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ABSTRACT: We present the NumericalImplicitization.m2 package for
Macaulay2, which allows for user-friendly computation of the invariants of the
image of a polynomial map, such as dimension, degree, and Hilbert function val-
ues. This package relies on methods of numerical algebraic geometry, including
homotopy continuation and monodromy.

INTRODUCTION. Many varieties of interest in algebraic geometry and its applica-
tions are usefully described as images of polynomial maps, via a parametrization.
Implicitization is the process of converting a parametric description of a variety
into an intrinsic — or implicit — description. Classically, implicitization refers to
the procedure of computing the defining equations of a parametrized variety, and
in theory this is accomplished by finding the kernel of a ring homomorphism, via
Gröbner bases. In practice however, symbolic Gröbner basis computations are
often time consuming, even for medium scale problems, and do not scale well
with respect to the size of the input.

Despite this, one would often like to know basic information about a parametrized
variety, even when symbolic methods are prohibitively expensive (in terms of
computation time). Examples of such information are discrete invariants such as
the dimension, the degree, or Hilbert function values. Other examples include
Boolean tests, for example whether or not a particular point lies on a parametrized
variety. The goal of this [Macaulay2] package is to provide such information; in
other words, to numerically implicitize a parametrized variety by using methods
of numerical algebraic geometry. NumericalImplicitization.m2 builds on
top of existing numerical algebraic geometry software: NAG4M2 [Leykin 2011],
Bertini [Bates et al.] and PHCpack [Verschelde 1999]. Each of these can be used
for path tracking and point sampling; by default the native software M2engine in
NAG4M2 is used. The latest version of the code and documentation can be found
at https://github.com/Joe-Kileel/Numerical-Implicitization.

MSC2010: primary 14Q99; secondary 14-04, 65H10, 65H20.
Keywords: numerical algebraic geometry, implicitization, homotopy continuation, monodromy,
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NOTATION. The following notation will be used throughout this article:

• X ⊆ An is a source variety, defined by an ideal I = 〈g1, . . . , gr 〉 in the poly-
nomial ring C[x1, . . . , xn].

• F : An
→ Am is a regular map sending x 7→ ( f1(x), . . . , fm(x)), where fi ∈

C[x1, . . . , xn].

• Y is the Zariski closure of the image F(X)= F(V (I ))⊆Am, the target variety
under consideration.

• Ỹ ⊆ Pm is the projective closure of Y, with respect to the standard embedding
Am
⊆ Pm.

Currently, NumericalImplicitization is implemented for integral varieties X.
Equivalently, the ideal I is prime. Since numerical methods are used, we always
work with a floating-point representation for complex numbers. Moreover, Ỹ is
internally represented by its affine cone. This is because it is easier to work with
affine, as opposed to projective, coordinates; at the same time, this suffices to find
the invariants of Ỹ .

SAMPLING. All the methods in this package rely on the ability to sample general
points on X. To this end, the method numericalSourceSample is provided to
allow the user to sample general points on X. This method works by computing
a witness set for X, via a numerical irreducible decomposition of I — once this is
known, points on X can be quickly sampled.

One way to view the difference in computation time between symbolic and nu-
merical methods is that the upfront cost of computing a Gröbner basis is replaced
with the upfront cost of computing a numerical irreducible decomposition, which
is used to sample general points. However, if X =An, then sampling is done by gen-
erating random tuples, so in this unrestricted (or rational) parametrization case, the
upfront cost of numerical methods becomes negligible. Another situation where the
cost of computing a numerical irreducible decomposition can be avoided is if the
user can provide a single point on X : in this case, numericalSourceSample can
use the given point to quickly generate new general points on X via path tracking.

DIMENSION. The most basic invariant of an algebraic variety is its dimension. To
compute the dimension of the image of a variety numerically, we use the following
theorem:

Theorem 1 [Hartshorne 1977, III.10.4–10.5]. Let F : X→ Y be a dominant mor-
phism of irreducible varieties over C. Then there is a Zariski open subset U ⊆ X
such that for all x ∈U, the induced map on tangent spaces d Fx : Tx X→ TF(x)Y is
surjective.
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In the setting above, since the singular locus Sing Y is a proper closed subset
of Y, for general y = F(x) ∈ Y ,

dim Y = dim TyY = dim d Fx(Tx X)= dim Tx X − dim ker d Fx .

Now Tx X is the kernel of the Jacobian matrix of I evaluated at x , given by

Jac(I )(x)= ((∂gi/∂x j )(x))1≤i≤r, 1≤ j≤n,

and ker d Fx is the kernel of the Jacobian of F evaluated at x , intersected with Tx X.
Explicitly, ker d Fx is the kernel of the (r +m)× n matrix:

[
Jac(I )(x)

Jac(F)(x)

]
=



∂g1
∂x1
(x) · · · ∂g1

∂xn
(x)

...
. . .

...
∂gr
∂x1
(x) · · · ∂gr

∂xn
(x)

∂ f1
∂x1
(x) · · · ∂ f1

∂xn
(x)

...
. . .

...
∂ fm
∂x1
(x) · · · ∂ fm

∂xn
(x)


.

We compute these kernel dimensions numerically to obtain dim Y.

Example 2. Let Y ⊆ Sym4(C5)∼= A70 be the variety of 5× 5× 5× 5 symmetric
tensors of border rank ≤ 14. Equivalently, Y is the affine cone over σ14(ν4(P

4)), the
14th secant variety of the fourth Veronese embedding of P4. Naively, one expects
dim(Y )= 14 · 4+ 13+ 1= 70. In fact, dim(Y )= 69 as verified by the following
code:

Macaulay2, version 1.13
i1 : needsPackage "NumericalImplicitization"
i2 : R=CC[s_(1,1)..s_(14,5)];
i3 : F=sum(1..14,i->basis(4,R,Variables=>toList(s_(i,1)..s_(i,5))));
i4 : elapsedTime numericalImageDim(F,ideal 0_R)

-- 0.0767826 seconds elapsed
o4 = 69

This example is the largest exceptional case from the celebrated work [Alexander
and Hirschowitz 1995].

HILBERT FUNCTION. We now turn to the problem of determining the Hilbert
function of Ỹ . If Ỹ ⊆ Pm is a projective variety given by a homogeneous ideal J ⊆
C[y0, . . . , ym], then the Hilbert function of Ỹ at an argument d ∈N is by definition
the vector space dimension of the d-th graded part of J, namely HỸ (d) := dim Jd .
This counts the maximum number of linearly independent degree d hypersurfaces
in Pm containing Ỹ .
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To compute the Hilbert function of Ỹ numerically, we use multivariate polyno-
mial interpolation. For a fixed argument d ∈ N, let {p1, . . . , pN } be a set of N
general points on Ỹ . For 1 ≤ i ≤ N, consider an i ×

(m+d
d

)
interpolation matrix

A(i) with rows indexed by points {p1, . . . , pi } and columns indexed by degree d
monomials in C[y0, . . . , ym], whose entries are the values of the monomials at the
points. A vector in the kernel of A(i) corresponds to a choice of coefficients for a
homogeneous degree d polynomial that vanishes on p1, . . . , pi . If i is large, then
one expects such a form to vanish on the entire variety Ỹ . The following theorem
makes this precise:

Theorem 3. Let {p1, . . . , ps+1} be a set of general points on Ỹ , and let A(i) be the
interpolation matrix above. If dim ker A(s) = dim ker A(s+1), then dim ker A(s) =
dim Jd .

Proof. Identifying v ∈ ker A(i) with the form in C[y0, . . . , ym] of degree d having v
as its coefficients, it suffices to show that ker A(s)= Jd . If h ∈ Jd , then h vanishes on
all of Ỹ , in particular on {p1, . . . , ps}, so h∈ker A(s). For the converse ker A(s)⊆ Jd ,
we consider the universal interpolation matrices over C[y0,1, y1,1, . . . , ym,i ]:

A(i) :=


yd

0,1 yd−1
0,1 y1,1 · · · yd

m,1

yd
0,2 yd−1

0,2 y1,2 · · · yd
m,2

...
...

. . .
...

yd
0,i yd−1

0,i y1,i · · · yd
m,i

.

Set ri :=min {r ∈Z≥0 | all (r+1)-minors of A(i) lie in the ideal of Ỹ×i
⊆ (Pm)×i

}.
Then any specialization of A(i) to i points in Ỹ is a matrix over C of rank ≤ ri ;
moreover if the points are general, then the specialization has rank exactly ri ,
since Ỹ is irreducible. In particular rank(As) = rs and rank(As+1) = rs+1, so
dim ker A(s) = dim ker A(s+1) implies that rs = rs+1. It follows that specializing
A(s+1) to p1, p2, . . . , ps, q for any q ∈ Ỹ gives a rank rs matrix. Hence, every
degree d form in ker A(s) evaluates to 0 at every q ∈ Ỹ . Since Ỹ is reduced, we
deduce that ker A(s) ⊆ Jd . �

It follows from Theorem 3 that the integers dim ker A(1), dim ker A(2), . . . de-
crease by exactly 1, until the first instance where they fail to decrease, at which
point they stabilize: dim ker A(i) = dim ker A(s) for i ≥ s. This stable value is the
value of the Hilbert function, dim ker A(s) = HỸ (d). In particular, it suffices to
compute dim ker A(N ) for N =

(m+d
d

)
, so one may assume the interpolation matrix

is square. Although this may seem wasteful (as stabilization may have occurred
with fewer rows), this is indeed what numericalHilbertFunction does, due to
the algorithm used to compute kernel dimension numerically. To be precise, kernel
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dimension is found via a singular value decomposition (SVD) — namely, if a gap
(the ratio of consecutive singular values) exceeds the option SVDGap (with default
value 105), then this is taken as an indication that all singular values past this gap
are numerically zero. On example problems, it was observed that taking only one
more additional row than was needed often did not reveal a satisfactory gap in
singular values. In addition, numerical stability is improved via preconditioning
on the interpolation matrices — namely, each row is normalized to have Euclidean
norm 1 before computing the SVD. Furthermore, for increased computational effi-
ciency, the option UseSLP allows for the usage of straight-line programs in creating
interpolation matrices.

Example 4. Let X be a random canonical curve of genus 4 in P3, so X is the
complete intersection of a random quadric and cubic. Let F : P3 99K P2 be a
projection by three random cubics. Then Ỹ is a plane curve of degree

3dim(Ỹ )
· deg(X)= 3 · 2 · 3= 18,

so the ideal of Ỹ contains a single form of degree 18. We verify this as follows:

i5 : R = CC[w_0..w_3]; I = ideal(random(2,R), random(3,R));
F = toList(1..3)/(i -> random(3,R));

i8 : elapsedTime T = numericalHilbertFunction(F,I,18,Verbose=>false)
-- 6.01226 seconds elapsed

o8 : a numerical interpolation table, indicating
the space of degree 18 forms in the ideal of the image has
dimension 1

The output is a NumericalInterpolationTable, which is a HashTable stor-
ing the results of the interpolation computation described above. From this, one
can obtain a floating-point approximation to a basis of Jd . This is done via the
command extractImageEquations:

i9 : extractImageEquations T
o9 : | -.0000712719y_0^18+(.000317507-.000100639i)y_0^17y_1- ... |

The option AttemptZZ=>true calls the Lenstra–Lenstra–Lovász algorithm to com-
pute short equations over Z.

DEGREE. After dimension, degree is the most basic invariant of a projective va-
riety Ỹ ⊆ Pm. Set k := dim(Ỹ ). For a general linear space L ∈ Gr(Pm−k,Pm) of
complementary dimension to Ỹ , the intersection L ∩ Ỹ is a finite set of reduced
points. The degree of Ỹ is by definition the cardinality of L ∩ Ỹ , which is indepen-
dent of the general linear space L . Thus one way to find deg(Ỹ ) is to fix a random
L0 and compute the set of points L0 ∩ Ỹ .
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NumericalImplicitization takes this approach, but the method used to find
L0 ∩ Ỹ is not the most obvious. First and foremost, we do not know the equations
of Ỹ , so all solving must be done in X. Secondly, we do not compute F−1(L0)∩ X
from the equations of X and the equations of L0 pulled back under F, because
fibers of F may be positive-dimensional and of high degree. Instead, monodromy
is employed to find L0 ∩ Ỹ .

To state the technique, we consider the map:

{(L , y) ∈ Gr(Pm−k,Pm)× Ỹ | y ∈ L} ⊆ Gr(Pm−k,Pm)× Ỹ ρ1
−→Gr(Pm−k,Pm),

where ρ1 is projection onto the first factor. There is a nonempty Zariski open
subset U ⊆ Gr(Pm−k,Pm) such that the restriction ρ−1

1 (U )→ U is a deg(Ỹ )-to-
1 covering map, namely U equals the complement of the Hurwitz divisor from
[Sturmfels 2017]. For a fixed generic basepoint L0 ∈ U, the fundamental group
π1(U, L0) acts on the fiber ρ−1

1 (L0)= L0∩ Ỹ . This action is known as monodromy.
It is a key fact that irreducibility of Ỹ implies the group homomorphism

π1(U, L0)→ Sym(L0 ∩ Ỹ )∼= Symdeg(Ỹ )

is surjective (see [Sommese and Wampler 2005, Theorem A.12.2]).
We compute the degree of Ỹ by constructing a pseudo-witness set for Ỹ , which is

a numerical representation of a parametrized variety (see [Hauenstein and Sommese
2010]). First, we sample a general point x ∈ X, and translate a general linear
slice L0 so that F(x) ∈ L0 ∩ Ỹ . Then L0 is moved around in a random loop of the
form described in [Sommese and Wampler 2005, Lemma 7.1.3]. This loop pulls
back to a homotopy in X, where we use the equations of X to track x . The endpoint
of the track is a point x ′ ∈ X such that F(x ′) ∈ L0 ∩ Ỹ . If F(x) and F(x ′) are
numerically distinct, then the loop has learned a new point in L0 ∩ Ỹ ; otherwise
x ′ is discarded. We then repeat this process of tracking points in X over each
known point in L0 ∩ Ỹ , via new loops. In practice, if several consecutive loops
do not learn new points in L0 ∩ Ỹ , then we suspect that all of L0 ∩ Ỹ has been
calculated. To verify this, we pass to the trace test (see [Sommese et al. 2002,
Corollary 2.2]), which provides a characterization for when a subset of L0 ∩ Ỹ
equals L0 ∩ Ỹ . If the trace test is failed, then L0 is replaced by a new random L ′0
and preimages in X of known points of L0 ∩ Ỹ are tracked to those preimages of
points of L ′0 ∩ Ỹ . Afterwards, monodromy for L ′0 ∩ Ỹ begins anew. If the trace
test is failed MaxAttempts (by default 5) times, then the method exits with only a
lower bound on deg(Ỹ ). To speed up computation, the option MaxThreads allows
for loop tracking to be parallelized.

Example 5. Let Ỹ =σ2(P
1
×P1
×P1
×P1
×P1)⊆P31. We find that deg(Ỹ )=3256,

using the commands below:
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i10 : R = CC[a_1..a_5, b_1..b_5, t_0, t_1];
i11 : F1 = terms product(apply(toList(1..5), i -> 1 + a_i));
i12 : F2 = terms product(apply(toList(1..5), i -> 1 + b_i));
i13 : F = apply(toList(0..<2^5), i -> t_0*F1#i + t_1*F2#i);
i14 : elapsedTime pseudoWitnessSet(F, ideal 0_R, Repeats=>2,

MaxThreads=>2)
Sampling point in source ...
Tracking monodromy loops ...
Points found: 2
Points found: 4
...
Points found: 3256
Running trace test ...

-- 336.737 seconds elapsed
o14 = a pseudo-witness set, indicating

the degree of the image is 3256

From [Raicu 2012, Theorem 4.1], it is known that the prime ideal J of Ỹ is gener-
ated by the 3× 3 minors of all flattenings of 2×5 tensors, so we can confirm that
deg(J )= 3256. However, the naive attempt to compute the degree of Ỹ symboli-
cally by taking the kernel of a ring map — from a polynomial ring in 32 variables —
has no hope of finishing in any reasonable amount of time.

MEMBERSHIP. Classically, given a variety Y ⊆ Am and a point y ∈ Am, we deter-
mine whether or not y ∈ Y by finding set-theoretic equations of Y (which generate
the ideal of Y up to radical), and then testing if y satisfies these equations. If a
PseudoWitnessSet for Y is available, then point membership in Y can instead
be verified by parameter homotopy. More precisely, isOnImage determines if y
lies in the constructible set F(X) ⊆ Y, as follows. We fix a general affine linear
subspace L y ⊆ Am of complementary dimension m − dim Y passing through y.
Then y ∈ F(X) if and only if y ∈ L y ∩ F(X), so it suffices to compute the set
L y∩F(X). Now, a PseudoWitnessSet for Y provides a general section L∩F(X),
and preimages in X. We move L to L y as in [Sommese and Wampler 2005, Theo-
rem 7.1.6]. This pulls back to a homotopy in X, where we use the equations of X
to track the preimages. Applying F to the endpoints of the track gives all isolated
points in L y ∩ F(X) by [Sommese and Wampler 2005, Theorem 7.1.6]. Since L y

was general, the proof of [Eisenbud 1995, Corollary 10.5] shows L y ∩ F(X) is
zero-dimensional, so this procedure computes the entire set L y ∩ F(X).

Example 6. Let Y ⊆ A18 be defined by the resultant of three quadratic equations
in three unknowns. In other words, Y consists of all coefficients

(c1, . . . , c6, d1, . . . , d6, e1, . . . , e6) ∈ A18
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such that the system

0= c1x2
+ c2xy+ c3xz+ c4 y2

+ c5 yz+ c6z2

0= d1x2
+ d2xy+ d3xz+ d4 y2

+ d5 yz+ d6z2

0= e1x2
+ e2xy+ e3xz+ e4 y2

+ e5 yz+ e6z2

admits a solution (x : y : z)∈P2. Here Y is a hypersurface, and a matrix formula for
its defining equation was derived in [Eisenbud et al. 2003], using exterior algebra
methods. We rapidly determine point membership in Y numerically as follows:

i15 : R = CC[c_1..c_6, d_1..d_6, e_1..e_6, x, y, z];
i16 : I = ideal(c_1*x^2+c_2*x*y+c_3*x*z+c_4*y^2+c_5*y*z+c_6*z^2,

d_1*x^2+d_2*x*y+d_3*x*z+d_4*y^2+d_5*y*z+d_6*z^2,
e_1*x^2+e_2*x*y+e_3*x*z+e_4*y^2+e_5*y*z+e_6*z^2);

i17 : F = toList(c_1..c_6 | d_1..d_6 | e_1..e_6);
i18 : W = pseudoWitnessSet(F, I, Verbose=>false); -- Y has degree 12
i19 : p1 = first numericalImageSample(F, I);

p2 = point random(CC^1, CC^#F);
i21 : elapsedTime (isOnImage(W, p1), isOnImage(W, p2))

-- used 0.186637 seconds
o21 = (true, false)
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