. In
fact, freeness implies several interesting geometric and combinatorial properties of
the arrangement itself. See, for example, [Terao 1980; Yoshinaga 2014; Abe 2016;
Bigatti et al. 2019; Palezzato and Torielli 2018].

We use

DerV =

{ l∑
i=1

fi∂xi | fi ∈ S
}

to denote the S-module of polynomial vector fields on V (or S-derivations). Let
δ =

∑l
i=1 fi∂xi ∈ DerV . If f1, . . . , fl are homogeneous polynomials of degree d

in S, then δ is said to be homogeneous of polynomial degree d, and we write
pdeg(δ)= d .

For any central arrangement A we define the module of vector fields logarithmic
tangent to A (logarithmic vector fields) by

D(A)= {δ ∈ DerV | δ(αi ) ∈ 〈αi 〉S, for all i}.

The module D(A) is a graded S-module and we have

D(A)= {δ ∈ DerV | δ(Q(A)) ∈ 〈Q(A)〉S}.

Definition 3.1. We say a central arrangement A is free with exponents (e1, . . . , el)∈

Nl if and only if D(A) is a free S-module and there exists a basis δ1, . . . , δl ∈ D(A)
such that pdeg(δi )= ei , or equivalently D(A)∼=

⊕l
i=1 S(−ei ).



Palezzato and Torielli :::: Hyperplane arrangements in CoCoA 49

Let δ1, . . . , δl ∈ D(A). Then det(δi (x j )) is divisible by Q(A). One of the
most famous characterizations of freeness is due to Saito [1980] and it uses the
determinant of the coefficient matrix of δ1, . . . , δl .

Theorem 3.2 (Saito’s criterion). Let δ1, . . . , δl ∈ D(A). Then the following facts
are equivalent:

(1) D(A) is free with basis δ1, . . . , δl , i.e., D(A)= S · δ1⊕ · · ·⊕ S · δl .

(2) det(δi (x j ))= cQ(A), where c ∈ K \ {0}.

(3) δ1, . . . , δl are linearly independent over S and
∑l

i=1 pdeg(δi )= n.

Given a simple graph G, we can define the graphical arrangement A(G); see
[Orlik and Terao 1992]. Stanley [2007], showed that A(G) is free if and only if G
is a chordal graph. See also [Suyama and Tsujie 2019] and [Suyama et al. 2019]
for more general results.

We verify this result for a given graphical arrangement.

/**/ use S ::= QQ[x, y, z, w];
/**/ G := [[1, 2], [1, 3], [1, 4], [2, 4], [3, 4]];
/**/ A := ArrGraphical (S, G);
/**/ ArrDerModule (A);
matrix ( /* RingWithID (18935 , "QQ[x, y, z, w]") */

[[1, 0, 0, 0],
[1, x-y, 0, 0],
[1, x-z, x*z-z^2-x*w+z*w, x*y-y*z-x*w+z*w],
[1, x-w, 0, x*y-x*w-y*w+w^2]])

/**/ IsArrFree (A);
true
/**/ ArrExponents (A);
[0, 1, 2, 2]
/**/ B := ArrDeletion (A, x-w);
/**/ IsArrFree (B);
false

4. ALGEBRAS. Orlik and Terao [1994] introduced a commutative analogue of
the Orlik–Solomon algebra in order to answer a question of Aomoto related to
cohomology groups of a certain “twisted” de Rham chain complex. The crucial
difference between the Orlik–Solomon algebra and Orlik–Terao algebra is not just
the difference between the exterior algebra and symmetric algebra, but rather the
fact that the Orlik–Terao algebra actually captures the “coefficients” of the depen-
dencies among the hyperplanes.
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Let A = {H1, . . . , Hn} be a central arrangement in V and 3 ⊆ {1, . . . , n}. If
codim

(⋂
i∈3 Hi

)
< |3|, then we say that 3 is dependent. If 3 is dependent, then

there exist ci ∈ K such that ∑
i∈3

ciαi = 0.

Definition 4.1. Let R = K [y1, . . . , yn]. For each dependent set 3 = {i1, . . . , ik},
let r3 =

∑k
j=1 ci j yi j ∈ R. Define now

f3 = ∂(r3)=
k∑

j=1

ci j (yi1 · · · ŷi j · · · yik ),

where ŷi j means that the variable yi j is omitted, and let I be the ideal of R generated
by the f3. This ideal is called the Orlik–Terao ideal of A. The Orlik–Terao algebra
OT(A) is the quotient R/I. The Artinian Orlik–Terao algebra AOT(A) is the
quotient of OT(A) by the square of the variables.

These algebras and their Betti diagrams give us a lot of information on the
given arrangement, for example about its formality; see for example [Schenck and
Tohǎneanu 2009].

We can construct the Orlik–Terao ideal, its Artinian version and the Betti dia-
gram of the Orlik–Terao algebra of the Braid arrangement as follows:

/**/ use S ::= QQ[x, y, z];
/**/ A := ArrBraid (S, 3);
/**/ OT_A := OrlikTeraoIdeal (A); OT_A;
ideal(y[1]*y[2]-y[1]*y[3]+y[2]*y[3])
/**/ PrintBettiDiagram ( RingOf (OT_A )/ OT_A );

0 1
-- -------------

0: 1 -
1: - 1

-- -------------
Tot: 1 1
/**/ ArtinianOrlikTeraoIdeal (A);
ideal(y[1]*y[2]-y[1]*y[3]+y[2]*y[3], y[1]^2 , y[2]^2 ,

y [3]^2)

In [Abe et al. 2018], the authors introduced a new algebra associated to a central
hyperplane arrangement. This algebra can be considered as a generalization of the
coinvariant algebras in the setting of hyperplane arrangements and it contains the
cohomology rings of regular nilpotent Hessenberg varieties.
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Definition 4.2. Let A be a central arrangement in V and f ∈ S a homogeneous
polynomial. Then the ideal

a(A, f )= {δ( f ) | δ ∈ D(A)}

is called the Solomon–Terao ideal of A with respect to f . The Solomon–Terao
algebra of A with respect to f is the quotient ST(A, f )= S/a(A, f ).

We can construct the Solomon–Terao ideal of the reflection arrangement of
type D with respect to f , the sum of the square of the variables, as follows:

/**/ use S ::= QQ[x, y, z];
/**/ A := ArrTypeD (S, 3);
/**/ f := x^2+y^2+z^2;
/**/ SolomonTeraoIdeal (A, f);
ideal (2*x^2+2*y^2+2*z^2, 6*x*y*z,

2*x^2*y^2 -2*y^4+2*x^2*z^2 -2*z^4)

5. MULTIARRANGEMENTS OF HYPERPLANES. A multiarrangement is a pair
(A,m) of an arrangement A with a map m : A → Z≥0, called the multiplic-
ity. An arrangement A can be identified with a multiarrangement with constant
multiplicity m ≡ 1, and it is sometimes called a simple arrangement. Define
Q(A,m) =

∏n
i=1 α

m(Hi )
i and |m| =

∑n
i=1 m(Hi ). With this notation, the main

object is the module of vector fields logarithmic tangent to A with multiplicity m
(logarithmic vector field) defined by

D(A,m)= {δ ∈ DerV | δ(αi ) ∈ 〈αi 〉
m(Hi )S, for all i}.

The module D(A,m) is a graded S-module. In general, in contrast to the case
of simple arrangements, D(A,m) does not coincide with

{δ ∈ DerV | δ(Q(A)) ∈ 〈Q(A,m)〉S}.

Definition 5.1. Let A be a central arrangement. The multiarrangement (A,m)
is said to be free with exponents (e1, . . . , el) if and only if D(A,m) is a free S-
module and there exists a basis δ1, . . . , δl ∈ D(A,m) such that pdeg(δi ) = ei , or
equivalently D(A,m)∼=

⊕l
i=1 S(−ei ).

As for simple arrangements, if δ1, . . . , δl ∈ D(A,m), then det(δi (x j )) is divisible
by Q(A,m). Moreover, we can generalize Theorem 3.2; see [Ziegler 1989].

Theorem 5.2 (generalized Saito’s criterion). Let δ1, . . . , δl ∈ D(A,m). Then the
following are equivalent:

(1) D(A,m) is free with basis δ1, . . . , δl , i.e., D(A,m)= S · δ1⊕ · · ·⊕ S · δl .

(2) det(δi (x j ))= cQ(A,m), where c ∈ K \ {0}.
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(3) δ1, . . . , δl are linearly independent over S and
∑l

i=1 pdeg(δi )= |m|.

Given a simple arrangement A and H one of its hyperplanes, we can natu-
rally define Ziegler’s multirestriction (see [Ziegler 1989]) as the multiarrangement
(AH ,m H ), where the function m H

: AH
→ Z>0 is defined by

X ∈AH
7→ #{H ′ ∈A | H ′ ⊃ X}− 1.

Theorem 5.3 [Ziegler 1989]. Let A be a central arrangement. If A is free with
exponents (1, e2, . . . , el), then (AH ,m H ) is free with exponents (e2, . . . , el), for
any H ∈A.

In general, the converse is false. However, we have the following:

Theorem 5.4 [Yoshinaga 2004]. Assume l ≥ 4. Let A be a central arrangement
and H ∈A . Then A is free with exponents (1, e2, . . . , el) if and only if the following
conditions are satisfied:

(1) A is locally free along H, i.e., AX is free for any X ∈ L(A) with X ⊂ H and
X 6=∅.

(2) Ziegler’s multirestriction (AH ,m H ) is a free multiarrangement with expo-
nents (e2, . . . , el).

We can construct Ziegler’s multirestriction of a given arrangement and check its
freeness as follows:

/**/ use S ::= QQ[x, y, z];
/**/ A := [x, y, z, x-y, x-y-z, x-y+2*z];
/**/ A_1 := MultiArrRestrictionZiegler (A, z); A_1;
[[y[1], 1], [y[2], 1], [y[1]-y[2], 3]]
/**/ IsMultiArrFree (A_1 );
true
/**/ MultiArrDerModule (A_1 );
matrix ( /* RingWithID (18, "QQ[y[1], y [2]]") */

[[y[1]*y[2], y[1]^3] ,
[y[1]*y[2], 3*y [1]^2* y[2] -3*y[1]*y [2]^2+ y [2]^3]])

/**/ MultiArrExponents (A_1 );
[2, 3]
/**/ ArrExponents (A);
[1, 2, 3]

SUPPLEMENT. The online supplement contains version 1.0 of arrangements for
CoCoA-5.2.4.

http://msp.org/jsag/2019/9-1/jsag-v9-n1-x01-arrangements.zip
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ABSTRACT: We present the NumericalImplicitization.m2 package for
Macaulay2, which allows for user-friendly computation of the invariants of the
image of a polynomial map, such as dimension, degree, and Hilbert function val-
ues. This package relies on methods of numerical algebraic geometry, including
homotopy continuation and monodromy.

INTRODUCTION. Many varieties of interest in algebraic geometry and its applica-
tions are usefully described as images of polynomial maps, via a parametrization.
Implicitization is the process of converting a parametric description of a variety
into an intrinsic — or implicit — description. Classically, implicitization refers to
the procedure of computing the defining equations of a parametrized variety, and
in theory this is accomplished by finding the kernel of a ring homomorphism, via
Gröbner bases. In practice however, symbolic Gröbner basis computations are
often time consuming, even for medium scale problems, and do not scale well
with respect to the size of the input.

Despite this, one would often like to know basic information about a parametrized
variety, even when symbolic methods are prohibitively expensive (in terms of
computation time). Examples of such information are discrete invariants such as
the dimension, the degree, or Hilbert function values. Other examples include
Boolean tests, for example whether or not a particular point lies on a parametrized
variety. The goal of this [Macaulay2] package is to provide such information; in
other words, to numerically implicitize a parametrized variety by using methods
of numerical algebraic geometry. NumericalImplicitization.m2 builds on
top of existing numerical algebraic geometry software: NAG4M2 [Leykin 2011],
Bertini [Bates et al.] and PHCpack [Verschelde 1999]. Each of these can be used
for path tracking and point sampling; by default the native software M2engine in
NAG4M2 is used. The latest version of the code and documentation can be found
at https://github.com/Joe-Kileel/Numerical-Implicitization.
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NOTATION. The following notation will be used throughout this article:

• X ⊆ An is a source variety, defined by an ideal I = 〈g1, . . . , gr 〉 in the poly-
nomial ring C[x1, . . . , xn].

• F : An
→ Am is a regular map sending x 7→ ( f1(x), . . . , fm(x)), where fi ∈

C[x1, . . . , xn].

• Y is the Zariski closure of the image F(X)= F(V (I ))⊆Am, the target variety
under consideration.

• Ỹ ⊆ Pm is the projective closure of Y, with respect to the standard embedding
Am
⊆ Pm.

Currently, NumericalImplicitization is implemented for integral varieties X.
Equivalently, the ideal I is prime. Since numerical methods are used, we always
work with a floating-point representation for complex numbers. Moreover, Ỹ is
internally represented by its affine cone. This is because it is easier to work with
affine, as opposed to projective, coordinates; at the same time, this suffices to find
the invariants of Ỹ .

SAMPLING. All the methods in this package rely on the ability to sample general
points on X. To this end, the method numericalSourceSample is provided to
allow the user to sample general points on X. This method works by computing
a witness set for X, via a numerical irreducible decomposition of I — once this is
known, points on X can be quickly sampled.

One way to view the difference in computation time between symbolic and nu-
merical methods is that the upfront cost of computing a Gröbner basis is replaced
with the upfront cost of computing a numerical irreducible decomposition, which
is used to sample general points. However, if X =An, then sampling is done by gen-
erating random tuples, so in this unrestricted (or rational) parametrization case, the
upfront cost of numerical methods becomes negligible. Another situation where the
cost of computing a numerical irreducible decomposition can be avoided is if the
user can provide a single point on X : in this case, numericalSourceSample can
use the given point to quickly generate new general points on X via path tracking.

DIMENSION. The most basic invariant of an algebraic variety is its dimension. To
compute the dimension of the image of a variety numerically, we use the following
theorem:

Theorem 1 [Hartshorne 1977, III.10.4–10.5]. Let F : X→ Y be a dominant mor-
phism of irreducible varieties over C. Then there is a Zariski open subset U ⊆ X
such that for all x ∈U, the induced map on tangent spaces d Fx : Tx X→ TF(x)Y is
surjective.
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In the setting above, since the singular locus Sing Y is a proper closed subset
of Y, for general y = F(x) ∈ Y ,

dim Y = dim TyY = dim d Fx(Tx X)= dim Tx X − dim ker d Fx .

Now Tx X is the kernel of the Jacobian matrix of I evaluated at x , given by

Jac(I )(x)= ((∂gi/∂x j )(x))1≤i≤r, 1≤ j≤n,

and ker d Fx is the kernel of the Jacobian of F evaluated at x , intersected with Tx X.
Explicitly, ker d Fx is the kernel of the (r +m)× n matrix:

[
Jac(I )(x)

Jac(F)(x)

]
=



∂g1
∂x1
(x) · · · ∂g1

∂xn
(x)

...
. . .

...
∂gr
∂x1
(x) · · · ∂gr

∂xn
(x)

∂ f1
∂x1
(x) · · · ∂ f1

∂xn
(x)

...
. . .

...
∂ fm
∂x1
(x) · · · ∂ fm

∂xn
(x)


.

We compute these kernel dimensions numerically to obtain dim Y.

Example 2. Let Y ⊆ Sym4(C5)∼= A70 be the variety of 5× 5× 5× 5 symmetric
tensors of border rank ≤ 14. Equivalently, Y is the affine cone over σ14(ν4(P

4)), the
14th secant variety of the fourth Veronese embedding of P4. Naively, one expects
dim(Y )= 14 · 4+ 13+ 1= 70. In fact, dim(Y )= 69 as verified by the following
code:

Macaulay2, version 1.13
i1 : needsPackage "NumericalImplicitization"
i2 : R=CC[s_(1,1)..s_(14,5)];
i3 : F=sum(1..14,i->basis(4,R,Variables=>toList(s_(i,1)..s_(i,5))));
i4 : elapsedTime numericalImageDim(F,ideal 0_R)

-- 0.0767826 seconds elapsed
o4 = 69

This example is the largest exceptional case from the celebrated work [Alexander
and Hirschowitz 1995].

HILBERT FUNCTION. We now turn to the problem of determining the Hilbert
function of Ỹ . If Ỹ ⊆ Pm is a projective variety given by a homogeneous ideal J ⊆
C[y0, . . . , ym], then the Hilbert function of Ỹ at an argument d ∈N is by definition
the vector space dimension of the d-th graded part of J, namely HỸ (d) := dim Jd .
This counts the maximum number of linearly independent degree d hypersurfaces
in Pm containing Ỹ .
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To compute the Hilbert function of Ỹ numerically, we use multivariate polyno-
mial interpolation. For a fixed argument d ∈ N, let {p1, . . . , pN } be a set of N
general points on Ỹ . For 1 ≤ i ≤ N, consider an i ×

(m+d
d

)
interpolation matrix

A(i) with rows indexed by points {p1, . . . , pi } and columns indexed by degree d
monomials in C[y0, . . . , ym], whose entries are the values of the monomials at the
points. A vector in the kernel of A(i) corresponds to a choice of coefficients for a
homogeneous degree d polynomial that vanishes on p1, . . . , pi . If i is large, then
one expects such a form to vanish on the entire variety Ỹ . The following theorem
makes this precise:

Theorem 3. Let {p1, . . . , ps+1} be a set of general points on Ỹ , and let A(i) be the
interpolation matrix above. If dim ker A(s) = dim ker A(s+1), then dim ker A(s) =
dim Jd .

Proof. Identifying v ∈ ker A(i) with the form in C[y0, . . . , ym] of degree d having v
as its coefficients, it suffices to show that ker A(s)= Jd . If h ∈ Jd , then h vanishes on
all of Ỹ , in particular on {p1, . . . , ps}, so h∈ker A(s). For the converse ker A(s)⊆ Jd ,
we consider the universal interpolation matrices over C[y0,1, y1,1, . . . , ym,i ]:

A(i) :=


yd

0,1 yd−1
0,1 y1,1 · · · yd

m,1

yd
0,2 yd−1

0,2 y1,2 · · · yd
m,2

...
...

. . .
...

yd
0,i yd−1

0,i y1,i · · · yd
m,i

.

Set ri :=min {r ∈Z≥0 | all (r+1)-minors of A(i) lie in the ideal of Ỹ×i
⊆ (Pm)×i

}.
Then any specialization of A(i) to i points in Ỹ is a matrix over C of rank ≤ ri ;
moreover if the points are general, then the specialization has rank exactly ri ,
since Ỹ is irreducible. In particular rank(As) = rs and rank(As+1) = rs+1, so
dim ker A(s) = dim ker A(s+1) implies that rs = rs+1. It follows that specializing
A(s+1) to p1, p2, . . . , ps, q for any q ∈ Ỹ gives a rank rs matrix. Hence, every
degree d form in ker A(s) evaluates to 0 at every q ∈ Ỹ . Since Ỹ is reduced, we
deduce that ker A(s) ⊆ Jd . �

It follows from Theorem 3 that the integers dim ker A(1), dim ker A(2), . . . de-
crease by exactly 1, until the first instance where they fail to decrease, at which
point they stabilize: dim ker A(i) = dim ker A(s) for i ≥ s. This stable value is the
value of the Hilbert function, dim ker A(s) = HỸ (d). In particular, it suffices to
compute dim ker A(N ) for N =

(m+d
d

)
, so one may assume the interpolation matrix

is square. Although this may seem wasteful (as stabilization may have occurred
with fewer rows), this is indeed what numericalHilbertFunction does, due to
the algorithm used to compute kernel dimension numerically. To be precise, kernel
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dimension is found via a singular value decomposition (SVD) — namely, if a gap
(the ratio of consecutive singular values) exceeds the option SVDGap (with default
value 105), then this is taken as an indication that all singular values past this gap
are numerically zero. On example problems, it was observed that taking only one
more additional row than was needed often did not reveal a satisfactory gap in
singular values. In addition, numerical stability is improved via preconditioning
on the interpolation matrices — namely, each row is normalized to have Euclidean
norm 1 before computing the SVD. Furthermore, for increased computational effi-
ciency, the option UseSLP allows for the usage of straight-line programs in creating
interpolation matrices.

Example 4. Let X be a random canonical curve of genus 4 in P3, so X is the
complete intersection of a random quadric and cubic. Let F : P3 99K P2 be a
projection by three random cubics. Then Ỹ is a plane curve of degree

3dim(Ỹ )
· deg(X)= 3 · 2 · 3= 18,

so the ideal of Ỹ contains a single form of degree 18. We verify this as follows:

i5 : R = CC[w_0..w_3]; I = ideal(random(2,R), random(3,R));
F = toList(1..3)/(i -> random(3,R));

i8 : elapsedTime T = numericalHilbertFunction(F,I,18,Verbose=>false)
-- 6.01226 seconds elapsed

o8 : a numerical interpolation table, indicating
the space of degree 18 forms in the ideal of the image has
dimension 1

The output is a NumericalInterpolationTable, which is a HashTable stor-
ing the results of the interpolation computation described above. From this, one
can obtain a floating-point approximation to a basis of Jd . This is done via the
command extractImageEquations:

i9 : extractImageEquations T
o9 : | -.0000712719y_0^18+(.000317507-.000100639i)y_0^17y_1- ... |

The option AttemptZZ=>true calls the Lenstra–Lenstra–Lovász algorithm to com-
pute short equations over Z.

DEGREE. After dimension, degree is the most basic invariant of a projective va-
riety Ỹ ⊆ Pm. Set k := dim(Ỹ ). For a general linear space L ∈ Gr(Pm−k,Pm) of
complementary dimension to Ỹ , the intersection L ∩ Ỹ is a finite set of reduced
points. The degree of Ỹ is by definition the cardinality of L ∩ Ỹ , which is indepen-
dent of the general linear space L . Thus one way to find deg(Ỹ ) is to fix a random
L0 and compute the set of points L0 ∩ Ỹ .
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NumericalImplicitization takes this approach, but the method used to find
L0 ∩ Ỹ is not the most obvious. First and foremost, we do not know the equations
of Ỹ , so all solving must be done in X. Secondly, we do not compute F−1(L0)∩ X
from the equations of X and the equations of L0 pulled back under F, because
fibers of F may be positive-dimensional and of high degree. Instead, monodromy
is employed to find L0 ∩ Ỹ .

To state the technique, we consider the map:

{(L , y) ∈ Gr(Pm−k,Pm)× Ỹ | y ∈ L} ⊆ Gr(Pm−k,Pm)× Ỹ ρ1
−→Gr(Pm−k,Pm),

where ρ1 is projection onto the first factor. There is a nonempty Zariski open
subset U ⊆ Gr(Pm−k,Pm) such that the restriction ρ−1

1 (U )→ U is a deg(Ỹ )-to-
1 covering map, namely U equals the complement of the Hurwitz divisor from
[Sturmfels 2017]. For a fixed generic basepoint L0 ∈ U, the fundamental group
π1(U, L0) acts on the fiber ρ−1

1 (L0)= L0∩ Ỹ . This action is known as monodromy.
It is a key fact that irreducibility of Ỹ implies the group homomorphism

π1(U, L0)→ Sym(L0 ∩ Ỹ )∼= Symdeg(Ỹ )

is surjective (see [Sommese and Wampler 2005, Theorem A.12.2]).
We compute the degree of Ỹ by constructing a pseudo-witness set for Ỹ , which is

a numerical representation of a parametrized variety (see [Hauenstein and Sommese
2010]). First, we sample a general point x ∈ X, and translate a general linear
slice L0 so that F(x) ∈ L0 ∩ Ỹ . Then L0 is moved around in a random loop of the
form described in [Sommese and Wampler 2005, Lemma 7.1.3]. This loop pulls
back to a homotopy in X, where we use the equations of X to track x . The endpoint
of the track is a point x ′ ∈ X such that F(x ′) ∈ L0 ∩ Ỹ . If F(x) and F(x ′) are
numerically distinct, then the loop has learned a new point in L0 ∩ Ỹ ; otherwise
x ′ is discarded. We then repeat this process of tracking points in X over each
known point in L0 ∩ Ỹ , via new loops. In practice, if several consecutive loops
do not learn new points in L0 ∩ Ỹ , then we suspect that all of L0 ∩ Ỹ has been
calculated. To verify this, we pass to the trace test (see [Sommese et al. 2002,
Corollary 2.2]), which provides a characterization for when a subset of L0 ∩ Ỹ
equals L0 ∩ Ỹ . If the trace test is failed, then L0 is replaced by a new random L ′0
and preimages in X of known points of L0 ∩ Ỹ are tracked to those preimages of
points of L ′0 ∩ Ỹ . Afterwards, monodromy for L ′0 ∩ Ỹ begins anew. If the trace
test is failed MaxAttempts (by default 5) times, then the method exits with only a
lower bound on deg(Ỹ ). To speed up computation, the option MaxThreads allows
for loop tracking to be parallelized.

Example 5. Let Ỹ =σ2(P
1
×P1
×P1
×P1
×P1)⊆P31. We find that deg(Ỹ )=3256,

using the commands below:
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i10 : R = CC[a_1..a_5, b_1..b_5, t_0, t_1];
i11 : F1 = terms product(apply(toList(1..5), i -> 1 + a_i));
i12 : F2 = terms product(apply(toList(1..5), i -> 1 + b_i));
i13 : F = apply(toList(0..<2^5), i -> t_0*F1#i + t_1*F2#i);
i14 : elapsedTime pseudoWitnessSet(F, ideal 0_R, Repeats=>2,

MaxThreads=>2)
Sampling point in source ...
Tracking monodromy loops ...
Points found: 2
Points found: 4
...
Points found: 3256
Running trace test ...

-- 336.737 seconds elapsed
o14 = a pseudo-witness set, indicating

the degree of the image is 3256

From [Raicu 2012, Theorem 4.1], it is known that the prime ideal J of Ỹ is gener-
ated by the 3× 3 minors of all flattenings of 2×5 tensors, so we can confirm that
deg(J )= 3256. However, the naive attempt to compute the degree of Ỹ symboli-
cally by taking the kernel of a ring map — from a polynomial ring in 32 variables —
has no hope of finishing in any reasonable amount of time.

MEMBERSHIP. Classically, given a variety Y ⊆ Am and a point y ∈ Am, we deter-
mine whether or not y ∈ Y by finding set-theoretic equations of Y (which generate
the ideal of Y up to radical), and then testing if y satisfies these equations. If a
PseudoWitnessSet for Y is available, then point membership in Y can instead
be verified by parameter homotopy. More precisely, isOnImage determines if y
lies in the constructible set F(X) ⊆ Y, as follows. We fix a general affine linear
subspace L y ⊆ Am of complementary dimension m − dim Y passing through y.
Then y ∈ F(X) if and only if y ∈ L y ∩ F(X), so it suffices to compute the set
L y∩F(X). Now, a PseudoWitnessSet for Y provides a general section L∩F(X),
and preimages in X. We move L to L y as in [Sommese and Wampler 2005, Theo-
rem 7.1.6]. This pulls back to a homotopy in X, where we use the equations of X
to track the preimages. Applying F to the endpoints of the track gives all isolated
points in L y ∩ F(X) by [Sommese and Wampler 2005, Theorem 7.1.6]. Since L y

was general, the proof of [Eisenbud 1995, Corollary 10.5] shows L y ∩ F(X) is
zero-dimensional, so this procedure computes the entire set L y ∩ F(X).

Example 6. Let Y ⊆ A18 be defined by the resultant of three quadratic equations
in three unknowns. In other words, Y consists of all coefficients

(c1, . . . , c6, d1, . . . , d6, e1, . . . , e6) ∈ A18
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such that the system

0= c1x2
+ c2xy+ c3xz+ c4 y2

+ c5 yz+ c6z2

0= d1x2
+ d2xy+ d3xz+ d4 y2

+ d5 yz+ d6z2

0= e1x2
+ e2xy+ e3xz+ e4 y2

+ e5 yz+ e6z2

admits a solution (x : y : z)∈P2. Here Y is a hypersurface, and a matrix formula for
its defining equation was derived in [Eisenbud et al. 2003], using exterior algebra
methods. We rapidly determine point membership in Y numerically as follows:

i15 : R = CC[c_1..c_6, d_1..d_6, e_1..e_6, x, y, z];
i16 : I = ideal(c_1*x^2+c_2*x*y+c_3*x*z+c_4*y^2+c_5*y*z+c_6*z^2,

d_1*x^2+d_2*x*y+d_3*x*z+d_4*y^2+d_5*y*z+d_6*z^2,
e_1*x^2+e_2*x*y+e_3*x*z+e_4*y^2+e_5*y*z+e_6*z^2);

i17 : F = toList(c_1..c_6 | d_1..d_6 | e_1..e_6);
i18 : W = pseudoWitnessSet(F, I, Verbose=>false); -- Y has degree 12
i19 : p1 = first numericalImageSample(F, I);

p2 = point random(CC^1, CC^#F);
i21 : elapsedTime (isOnImage(W, p1), isOnImage(W, p2))

-- used 0.186637 seconds
o21 = (true, false)
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Random Monomial Ideals: a Macaulay2 package

SONJA PETROVIĆ, DESPINA STASI AND DANE WILBURNE

ABSTRACT: The Macaulay2 package RandomMonomialIdeals.m2 provides
users with a set of tools that allow for the systematic generation and study of
random monomial ideals. It also introduces new objects, Sample and Model,
to allow for streamlined handling of random objects and their statistics in
Macaulay2.

ERDŐS–RÉNYI RANDOM MONOMIAL IDEALS. Given their central role in com-
mutative algebra and their inherent combinatorial structure (see, e.g., [Miller and
Sturmfels 2005; Stanley 1996]), monomial ideals are a natural class of object to
study probabilistically. This study was initiated in [De Loera et al. 2019], where
random monomial ideals were produced from random sets of monomial generators
in a manner inspired by the Erdős–Rényi model of random graphs. Working within
the framework of such a model allows one to ask well-posed questions about the
distributions of various algebraic invariants of interest.

The [Macaulay2] package RandomMonomialIdeals.m2 implements several ba-
sic probabilistic models for monomial ideals based on the work in [De Loera et al.
2019]; it also computes summary statistics of (algebraic properties of ) samples of
monomial ideals, and sets up the framework to define new probabilistic models and
generate samples from them using two new Macaulay2 types, Sample and Model.

The fundamental method in the package is randomMonomialSets, which ran-
domly generates sets of monomials in a fixed number of variables up to a given
degree from the Erdős–Rényi-type distribution B(n, D, p) defined in [De Loera
et al. 2019], as well as various other related distributions.

In the following examples, we set the number of variables to n=3 and sample
size to N=5.

Each command in Table 1 returns a list of five sets of randomly generated mono-
mials. In the case of B(n, D, M), if M is larger than the total number of monomials
in n variables of degree at most D, all such monomials are returned.

MSC2010: primary 13F20; secondary 05E40.
Keywords: random monomial ideals, random commutative algebra, combinatorial commutative

algebra, Macaulay2 package.
RandomMonomialIdeals.m2 version 1.0
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Model Example of M2 command

B(n, D, p): select each
monomial of degree ≤ D D=3; p=0.2;
independently with randomMonomialSets(n,D,p,N)
probability p ∈ [0, 1]

B(n, D, p): select each
monomial of degree 1≤ d ≤ D D=3;
independently with probability p = {0.5,0.0,0.1};
pd ∈ [0, 1], where p= (p1, . . . , pD) randomMonomialSets(n,D,p,N)
is a list of probabilities

B(n, D, M): select a set of M
monomials of degree ≤ D D=3; M=2;
uniformly at random all randomMonomialSets(n,D,M,N)
among such sets

B(n, D, M): randomly select Md D=4; M={1,0,3,0};
monomials of each degree 1≤ d ≤ D randomMonomialSets(n,D,M,N)

Table 1. Examples of models of random monomial ideals implemented in the
RandomMonomialIdeals.m2 Macaulay2 package (left) and the correspond-
ing M2 commands to produce random instances for each model (right).

One can also force the monomial sets to be minimal generating sets as follows.
i1 : n=3; D=4; N=4; p={0.5,0.0,1.0,0.0};

netList pack(4,randomMonomialSets(n,D,p,N, Strategy=>"Minimal"))
+------------+------------------------+------------------------+------------+
| 3 | 3 2 2 3 | 3 2 2 3 | |

o1 = |{x , x , x }|{x , x , x x , x x , x }|{x , x , x x , x x , x }|{x , x , x }|
| 1 2 3 | 3 1 1 2 1 2 2 | 1 2 2 3 2 3 3 | 1 2 3 |
+------------+------------------------+------------------------+------------+

In the above sample of four sets of monomials, there are no monomials of de-
grees 2 or 4. Each of the variables was selected with probability 0.5. All monomials
of degree 3 were selected, but of course some are not included as they are not
minimal generators of the corresponding monomial ideal.

The distributions that we have described above and, in fact, any probability dis-
tribution on sets of monomials, naturally induce distributions on monomial ideals.
The distribution on ideals induced by B(n, D, p) is denoted by I(n, D, p). Sam-
ples of monomial ideals for each of the models in Table 1 can be generated as
follows:
i2 : n=2;D=5;p=0.2;N=3; randomMonomialIdeals(n,D,p,N)

3
o2 = {monomialIdeal(x ), monomialIdeal (x , x x ), monomialIdeal(x x )}

2 1 1 2 1 2
o2 : List
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SUMMARY STATISTICS. Given a list of monomial ideals, the package contains an
array of methods for computing and summarizing various algebraic invariants of
the ideals in the list: Krull dimension, degree, projective dimension, Castelnuovo–
Mumford regularity, Betti tables and Betti shapes, and the proportion of ideals
which are Borel-fixed or Cohen–Macaulay.

For instance, dimStats is a method which computes the Krull dimension of
k[x1, . . . , xn]/I for each monomial ideal I in the list and returns the mean and
standard deviation of the sample. When the optional input ShowTally is set to
true, dimStats also returns a histogram of the Krull dimensions of the ideals in
the list.

i3 : B = randomMonomialIdeals(3,10,0.01,1000);
i4 : dimStats(B, ShowTally=>true)
o4 = (1.92, .46, Tally{0 => 1 })

1 => 146
2 => 785
3 => 68

o4 : Sequence

In this sample of N = 1000 monomial ideals from the distribution I(3, 10, 0.01),
the proportion of ideals with Krull dimension 0, 1, 2, 3 was 0.001, 0.146, 0.785,
0.068, respectively. By [De Loera et al. 2019, Theorem 3.2], the probability that
a monomial ideal from this distribution has Krull dimension t for t = 0, 1, 2, 3 is
0.0009, 0.1458, 0.7963, 0.570, respectively. By the same theorem, the expected
Krull dimension in this case is 1.9094 whereas the observed sample mean in the
example is 1.92.

Each method that computes sample statistics of a particular invariant or property
of a list monomial ideals can also be applied more generally to any list of algebraic
objects for which that invariant or property is defined, whether or not the objects
were generated using the ER-model.

NEW TYPES FOR CREATING AND STORING PROBABILISTIC MODELS AND SAM-
PLES IN MACAULAY2. The package comes equipped with the predefined Erdős–
Rényi-type model. For example, let us consider the graded ER-type model with
p = (0.1, 0, 0.2) in four variables and degree bound D = 3. We store this in an
object of class Model:

i5 : myModel = ER(ZZ/101[a..d],3,{0.1,0.0,0.2})
o5 = Model{Generate => {*Function[RandomMonomialIdeals.m2:168:22-168:46]*}}

Name => Erdos-Renyi
ZZ

Parameters => (---[a, b, c, d], 3, {.1, 0, .2})
101

o5 : Model
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It is now easy to obtain a sample of 1000 monomial ideals from this model.
Note that model parameters are also stored with the sample object for easy access.

i6 : time mySample = sample(myModel,1000);
-- used 2.32541 seconds

i7 : mySample.ModelName
o7 = Erdos-Renyi
i8 : mySample.Parameters

ZZ
o8 = (---[a, b, c, d], 3, {.1, 0, .2})

101
o8 : Sequence
i9 : mySample.SampleSize
o9 = 1000

The raw data (i.e., actual sets of monomials without the parameter values etc.)
from the sample can be loaded as follows:

i10 : time myIdeals = getData mySample;
-- used 0.00005 seconds

i11 : myIdeals_0
2 2 2

o11 = {b d, b*d , c*d }
o11 : List

To obtain statistics on any algebraic property of interest for the given sample,
one simply runs the statistics command on the sample. Let us look at the
distribution of Krull dimensions for this sample of 1000 monomial ideals:

i12 : time statistics(mySample, dim@@ideal)
-- used 0.325259 seconds

2053
o12 = HashTable{Mean => ----, StdDev=> .654363, Histogram=> Tally{0 => 5 }}

1000 1 => 166
2 => 608
3 => 213
4 => 8

o12 : HashTable

In addition, the command writeSample(Sample,String) can be used to write
a sample to disk (the string is the filename), a feature that will be useful when
large samples are generated and their statistics take a lot of computational time
(e.g., Gröbner bases or free resolutions). This command creates a folder in which
the model and data are stored. The sample can then be read via calls to the
sample(String) method; for more details, the user is referred to the package
documentation.

The new types, Model and Sample, along with the statistics function, allow
one to define a new way to sample random algebraic objects, store the data as a
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proper statistical sample, and study their algebraic properties under the probabilis-
tic regime. Here is a simple example of a model that generates M polynomials in n
variables of degree D randomly using Macaulay2’s built-in random function:
i13: f=(D,n,M)->(R=QQ[x_1..x_n];apply(M,i->random(D,R)))
o13=f
o13: FunctionClosure
i14: myModel = model({2,3,4},f,"rand(D,n,M):

M random polynomials in n variables of degree D")
o14=Model{Generate=>{*Function[RandomMonomialIdeals.m2:107:22-107:37]*} }

Name=>rand(D,n,M): M random polynomials in n variables of degree D
Parameters=>{2, 3, 4}

o14: Model
i15: mySample = sample(myModel,10);

The last line produces a sample of size 10 from myModel. One can use the
method statistics to generate an ideal from each of the ten sets in the sample,
compute the Gröbner basis, and report its size:
i16 : statistics(mySample, numcols@@gens@@gb@@ideal)
o16 = HashTable{Histogram => Tally{6 => 10}}

Mean => 6
StdDev => 0

o16 : HashTable

Any function that can be run through tally can also serve as input for the
statistics method; for more extensive examples, the user is directed to the
package documentation.
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Calculations involving symbolic powers

BEN DRABKIN, ELOÍSA GRIFO,
ALEXANDRA SECELEANU AND BRANDEN STONE

ABSTRACT: Symbolic powers is a classical commutative algebra topic that
relates to primary decomposition, consisting, in some circumstances, of the
functions that vanish up to a certain order on a given variety. However, these
are notoriously difficult to compute, and there are seemingly simple questions
related to symbolic powers that remain open even over polynomial rings. In this
paper, we describe a Macaulay2 software package that allows for computations
of symbolic powers of ideals and which can be used to study the equality and
containment problems, among others.

1. INTRODUCTION. Given an ideal I in a Noetherian domain R, the n-th sym-
bolic power of I is the ideal defined by

I (n) =
⋂

P∈Ass(I )

(I n RP ∩ R). (1-1)

When I has no embedded primes, the minimal primes of I n coincide with the
associated primes of I, and I (n) as above corresponds to the intersection of the
primary components corresponding to minimal primes of I n. In particular, under
these circumstances the definition is unchanged if instead we have P ranging over
the set of minimal associated primes Min(I ). However, if we consider any ideal I,
with no assumptions on its associated primes, there are two possible notions of
symbolic powers: the one above and the one given by

I (n) =
⋂

P∈Min(I )

(I n RP ∩ R). (1-2)

The SymbolicPowers.m2 package allows the user to compute the symbolic pow-
ers of any ideal over a polynomial ring, using the definition of symbolic powers
given in (1-1) as the standard, but allowing the user to take the definition in (1-2)
instead via the option UseMinimalPrimes. This option can be used in any method
included in the package.

MSC2010: primary 13P99; secondary 13A15, 13C99.
Keywords: symbolic powers, Macaulay2.
SymbolicPowers.m2 version 2.0
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Symbolic powers are a classical topic that relates to many subjects within com-
mutative algebra and algebraic geometry, and is an active area of current research.
If P is a prime ideal in a regular ring, the classical Zariski–Nagata theorem [Zariski
1949; Nagata 1962] says that the symbolic powers of P consist of the functions
that vanish up to order n in the corresponding variety. For a polynomial ring over
a perfect field, these coincide with differential powers. For a survey on symbolic
powers, see [Dao et al. 2018].

Various invariants have been defined to compare symbolic and ordinary powers
of ideals: the resurgence [Bocci and Harbourne 2010], the Waldschmidt constant
[Bocci and Harbourne 2010], and the symbolic defect [Galetto et al. 2019], among
others. Using the SymbolicPowers.m2 package, these can be in some cases ex-
plicitly computed and in others approximated.

2. BASIC USAGE. The main method in the SymbolicPowers.m2 package is
symbolicPower, which takes as inputs an ideal I and an integer n and returns
I (n). Computations are done using the standard definition of symbolic powers; if
the option UseMinimalPrimes is set true, then the definition of symbolic powers
used in the computations will be the nonstandard one, as described in the intro-
duction. When UseMinimalPrimes is set true, the algorithm takes a primary de-
composition of I n and intersects the components corresponding to minimal primes.
Throughout the rest of the paper, we will assume that the UseMinimalPrimes
option is set to false, which is the default setting.

Various algorithms are used for the computation of symbolic powers. This pack-
age follows the order given below to decide the optimal algorithm applicable for
computing symbolicPower(I,n):

(1) If I is a squarefree monomial ideal, the routine intersects the n-th powers of
the associated primes of I .

(2) If I is a monomial ideal, but not squarefree, the routine takes a primary de-
composition of I and intersects the n-th powers of the intersections of the
primary components associated to primes contained in each maximal element
of Ass(I ) (see [Cooper et al. 2017, Lemma 3.1]).

(3) If I is a saturated homogeneous ideal whose height is one less than the dimen-
sion of its ambient ring, the routine returns the saturation of I n with respect
to the maximal ideal.

(4) If I is height unmixed (meaning that all the associated primes of I have the
same height) the routine computes the top dimensional components of I n

using an algorithm of Eisenbud, Huneke and Vasconcelos [Eisenbud et al.
1992] (see Section 3).
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(5) If all else fails, the routine compares the radicals of a primary decomposition
of I n with the associated primes of I, and intersects the components corre-
sponding to minimal primes.

Whenever primary decomposition is computed, the package uses the existing
Macaulay2 routine for computing primary decompositions, which by default em-
ploys the Shimoyama–Yokoyama algorithm [1996] except when the given ideal
is monomial. However, note that finding primary decompositions is generally a
fairly slow process, and certainly slower than the first four strategies listed above.
Explicit experiments demonstrating that the first, third and fourth strategies outper-
form the last, even when factoring in the time needed to check their applicability,
are given in Examples 2.1, 2.2 and 2.4. For this reason, we avoid computing the
primary decomposition of I n whenever possible.

There is one notable exception to this philosophy: in the case when the primary
components of an ideal are complete intersections, the extra time spent comput-
ing a primary decomposition can be worth it (cf. Example 2.5). If the option
CIPrimes is set to true, then symbolicPower(I,n) outputs the intersection of
the n-th powers of the primary components of the input ideal I, if each of these
components is a complete intersection and they all have the same height. Using
the CIPrimes option computes the symbolic power much more quickly than the
other five strategies in cases when there are sufficiently many associated primes.

We compare below the running times of the various algorithms that we use for
computing symbolic powers in several examples. In the following, we denote the
first algorithm listed above by mon’l, the third by sat, the fourth by unmixed,
and the last by pdec.

Example 2.1. Set R = k[x, y, z], where k is a field of characteristic not equal to 2,
and

I = (x(y3
− z3), y(z3

− x3), z(x3
− y3))

is an ideal which has become known in the literature as a Fermat ideal. The table
below compares the running times in seconds for the algorithms pdec and sat
as well as the total running time for symbolicPower(I,5). Note that in this
example the symbolicPower method checks the hypotheses needed for applying
the saturation algorithms and then runs this routine:

pdec sat symbolicPower

running times for I (5) 4 0.036 0.040

Example 2.2. Set R= k[x1, x2, x3, x4, x5] and let I be the ideal generated by all the
squarefree monomials of degree 2 in R. The running times in seconds for the algo-
rithms pdec and mon’l are compared to the running time for symbolicPower(I,5)
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in the following table:

pdec mon’l symbolicPower

running times for I (5) 1.35 0.004 0.004

Example 2.3. Set R = k[x, y, z] and let I = (xy, xz, yz). In this example we
compare the mon’l and sat strategies, since both are applicable. The running
times in seconds for the algorithms pdec, sat and mon’l are compared to the
running time for symbolicPower, which also checks the applicability of the mon’l
strategy.

mon’l sat pdec symbolicPower

running times for I (5) 0.001 0.006 0.021 0.002

running times for I (10) 0.001 0.369 0.558 0.002

Example 2.4. Set R = k[x1, . . . , x12] and let I be the ideal generated by the 2× 2
minors of a generic 3× 4 matrix with entries the variables of R. The running times
in seconds for the algorithms unmixed and pdec are compared to the running time
for symbolicPower(I,5) in the following table:

unmixed pdec symbolicPower

running times for I (5) 3.970 44.538 4.231

This example shows that even including the overhead of checking that the ideal
above is height unmixed, the routine symbolicPower, which in this case uses
the unmixed strategy based on the method of Eisenbud, Huneke and Vasconcelos,
outperforms the pdec algorithms.

Example 2.5. Let I be the ideal of ten general points in P2. We illustrate the
computation times for the fifth symbolic powers of I with the option CIPrimes
turned on in comparison to the default strategy for this case, which is to use the
saturation algorithm.

CIPrimes sat symbolicPower

running times for I (5) 0.447 3.483 3.495

3. APPLICATIONS.

Methods based on a result of Eisenbud, Huneke, and Vasconcelos. We can iden-
tify the heights of all the associated primes of an ideal in a regular ring using the
following result:
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Theorem 3.1 [Eisenbud et al. 1992]. Given an ideal I in a regular domain R of
height h, then for each e > h, I has an associated prime of height e if and only if the
height of Exte(R/I, R) is e. In particular, the intersection of the top dimensional
components of I is given by Ann ExthR(R/I, R).

The already existing method topComponents, also based on this result, returns
the intersection of the primary components of minimal height of an ideal. In par-
ticular, if I has pure height h, then topComponents(I n) returns I (n). This is one
of the strategies used by the method symbolicPower.

Further, the SymbolicPowers.m2 package also includes the method bigHeight,
which computes the largest height of an associated prime of I, and the method
assPrimesHeight, which returns a list of all the heights of the associated primes
of I. Both of these are based on Theorem 3.1.

The method minimalPart returns the intersection of the minimal components
of a given ideal, which is in general different from topComponents. Instead of
explicitly finding the associated primes of I and taking their heights, Theorem 3.1
is used.

Equality. Symbolic powers do not, in general, coincide with the ordinary pow-
ers, even in the case of prime ideals. In fact, the question of characterizing the
ideals I for which I (n) = I n for all n is essentially open. One can determine
whether the n-th symbolic and ordinary powers of a given ideal coincide using
isSymbolicEqualOrdinary, often without computing the actual symbolic power
of I. For this, the package makes use of bigHeight. To determine whether
I (n) = I n for a specific value of n, isSymbolicEqualOrdinary first compares
the big heights of I n and I : if the big heights differ, then I n must have embedded
components, and isSymbolicEqualOrdinary returns false; if the big heights
are both equal to the height of I, then I n cannot have embedded components, and
isSymbolicEqualOrdinary returns true. This is faster than computing the set
of associated primes of I n. Using symbolicDefect, one can quantify the differ-
ence between I m and I (m) by computing the symbolic defect of I in the power m,
defined by Galetto, Geramita, Shin, and Van Tuyl in [Galetto et al. 2019] to be the
minimal number of generators of I (m)/I m.

The packing problem. Besides allowing the user to determine when I (n) = I n

holds without the need to explicitly compute I (n), the SymbolicPowers.m2 pack-
age also includes other methods that can be applied to this question. In particular,
the package includes methods related to the packing problem, which was origi-
nally formulated in the context of max-flow min-cut properties by Conforti and
Cornuéjols [1990]. Work of Gitler, Villarreal and others shows that this problem
can be rewritten as a conjectural characterization of the squarefree monomial ideals
having I (n) = I n for all n as those ideals that satisfy the packing property. The
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method isPacked determines if a given squarefree monomial ideal has this prop-
erty. In particular, should the packing problem have an affirmative answer, this
method could be used as a test for whether the equality I (n) = I n holds for all n.
For a quick survey on the packing problem, see [Dao et al. 2018].

The containment problem. The containment problem for ordinary and symbolic
powers of ideals consists of answering the following question: given an ideal I,
for which values of a and b does the containment I (a) ⊆ I b hold? Over a reg-
ular ring, a well known theorem of Ein, Lazersfeld and Smith [2001], Hochster
and Huneke [2002], and Ma and Schwede [2018] gives a partial answer to that
question: when I is a radical ideal, I (hn)

⊆ I n holds for all n, where h denotes
the big height of the ideal I. However, this is not necessarily best possible; see
[Szemberg and Szpond 2017] for a survey. Using containmentProblem, the user
can determine the smallest value of a, given b, for which I (a) ⊆ I b. Conversely,
using the option InSymbolic, the user can determine the largest value of b, given a,
for which I (a) ⊆ I b.

Example 3.2 (containment problem).

i1 : loadPackage "SymbolicPowers";
i2 : R=QQ[x,y,z];
i3 : I=ideal(x*(y^3-z^3),y*(z^3-x^3),z*(x^3-y^3));
o3 : ideal of R
i4 : containmentProblem(I,2)
o4 : 4
i6 : containmentProblem(I,5, InSymbolic=>true)
o6 : 3

The computation containmentProblem(I,2)=4 illustrated above should be inter-
preted as stating that I (4)⊆ I 2 and I (3) 6⊆ I 2, while we can interpret the computation
containmentProblem(I,5,InSymbolic=>true)=3 as stating that I (5)⊆ I 3 and
I (5) 6⊆ I 4.

Other applications. Some of the other methods in the package include special-
ized functionality for computations in positive characteristic and for computations
specific to ideals defining monomial curves.

The method symbolicPowerPrimePosChar gives another algorithm for com-
puting symbolic powers which is specific to working in prime characteristic p. This
method can be faster than the other algorithms for computing symbolic powers I (n)

for values of n very close to being a power of p, but not for general values of n.
For the special case of monomial curves k[ta1, . . . , tak ], both of the methods

symbolicPowerMonomialCurve and containmentProblemMonomialCurve es-
sentially run symbolicPower and containmentProblem.
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4. ASYMPTOTIC INVARIANTS. In an effort to make progress on the containment
problem, various asymptotic interpolation invariants have been proposed by Bocci
and Harbourne [2010]. One such invariant is the Waldschmidt constant for a homo-
geneous ideal I. This is an asymptotic measure of the initial degree of the symbolic
powers of I. The initial degree of a homogeneous ideal I is α(I )=min{d | Id 6= 0},
i.e., the smallest degree of a nonzero element in I. The Waldschmidt constant of I
is defined to be

α̂(I )= lim
m→∞

α(I (m))
m

.

Due to the asymptotic nature of the Waldschmidt constant, there is no a priori al-
gorithm to determine this invariant for arbitrary ideals, although the initial degrees
of individual symbolic powers can be computed using minDegreeSymbPower. An
important exception is the case when the ideal I is a monomial ideal. In this
context, the Waldschmidt constant can be computed as the smallest among the
sums of the coordinates of all points in a convex body termed the symbolic poly-
hedron of I [Cooper et al. 2017; Bocci et al. 2016]. Our package computes Wald-
schmidt constants of monomial ideals by finding their symbolic polyhedron. The
symbolicPolyhedron routine makes heavy use of the Polyhedra.m2 package
by René Birkner, which in turn relies on the FourierMotzkin.m2 package by
Greg Smith. This allows to determine the Waldschmidt constants of monomial
ideals exactly as in the following example.

Example 4.1 (Waldschmidt constant of monomial ideals).

i1 : loadPackage "SymbolicPowers";
i2 : R=QQ[x,y,z];
i3 : I=ideal(x*y,x*z,y*z);
i4 : symbolicPolyhedron(I)
o4 = {ambient dimension => 3 }

dimension of lineality space => 0
dimension of polyhedron => 3
number of facets => 6
number of rays => 3
number of vertices => 4

o4 : Polyhedron
i5 : waldschmidt I
Ideal is monomial, the Waldschmidt constant is computed exactly

3
o5 = -

2
o5 : QQ

In the case of arbitrary ideals, the Waldschmidt constant is approximated by
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taking the minimum of the values α(I (m))/m, where m ranges from 1 to a specified
optional input SampleSize.

Example 4.2 (Waldschmidt constant of arbitrary ideals).

i1 : loadPackage "SymbolicPowers";
i2 : R=QQ[x,y,z];
i3 : I=ideal(x*(y^3-z^3),y*(z^3-x^3),z*(x^3-y^3));
o3 : Ideal of R
i4 : waldschmidt I
Ideal is not monomial, the Waldschmidt constant is approximated
using first 5 powers.
o4 = 3
o4 : QQ

Note that the true value for the Waldschmidt constant of the above ideal is in-
deed 3 as proven in [Dumnicki et al. 2015]. In general, for an ideal that is not
monomial, the function waldschmidt will return an upper bound on the true value
of the Waldschmidt constant.

Another asymptotic invariant termed resurgence [Bocci and Harbourne 2010] is
defined as

ρ(I )= sup
{m

r |
I (m) 6⊆ I r

}
.

There are no algorithms known to date that compute resurgence exactly; therefore,
our package computes a lower bound for the resurgence by taking the maximum
of the values m

r , where r ranges from 1 to the optional input SampleSize.
Continuing with the ideal in the previous example, we compute a lower bound

on its resurgence using the default SampleSize, which is 5, and also a custom
SampleSize. As expected, the lower bound increases as the SampleSize is in-
creased, i.e., a larger SampleSize produces a better lower bound.

Example 4.3 (lower bound on resurgence).

i1 : loadPackage "SymbolicPowers";
i2 : R=QQ[x,y,z];
i3 : I=ideal(x*y,x*z,y*z);
i5 : lowerBoundResurgence(I)

6
o5 = -

5
o5 : QQ
i6 : lowerBoundResurgence(I,SampleSize=>10)

5
o6 = -

4
o6 : QQ



Drabkin, Grifo, Seceleanu and Stone :::: Calculations involving symbolic powers 79

ACKNOWLEDGMENTS. We would like to thank the organizers of the July 2017
Macaulay2 Workshop at the University of California, Berkeley, where a large por-
tion of this work was done. The code for computing the symbolic polyhedron
and Waldschmidt constant of a monomial ideal was developed by Seceleanu in
collaboration with Andrew Conner and Xuehua (Diana) Zhong. We thank them
for their contribution to these routines.

We also thank the anonymous referee for many helpful suggestions and com-
ments.

This research was partially supported by NSF grant DMS #1502282; we thank
Luis Núñez Betancourt and Craig Huneke for that support, and for organizing a
conference at the University of Virginia where part of this work took place. Sece-
leanu was supported by NSF grant DMS#1601024. Drabkin and Seceleanu were
supported by EPSCoR grant OIA–1557417.

SUPPLEMENT. Version 2.0 of SymbolicPowers.m2. is contained in the online
supplement.

REFERENCES.
[Bocci and Harbourne 2010] C. Bocci and B. Harbourne, “Comparing powers and symbolic powers

of ideals”, J. Algebraic Geom. 19:3 (2010), 399–417. MR Zbl
[Bocci et al. 2016] C. Bocci, S. Cooper, E. Guardo, B. Harbourne, M. Janssen, U. Nagel, A. Se-
celeanu, A. Van Tuyl, and T. Vu, “The Waldschmidt constant for squarefree monomial ideals”, J.
Algebraic Combin. 44:4 (2016), 875–904. MR Zbl

[Conforti and Cornuéjols 1990] M. Conforti and G. Cornuéjols, “A decomposition problem for bal-
anced matrices”, working paper 1990-10, Carnegie Mellon Univ., Tepper School of Business, 1990.

[Cooper et al. 2017] S. M. Cooper, R. J. D. Embree, H. T. Hà, and A. H. Hoefel, “Symbolic powers
of monomial ideals”, Proc. Edinb. Math. Soc. (2) 60:1 (2017), 39–55. MR Zbl

[Dao et al. 2018] H. Dao, A. De Stefani, E. Grifo, C. Huneke, and L. Núñez Betancourt, “Symbolic
powers of ideals”, pp. 387–432 in Singularities and foliations: geometry, topology and applications
(Salvador, Brazil, 2015), edited by R. N. Araújo dos Santos et al., Springer Proc. Math. Stat. 222,
Springer, 2018. MR Zbl

[Dumnicki et al. 2015] M. Dumnicki, B. Harbourne, U. Nagel, A. Seceleanu, T. Szemberg, and
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The gfanlib interface in Singular and its applications

ANDERS JENSEN, YUE REN AND HANS SCHÖNEMANN

ABSTRACT: We briefly report on SINGULAR’s low-level interface to GFANLIB: its usage on interpreter
level, its implementation using SINGULAR’s blackbox framework and two of its applications.

1. INTRODUCTION. SINGULAR [Decker et al. 2016] is a comprehensive computer algebra system for
polynomial computations with particular emphasis on applications in algebraic geometry, commutative
algebra and singularity theory. GFANLIB is a library derived from GFAN [Jensen 2011], a software
package for computing tropical varieties and Gröbner fans by the first author. The GFANLIB interface
allows SINGULAR users to work with polyhedral cones, polyhedral fans and operations thereon.

The goal of this paper is threefold: In Section 2, we provide an overview of the functionality in
GFANLIB and how it can be accessed in SINGULAR. In Section 3, we describe the blackbox-framework
in SINGULAR and illustrate how it can be used to introduce new types and functions to SINGULAR

using the GFANLIB interface as an example. In Section 4, we showcase two applications of GFANLIB,
demonstrating its use in high performance computations.

2. GFANLIB AND ITS INTERFACE IN SINGULAR. The class ZCone of GFANLIB encapsulates a rational
polyhedral cone built on CDDLIB [Fukuda 2016] with arbitrary precision integral normal vectors. A
ZCone object can be in one of four states (with an increasing level of knowledge), and it automatically
advances its state if necessary:

(0) Defining equations and inequalities are known.

(1) A basis for the orthogonal complement is known. Its cardinality equals the codimension of the cone.

(2) A minimal set of inequalities has been determined. Each inequality cuts out a facet of the cone.

(3) The equations and inequalities from (1) and (2) have been written in a unique canonical form. This
allows fast cone comparisons.

The class is accessible from SINGULAR as the type cone; see Figure 1. Cone A is defined as the
non-negative span of the row vectors of the matrix M , A = (R≥0)

4
·M , while cone B is defined by

considering the rows as inequalities, B = (R≥0)
2
·M t . In both cases the cones are stored with an outer

(H-) description, which means the first case requires a double description conversion. As a side effect,
the inequalities that are obtained through the conversion are indeed facet normals and they are therefore
marked as such.
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> LIB "gfan.lib";
> intmat M[4][2]=(1 ,0) ,

(1,1),(1,2),(1,3);
> cone A=coneViaPoints(M);
> A;
AMBIENT_DIM
2
FACETS
0, 1,
3,-1

> cone B=coneViaInequalities(M);
> B;
AMBIENT_DIM
2
INEQUALITIES
1,0,
1,1,
1,2,
1,3

Figure 1. A sample SINGULAR session using the type cone.

A ZFan class for representing polyhedral fans is provided. Cones can be inserted to such fan and
when that happens, all faces are implicitly regarded as being inserted too. The ZFan class allows for easy
conversion to ray incidence lists as in Figure 5.

Finally, the interface offers the possibility of computing mixed volume of Newton polytopes us-
ing [Jensen 2016], see Figure 2.

> LIB "gfan.lib";
> ring r=0,(x,y),dp;

> mixedVolume(list(x2y+1,xy2 +1));
3

Figure 2. An example of computing mixed volume in SINGULAR.

3. THE blackbox FRAMEWORK OF SINGULAR. Adding new data types and associated functions to
SINGULAR used to require changes in many places due to the static nature of its type system. This
process is now streamlined with the introduction of the type blackbox. An object of type blackbox
is a struct of function pointers as explained in the following subsection. This is largely equivalent
to defining new types as subclasses of an abstract class having the methods listed below being virtual,
thereby taking advantage of inheritance in C++. With our solution on the other hand, we have full control
and can add types at runtime as we like.

Adding new data types to SINGULAR. Data types governed by blackbox are represented by a pair: a
void* pointer to a call table, and an int serving as a unique type identifier. Registering a new type
begins with filling a struct with function pointers to the following functions, of which the latter five
are optional and come with preset defaults (see also Figure 3, lines 23–27):
(1) blackbox_Init: creates a default object
(2) blackbox_destroy: destroys an object (see Figure 3, lines 3–6)
(3) blackbox_Copy: copies an object (see Figure 3, lines 8–15)
(4) blackbox_String: converts an object to string
(5) blackbox_Print: prints an object (default: print conversion to string)
(6) blackbox_Assign: assign other types to object (default: raises error)
(7) blackbox_OpX: operations with object as first operand (default: raises error)
(8) blackbox_serialize: serialization for parallel computing (default: raises error)
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(9) blackbox_deserialize: deserialization (default: raises error)

Next, that struct plus the name of the new type has to be passed to setBlackboxStuff, which then
returns the unique type identifier (see Figure 3, line 31).

1 int coneID; // type identifier
2
3 void* bbcone_Init(blackbox* b)
4 {
5 return new gfan:: ZCone ();
6 }
7
8 char* bbcone_String(blackbox* b,
9 void* d)

10 {
11 gfan:: ZCone* zc =
12 (gfan::ZCone *) d;
13 string s = zc ->toString ();
14 return omStrDup(s.c_str ());
15 }

18 void mod_init(SModulFunctions* p)
19 {
20 blackbox *b =
21 (blackbox *) omAlloc0(sizeof (*b));
22
23 b->blackbox_Init=bbcone_Init;
24 b->blackbox_Copy=bbcone_Copy;
25 b->blackbox_Assign=bbcone_Assign;
26 b->blackbox_destroy=bbcone_Destroy;
27 b->blackbox_String=bbcone_String;
28
29 [...]
30
31 coneID=setBlackboxStuff(b,"cone");
32 }

Figure 3. blackbox wrapper for type gfan::ZCone.

Adding new functions to SINGULAR. Functions governed by blackbox require two leftv as input
and a BOOLEAN as ouput (see Figure 4). The first leftv represents the return value of the function
when called from the interpreter, the second leftv represents the input. The BOOLEAN that is returned
signals the interpreter whether an error occured during the function call. Objects of type leftv are
generic objects which can represent any object of any type that is available on the interpreter-level of
SINGULAR. The unique type identifier of the input can be seen by calling leftv->Typ(), while the
identifier of the output is to be stored in leftv->rtyp. The data of the input can be obtained by calling
leftv->Data(), and the data of the output is to be stored in leftv->data. Moreover, leftv->next
can be used to access the latter arguments of the input. It is set to NULL if the function has been called
with one argument. To make the function callable from the interpreter, iiAddCproc needs to be called
with:

(1) a string with the library containing documentation (empty string possible)

(2) a string with the desired function name on the interpreter level

(3) a BOOLEAN which marks the routine as static (TRUE) or global (FALSE)

(4) the function name on the kernel level

4. APPLICATIONS OF THE GFANLIB INTERFACE. In this section, we briefly present two applications of
SINGULAR’s low-level interface to GFANLIB based on the previously described blackbox framework.
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1 BOOLEAN facets(leftv res , leftv args)
2 {
3 if ((args != NULL) && (args ->Typ() == coneID) && (args ->next == NULL))
4 {
5 gfan:: ZCone* zc = (gfan:: ZCone*) args ->Data ();
6 gfan:: ZMatrix zm = zc ->getFacets ();
7 res ->rtyp = BIGINTMAT_CMD;
8 res ->data = (void*) zMatrixToBigintmat(zm); // conversion function
9 return FALSE;

10 }
11 WerrorS("facets:␣unexpected␣parameters");
12 return TRUE;
13 }
14 void bbcone_setup(SModulFunctions* p)
15 {
16 [...]
17 p->iiAddCproc("gfan.lib","facets",FALSE ,facets );
18 [...]
19 }

Figure 4. blackbox wrapper for function gfan::ZCone::getFacets().

Tropical varieties. Tropical geometry studies algebraic varieties based on what is commonly described
as their combinatorial shadow. These so-called tropical varieties are the supports of finite polyhedral
complexes.

Definition 1. Let K be a field with non-trivial valuation ν : K ∗→ R and residue field K. Fix a splitting
ν(K ∗)→ K ∗, writing ta when referring to the image of a ∈0ν . Given a polynomial f =

∑
α∈Nn cα · xα ∈

K [x] and an ideal I � K [x], we define for any weight vector w ∈ Rn:

inw( f )=
∑

w·α−ν(cα) max. t−ν(cα)cα · xα ∈ K[x] and inw(I )= 〈inw( f ) | f ∈ I 〉�K[x].

The tropical variety of I is then given by:

T (I )= {w ∈ Rn | inw(I ) monomial free}.

Computing tropical varieties is an algorithmically challenging task, requiring sophisticated techniques
from both computer algebra and convex geometry. The first techniques were developed for the field of
complex Puiseux series C{{t}} [Bogart et al. 2007], in which the authors exploited that its uniformizing
parameter t can be regarded as a variable of the polynomial ring, allowing them to rely on classical
Gröbner bases techniques. For more general fields with valuation, a new theory of Gröbner bases taking
the valuation on the field into account was introduced [Chan and Maclagan 2019].

In contrast, the implementation in SINGULAR is based on recent results [Markwig and Ren 2019],
which describe tropical varieties over valued fields K with tropical varieties over any dense subring of
the ring of integers OK ⊆ K . The practical advantage of this approach is that it is compatible with
existing standard bases techniques in SINGULAR.
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Example 2. Consider the ideal I := 〈x1− 2x2+ 3x3, 3x2− 4x3+ 5x4〉� Q[x1, . . . , x4] and the 2-adic
valuation on Q. Figure 5 shows input and output for computing the tropical variety in SINGULAR.

> LIB "tropical.lib";
> ring r = 0,x(1..4) ,dp; number p = 2;
> ideal I = x(1)+2*x(2) -3*x(3), 3*x(2) -4*x(3)+5*x(4);
> tropicalVariety(I,p);

RAYS MAXIMAL_CONES
-2 -1 1 -1 1\# 0 {0 1} \# Dimension 3
-1 1 -1 1 -1\# 1 {0 2}
0 -3 1 1 1\# 2 {0 4}
0 1 -3 1 1\# 3 {1 3}
0 1 1 -3 1\# 4 {1 5}
0 1 1 1 -3\# 5

Figure 5. SINGULAR output for Example 2.

The output is a polyhedral fan in R5 whose intersection with the affine hyperplane {e1 = 1} yields a
polyhedral complex covering the tropical variety. Hence the rays #2–#5 represent vertices at infinity so
that the last four maximal 2-dimensional cones are in fact unbounded edges; see Figure 6.

<

<

>

>

(1,−1, 1,−1)

1
2 (−1, 1,−1, 1)

(−3, 1, 1, 1)

(1, 1,−3, 1)

(1,−3, 1, 1)

(1, 1, 1,−3)

Figure 6. T (I ) for Example 2.

GIT-fans. GIT-fans describe the variation of possible GIT-quotients [Dolgachev and Hu 1998]. A case
of particular importance is the action of an algebraic torus on an affine variety, for which explicit algo-
rithms exist [Berchtold and Hausen 2006; Keicher 2012; Boehm et al. 2016]. All algorithms have been
implemented in the SINGULAR library gitfan.lib and are publicly available as part of the official
SINGULAR distribution.

Example 3. [Boehm et al. 2016, Example 5.2]
The Cox ring of Grass(2, 5) is isomorphic to C[T1, . . . , T10]/a, where the ideal a is generated by the
following Plücker relations and the (C∗)5 action on Grass(2, 5) is induced by the following grading
matrix Q with respect to which a is homogeneous:

T5T10− T6T9+ T7T8,

T1T9− T2T7+ T4T5,

T1T8− T2T6+ T3T5,

T1T10− T3T7+ T4T6,

T2T10− T3T9+ T4T8

Q :=


1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 1 0 0 0 –1 1 0 0
0 1 0 1 0 –1 0 0 1 0
0 0 1 1 –1 0 0 0 0 1
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The natural S5-symmetry on Grass(2, 5) acts, up to sign, as the following permutations on the variables:

S5 = 〈(2, 3)(5, 6)(9, 10), (1, 5, 9, 10, 3)(2, 7, 8, 4, 6)〉 ≤ S10.

The GIT-fan consists of 76 cones, which decompose into 6 orbits under the S5 action. Figure 7 shows
the computation of the GIT-fan without and with symmetry. The GIT-fan is generated by 76 maximal
cones, which decompose into 6 orbits under the group action.

> LIB "gitfan.lib";
> ring R = 0,T(1..10) ,dp;
> ideal J =
. T(5)*T(10)-T(6)*T(9)+T(7)*T(8),
. T(1)*T(9)-T(2)*T(7)+T(4)*T(5),
. T(1)*T(8)-T(2)*T(6)+T(3)*T(5),
. T(1)*T(10)-T(3)*T(7)+T(4)*T(6),
. T(2)*T(10)-T(3)*T(9)+T(4)*T(8);
> intmat Q[5][10] =
. 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
. 1, 0, 0, 0, 1, 1, 1, 0, 0, 0,
. 0, 1, 1, 0, 0, 0, -1, 1, 0, 0,
. 0, 1, 0, 1, 0, -1, 0, 0, 1, 0,
. 0, 0, 1, 1, -1, 0, 0, 0, 0, 1;
> list S5 = G25Action ();

> S5;
[1]:

| 1 2 3 4 5 6 7 8 9 10|
[...]
[120]:

| 1 2 3 4 5 6 7 8 9 10|
| 10 9 7 4 8 6 3 5 2 1|

> fan SigmaIgnoringSymmetry =
. GITfan(J,Q);
> fVector(SigmaIgnoringSymmetry );
1 ,20 ,110 ,240 ,225 ,76
> fan SigmaModuloSymmetry =
. GITfan(J,Q,S5);
> fVector(SigmaModuloSymmetry );
1,16,56,67,33,6

Figure 7. SINGULAR input and output for Example 3.

Figure 8 shows the adjacency graph of the maximal cones and their S5 orbits.

Figure 8. Adjacency graph of the maximal cones in the GIT-fan of Grass(2, 5) and of
their S5-orbits.

SUPPLEMENT. The online supplement contains source code for the GFANLIB interface to SINGULAR.

http://msp.org/jsag/2019/9-1/jsag-v9-n1-x10-gfanlib-interface-JSAG.zip
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