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ABSTRACT: We describe a Macaulay2 package for computing Schur complexes. This package expands
on the ChainComplexOperations package by David Eisenbud.

1. INTRODUCTION. Let R be a commutative ring. The goal of this article is to describe the Macaulay2
package SchurComplexes, which computes the Schur complex Sλ(F) associated to a bounded com-
plex F of finitely generated free R-modules and a partition λ.

Schur complexes are a simultaneous generalization of the symmetric and exterior power operations
on complexes. The notion of a Schur complex was introduced by Nielsen [1978] in the characteristic 0
setting, and it was generalized to the characteristic free setting by Akin, Buchsbaum and Weyman in
[Akin et al. 1982].

The importance of such operations on complexes is illustrated by Walker’s recent proof of the weak
Buchsbaum–Eisenbud–Horrocks conjecture [Walker 2017, Theorem 2.4] in which exterior and sym-
metric squares of complexes play a crucial role. Walker’s breakthrough work led to Eisenbud’s im-
plementation of the second exterior and symmetric power for complexes in the Macaulay2 package
ChainComplexOperations. The work suggests that properties of Schur complexes should be further
developed. Our goal here is to expand on Eisenbud’s package by implementing the construction of an
arbitrary Schur complex.

In Section 2, we provide some background on Schur complexes, following the detailed treatment
in Weyman’s book [2003, Section 2.4]. In particular, we recall the “straightening algorithm” of [Akin
et al. 1982] which expresses a Z/2-graded tableau as a Z-linear combination of so-called “standard” Z/2-
graded tableaux; the implementation of this algorithm is the key component of the SchurComplexes
package. Section 3 contains some examples of computations using SchurComplexes.
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2. BACKGROUND ON SCHUR COMPLEXES. This section closely follows [Weyman 2003, Section 2.4].
Let F = (F0← F1← · · · ← Fd) be a bounded complex of finitely generated free R-modules. Denote
by Feven (resp. Fodd) the direct sum of the even (resp. odd) degree components of F, and choose bases
{e1, . . . , em} and { f1, . . . , fn} of Fodd and Feven, respectively, which are unions of bases of the Fi .

Exterior powers of complexes. Fix a positive integer r , and let T r (F) denote the r -th tensor power of F.
T r (F) may be equipped with a 6r -action in the following way:

σ · (x1⊗ · · ·⊗ xr )=±xσ−1(1)⊗ · · ·⊗ xσ−1(r),

where the xi are homogeneous elements of F, and the sign is determined by declaring that transposing
the elements xi and x j contributes the sign (−1)|xi ||x j |. By [Weyman 2003, page 74], the 6r -action is
compatible with the differential on T r (F). Let

ε : T r (F)→ T r (F)

denote the R-linear antisymmetrization map

(x1⊗ · · ·⊗ xr ) 7→
∑
σ∈6r

(−1)sign(σ )σ · (x1⊗ · · ·⊗ xr ).

Definition 2.1. The r -th exterior power
∧r F is defined to be the subcomplex ε(T r (F)) of T r (F).

Remark 2.2. Suppose F is concentrated in even degrees, and let Ir denote the R-submodule of T r (F)
spanned by elements of the form

x1⊗ · · ·⊗ x ⊗ x ⊗ · · ·⊗ xr .

By [Akin et al. 1982, Section 1.2], ε determines a split injection T r (F)/Ir→ T r (F), and so Definition 2.1
recovers the usual definition of an exterior power in this case. As noted in [loc. cit.],

∧r F coincides
with the antisymmetric tensors in T r (F) (i.e., those elements v ∈ T r (F) such that σ · v = (−1)sign(σ )v

for all σ ∈6r ) when char(R) 6= 2.

There is a canonical R-linear embedding

ι :
⊕

i

Di (Fodd)⊗ (T r−i (Feven)/Ir−i ) ↪→ T r (F)

whose image is precisely
∧r F. Here, Di (Fodd) := Symi ((Fodd)

∗)∗, the i-th divided power of Fodd (where
(−)∗ denotes the R-linear dual). We now describe this embedding in detail.

Let I denote the two-sided ideal of T (Feven) generated by elements of the form x ⊗ x , where x ∈ F.
By Remark 2.2, the composition T (Feven) ↪→ T (F) ε

→ T (F) factors through T (Feven)/I and induces an
embedding

ι3 : T (Feven)/I ↪→ T (Feven).

By [Roby 1963, Proposition IV.5], there is an embedding of R-algebras

ιD : D(Fodd)→ T (Fodd)
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such that
ιD(x ( j))= x ⊗ · · ·⊗ x︸ ︷︷ ︸

j copies

for all x ∈ Fodd, where the target is equipped with the shuffle product. The embedding ι is defined on
each summand Di (Fodd)⊗ (T r−i (Feven)/Ir−i ) by∑

σ∈6i,r−i

(−1)sign(σ )σ · (ιD ⊗ ι3),

where 6i,r−i ⊆6r denotes the set of (i, r − i) shuffles.

Example 2.3. Let x, y ∈ R, and take F to be the Koszul complex

R

(
x y

)
←−−−− R⊕2

−y
x


←−−−− R

on x and y, lying in homological degrees 0, 1, and 2. Then
∧2
(F) is the complex

R⊕2

y x 0 x
0 y x −y


←−−−−−−−−− R⊕4


2x 0
−y x
0 −2y
−y −x


←−−−−−−−−− R⊕2,

lying in homological degrees 1, 2, and 3.

The complex
∧

F :=
⊕

r≥0
∧r F is equipped with a product

µ :

r1∧
F ⊗

r2∧
F→

r1+r2∧
F

and a coproduct

1 :

r∧
F→

⊕
r1+r2=r

r1∧
F ⊗

r2∧
F.

For explicit formulas for µ and 1, we refer the reader to the proof of [Weyman 2003, Proposition 2.4.1].

Schur complexes. Let r be a positive integer, and let λ= (λ1, . . . , λs) be a partition of r , where λi ≥λi+1.
We will encode partitions with Young diagrams. For example, the partition (3, 2, 2) of 7 corresponds to
the diagram

Let c1, . . . , ct denote the lengths of the columns of λ.

Definition 2.4. The Schur complex Sλ(F) is the quotient
(∧c1 F ⊗· · ·⊗

∧ct F
)
/R, where R is the sum

of submodules c1∧
F ⊗ · · ·⊗

ca−1∧
F ⊗ Ra,a+1⊗

ca+2∧
F ⊗ · · ·⊗

ct∧
F.
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Here, Ra,a+1 is the submodule spanned by the images of the compositions

2(a, u, v; F) :
u∧

F ⊗
ca−u+ca+1−v∧

F⊗
v∧

F 1⊗1⊗1
−−−−→

u∧
F⊗

ca−u∧
F ⊗

ca+1−v∧
F ⊗

v∧
F µ⊗µ
−−−→

ca∧
F ⊗

ca+1∧
F

for u+ v < ca+1.

Remark 2.5. Our definition of the Schur complex differs from the one in [Weyman 2003, Section 2.4]
in that the roles of the rows and columns are swapped. In other words, Weyman’s definition of the
Schur complex of F with respect to λ is recovered by applying Definition 2.4 to the complex F and the
conjugate partition λ∗, i.e., the result of transposing the rows and columns of λ.

Example 2.6. Of course, if λ= (1, . . . , 1), Sλ(F)=
∧r F. If λ= (r), Sλ(F)=Symr (F) (see [Weyman

2003, Section 2.4] for the definition of the symmetric power of a complex).

The basis of F chosen above determines a basis Bi for each
∧ci F : namely, the images under ι of

elements of the form
{e( j1)

1 · · · e
( jl )
m ⊗ fk1 ∧ · · · ∧ fkci−( j1+···+ jl )

}

(from now on, we will tacitly identify these elements with their images under ι). The set S := {b1⊗· · ·⊗bt :

bi ∈ Bi } therefore gives an R-linear spanning set for Sλ(F). We will write elements of S as Z/2-graded
Young tableaux of shape λ, i.e., functions

T : {1, . . . , r} → {−m, . . . ,−1} ∪ {1, . . . , n},

where, as above, m = rank(Fodd) and n= rank(Feven). Here, divided power factors correspond to negative
values, and exterior factors correspond to positive values. For instance, if λ= (3, 3, 1) and m = 2= n,
the element (e(2)2 ⊗ f1)⊗ (e1⊗ f1)⊗ ( f1 ∧ f2) in S(3,3,1)(F) corresponds to the function

l 1 2 3 4 5 6 7

T (l) -2 -2 1 -1 1 1 2

which we express as the following Young tableau:

T = −2 −1 1

−2 1 2

1

We will call such a tableau standard if

(A) the columns increase from top to bottom, with equality possible only for negative values, and

(B) the rows increase from left to right, with equality possible only for positive values.

Remark 2.7. Our definition of a standard tableau is the transpose of Weyman’s [2003, Definition 1.1.12(c)]
(cf. Remark 2.5).



Brown, Huang, Laudone, Perlman, Raicu, Sam and Santos :::: Computing Schur complexes 115

For instance, the tableau T above is standard. The tableaux

−2 −1 1

−2 −1 2

−3

−2 −1 1

1 1 2

1

−2 −1 −1

−2 1 2

1

are nonstandard.

Proposition 2.8 [Weyman 2003, Proposition 2.4.2]. The standard Z/2-graded tableaux of shape λ form
an R-linear basis of Sλ(F).

We compute the differentials in Sλ(F) with respect to this basis in the SchurComplexes package. It
is therefore essential for us to implement an algorithm for writing the image of a standard tableau under
the differential in Sλ(F) as a linear combination of standard tableaux. The proof of [Weyman 2003,
Proposition 2.4.2] explains such an algorithm: the “straightening algorithm” of [Akin et al. 1982]. We
now discuss this algorithm in detail.

The straightening algorithm. As in the previous subsection, λ = (λ1, . . . , λs) denotes a partition of a
positive integer r with column lengths c1, . . . , ct . The straightening algorithm is a process for writing a
Z/2-graded tableau in the spanning set S of Sλ(F) described above as a Z-linear combination of standard
tableaux. Here is how it works.

Let T be a tableau in S. We make the following observations:

• If a column of T contains a repeated positive entry, T = 0 in Sλ(F).

• Since the divided power (resp. exterior) algebra is commutative (resp. skew commutative), rearrang-
ing the columns in T so that they satisfy (A) only changes the element of Sλ(F) represented by T
up to a sign.

With these facts in mind, we recall the straightening algorithm:

• Input: A tableau T ∈ S.

• Step 1: Denote by T ′ the result of rearranging the columns of T so that they satisfy (A), and let
σ ∈ {±1} denote the resulting sign.

• Step 2: If T ′ satisfies (B), output σT ′. Otherwise, choose the topmost row, say the w-th row, with a
“violation” of (B). Let T ′(i, j) denote the entry with horizontal coordinate i and vertical coordinate j
in the Young diagram, counting from the top-left corner. So T ′(i, j) is the entry in the i-th column
and the j-th row. Choose the smallest index a such that either T ′(a, w) > T ′(a+ 1, w) or T ′(a, w)=
T ′(a+ 1, w) < 0. Then, choose the smallest index w′ such that T ′(a+ 1, w) < T ′(a+ 1, w′+ 1); if no
such index exists, set w′ = ca+1.

• Step 3: Set u := w− 1 and v := ca+1−w
′. Define

(1) V1 ∈
∧u F to be the element corresponding to the first u entries in the a-th column of T ′,
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(2) V2 ∈
∧ca−u+ca+1−v F to be the element corresponding to the last ca − u entries in the a-th column

of T ′ followed by the first ca+1− v = w
′ entries of the (a+1)-st column of T ′,

(3) V3 ∈
∧v F to be the element corresponding to the last v entries in the (a+1)-st column of T ′.

For k ∈ {1, . . . , a− 1, a+ 2, . . . , s}, define Uk to be the element of
∧ck F which corresponds to the k-th

column of T ′. Recall that

L := (1⊗2(a, u, v; F)⊗ 1)(U1⊗ · · ·⊗Ua−1⊗ V1⊗ V2⊗ V3⊗Ua+2⊗ · · ·⊗Us)

is 0 in Sλ(F), where 2(a, u, v; F) is as in Definition 2.4. L is a Z-linear combination of tableaux in S
which contains T ′ with coefficient 1. If each tableau in the sum T ′− L is standard, output σ(T ′− L).
Otherwise, repeat this algorithm on each tableau in σ(T ′− L), keeping track of the coefficients.

The key observation is that each tableau appearing in the linear combination T ′− L from Step 3 is
strictly “smaller” than T ′, in the sense described in [Weyman 2003, Section 1.1], and so the algorithm
does indeed terminate.

Example 2.9. Let’s apply the straightening algorithm to the tableau

T = −3 2 −1

−2 1 3

−2 3

• Step 1: The middle column needs to be rearranged. Since f2 f1 f3 =− f1 f2 f3 in
∧3 Feven, we have

T ′ = −3 1 −1

−2 2 3

−2 3

and σ =−1.

• Step 2: T ′ is not standard. Here, w = 1, a = 2, and w′ = 1.

• Step 3: Here, u = 0 and v = 1. We have U1 = e3e(2)2 , V2 = e1⊗ f1∧ f2∧ f3, and V3 = f3 (since u = 0,
V1 plays no role), so

L = (1⊗2(2, 0, 1; F))(e3e(2)2 ⊗ (e1⊗ f1 ∧ f2 ∧ f3)⊗ f3).

In this case, 2(2, 0, 1) is the composition( 4∧
F
)
⊗ F 1⊗1
−−−−→

( 3∧
F ⊗ F

)
⊗ F id⊗µ
−−−−→

3∧
F ⊗

2∧
F.

By the proof of [Weyman 2003, Proposition 2.4.1(a)], the relevant component of the coproduct

1 :

4∧
F→

3∧
F ⊗ F

in 2(2, 0, 1; F) is:
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D1(Fodd)⊗

3∧
Feven

1D⊗13
−−−−→

1⊕
i=0

Di (Fodd)⊗ D1−i (Fodd)⊗

3−i∧
Feven⊗

i∧
Feven

τ
−−−−→

1⊕
i=0

Di (Fodd)⊗

3−i∧
Feven⊗ D1−i (Fodd)⊗

i∧
Feven,

where 1D and 13 are the coproducts on the ordinary divided power and exterior algebra, and τ trans-
poses the middle factors and multiplies by the sign (−1)(1−i)(3−i).

Note: one might think that, since the elements of
∧3−i Feven have even degree, transposing the middle

two factors should not introduce a sign. But recall that we are considering D1−i (Fodd)⊗
∧3−i Feven as

a submodule of T 4(F) via the embedding ι, which shuffles together the elements of D1−i (Fodd) and∧3−i Feven; this is why it is necessary to multiply by (−1)(1−i)(3−i). The general rule here is: when one
transposes the factors of Ds(Fodd)⊗

∧t Feven, one must introduce the sign (−1)-st= sign((1 2 · · · s+ t)t ).
Applying the formula for 13 in [Weyman 2003, Section 1.1, page 3], one gets

L =−(e3e(2)2 )⊗ ( f1 ∧ f2 ∧ f3)⊗ (e1⊗ f3)− (e3e(2)2 )⊗ (e1⊗ f1 ∧ f3)⊗ ( f2 ∧ f3)

+(e3e(2)2 )⊗ (e1⊗ f2 ∧ f3)⊗ ( f1 ∧ f3),

and therefore

T = −3 −1 2

−2 1 3

−2 3

−
−3 −1 1

−2 2 3

−2 3

Both of these tableaux are standard, so we’re done.

3. EXAMPLES OF COMPUTATIONS USING THE PACKAGE SchurComplexes. The SchurComplexes
package has two main functions:

• straightenTableau, which applies the straightening algorithm to a tableau.

• schurComplex, which computes the Schur complex of a bounded complex of finitely generated
free modules.

Using the function straightenTableau . We apply straightenTableau to the tableau in Example 2.9.
First, we load the package:

i1 : loadPackage "SchurComplexes.m2"

We encode the tableau T in a hash table:

i2 : T = new HashTable from {(1,1) => -3, (1,2) => -2, (1,3) => -2,
(2,1) => 2, (2,2) => 1, (2,3) => 3, (3,1) => -1, (3,2) => 3}

We encode the partition (3, 3, 2) in a list:

i3 : lambda = {3,3,2}
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Now, we apply straightenTableau to the pair (T, lambda):

i4 : straightenTableau(T, lambda)

o4 = HashTable{HashTable{(1, 1) => -3} => 1 }
(1, 2) => -2
(1, 3) => -2
(2, 1) => -1
(2, 2) => 1
(2, 3) => 3
(3, 1) => 2
(3, 2) => 3

HashTable{(1, 1) => -3} => -1
(1, 2) => -2
(1, 3) => -2
(2, 1) => -1
(2, 2) => 2
(2, 3) => 3
(3, 1) => 1
(3, 2) => 3

The output is a hash table which assigns a coefficient to each standard tableau in the linear combination
comprising the straightening of T. Notice that the output agrees with the calculation in Example 2.9.

Using the function schurComplex . Let R =Q[xi, j ], where 1≤ i ≤ 2 and 1≤ j ≤ 4, and let

F : R⊕4 (xi, j )
−−−−→ R⊕2

denote the generic 2× 4 matrix, considered as a complex concentrated in degrees 1 and 0. By [Weyman
2003, Exercise 6.34(d)], S(3)(F)= Sym3(F) has nonzero homology only in degree 0. We now use the
schurComplex function to compute S(3)(F) and verify this fact.

We first load the package, fix our ground ring R, and define our complex F :

i1 : loadPackage "SchurComplexes.m2"
i2 : R = QQ[x11,x21,x12,x22,x13,x23,x14,x24];
i3 : M = genericMatrix(R,x11,2,4);
i4 : F = new ChainComplex;
i5 : F.ring = R; F#0 = target M; F#1 = source M; F.dd#1 = M;

The function schurComplex takes as input a ChainComplex and a List which encodes the partition.
Let’s define our partition and compute S(3)(F):

i6 : lambda = {3};
i7 : S = schurComplex(lambda,F)

4 12 12 4
o7 = R <-- R <-- R <-- R

0 1 2 3

Finally, let’s check that S(3)(F) has trivial homology in degrees greater than 0:
i8 : apply((length S)+1,i->reduceHilbert hilbertSeries HH_i(S))

4 0 0 0
o8 = {--------, -, -, -}

5 1 1 1
(1 - T)
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