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ABSTRACT: We describe the main functions of the Macaulay2 package
Quasidegrees.m2. The purpose of this package is to compute the quasi-
degree set of a finitely generated Zd -graded module presented as the cokernel
of a monomial matrix. We provide examples with motivation coming from
A-hypergeometric systems.

1. INTRODUCTION. Throughout, R = k[x1, . . . , xn] is a Zd -graded polynomial
ring over a field k and m= 〈x1, . . . , xn〉 denotes the homogeneous maximal ideal
in R. Let M =

⊕
β∈Zd Mβ be a Zd -graded R-module. The true degree set of M is

tdeg(M)= {β ∈ Zd
| Mβ 6= 0}.

The quasidegree set of M, denoted qdeg(M), is the Zariski closure in Cd of tdeg(M).
The purpose of the Macaulay2 package Quasidegrees.m2 (provided as an

online supplement) is to compute the quasidegree set of a finitely generated Zd-
graded module presented as the cokernel of a monomial matrix. By a monomial
matrix, we mean a matrix where each entry is either zero or a monomial in R. The
initial motivation for Quasidegrees.m2 was to compute the quasidegree sets of
certain local cohomology modules supported at m of Zd-graded R-modules, so
there are some methods in the package specific to local cohomology. Recall that
the i -th local cohomology module of M with support at the ideal I ⊂ R is the i-th
right derived functor of the left exact I -torsion functor

0I (M)= {m ∈ M | I t m = 0 for some t ∈ N}

on the category of R-modules.
By the vanishing theorems of local cohomology [Eisenbud 1995], the quasi-

degree sets of the local cohomology modules supported at m of M can be seen
as measuring how far the module is from being Cohen–Macaulay. From the A-
hypergeometric systems point of view, the quasidegree set of the non-top local
cohomology modules supported at m of R/IA, where IA is the toric ideal associated
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to A in R, determine the parameters β where the A-hypergeometric system HA(β)

has rank higher than expected (see Section 3).

2. QUASIDEGREES. The main function of Quasidegrees.m2 is quasidegrees,
which computes the quasidegree set of a module that is presented by a monomial
matrix.

We use the idea of standard pairs of monomial ideals to compute the quasidegree
set of a Zd -graded R-module. Given a monomial xu and a subset Z ⊂ {x1, . . . , xn},
the pair (xu, Z) indexes the monomials xu

· xv where supp(xv) ⊂ Z. A standard
pair of a monomial ideal I ⊂ R is a pair (xu, Z) satisfying:

(1) supp(xu)∩ Z =∅.

(2) All of the monomials indexed by (xu, Z) are outside of I.

(3) (xu, Z) is maximal in the sense that (xu, Z) * (xv, Y ) for any other pair
(xv, Y ) satisfying the first two conditions.

To compute the quasidegree set of M we first find a monomial presentation of M
so that M is the cokernel of a monomial matrix φ. We then compute the standard
pairs of the ideals generated by the rows of φ and to each standard pair we associate
the degrees of the corresponding variables. Algorithm 1 below is implemented in
Quasidegrees.m2. The input is an R-module presented by a monomial matrix

φ : Rs
→ Rt.

As in Macaulay2, we write the degree of the k-th factor of Rt next to the k-th row
of the matrix φ.

In the Macaulay2 implementation of the algorithm, we represent the output as a
list of pairs (u, Z) with u ∈Qd and Z ⊂Qd , where the pair (u, Z) represents the
plane

u+
∑
v∈Z

C · v.

Input: R-module M presented by monomial matrix φ = αi [c j,k xu j,k ] : Rs
→ Rt

Output: qdeg(M)

Q =∅
for 1≤ k ≤ t do

S P = {standard pairs of 〈ck,1xuk,1, ck,2xuk,2, . . . , ck,s xuk,s 〉}

Q = Q ∪ {deg(xu)+αk +
∑

xi∈F C · deg(xi ) | (xu, Z) ∈ S P}
end for
return Q

Algorithm 1. Compute qdeg(M).
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The union of these planes over all such pairs in the output is the quasidegree set
of M.

The following is an example of Quasidegrees.m2 computing the quasidegree
set of an R-module:

i1 : R=QQ[x,y,z]
o1 = R
o1 : PolynomialRing
i2 : I=ideal(x*y,y*z)
o2 = ideal (x*y, y*z)
o2 : Ideal of R
i3 : M=R^1/I
o3 = cokernel | xy yz |

1
o3 : R-module, quotient of R
i4 : Q = quasidegrees M
o4 = {{0, {| 1 |}}, {0, {| 1 |, | 1 |}}}
o4 : List

The above example displays a caveat of quasidegrees in that there may be
some redundancies in the output. By a redundancy, we mean when one plane in
the output is contained in another. The redundancy above is clear:

qdeg(k[x, y, z]/〈xy, yz〉)= C= {z1+ z2 ∈ C | z1, z2 ∈ C}.

The function removeRedundancy gets rid of redundancies in the list of planes:

i5 : removeRedundancy Q
o5 = {{0, {| 1 |, | 1 |}}}
o5 : List

3. QUASIDEGREES AND HYPERGEOMETRIC SYSTEMS. In this section, we dis-
cuss the motivation for Quasidegrees.m2 and the methods therein which aid us
in our studies. Let A = [a1 a2 · · · an] be an integer (d×n)-matrix with ZA = Zd

and such that the cone over its columns is pointed. There is a natural Zd-grading
of R by the columns of A given by deg(x j )= a j , the j -th column of A. A module
that is homogeneous with respect to this grading is said to be A-graded. By the
assumptions on A, R is positively graded by A, that is, the only polynomials of
degree 0 are the constants. Given such a matrix A and a polynomial ring R in n
variables, the method toGradedRing gives R an A-grading. For example, let

A =

1 1 1 1 1
0 0 1 1 0
0 1 1 0 −2

.
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We make the A-graded polynomial ring Q[x1, x2, x3, x4, x5]:

i6 : A=matrix{{1,1,1,1,1},{0,0,1,1,0},{0,1,1,0,-2}}
o6 = | 1 1 1 1 1 |

| 0 0 1 1 0 |
| 0 1 1 0 -2 |

3 5
o6 : Matrix ZZ <--- ZZ
i7 : R=QQ[x_1..x_5]
o7 = R
o7 : PolynomialRing
i8 : R=toGradedRing(A,R)
o8 = R
o8 : PolynomialRing
i9 : describe R
o9 = QQ[x , x , x , x , x , Degrees => {{1}, {1}, {1}, {1}, {1 }},

1 2 3 4 5 {0} {0} {1} {1} {0 }
{0} {1} {1} {0} {-2}

Heft=>{1, 2:0},MonomialOrder=>{MonomialSize=>32},DegreeRank=>3]
{GRevLex=>{5:1}}
{Position=>Up}

The toric ideal associated to A in R is the binomial ideal

IA = 〈xu
− xv

: Au = Av〉.

The method toricIdeal computes the toric ideal associated to A in the ring R.
We continue with the A and R from the above example and compute the toric ideal
IA associated to A in R:

i10 : I=toricIdeal(A,R)
2 2 2 3 2

o10 = ideal (x x - x x , x x - x x , x x - x x x , x - x x )
1 3 2 4 1 4 3 5 1 4 2 3 5 1 2 5

o10 : Ideal of R

We now introduce A-hypergeometric systems. Given a matrix A∈Zd×n as above
and a β∈Cd, the A-hypergeometric system with parameter β∈Cd [Saito et al. 2000],
denoted HA(β), is the system of partial differential equations:

∂ |v|

∂xv
φ(x)=

∂ |u|

∂xuφ(x) for all u, v, Au = Av,

n∑
j=1

ai j x j
∂

∂x j
φ(x)= βiφ(x), for i = 1, . . . , d.



Barrera :::: Computing quasidegrees of A-graded modules 33

Such systems are sometimes called GKZ-hypergeometric systems. The function
gkz in the Macaulay2 package Dmodules computes this system as an ideal in the
Weyl algebra. The rank of HA(β) is

rank(HA(β))= dimC

{
germs of holomorphic solutions of HA(β)

near a generic nonsingular point

}
.

The function holonomicRank in Dmodules computes the rank of an A-hyper-
geometric system. In general, rank is not a constant function of β. Denote vol(A) to
be d! times the Euclidean volume of conv(A∪{0}), the convex hull of the columns
of A and the origin in Rd. The following theorem gives the parameters β for which
rank(HA(β)) is higher than expected:

Theorem 3.1 [Matusevich et al. 2005]. Let HA(β) be an A-hypergeometric system
with parameter β. If β ∈ qdeg(

⊕d−1
i=0 H i

m(R/IA)) then rank(HA(β)) > vol(A).
Otherwise, rank(HA(β))= vol(A).

Since Theorem 3.1 was the initial motivation for Quasidegrees.m2, the pack-
age has a method quasidegreesLocalCohomology (abbreviated qlc) to com-
pute the quasidegree set of the local cohomology modules H i

m(R/IA). If the input
is an integer i and the R-module R/IA, then the method computes qdeg(H i

m(R/IA)).
If the input is only the module R/IA, the method computes the quasidegree set in
Theorem 3.1.

We use graded local duality to compute the local cohomology modules of a
finitely generated A-graded R-module supported at the maximal ideal m:

Theorem 3.2 (graded local duality [Bruns and Herzog 1993; Miller 2002]). Given
an A-graded R-module M, there is an A-graded vector space isomorphism

Extn−i
R (M, R)α ∼= Homk(H i

m(M)−α−εA , k),

where m= 〈x1, . . . , xn〉 and εA =
∑n

j=1 a j .

The algorithm implemented for quasidegreesLocalCohomology is essentially
Algorithm 1 applied to the Ext-modules of M with the additional twist of εA coming
from local duality. For our purposes, we exploit the fact that the higher syzygies
of R/IA are generated by monomials in Rm (see [Miller and Sturmfels 2005],
Chapter 9).

Continuing our running example, we use quasidegreesLocalCohomology to
compute the quasidegree set of

⊕d−1
i=0 H i

m(R/IA):

i11 : M=R^1/I
o11 = cokernel | x_1x_3-x_2x_4 x_1x_4^2-x_3^2x_5
x_1^2x_4-x_2x_3x_5 x_1^3-x_2^2x_5 |

1
o11 : R-module, quotient of R
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i12 : quasidegreesLocalCohomology M
o12 = {{| 0 |, {| 1 |}}}

| 0 | | 0 |
| 1 | | -2 |

o12 : List

Thus

qdeg
(d−1⊕

i=0

H i
m(R/IA)

)
=

0
0
1

+C ·

 1
0
−2

 . (1)

As a check, we use the methods gkz and holonomicRank from the package
Dmodules to compute rank(HA(0)) and rank(HA(β)) for two different β in (1)
and demonstrate a rank jump:

i13 : holonomicRank gkz(A,{0,0,0}) -- vol A in this case
o13 = 4
i14 : holonomicRank gkz(A,{0,0,1})
o14 = 5
i15 : holonomicRank gkz(A,{3/2,0,-2})
o15 = 5

SUPPLEMENT. The online supplement contains version 1.0 of Quasidegrees.m2.
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