Computing quasidegrees of A-graded modules

ROBERTO BARRERA

vol 9 2019
Computing quasidegrees of A-graded modules

ROBERTO BARRERA

ABSTRACT: We describe the main functions of the Macaulay2 package Quasidegrees.m2. The purpose of this package is to compute the quasidegree set of a finitely generated \mathbb{Z}^d-graded module presented as the cokernel of a monomial matrix. We provide examples with motivation coming from A-hypergeometric systems.

1. INTRODUCTION. Throughout, $R = k[x_1, \ldots, x_n]$ is a \mathbb{Z}^d-graded polynomial ring over a field k and $m = (x_1, \ldots, x_n)$ denotes the homogeneous maximal ideal in R. Let $M = \bigoplus_{\beta \in \mathbb{Z}^d} M_{\beta}$ be a \mathbb{Z}^d-graded R-module. The true degree set of M is

$$tdeg(M) = \{\beta \in \mathbb{Z}^d \mid M_{\beta} \neq 0\}.$$

The quasidegree set of M, denoted $qdeg(M)$, is the Zariski closure in \mathbb{C}^d of $tdeg(M)$.

The purpose of the Macaulay2 package Quasidegrees.m2 (provided as an online supplement) is to compute the quasidegree set of a finitely generated \mathbb{Z}^d-graded module presented as the cokernel of a monomial matrix. By a monomial matrix, we mean a matrix where each entry is either zero or a monomial in R. The initial motivation for Quasidegrees.m2 was to compute the quasidegree sets of certain local cohomology modules supported at m of \mathbb{Z}^d-graded R-modules, so there are some methods in the package specific to local cohomology. Recall that the i-th local cohomology module of M with support at the ideal $I \subset R$ is the i-th right derived functor of the left exact I-torsion functor

$$\Gamma_I(M) = \{m \in M \mid I^tm = 0 \text{ for some } t \in \mathbb{N}\}$$

on the category of R-modules.

By the vanishing theorems of local cohomology [Eisenbud 1995], the quasidegree sets of the local cohomology modules supported at m of M can be seen as measuring how far the module is from being Cohen–Macaulay. From the A-hypergeometric systems point of view, the quasidegree set of the non-top local cohomology modules supported at m of R/I_A, where I_A is the toric ideal associated

MSC2010: 13D45, 13P20, 33C70.
Keywords: quasidegree, hypergeometric system, local cohomology.
Quasidegrees.m2 version 1.0
to A in R, determine the parameters β where the A-hypergeometric system $H_A(\beta)$ has rank higher than expected (see Section 3).

2. QUASIDEGREES. The main function of Quasidegrees.m2 is quasidegrees, which computes the quasidegree set of a module that is presented by a monomial matrix.

We use the idea of standard pairs of monomial ideals to compute the quasidegree set of a \mathbb{Z}^d-graded R-module. Given a monomial x^u and a subset $Z \subset \{x_1, \ldots, x_n\}$, the pair (x^u, Z) indexes the monomials $x^u \cdot x^v$ where $\text{supp}(x^v) \subset Z$. A standard pair of a monomial ideal $I \subset R$ is a pair (x^u, Z) satisfying:

1. $\text{supp}(x^u) \cap Z = \emptyset$.
2. All of the monomials indexed by (x^u, Z) are outside of I.
3. (x^u, Z) is maximal in the sense that $(x^u, Z) \not\subseteq (x^v, Y)$ for any other pair (x^v, Y) satisfying the first two conditions.

To compute the quasidegree set of M we first find a monomial presentation of M so that M is the cokernel of a monomial matrix ϕ. We then compute the standard pairs of the ideals generated by the rows of ϕ and to each standard pair we associate the degrees of the corresponding variables. Algorithm 1 below is implemented in Quasidegrees.m2. The input is an R-module presented by a monomial matrix $\phi : R^s \to R^t$.

As in Macaulay2, we write the degree of the k-th factor of R^t next to the k-th row of the matrix ϕ.

In the Macaulay2 implementation of the algorithm, we represent the output as a list of pairs (u, Z) with $u \in \mathbb{Q}^d$ and $Z \subset \mathbb{Q}^d$, where the pair (u, Z) represents the plane

$$u + \sum_{v \in Z} C \cdot v.$$

Input: R-module M presented by monomial matrix $\phi = \alpha_i[x_{j_i}^u x_{j_k}^v] : R^s \to R^t$

Output: qdeg(M)

$Q = \emptyset$

for $1 \leq k \leq t$

$SP = \{\text{standard pairs of } (c_{k,1} x_{j_{k,1}}^u, c_{k,2} x_{j_{k,2}}^u, \ldots, c_{k,s} x_{j_{k,s}}^u)\}$

$Q = Q \cup \{\text{deg}(x^u) + \alpha_k + \sum_{x_i \in F} C \cdot \text{deg}(x_i) \mid (x^u, Z) \in SP\}$

end for

return Q

Algorithm 1. Compute qdeg(M).
The union of these planes over all such pairs in the output is the quasidegree set of \(M \).

The following is an example of Quasidegrees.m2 computing the quasidegree set of an \(R \)-module:

\[
i1 : R=\mathbb{Q}[x,y,z] \\
o1 = R \\
o1 : PolynomialRing \\
i2 : I=\text{ideal}(x*y,y*z) \\
o2 = \text{ideal} (x*y, y*z) \\
o2 : Ideal of R \\
i3 : M=R^1/I \\
o3 = \text{cokernel} | xy yz | \\
o3 : R-module, quotient of R \\
i4 : Q = \text{quasidegrees } M \\
o4 = \{\{0, \{1\}\}, \{0, \{1,1\}\}\}
\]

The above example displays a caveat of quasidegrees in that there may be some redundancies in the output. By a redundancy, we mean when one plane in the output is contained in another. The redundancy above is clear:

\[
\text{qdeg}(\mathbb{k}[x,y,z]/\langle xy,yz \rangle) = \mathbb{C} = \{z_1 + z_2 \in \mathbb{C} \mid z_1, z_2 \in \mathbb{C}\}.
\]

The function \text{removeRedundancy} gets rid of redundancies in the list of planes:

\[
i5 : \text{removeRedundancy } Q \\
o5 = \{\{0, \{1\}, \{1\}\}\}
\]

3. QUASIDEGREES AND HYPERGEOMETRIC SYSTEMS. In this section, we discuss the motivation for Quasidegrees.m2 and the methods therein which aid us in our studies. Let \(A = [a_1 \ a_2 \ \cdots \ a_n] \) be an integer \((d \times n)\)-matrix with \(\mathbb{Z} A = \mathbb{Z}^d \) and such that the cone over its columns is pointed. There is a natural \(\mathbb{Z}^d \)-grading of \(R \) by the columns of \(A \) given by \(\text{deg}(x_j) = a_j \), the \(j \)-th column of \(A \). A module that is homogeneous with respect to this grading is said to be \(A \)-graded. By the assumptions on \(A \), \(R \) is positively graded by \(A \), that is, the only polynomials of degree 0 are the constants. Given such a matrix \(A \) and a polynomial ring \(R \) in \(n \) variables, the method \text{toGradedRing} gives \(R \) an \(A \)-grading. For example, let

\[
A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -2 \end{pmatrix}.
\]
We make the A-graded polynomial ring $\mathbb{Q}[x_1, x_2, x_3, x_4, x_5]$:

$$i6 : A = \text{matrix}\{\{1,1,1,1,1\}, \{0,0,1,1,0\}, \{0,1,1,0,-2\}\}$$

$$o6 = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & -2
\end{pmatrix}
$$

$$o6 : \text{Matrix} \ \mathbb{Z} \ \text{<--} \ \mathbb{Z}$$

$$i7 : R = \mathbb{Q}[x_1..x_5]$$

$$o7 = R$$

$$o7 : \text{PolynomialRing}$$

$$i8 : R = \text{toGradedRing}(A, R)$$

$$o8 = R$$

$$o8 : \text{PolynomialRing}$$

$$i9 : \text{describe} \ R$$

$$o9 = \mathbb{Q}[x_1, x_2, x_3, x_4, x_5, \text{Degrees} => \{\{1\}, \{1\}, \{1\}, \{1\}, \{1\}\},$$

$$\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
$$

$$\text{Heft} => \{1, 2:0\}, \text{MonomialOrder} => \{\text{MonomialSize} => 32\}, \text{DegreeRank} => 3$$

$$\{\text{GRevLex} => \{5:1\}\}$$

$$\{\text{Position} => \text{Up}\}$$

The toric ideal associated to A in R is the binomial ideal

$$I_A(x^u - x^v : Au = Av).$$

The method toricIdeal computes the toric ideal associated to A in the ring R. We continue with the A and R from the above example and compute the toric ideal I_A associated to A in R:

$$i10 : I = \text{toricIdeal}(A, R)$$

$$o10 = \text{ideal}(x^u - x^v : Au = Av)$$

$$o10 : \text{Ideal of} \ R$$

We now introduce A-hypergeometric systems. Given a matrix $A \in \mathbb{Z}^{d \times n}$ as above and a $\beta \in \mathbb{C}^d$, the A-hypergeometric system with parameter $\beta \in \mathbb{C}^d$ [Saito et al. 2000], denoted $H_A(\beta)$, is the system of partial differential equations:

$$\frac{\partial |u|}{\partial x^v} \phi(x) = \frac{\partial |u|}{\partial x^u} \phi(x) \quad \text{for all } u, v, Au = Av,$n

$$\sum_{j=1}^{n} a_{ij} x_j \frac{\partial}{\partial x_j} \phi(x) = \beta_i \phi(x), \quad \text{for } i = 1, \ldots, d.$$
Such systems are sometimes called \textit{GKZ-hypergeometric systems}. The function \texttt{gkz} in the Macaulay2 package \texttt{Dmodules} computes this system as an ideal in the Weyl algebra. The \textit{rank} of \(H_A(\beta) \) is

\[
\text{rank}(H_A(\beta)) = \dim \{ \text{germs of holomorphic solutions of } H_A(\beta) \text{ near a generic nonsingular point} \}.
\]

The function \texttt{holonomicRank} in \texttt{Dmodules} computes the rank of an \(A \)-hypergeometric system. In general, rank is not a constant function of \(\beta \). Denote \(\text{vol}(A) \) to be \(d! \) times the Euclidean volume of \(\text{conv}(A \cup \{0\}) \), the convex hull of the columns of \(A \) and the origin in \(\mathbb{R}^d \). The following theorem gives the parameters \(\beta \) for which \(\text{rank}(H_A(\beta)) > \text{vol}(A) \):

\textbf{Theorem 3.1} [Matusevich et al. 2005]. \textit{Let} \(H_A(\beta) \) \textit{be an} \(A \)-\textit{hypergeometric system with parameter} \(\beta \). \textit{If} \(\beta \in \text{qdeg}(\bigoplus_{i=0}^{d-1} H^i_m(R/I_A)) \) \textit{then} \(\text{rank}(H_A(\beta)) > \text{vol}(A) \). \textit{Otherwise,} \(\text{rank}(H_A(\beta)) = \text{vol}(A) \).

Since Theorem 3.1 was the initial motivation for Quasidegrees.m2, the package has a method \texttt{quasidegreesLocalCohomology} (abbreviated \texttt{qlc}) to compute the quasidegree set of the local cohomology modules \(H^i_m(R/I_A) \). If the input is an integer \(i \) and the \(R \)-module \(R/I_A \), then the method computes \(\text{qdeg}(H^i_m(R/I_A)) \). If the input is only the module \(R/I_A \), the method computes the quasidegree set in Theorem 3.1.

We use graded local duality to compute the local cohomology modules of a finitely generated \(A \)-graded \(R \)-module supported at the maximal ideal \(m \):

\textbf{Theorem 3.2} (graded local duality [Bruns and Herzog 1993; Miller 2002]). \textit{Given an} \(A \)-\textit{graded} \(R \)-\textit{module} \(M \), \textit{there is an} \(A \)-\textit{graded vector space isomorphism}

\[
\text{Ext}^{n-i}_R(M, R)_\alpha \cong \text{Hom}_k(H^i_m(M)_{-\alpha - \varepsilon_A}, k),
\]

\textit{where} \(m = \langle x_1, \ldots, x_n \rangle \) \textit{and} \(\varepsilon_A = \sum_{j=1}^{n} a_j \).

The algorithm implemented for \texttt{quasidegreesLocalCohomology} is essentially Algorithm 1 applied to the Ext-modules of \(M \) with the additional twist of \(\varepsilon_A \) coming from local duality. For our purposes, we exploit the fact that the higher syzygies of \(R/I_A \) are generated by monomials in \(R^m \) (see [Miller and Sturmfels 2005], Chapter 9).

Continuing our running example, we use \texttt{quasidegreesLocalCohomology} to compute the quasidegree set of \(\bigoplus_{i=0}^{d-1} H^i_m(R/I_A) \):

\begin{verbatim}
i11 : M=R^1/I
o11 = cokernel | x_1x_3-x_2x_4 x_1x_4^2-x_3^2x_5
x_1^2x_4-x_2x_3x_5 x_1^3-x_2^2x_5 |
\end{verbatim}

\begin{verbatim}
o11 : R-module, quotient of R
\end{verbatim}
Computing quasidegrees of A-graded modules

\[i_{12} : \text{quasidegreesLocalCohomology M} \]
\[o_{12} = \{\{0|1\}, \{1|0\}\} \]
\[|0| |0| \]
\[|1| |-2| \]
\[o_{12} : \text{List} \]

Thus

\[\text{qdeg} \left(\bigoplus_{i=0}^{d-1} H_{m}^{i} (R/I_{A}) \right) = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + C \cdot \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}. \] (1)

As a check, we use the methods gkz and holonomicRank from the package Dmodules to compute rank\((H_{A}(0))\) and rank\((H_{A}(\beta))\) for two different \(\beta\) in (1) and demonstrate a rank jump:

\[i_{13} : \text{holonomicRank gkz(A,\{0,0,0\})} \quad \text{-- vol A in this case} \]
\[o_{13} = 4 \]
\[i_{14} : \text{holonomicRank gkz(A,\{0,0,1\})} \]
\[o_{14} = 5 \]
\[i_{15} : \text{holonomicRank gkz(A,\{3/2,0,-2\})} \]
\[o_{15} = 5 \]

SUPPLEMENT. The online supplement contains version 1.0 of Quasidegrees.m2.

REFERENCES.

ROBERTO BARRERA:
rbarrera@txstate.edu
Department of Mathematics, Texas State University, San Marcos, TX, United States