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ABSTRACT: We briefly report on SINGULAR’s low-level interface to GFANLIB: its usage on interpreter
level, its implementation using SINGULAR’s blackbox framework and two of its applications.

1. INTRODUCTION. SINGULAR [Decker et al. 2016] is a comprehensive computer algebra system for
polynomial computations with particular emphasis on applications in algebraic geometry, commutative
algebra and singularity theory. GFANLIB is a library derived from GFAN [Jensen 2011], a software
package for computing tropical varieties and Gröbner fans by the first author. The GFANLIB interface
allows SINGULAR users to work with polyhedral cones, polyhedral fans and operations thereon.

The goal of this paper is threefold: In Section 2, we provide an overview of the functionality in
GFANLIB and how it can be accessed in SINGULAR. In Section 3, we describe the blackbox-framework
in SINGULAR and illustrate how it can be used to introduce new types and functions to SINGULAR

using the GFANLIB interface as an example. In Section 4, we showcase two applications of GFANLIB,
demonstrating its use in high performance computations.

2. GFANLIB AND ITS INTERFACE IN SINGULAR. The class ZCone of GFANLIB encapsulates a rational
polyhedral cone built on CDDLIB [Fukuda 2016] with arbitrary precision integral normal vectors. A
ZCone object can be in one of four states (with an increasing level of knowledge), and it automatically
advances its state if necessary:

(0) Defining equations and inequalities are known.

(1) A basis for the orthogonal complement is known. Its cardinality equals the codimension of the cone.

(2) A minimal set of inequalities has been determined. Each inequality cuts out a facet of the cone.

(3) The equations and inequalities from (1) and (2) have been written in a unique canonical form. This
allows fast cone comparisons.

The class is accessible from SINGULAR as the type cone; see Figure 1. Cone A is defined as the
non-negative span of the row vectors of the matrix M , A = (R≥0)

4
·M , while cone B is defined by

considering the rows as inequalities, B = (R≥0)
2
·M t . In both cases the cones are stored with an outer

(H-) description, which means the first case requires a double description conversion. As a side effect,
the inequalities that are obtained through the conversion are indeed facet normals and they are therefore
marked as such.
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> LIB "gfan.lib";
> intmat M[4][2]=(1 ,0) ,

(1,1),(1,2),(1,3);
> cone A=coneViaPoints(M);
> A;
AMBIENT_DIM
2
FACETS
0, 1,
3,-1

> cone B=coneViaInequalities(M);
> B;
AMBIENT_DIM
2
INEQUALITIES
1,0,
1,1,
1,2,
1,3

Figure 1. A sample SINGULAR session using the type cone.

A ZFan class for representing polyhedral fans is provided. Cones can be inserted to such fan and
when that happens, all faces are implicitly regarded as being inserted too. The ZFan class allows for easy
conversion to ray incidence lists as in Figure 5.

Finally, the interface offers the possibility of computing mixed volume of Newton polytopes us-
ing [Jensen 2016], see Figure 2.

> LIB "gfan.lib";
> ring r=0,(x,y),dp;

> mixedVolume(list(x2y+1,xy2 +1));
3

Figure 2. An example of computing mixed volume in SINGULAR.

3. THE blackbox FRAMEWORK OF SINGULAR. Adding new data types and associated functions to
SINGULAR used to require changes in many places due to the static nature of its type system. This
process is now streamlined with the introduction of the type blackbox. An object of type blackbox
is a struct of function pointers as explained in the following subsection. This is largely equivalent
to defining new types as subclasses of an abstract class having the methods listed below being virtual,
thereby taking advantage of inheritance in C++. With our solution on the other hand, we have full control
and can add types at runtime as we like.

Adding new data types to SINGULAR. Data types governed by blackbox are represented by a pair: a
void* pointer to a call table, and an int serving as a unique type identifier. Registering a new type
begins with filling a struct with function pointers to the following functions, of which the latter five
are optional and come with preset defaults (see also Figure 3, lines 23–27):
(1) blackbox_Init: creates a default object
(2) blackbox_destroy: destroys an object (see Figure 3, lines 3–6)
(3) blackbox_Copy: copies an object (see Figure 3, lines 8–15)
(4) blackbox_String: converts an object to string
(5) blackbox_Print: prints an object (default: print conversion to string)
(6) blackbox_Assign: assign other types to object (default: raises error)
(7) blackbox_OpX: operations with object as first operand (default: raises error)
(8) blackbox_serialize: serialization for parallel computing (default: raises error)
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(9) blackbox_deserialize: deserialization (default: raises error)

Next, that struct plus the name of the new type has to be passed to setBlackboxStuff, which then
returns the unique type identifier (see Figure 3, line 31).

1 int coneID; // type identifier
2
3 void* bbcone_Init(blackbox* b)
4 {
5 return new gfan:: ZCone ();
6 }
7
8 char* bbcone_String(blackbox* b,
9 void* d)

10 {
11 gfan:: ZCone* zc =
12 (gfan::ZCone *) d;
13 string s = zc ->toString ();
14 return omStrDup(s.c_str ());
15 }

18 void mod_init(SModulFunctions* p)
19 {
20 blackbox *b =
21 (blackbox *) omAlloc0(sizeof (*b));
22
23 b->blackbox_Init=bbcone_Init;
24 b->blackbox_Copy=bbcone_Copy;
25 b->blackbox_Assign=bbcone_Assign;
26 b->blackbox_destroy=bbcone_Destroy;
27 b->blackbox_String=bbcone_String;
28
29 [...]
30
31 coneID=setBlackboxStuff(b,"cone");
32 }

Figure 3. blackbox wrapper for type gfan::ZCone.

Adding new functions to SINGULAR. Functions governed by blackbox require two leftv as input
and a BOOLEAN as ouput (see Figure 4). The first leftv represents the return value of the function
when called from the interpreter, the second leftv represents the input. The BOOLEAN that is returned
signals the interpreter whether an error occured during the function call. Objects of type leftv are
generic objects which can represent any object of any type that is available on the interpreter-level of
SINGULAR. The unique type identifier of the input can be seen by calling leftv->Typ(), while the
identifier of the output is to be stored in leftv->rtyp. The data of the input can be obtained by calling
leftv->Data(), and the data of the output is to be stored in leftv->data. Moreover, leftv->next
can be used to access the latter arguments of the input. It is set to NULL if the function has been called
with one argument. To make the function callable from the interpreter, iiAddCproc needs to be called
with:

(1) a string with the library containing documentation (empty string possible)

(2) a string with the desired function name on the interpreter level

(3) a BOOLEAN which marks the routine as static (TRUE) or global (FALSE)

(4) the function name on the kernel level

4. APPLICATIONS OF THE GFANLIB INTERFACE. In this section, we briefly present two applications of
SINGULAR’s low-level interface to GFANLIB based on the previously described blackbox framework.



84 Jensen, Ren and Schönemann :::: The gfanlib interface in Singular and its applications

1 BOOLEAN facets(leftv res , leftv args)
2 {
3 if ((args != NULL) && (args ->Typ() == coneID) && (args ->next == NULL))
4 {
5 gfan:: ZCone* zc = (gfan:: ZCone*) args ->Data ();
6 gfan:: ZMatrix zm = zc ->getFacets ();
7 res ->rtyp = BIGINTMAT_CMD;
8 res ->data = (void*) zMatrixToBigintmat(zm); // conversion function
9 return FALSE;

10 }
11 WerrorS("facets:␣unexpected␣parameters");
12 return TRUE;
13 }
14 void bbcone_setup(SModulFunctions* p)
15 {
16 [...]
17 p->iiAddCproc("gfan.lib","facets",FALSE ,facets );
18 [...]
19 }

Figure 4. blackbox wrapper for function gfan::ZCone::getFacets().

Tropical varieties. Tropical geometry studies algebraic varieties based on what is commonly described
as their combinatorial shadow. These so-called tropical varieties are the supports of finite polyhedral
complexes.

Definition 1. Let K be a field with non-trivial valuation ν : K ∗→ R and residue field K. Fix a splitting
ν(K ∗)→ K ∗, writing ta when referring to the image of a ∈0ν . Given a polynomial f =

∑
α∈Nn cα · xα ∈

K [x] and an ideal I � K [x], we define for any weight vector w ∈ Rn:

inw( f )=
∑

w·α−ν(cα) max. t−ν(cα)cα · xα ∈ K[x] and inw(I )= 〈inw( f ) | f ∈ I 〉�K[x].

The tropical variety of I is then given by:

T (I )= {w ∈ Rn | inw(I ) monomial free}.

Computing tropical varieties is an algorithmically challenging task, requiring sophisticated techniques
from both computer algebra and convex geometry. The first techniques were developed for the field of
complex Puiseux series C{{t}} [Bogart et al. 2007], in which the authors exploited that its uniformizing
parameter t can be regarded as a variable of the polynomial ring, allowing them to rely on classical
Gröbner bases techniques. For more general fields with valuation, a new theory of Gröbner bases taking
the valuation on the field into account was introduced [Chan and Maclagan 2019].

In contrast, the implementation in SINGULAR is based on recent results [Markwig and Ren 2019],
which describe tropical varieties over valued fields K with tropical varieties over any dense subring of
the ring of integers OK ⊆ K . The practical advantage of this approach is that it is compatible with
existing standard bases techniques in SINGULAR.
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Example 2. Consider the ideal I := 〈x1− 2x2+ 3x3, 3x2− 4x3+ 5x4〉� Q[x1, . . . , x4] and the 2-adic
valuation on Q. Figure 5 shows input and output for computing the tropical variety in SINGULAR.

> LIB "tropical.lib";
> ring r = 0,x(1..4) ,dp; number p = 2;
> ideal I = x(1)+2*x(2) -3*x(3), 3*x(2) -4*x(3)+5*x(4);
> tropicalVariety(I,p);

RAYS MAXIMAL_CONES
-2 -1 1 -1 1\# 0 {0 1} \# Dimension 3
-1 1 -1 1 -1\# 1 {0 2}
0 -3 1 1 1\# 2 {0 4}
0 1 -3 1 1\# 3 {1 3}
0 1 1 -3 1\# 4 {1 5}
0 1 1 1 -3\# 5

Figure 5. SINGULAR output for Example 2.

The output is a polyhedral fan in R5 whose intersection with the affine hyperplane {e1 = 1} yields a
polyhedral complex covering the tropical variety. Hence the rays #2–#5 represent vertices at infinity so
that the last four maximal 2-dimensional cones are in fact unbounded edges; see Figure 6.
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(1,−1, 1,−1)

1
2 (−1, 1,−1, 1)

(−3, 1, 1, 1)

(1, 1,−3, 1)

(1,−3, 1, 1)

(1, 1, 1,−3)

Figure 6. T (I ) for Example 2.

GIT-fans. GIT-fans describe the variation of possible GIT-quotients [Dolgachev and Hu 1998]. A case
of particular importance is the action of an algebraic torus on an affine variety, for which explicit algo-
rithms exist [Berchtold and Hausen 2006; Keicher 2012; Boehm et al. 2016]. All algorithms have been
implemented in the SINGULAR library gitfan.lib and are publicly available as part of the official
SINGULAR distribution.

Example 3. [Boehm et al. 2016, Example 5.2]
The Cox ring of Grass(2, 5) is isomorphic to C[T1, . . . , T10]/a, where the ideal a is generated by the
following Plücker relations and the (C∗)5 action on Grass(2, 5) is induced by the following grading
matrix Q with respect to which a is homogeneous:

T5T10− T6T9+ T7T8,

T1T9− T2T7+ T4T5,

T1T8− T2T6+ T3T5,

T1T10− T3T7+ T4T6,

T2T10− T3T9+ T4T8

Q :=


1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 1 0 0 0 –1 1 0 0
0 1 0 1 0 –1 0 0 1 0
0 0 1 1 –1 0 0 0 0 1


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The natural S5-symmetry on Grass(2, 5) acts, up to sign, as the following permutations on the variables:

S5 = 〈(2, 3)(5, 6)(9, 10), (1, 5, 9, 10, 3)(2, 7, 8, 4, 6)〉 ≤ S10.

The GIT-fan consists of 76 cones, which decompose into 6 orbits under the S5 action. Figure 7 shows
the computation of the GIT-fan without and with symmetry. The GIT-fan is generated by 76 maximal
cones, which decompose into 6 orbits under the group action.

> LIB "gitfan.lib";
> ring R = 0,T(1..10) ,dp;
> ideal J =
. T(5)*T(10)-T(6)*T(9)+T(7)*T(8),
. T(1)*T(9)-T(2)*T(7)+T(4)*T(5),
. T(1)*T(8)-T(2)*T(6)+T(3)*T(5),
. T(1)*T(10)-T(3)*T(7)+T(4)*T(6),
. T(2)*T(10)-T(3)*T(9)+T(4)*T(8);
> intmat Q[5][10] =
. 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
. 1, 0, 0, 0, 1, 1, 1, 0, 0, 0,
. 0, 1, 1, 0, 0, 0, -1, 1, 0, 0,
. 0, 1, 0, 1, 0, -1, 0, 0, 1, 0,
. 0, 0, 1, 1, -1, 0, 0, 0, 0, 1;
> list S5 = G25Action ();

> S5;
[1]:

| 1 2 3 4 5 6 7 8 9 10|
[...]
[120]:

| 1 2 3 4 5 6 7 8 9 10|
| 10 9 7 4 8 6 3 5 2 1|

> fan SigmaIgnoringSymmetry =
. GITfan(J,Q);
> fVector(SigmaIgnoringSymmetry );
1 ,20 ,110 ,240 ,225 ,76
> fan SigmaModuloSymmetry =
. GITfan(J,Q,S5);
> fVector(SigmaModuloSymmetry );
1,16,56,67,33,6

Figure 7. SINGULAR input and output for Example 3.

Figure 8 shows the adjacency graph of the maximal cones and their S5 orbits.

Figure 8. Adjacency graph of the maximal cones in the GIT-fan of Grass(2, 5) and of
their S5-orbits.

SUPPLEMENT. The online supplement contains source code for the GFANLIB interface to SINGULAR.

http://msp.org/jsag/2019/9-1/jsag-v9-n1-x10-gfanlib-interface-JSAG.zip
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