Journal of-Software for

gap> BrauerTable(libtbl, 2 J;

a: .. ;. ,;
5: . . 2 _— ring rl = 32003, (x,y,z),ds;
ol Sl i gap> CharacterTable("Symmetric", 4);; . a,b,c,t=11,5,3,0;
A Rl iy (o, We Tgnteoitl T e O poly f = x-a+y~btz"(3xc)+x"(c+2)xy~(c-1)+x"

gap> ComputedBrauerTables(tbl);

4
Z i [, BrauerTable(Sym([1 .. 41), 2 3plion(noprot);

x~(c-2) ¥y cx (y~2+t*x) ~2;

timer=1;
ring r2 = 32003, (x,y,z) ,dp;
< 2 poly f=imap(rl,f);
ideal j=jacob(f);
vdim(std(j));
==> 536
vdim(std(j+£));

o7 : BettiTally ==> 1956
i8 : peek ti

w0 .
OO+ o+ s

timer=0; [/ reset timer

o8 = BettiTally{(0, {0, 0}, 0)
CISS12 82 LN
Gls (= Sy &)
2, {3, 7¥, 10)
2, {4, 4}, & —> 1
(2, {4, 5}, 9) => 4
(2, {5, 4}, 9) => 4
¢2, %7, 3%, 10)
(3, {4, 7}, 11)
(3, {5, 5}, 10)
3, {7, 4}, 11)
(4, {6, 7}, 12)
4, {7, 5}, 12)

\'

nun
Vv Vv
M N =

VmVVVV

M:.hm;hh)

ms of squares in Macaulay2

vol 10 2020

JSAG 10 (2020), 17-24 The Journal of Software for
https://doi.org/10.2140/jsag.2020.10.17 Algebra and Geometry

Sums of squares in Macaulay2

DIEGO CIFUENTES, THOMAS KAHLE AND PABLO PARRILO

ABSTRACT: The Macaulay? package Sums0fSquares decomposes polynomials as sums of squares. It
is based on methods to rationalize sums-of-squares decompositions due to Parrilo and Peyrl. The package
features a data type for sums-of-squares polynomials, support for external semidefinite programming
solvers, and optimization over varieties.

1. INTRODUCTION. Let K = Q or K = R be the rational or real numbers and R = K[x1, ..., x,]
be the polynomial ring. An element f € R is nonnegative if f(x) > 0 for all x € R", and f is a sum
of squares (SOS) if there are polynomials f1, ..., fi,, € R and positive scalars Aq, ..., A, € K such
that f =), A fiz. The scalars are not necessary when the field is I = R. Clearly, a sum of squares
is nonnegative, but not every nonnegative polynomial is a sum of squares. Hilbert showed that the
nonnegative polynomials of degree d in n variables are sums of squares if and only if: n =1; or d =2; or
n =2 and d = 4. For an introduction to the area we recommend [Scheiderer 2009, Blekherman et al. 2013].

The SumsOfSquares package contains methods to compute sums of squares in [Macaulay2]. A
particular focus is on trying to find rational sums-of-squares decompositions of polynomials with rational
coefficients (whenever they exist).

Consider the basic problem of deciding whether a polynomial is a sum of squares. Let f be an element

n+d

of R of degree 2d, and v € RN be a vector whose entries are the N = (J) monomials of degree <d.

The following fundamental result holds:
fisSOS <« thereexists Q € Sﬁ such that f = v’ Qu,

where Sﬁ is the cone of N x N symmetric positive semidefinite matrices; see [Blekherman et al. 2013,
Section 3.1]. This reduces the problem to finding a Gram matrix Q as above, which can be done effi-
ciently with semidefinite programming (SDP).
The method solveS0S performs the computation above. We use it here to verify that
f=2x*+5y"—2x2y242x3y
is a sum of squares:
MSC2010: primary 13J30; secondary 13P25, 90C22.

Keywords: sums of squares, semidefinite programming.
Sums0fSquares version 2.1

17

https://doi.org/10.2140/jsag.2020.10-1
http://msp.org/jsag
http://https://doi.org/10.2140/jsag.2020.10.17
http://msp.org/jsag

18 Cifuentes, Kahle and Parrilo ~~~~ Sums of squares in Macaulay?2

i1 : R = QQlx,yl;
12 0 f = 2%xT44+5xyT4-2%xT 2%y T 242%X 7 3%y ;
i3 : sol = solveSOS f£f;

Executing CSDP
Status: SDP solved, primal-dual feasible

The “Status” line indicates that a Gram matrix was found, so f is indeed a sum of squares. In the
example above the package called an external program to serve as semidefinite programming solver. The
default solver is the open source program CSDP [Borchers 1999], which is included in Macaulay2. The
output of solveS0S is an object of type SDPResult. It contains, in particular, the Gram matrix Q and
the monomial vector v.

i4 : (Q,v) = (sol#GramMatrix, sol#Monomials)

o4 = (] 2 1 -83/40 |, | x2 |)
| 1 43/20 0 | | xy |
| -83/40 0 5 | | y2 |

The result of the semidefinite programming solver is a floating point approximation of the Gram
matrix. The Sums0fSquares package attempts to find a close enough rational Gram matrix by rounding
its entries [Peyrl and Parrilo 2008]. If this rounding procedure fails to find a feasible rational matrix, the
method returns the floating point solution. The procedure is guaranteed to work when the floating point
Gram matrix lies in the interior of Sﬁ . See the Appendix for more details about rational rounding.

The method sosPoly extracts the sum-of-squares decomposition from the returned SDPResult. This
is done via an LDL factorization (a variant of Cholesky factorization) of the Gram matrix. For the
function f from above we get three squares:

i5 : s = sosPoly sol

2 2 231773 2 2

83 2 2 43 20
06 = (B)(- ——=x +y) + (—=)(—x + xxy) + (-———-- ()
20 43

200

The output above is an object of type SOSPoly. An object of this type stores the coefficients A; and
polynomials (or generators) f; such that f =73 A, fiZ. We can extract the coefficients and generators as
follows:

i5 : coefficients s

o5 = {5, 43/20, 231773/344000}

i6 : gens s

06 = {-83/200%x"2 + y~2, 20/43*x"2 + x*y, x"2}

The method solveS0S can also compute sums-of-squares decompositions in quotient rings. This can
be useful to prove nonnegativity of a polynomial on a variety. We take an example from [Parrilo 2005].
Consider proving that f = 10—x>—y is nonnegative on the circle defined by g = x>4y>—1. To do this,
we check if f is a sum of squares in the quotient ring Q[x, y]/(g). For such a computation, an even
degree bound must be given by the user, as otherwise it is not obvious how to choose the monomial
vector v. In the following example we use 2d = 2 as the degree bound.

Cifuentes, Kahle and Parrilo ~~~~ Sums of squares in Macaulay2 19

i1 : R = QQlx,y]l/ideal(x"2 + y~2 - 1);
i2 ¢ £ = 10-x"2-y; d = 1;
i3 : sosPoly solveS0S (f, 2*d, TraceObj=>true)

Executing CSDP
Status: SDP solved, primal-dual feasible

1 2 35 2
03=@CE-—-y+1 +
18 36

In the computation above the option TraceObj=>true was used to reduce the number of squares in
the SOS decomposition (see Section 6).

2. SUMS OF SQUARES IN IDEALS. Let I C K[xq, ..., x,]be an ideal. Given an even bound 2d, consider
the problem of finding a nonzero sum-of-squares polynomial of degree < 2d in the ideal /. If one of
the generators of I has degree < d, then the problem is trivial. But otherwise the problem can be hard.
The method sosInIdeal can be used to solve it. One of the main motivations for this problem is that
it reveals information about the real radical of the ideal I, i.e., the vanishing ideal of the real zeros of 1.
Indeed, if f =) A; fl.2 € [then each of the factors f; must lie in the real radical of /.

Given generators of the ideal I = (hy, ..., h;), we may solve this problem by looking for some
polynomial multipliers /; (x) such that) . [;(x)h;(x) is a sum of squares. The method sosInIdeal can
find these multipliers. The input is a matrix containing the generators, and the degree bound 2d. We
illustrate this for the ideal I = (x> —4x+2y?, 27> —y*+2):

i1 : R = QAlx,y,zl; d=1;

i2 @ h = matrix {{x"2-4%x+2%y~2, 2%z~ 2-y~2+2}};

i3 : (sol,mult) = sosInIdeal (h, 2%*d);

i4 : sosPoly sol

395 1 2 395 2
od= (- Cx+ D+ (D@
2 2 2

i5 : h * mult == sosPoly sol

o5 = true

An alternative way to approach this problem is to construct the quotient S = K[x1, ..., x,]/I and then
write 0 € S as a sum of squares. In this case the input to sosInIdeal is simply the quotient ring S.

i6 : S = R/ideal h;

i7 : sosPoly sosInIdeal (S, 2%d);
1031833 1 2 1031833 2
+

In both cases we obtained a multiple of the sum-of-squares polynomial (%x—l)z—l—zz. This computa-
tion reveals that x—2 and z lie in the real radical of /. Indeed, we have I = (x—2, z, y2—2).

3. SOS DECOMPOSITIONS OF TERNARY FORMS. Hilbert showed that any nonnegative form f €
K[x, y, z] can be decomposed as a quotient of sums of squares. We can obtain this decomposition

20 Cifuentes, Kahle and Parrilo ~~~~ Sums of squares in Macaulay?2

by iteratively calling sosInIdeal. Specifically, one can first find a multiplier g; such that g; f is a sum
of squares. Since g; is also nonnegative, we can then search for a multiplier p; such that p;q; is a
sum of squares, and so on. The main observation is that the necessary degree of p; is lower than that

of g1 [de Klerk and Pasechnik 2004]. Hence this procedure terminates, and we can write
f= P1-°"Ds
qi1--q:

As an illustration, we write the Motzkin polynomial as a quotient of sums of squares. We first use the

with p;, ¢; sums of squares.

function 1ibrary, which contains a small library of interesting nonnegative forms.

i1 : R = QQ[x,y,z]

i2 : f = library ("Motzkin", {x,y,z})
4 2 2 4 222 6

02 =xy +xy -3xyz +2z

We now apply the function sosdecTernary, which implements the iterative algorithm from above.

i3 : (Nums,Dens) = sosdecTernary f;
Executing CSDP
i4 : num = first Nums

2267 2 2 4 2 2003 1013 3 990 3 2.2
(——)(xy -2) + (——-)(- ————x y - ————xxy + x*ky*z) + ...
64 2003 2003

o4

i5 : den = first Dens

2267 2 1079 2
(=)@ + ())
64

ob

33 2
+ (=) (y)
2

The result consists of two sums of squares, the second being the denominator. We can check the
computation as follows.

i6 : f*value(den) == value(num)

06 = true

4. PARAMETRIC SOS PROBLEMS. The Sums0OfSquares package can also solve parametric problems.
Assume now that x — f(x; t) is a polynomial function that depends affinely on some parameters ¢. The
command solveS0S can be used to search for values of the parameters such that the polynomial is a
sum of squares. In the following example, we change two coefficients of the Robinson polynomial so
that it becomes a sum of squares.

il : R

QQlx,y,zl[s,t];

library("Robinson", {x,y,z}) + s*x™6 + t*y~6;

i2 : g
i3 : sol = solveS0S g;

Executing CSDP
Status: SDP solved, primal-dual feasible

i4 : sol#Parameters

o4 = | 34 |
| 34 |

Cifuentes, Kahle and Parrilo ~~~~ Sums of squares in Macaulay2 21

In the code above, the ring construction (first line) indicates that s, ¢ should be treated as parameters.
The values obtained were s = ¢ = 34.

It is also possible find the values of the parameters that optimize a given linear function. This allows
us to find lower bounds for a polynomial function f(x), by finding the largest ¢ such that f(x) —¢isa
sum of squares. Here we apply this method to the dehomogenized Motzkin polynomial.

il @ R = QQlx,z][t];

i2 : f = library ("Motzkin", {x,1,z});

i3 : sol = solveS0S (f-t, -t, RoundTol=>12);

Executing CSDP
Status: SDP solved, primal-dual feasible

i4 : sol#Parameters
o4 = | -729/4096 |

Alternatively, the method 1lowerBound can be called with input f(x). The method internally declares
a new parameter ¢ and optimizes f(x) —t.

i1 : R = QQ[x,z];

i2 : f = library ("Motzkin", {x,1,z});

i3 : (t,s0l) = lowerBound (f, RoundTol=>12);

Executing CSDP
Status: SDP solved, primal-dual feasible

i4 : t
04 = - 729/4096

5. POLYNOMIAL OPTIMIZATION. In applications one often needs to find lower bounds for polynomials
subject to some polynomial constraints. More precisely, consider the problem

mhn f(x)suchthat hi(x) =---=h,((x) =0,
xXe n
where f, hy, ..., h, are polynomials. The Sums0fSquares package provides two ways to compute a

lower bound for such a problem. The most elegant approach is to construct the associated quotient ring,
and then call lowerBound. This will look for the largest ¢ such that f(x) — ¢ is a sum of squares (in the
quotient ring). A degree bound 2d must be given by the user.

il : R = QQlx,yl/ideal(x"2 - x, y°2 - y);

i2 : £f=x-y; d=1;

i3 : (t,so0l) = lowerBound(f,2xd);

Executing CSDP
Status: SDP solved, primal-dual feasible

i4 : t
o4 = -1
i5 : £ - t == sosPoly sol

o5 = true

Calling lowerBound as above is conceptually simple, but requires knowledge of a Grobner basis,
which is computed when constructing the quotient ring. If no Grdbner basis is available there is an

22 Cifuentes, Kahle and Parrilo ~~~~ Sums of squares in Macaulay?2

alternative way to call lowerBound with just the equations A1, ..., h, as the input. The method will
then look for polynomial multipliers /; (x) such that f(x) —¢+ >, [;(x)h;(x) is a sum of squares. This
may result in larger semidefinite programs and weaker bounds.

il : R = QQlx,y];

i2 : £f=x-y; d=1;

i3 : h = matrix{{x"2 - x, y°2 - y}};

i4 : (t,sol,mult) = lowerBound (f, h, 2x*d);

Executing CSDP

Status: SDP solved, primal-dual feasible

i5 : t

o5 = -1

i6 : £ - t + h*mult == sosPoly sol

06 = true

Lower bounds for polynomial optimization problems critically depend on the degree bound chosen.
While higher degree bounds lead to better bounds, the computational complexity escalates quite rapidly.
Nonetheless, low degree SOS lower bounds often perform very well in applications. In some cases, the
minimizer might also be recovered from the SDPResult with the method recoverSolution.

i7 : recoverSolution sol

o7 = {x => 1.77345e-9, y => 1}

6. OPTIONAL ARGUMENTS.

SDP Solver. The optional argument Solver is available for many package methods and a particular
semidefinite programming solver can be picked by setting it. These solvers are interfaced via the auxiliary
Macaulay?2 package [SemidefiniteProgramming]. The package provides interfaces to the open source
solvers CSDP [Borchers 1999] and SDPA [Yamashita et al. 2003], and the commercial solver [MOSEK].
There is also a built-in solver in the Macaulay?2 language. In our experience CSDP and MOSEK give
the best results. CSDP is provided as part of Macaulay2 and configured as the default.

Rounding tolerance. The method lowerBound has the optional argument RoundTol, which specifies
the precision of the rational rounding. Smaller values of RoundTol lead to rational matrices with smaller
denominators but farther from the numerical solution. The rational rounding may be skipped by setting
it to infinity.

Trace objective. The option Trace(Obj tells the semidefinite programming solver to minimize the trace
of the Gram matrix. This is a known heuristic to reduce the number of squares in the SOS decomposition.

APPENDIX: RATIONAL ROUNDING. Sums-of-squares problems are solved numerically using a semi-
definite programming solver, and afterwards the package attempts to round the floating point solution to
rational numbers. We briefly describe the rounding procedure, which was proposed in [Peyrl and Parrilo
2008].

Cifuentes, Kahle and Parrilo ~~~~ Sums of squares in Macaulay2 23

Let f € Q[xy,...,x,] and consider the affine space £ := {Q : v Qv = f}, where v is a given
monomial vector. A Gram matrix is an element of £N Sﬁ . The semidefinite programming solver returns
a numerical matrix Q,, an “approximate” Gram matrix, which may not lie exactly on £. The rounding
problem consists in finding a nearby Gram matrix Q, with rational entries.

The procedure from [Peyrl and Parrilo 2008] consists of two steps. First, the entries of Q,, are rounded
to a rational matrix Q.. Then Q, is obtained as the orthogonal projection of Q’ onto £. The image of the
projection is rational, lies in £, but need not be positive semidefinite. We may ensure Q, € Sﬁ if the nu-
merical matrix Q, is in the interior of Sﬂ and sufficiently close to £. More precisely, assume A, the small-
est eigenvalue of O, is greater than the distance § := dist(Q,, £). Then setting the rounding tolerance
dist(Q,, Q,) smaller than NSV guarantees that Q, € Sﬁ; see [Peyrl and Parrilo 2008, Proposition §].

ACKNOWLEDGMENT. The authors would like to thank Bernd Sturmfels and the Max-Planck Institute
fiir Mathematik in den Naturwissenschaften in Leipzig for hosting the Macaulay2 workshop in May 2018.
We thank Ilir Dema, Nidhi Kainsa and Anton Leykin, who contributed to the code. The package code
contains parts of a proof-of-concept implementation of the methods in [Peyrl and Parrilo 2008]. Parts of
this work were done while Diego Cifuentes visited the Max-Planck Institute MiS, and while Cifuentes
and Kabhle visited ICERM supported by NSF grant No. DMS-1439786. Thomas Kabhle is supported
by the German Research Foundation under grant 314838170, GRK 2297 MathCoRe. Pablo Parrilo is
supported in part by the National Science Foundation through NSF Grant CCF-1565235.

SUPPLEMENT. The online supplement contains version 2.1 of Sums0fSquares.

REFERENCES.

[Blekherman et al. 2013] G. Blekherman, P. A. Parrilo, and R. R. Thomas, Semidefinite optimization and convex algebraic
geometry, edited by G. Blekherman et al., MOS-SIAM Series on Optimization 13, Society for Industrial and Applied Mathe-
matics (SIAM), Philadelphia, PA, 2013. MR Zbl

[Borchers 1999] B. Borchers, “CSDP, a C library for semidefinite programming”, pp. 613-623 11/12 1-4, 1999. MR Zbl

[de Klerk and Pasechnik 2004] E. de Klerk and D. V. Pasechnik, “Products of positive forms, linear matrix inequalities, and
Hilbert 17th problem for ternary forms”, European J. Oper. Res. 157:1 (2004), 39-45. MR Zbl

[Macaulay2] D. R. Grayson and M. E. Stillman, “Macaulay?2: a software system for research in algebraic geometry”, available
at http://www.math.uiuc.edu/Macaulay?2.

[MOSEK] MOSEK ApS, “MOSEK Command Line Tools”, software, available at https://docs.mosek.com/8.1/cmdtools.pdf.

[Parrilo 2005] P. A. Parrilo, “Exploiting algebraic structure in sum of squares programs”, pp. 181-194 in Positive polynomials
in control, edited by D. Henrion and A. Garulli, Lect. Notes Control Inf. Sci. 312, Springer, 2005. MR Zbl

[Peyrl and Parrilo 2008] H. Peyrl and P. A. Parrilo, “Computing sum of squares decompositions with rational coefficients”,
Theoret. Comput. Sci. 409:2 (2008), 269-281. MR Zbl

[Scheiderer 2009] C. Scheiderer, “Positivity and sums of squares: a guide to recent results”, pp. 271-324 in Emerging ap-
plications of algebraic geometry, edited by M. Putinar and S. Sullivant, IMA Vol. Math. Appl. 149, Springer, 2009. MR
Zbl

[SemidefiniteProgramming] D. Cifuentes, T. Kahle, P. A. Parrilo, and H. Peyrl, “SemidefiniteProgramming”, Macaulay2 pack-
age,, available at https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/SemidefiniteProgramming/.

[Yamashita et al. 2003] M. Yamashita, K. Fujisawa, and M. Kojima, “Implementation and evaluation of SDPA 6.0 (semidefinite
programming algorithm 6.0)”, Optim. Methods Softw. 18:4 (2003), 491-505. The Second Japanese-Sino Optimization Meeting,
Part II (Kyoto, 2002). MR Zbl

http://msp.org/jsag/2020/10-1/jsag-v10-n1-x03-SumsOfSquares.zip
http://msp.org/idx/mr/3075433
http://msp.org/idx/zbl/1260.90006
http://dx.doi.org/10.1080/10556789908805765
http://msp.org/idx/mr/1778432
http://msp.org/idx/zbl/0973.90524
http://dx.doi.org/10.1016/j.ejor.2003.08.014
http://dx.doi.org/10.1016/j.ejor.2003.08.014
http://msp.org/idx/mr/2064275
http://msp.org/idx/zbl/1106.90058
http://www.math.uiuc.edu/Macaulay2
https://docs.mosek.com/8.1/cmdtools.pdf
http://dx.doi.org/10.1007/10997703_11
http://msp.org/idx/mr/2123524
http://msp.org/idx/zbl/1070.90081
http://dx.doi.org/10.1016/j.tcs.2008.09.025
http://msp.org/idx/mr/2474341
http://msp.org/idx/zbl/1156.65062
http://dx.doi.org/10.1007/978-0-387-09686-5_8
http://msp.org/idx/mr/2500469
http://msp.org/idx/zbl/1156.14328
https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/SemidefiniteProgramming/
http://dx.doi.org/10.1080/1055678031000118482
http://dx.doi.org/10.1080/1055678031000118482
http://msp.org/idx/mr/2019042
http://msp.org/idx/zbl/1106.90366

24 Cifuentes, Kahle and Parrilo ~~~~ Sums of squares in Macaulay?2

RECEIVED: 13 Dec 2018 REVISED: 7 Dec 2019 ACCEPTED: 6 Jan 2020

DIEGO CIFUENTES:

diegcif @mit.edu
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, United States

THOMAS KAHLE:

thomas.kahle@ovgu.de

Fakultit fiir Mathematik, Otto-von-Guericke Universitit Magdeburg, Institut Algebra und Geometrie, Universititsplatz 2,
Magdeburg, Germany

PABLO PARRILO:

parrilo@mit.edu
Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, United States

:'msp

mailto:diegcif@mit.edu
mailto:thomas.kahle@ovgu.de
mailto:parrilo@mit.edu
http://msp.org

	1. Introduction
	2. Sums of squares in ideals
	3. SOS decompositions of ternary forms
	4. Parametric SOS problems
	5. Polynomial optimization
	6. Optional arguments

