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ABSTRACT: We give an overview of the Macaulay2 package Matroids.m2,
which introduces functionality to create and compute with matroids into Macaulay2.
Examples highlighting the use of many functions in the package are provided,
including applications of matroids to other areas.

INTRODUCTION. A matroid is a combinatorial object which abstracts the notions
of (linear algebraic, graph-theoretic) independence. Since their introduction by
Whitney [1935], matroids have found diverse applications in combinatorics, graph
theory, optimization, and algebraic geometry, in addition to being studied as inter-
esting objects in their own right.

We describe here the Macaulay2 package Matroids.m2, which is available at
https://github.com/jchen419/Matroids-M2. For the reader already familiar with
matroids, it provides capabilities to form matroids from a matrix, graph, or ideal;
convert between various representations of matroids; create and detect existence
of minors; compute Tutte polynomials and Chow rings; as well as applications of
matroids to polyhedral and algebraic geometry, commutative algebra, optimization,
and even group theory. Each will in turn be illustrated with examples. Virtually all
notation and results mentioned below can be found in [Oxley 2011].

One striking feature of matroids is the multitude of distinct ways to define them.
This variety of equivalent — or cryptomorphic — ways to characterize matroids is
a great strength of matroid theory, and one of the reasons for its ubiquity. From
the perspective of this package, the key definition is via bases:

Definition. Let E be a finite set, and ∅ 6= B ⊆ 2E a set of subsets of E . The
pair (E,B) is a matroid if for any B1, B2 ∈ B and b1 ∈ B1 \ B2, there exists
b2 ∈ B2 \ B1 with B1 \ {b1} ∪ {b2} ∈ B.

The set E is called the ground set of the matroid M = (E,B), and B is the set of
bases of M. All bases have the same cardinality, called the rank of M . Any subset
of a basis is an independent set. A subset of E that is not independent is dependent.
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The minimal (with respect to inclusion) dependent sets are circuits. It is easy to
see that any of bases, independent sets, dependent sets, and circuits determines
the others.

As any subset of an independent set is independent, the set of independent sets
of a matroid forms a simplicial complex on E , called the independence complex
of M, denoted by 1M . Via Stanley–Reisner theory, 1M corresponds to a squarefree
monomial ideal I1M :=

〈∏
i∈C xi | C circuit

〉
, inside a polynomial ring k[xi | i ∈ E]

(since faces of 1M are independent sets, the minimal nonfaces are precisely the
minimal dependent sets, i.e., circuits). We call I1M the (circuit) ideal of M : in-
ternally, many algorithms in this package work directly with this ideal, to exploit
Macaulay2’s facility with monomial ideals.

A FIRST EXAMPLE. The most basic way to create a matroid is by specifying the
ground set and list of bases:
i1 : needsPackage "Matroids";

i2 : M = matroid({a,b,c,d},{{a,b},{a,c}})

o2 = a matroid of rank 2 on 4 elements

o2 : Matroid

This creates a matroid of rank 2 on the ground set {a, b, c, d} with two bases. We can
peek at the matroid to see more of its internal structure:
i3 : peek M

o3 = Matroid{bases => {set {0, 1}, set {0, 2}}}

cache => CacheTable{...2...}

groundSet => set {0, 1, 2, 3}

rank => 2

Two things should be noticed: first, groundSet is a set of integers {0, . . . , 3} (instead
of the given list {a, b, c, d}). Second, the bases consist of a list of subsets of groundSet.
This convention is by design: internally, the ground set is always identified with the
set {0, . . . , |E | − 1}, and all sets associated to the structure of the matroid are subsets
of the ground set. One should think of the integers in groundSet as indices of the actual
elements, so 0 is the index of the first element (in this case a), 1 is the index of the second
element, etc.

The actual elements of the user-inputted ground set are not lost though; they have been
cached in the CacheTable, and can be accessed by using indices as subscripts on M, or all
at once with an asterisk:
i4 : (M_3, M_{0,1}, M_(set{1,2}), M_*)

o4 = (d, {a, b}, {b, c}, {a, b, c, d})

So far, no attempt has been made to check that M is actually a matroid. We verify this
now using the method isWellDefined (which internally checks the circuit elimination
axiom), and also give a nonexample.
i5 : (isWellDefined M, isWellDefined matroid({a,b,c,d},{{a,b},{c,d}}))

o5 = (true, false)
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We can obtain plenty of matroid-theoretic information for this example. Recall:

Definition. A loop in M is a 1-element circuit, and a coloop in M is an element contained
in every basis. For A ⊆ E , the rank of A is the size of the largest independent subset of A,
and the closure of A is A := {x ∈ E | rank(A) = rank(A ∪ {x})}. A flat of M is a closed
subset, i.e., A = A. A hyperplane of M is a flat of rank equal to rank M − 1.
i6 : (rank M, rank(M, set{0,3}))

o6 = (2, 1)

i7 : (circuits M, independentSets(M, 1))

o7 = ({set {1, 2}, set {3}}, {set {0}, set {1}, set {2}})

i8 : (loops M, coloops M, closure(M, set{2,3}), hyperplanes M)

o8 = ({3}, {0}, set {1, 2, 3}, {set {0, 3}, set {1, 2, 3}})

i9 : flats M -- sorted by increasing size

o9 = {set {3}, set {0, 3}, set {1, 2, 3}, set {0, 1, 2, 3}}

i10 : fVector M -- number of flats of rank i, for 0 <= i <= rank M

o10 = HashTable{0 => 1}

1 => 2

2 => 1

CONSTRUCTING TYPES OF MATROIDS. The simplest family of matroids is the family
of uniform matroids, where the set of bases equals all subsets of a fixed size:
i11 : U = uniformMatroid(2,4); bases U

o12 = {set {0, 1}, set {0, 2}, set {1, 2}, set {0, 3}, set {1, 3}, set {2, 3}}

Another family of fundamental importance is the class of linear matroids, which arise
naturally from a matrix. The columns of the matrix form the ground set, and a set of
column vectors is declared independent if they are linearly independent in the vector space
spanned by the columns.
i13 : A = matrix{{0,4,-1,6},{0,2/3,7,1}},; MA = matroid A; representationOf MA

o15 = | 0 4 -1 6 |

| 0 2/3 7 1 |

An abstract matroid M is called representable or realizable over a field k if M is isomor-
phic to a linear matroid over k, where an isomorphism of matroids is a bijection between
ground sets that induces a bijection on bases. We verify that the matroid M we started with
is isomorphic to M A, hence is representable over Q:
i16 : areIsomorphic(M, MA)

o16 = true

A matroid can also be constructed by specifying its circuit ideal, which we do for the
same M above. Here two matroids are considered equal if they have the same set of bases
and same size ground sets; or, equivalently, the identity permutation is an isomorphism
between them.
i17 : R = QQ[x,y,z,w]; MI = matroid ideal(y*z, w)

o18 = a matroid of rank 2 on 4 elements

i19 : M == MI

o19 = true
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An important class of representable matroids (over any field) is the class of graphic ma-
troids, derived from a graph. If G is an (undirected) graph, then the graphic matroid M(G)

has ground set equal to the edge set of G, and circuits given by cycles in G, including loops
and parallel edges.
i20 : K5 = completeGraph 5; M5 = matroid K5

o21 = a matroid of rank 4 on 10 elements

i22 : #bases M5 -- == n^(n-2) for M(K_n), by Cayley’s theorem

o22 = 125

In this package, the graphic matroid is created by specifying circuits. This can be done
for an abstract matroid as well, using the optional argument EntryMode => "circuits"
in the constructor function. Regardless of the value of EntryMode, the bases are automat-
ically computed upon creation. We recreate the matroid M from before, by specifying its
circuits (note the similarity with specifying the circuit ideal):
i23 : M == matroid({a,b,c,d},{{b,c},{d}}, EntryMode => "circuits")

o23 = true

Certain common matroids are close to uniform, in the sense that relatively few subsets
of size rank M are dependent, so the set of nonbases (= dependent sets of size rank M) can
also be specified:
i24 : nb = {{0,2,4},{1,3,4},{1,2,5},{0,3,5},{0,1,6},{2,3,6},{4,5,6}}/set;

i25 : F7 = matroid(toList(0..6), nb, EntryMode => "nonbases")

o25 : a matroid of rank 3 on 7 elements

i26 : (#bases F7, #circuits F7)

o26 = (28, 14)

A few specific matroids of theoretical importance are also built-in. Currently these are
F7, F−7 , V8, V+8 , AG(3, 2), R10, and the Pappus and non-Pappus matroids. A library of all
matroids on up to eight elements is included as well:
i27 : F7 == specificMatroid "fano"

o27 = true

i28 : L7 = allMatroids 7 -- non-isomorphic matroids on 7 elements

o28 = {a matroid of rank 0 on 7 elements, a matroid of rank 1 on 7 elements, ...

i29 : (#L7, #flatten apply(6, allMatroids))

o29 = (306, 70)

One can also construct a new matroid from smaller ones by taking direct sums: if M1 =

(E1,B1), M2 = (E2,B2) are matroids, then their direct sum is

M1⊕M2 := (E1 t E2, {B1 t B2 | B1 ∈ B1, B2 ∈ B2}).

A matroid that cannot be written as a direct sum of nonempty matroids is called connected.
Every matroid is a direct sum of connected matroids, its connected components, which are
unique up to rearrangement:
i30 : S = U ++ matroid completeGraph 3

o30 = a matroid of rank 4 on 7 elements
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i31 : C = components S

o31 = {a matroid of rank 2 on 4 elements, a matroid of rank 2 on 3 elements}

i32 : S == C#0 ++ C#1 and C#0 == U and C#1 == matroid completeGraph 3

o32 = true

DUALITY AND MINORS. One of the most important features of matroid theory is the
existence of a duality. It is straightforward to check that if M = (E,B) is a matroid, then
{E \ B | B ∈ B} is the set of bases of a matroid on E , called the dual matroid of M, denoted
by M∗.
i33 : D = dual M; (bases M, bases D)

o34 = ({set {0, 1}, set {0, 2}}, {set {2, 3}, set {1, 3}})

i35 : M == dual D

o35 = true

Virtually any matroid-theoretic property or operation can be enriched by considering
its dual version — for instance, loops of M∗ are coloops of M, and circuits of M∗ are
complements of hyperplanes of M (this is in fact how the method hyperplanes works).
Another operation is deletion, which dualizes to contraction:

Definition. Let M = (E,B) be a matroid, and S ⊆ E . The restriction of M to S, de-
noted M |S , is the matroid on S with bases {B ∩ S | B ∈ B, |B ∩ S| = rank S}. The
deletion of S, denoted M \ S, is the restriction of M to E \ S. The contraction of M
by S, denoted M/S, is defined as (M∗ \ S)∗.

i36 : N1 = M \ set{3}; (N1_*, bases N1)

o37 = ({a, b, c}, {set {0, 1}, set {0, 2}})

i38 : N2 = M / set{1}; (N2_*, bases N2)

o39 = ({a, c, d}, {set {0}})

A minor of M is any matroid which can be obtained from M by a sequence of deletions
and contractions. It is a fact that any minor of M is of the form (M/X) \ Y for disjoint
subsets X, Y ⊆ E .
i40 : minorM5 = minor(M5, set{9}, set{3,5,8}) -- contracts {9}, then deletes {3,5,8}

o40 = a matroid of rank 3 on 6 elements

i41 : (minorM5_*, #bases minorM5)

o41 = ({set {0, 1}, set {0, 2}, set {0, 3}, set {1, 2}, set {1, 4}, set {2, 3}}, 16)

Minors can be used to describe many important classes of matroids. For example, a class
M of matroids is said to be minor-closed if every minor of a matroid in M is again in M.
The classes of uniform, k-representable (for any field k), and graphic matroids are all minor-
closed. Various classes of matroids can be characterized by their forbidden or excluded
minors: namely the matroids not in the class, but with every proper minor in the class.

Theorem 1 (Tutte 1958a; 1958b; 1959). Let M be a matroid. We denote by U2,4 the
uniform matroid of rank 2 on 4 elements, and by F7 the Fano matroid.

(i) M is binary (= representable over F2) if and only if M has no U2,4 minor (i.e., no
minor of M is isomorphic to U2,4).
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(ii) M is regular (= representable over any field) if and only if M has no U2,4, F7, or F∗7
minor.

(iii) M is graphic if and only if M has no U2,4, F7, F∗7 , M(K5)
∗, or M(K3,3)

∗ minor.

We illustrate this by verifying that M(K5) is regular (alternatively, note that for any
graph G, the signed incidence matrix of any orientation of G represents M(G) over any field):
i42 : any({U, F7, dual F7}, forbidden -> hasMinor(M5, forbidden))

o42 = false

Every minor of M is in fact of the form (M/I ) \ I ∗, where I, I ∗ are disjoint, I is
independent, and I ∗ is coindependent (= independent in M∗). Such a minor has rank equal
to that of M/I , which is equal to rank M−|I |. Thus checking existence of a minor N in M
can be realized as a two-step process, where the first step contracts independent sets of M
of a fixed size down to the rank of N, and the second step deletes coindependent sets down
to the size of N.
i43 : M4 = matroid completeGraph 4; hasMinor(M5, M4)

o44 = true

i45 : minorM5 == M4

o45 = true

Finally, the Tutte polynomial TM(x, y) of a matroid is an invariant which is universal
with respect to satisfying a deletion-contraction recurrence. It is a bivariate polynomial
over Z which can be defined by the relation

TM(x, y)= TM\e(x, y)+ TM/e(x, y), e ∈ E not a loop or coloop,

with the initial condition TM(x, y)= xa yb if M consists of a coloops and b loops. Any nu-
merical invariant of matroids which satisfies a (weighted) deletion-contraction recurrence
is an evaluation of the Tutte polynomial, up to a scale factor. For instance, the number of
bases is equal to TM(1, 1):
i46 : tuttePolynomial M5

6 5 4 3 4 3 2 2 3 2 2
o46 = y + 4y + x + 5x*y + 10y + 6x + 10x y + 15x*y + 15y + 11x + 20x*y + 15y · · ·

i47 : tutteEvaluate(M5, 1, 1)

o47 = 125

For graphic matroids, the Tutte polynomial contains a wealth of information about the
graph; e.g., the Tutte polynomial specializes to the chromatic polynomial. Even evaluations
at specific points contain nontrivial information: e.g., TM(G)(2, 1) counts the number of
spanning forests in G, and TM(G)(2, 0) counts the number of acyclic orientations of G.
i48 : (tutteEvaluate(M5, 2, 1), tutteEvaluate(M5, 2, 0), factor chromaticPolynomial K5)

o48 = (291, 120, (x)(x - 4)(x - 3)(x - 2)(x - 1))

CONNECTIONS. We now present some connections of matroids to other areas of math-
ematics. First, polyhedral geometry: let M = ([n],B) be a matroid on {1, . . . , n}. In
Euclidean space Rn with standard basis {e1, . . . , en}, define the matroid polytope PM by
taking the convex hull of the indicator vectors of the bases of M :
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PM := conv
(∑

i∈B

ei | B ∈ B
)

.

The matroid polytope can be created as follows:
i49 : needsPackage "Polyhedra"; P = convexHull basisIndicatorMatrix M4

o50 = {ambient dimension => 6 }

dimension of lineality space => 0

dimension of polyhedron => 5

number of facets => 16

number of rays => 0

number of vertices => 16

o50 : Polyhedron

A theorem of Gelfand, Goresky, MacPherson, and Serganova [Gelfand et al. 1987] clas-
sifies the subsets B ⊆ 2[n] which are the bases of a matroid on [n] in terms of the polytope
PM .

Next is optimization: let E be a finite set, and I ⊆ 2E a set of subsets that is downward
closed: if X ∈ I and Y ⊆ X, then Y ∈ I. Let w be a weight function on E , i.e., a function
w : E → R, extended to w : 2E

→ R by setting w(X) :=
∑

x∈X w(x). Consider the
optimization problem (∗) of finding a maximal member of I of maximum weight, with
respect to w. One attempt to solve (∗) is to apply the greedy algorithm: namely, after
having already selected elements {x1, . . . , xi }, choose an element xi+1 ∈ E of maximum
weight such that {x1, . . . , xi , xi+1} ∈ I, and repeat. It turns out that the greedy algorithm
will work if and only if I is the set of independent sets of a matroid:

Theorem 2 [Borůvka 1926]. Let E be a finite set, and I ⊆ 2E. Then I is the set of
independent sets of a matroid on E if and only if I is downward closed and for all weight
functions w : E→ R, the greedy algorithm successfully solves (∗).

A solution to (∗) provided by the greedy algorithm can be obtained using the method
maxWeightBasis (the weight function w is specified by its list of values on E):
i51 : w = {0, log(2), 4/3, 1, -4, 2, pi_RR}; maxWeightBasis(F7, w)

o52 = set {3, 5, 6}

Another application to optimization comes from the operation of matroid union: if
M1, M2 are matroids with independent sets I1, I2, then the independent sets of the union
are of the form I1 ∪ I2, where I1 ∈ I1, I2 ∈ I2 (and thus coincides with the direct sum if the
ground sets are disjoint).
i53 : matroid({a,b,c,d}, {{a},{b},{c}}) + matroid({a,b,c,d}, {{b},{c},{d}}) == U

o53 : true

i54 : F7 + F7 == uniformMatroid(6, 7)

o54 : true

Matroid union is an important operation in combinatorial optimization, and is closely
related to transversal and matching problems: a matroid is transversal if and only if it is a
union of rank 1 matroids, and gammoids (a class of matroids defined from vertex paths in
directed graphs) are the minor-closure of the transversal matroids.
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One can also find connections to group theory via the method getIsos, which com-
putes all isomorphisms between two matroids. Many interesting groups can be realized as
automorphism groups of small matroids:
i55 : aut = getIsos(F7, F7)

o55 : {{0, 1, 2, 3, 4, 5, 6}, {1, 0, 2, 3, 4, 6, 5}, {0, 2, 1, 3, 5, 4, 6}, {2, 0, 1, ...

i56 : #aut

o56 : 168

The above output is an explicit permutation representation of Aut(P2
F2

) = PGL(3, F2)

as a subgroup of S7. For a larger example, the automorphism group of the Steiner system
S(5, 6, 12) is the Mathieu group M12, a sporadic simple group of order 95040= 26

·33
·5·11.

This in turn is also equal to the automorphism group of the realizable matroid associated
to a particular 6 × 12 matrix over F3 ([Oxley 2011], p. 367), and a high-performance
computing cluster took just under 2 hours to compute the entire permutation representation
of this group inside S12.

For an application to commutative algebra: matroids are closely related to the Cohen–
Macaulay property, for symbolic powers of squarefree monomial ideals. Indeed, from
[Terai and Trung 2012] we know that if I is a squarefree monomial ideal, then I is the
circuit ideal of a matroid if and only if every symbolic power I (n) is Cohen–Macaulay, for
n ≥ 1 (in fact, this is equivalent to requiring just I (3) to be Cohen–Macaulay). As one can
quickly check whether an ideal is the ideal of a matroid, this can give a quick proof that a
particular symbolic power is Cohen–Macaulay:
i57 : M6 = matroid completeGraph 6; L = (irreducibleDecomposition ideal M6)/(P -> P^3);

i59 : try ( alarm 10; I3 = intersect L; ) -- doesn’t finish in 10 seconds

i60 : time isWellDefined M6

-- used 0.359306 seconds

o60 : true

Last but not least is algebraic geometry; in particular the emerging field of combinatorial
Hodge theory. For a matroid M on ground set E with no loops, one can define a Chow ring
associated to M : for a field k, set

R := k[xF | F proper, nonempty flat]/(I1+ I2),

I1 :=

(∑
i1∈F

xF −
∑
i2∈F

xF

∣∣∣ i1, i2 ∈ E distinct
)
,

I2 := (xF xF ′ | F, F ′ incomparable),

where F, F ′ run over all nonempty proper flats of M. Then R is a standard graded Artinian
k-algebra of Castelnuovo–Mumford regularity r := rank M − 1. A result of Adiprasito,
Katz, and Huh [Adiprasito et al. 2018] states that R is a Poincaré duality algebra (in
particular, is Gorenstein) and has the strong Lefschetz property: for general l ∈ R1 and
j ≤ r/2, multiplication by lr−2 j is an isomorphism R j −→

∼ Rr− j . We illustrate the Goren-
stein property for the Vamos matroid (which is a smallest matroid not realizable over any
field), and conclude by computing the dual socle generator or volume polynomial (which
generates the Macaulay inverse system of R) for M(K4):
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i61 : V = specificMatroid("vamos"); (rank V, #V.groundSet, #bases V, #flats V)

o62 = (4, 8, 65, 79)

i63 : I = idealChowRing V; apply(0..<rank V, i -> hilbertFunction(i, I))

o63 : Ideal of QQ[x , x , x , x , x , x , x , x , x , x , ...
{7} {6} {5} {4} {3} {0} {2} {1} {6, 7} {5, 7}

o64 = (1, 70, 70, 1)

i65 : cogeneratorChowRing M4

2 2 2 2 2 2
o65 = 2t + 2t + 2t + 2t + 2t + 2t - 2t t - 2t t + ...

{5} {4} {3} {2} {1} {0} {5} {0, 5} {0} {0, 5}
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