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Sums of squares in Macaulay2

DIEGO CIFUENTES, THOMAS KAHLE AND PABLO PARRILO

ABSTRACT: The Macaulay2 package SumsOfSquares decomposes polynomials as sums of squares. It
is based on methods to rationalize sums-of-squares decompositions due to Parrilo and Peyrl. The package
features a data type for sums-of-squares polynomials, support for external semidefinite programming
solvers, and optimization over varieties.

1. INTRODUCTION. Let K = Q or K = R be the rational or real numbers and R = K[x1, . . . , xn]

be the polynomial ring. An element f ∈ R is nonnegative if f (x) ≥ 0 for all x ∈ Rn , and f is a sum
of squares (SOS) if there are polynomials f1, . . . , fm ∈ R and positive scalars λ1, . . . , λm ∈ K such
that f =

∑
i λi f 2

i . The scalars are not necessary when the field is K = R. Clearly, a sum of squares
is nonnegative, but not every nonnegative polynomial is a sum of squares. Hilbert showed that the
nonnegative polynomials of degree d in n variables are sums of squares if and only if: n = 1; or d = 2; or
n= 2 and d = 4. For an introduction to the area we recommend [Scheiderer 2009,Blekherman et al. 2013].

The SumsOfSquares package contains methods to compute sums of squares in [Macaulay2]. A
particular focus is on trying to find rational sums-of-squares decompositions of polynomials with rational
coefficients (whenever they exist).

Consider the basic problem of deciding whether a polynomial is a sum of squares. Let f be an element
of R of degree 2d, and v ∈ RN be a vector whose entries are the N =

(n+d
d

)
monomials of degree ≤ d.

The following fundamental result holds:

f is SOS ⇐⇒ there exists Q ∈ SN
+

such that f = vT Qv,

where SN
+

is the cone of N×N symmetric positive semidefinite matrices; see [Blekherman et al. 2013,
Section 3.1]. This reduces the problem to finding a Gram matrix Q as above, which can be done effi-
ciently with semidefinite programming (SDP).

The method solveSOS performs the computation above. We use it here to verify that

f = 2x4
+5y4

−2x2 y2
+2x3 y

is a sum of squares:

MSC2010: primary 13J30; secondary 13P25, 90C22.
Keywords: sums of squares, semidefinite programming.
SumsOfSquares version 2.1

17

https://doi.org/10.2140/jsag.2020.10-1
http://msp.org/jsag
http://https://doi.org/10.2140/jsag.2020.10.17
http://msp.org/jsag


18 Cifuentes, Kahle and Parrilo :::: Sums of squares in Macaulay2

i1 : R = QQ[x,y];

i2 : f = 2*x^4+5*y^4-2*x^2*y^2+2*x^3*y;

i3 : sol = solveSOS f;

Executing CSDP
Status: SDP solved, primal-dual feasible

The “Status” line indicates that a Gram matrix was found, so f is indeed a sum of squares. In the
example above the package called an external program to serve as semidefinite programming solver. The
default solver is the open source program CSDP [Borchers 1999], which is included in Macaulay2. The
output of solveSOS is an object of type SDPResult. It contains, in particular, the Gram matrix Q and
the monomial vector v.

i4 : (Q,v) = ( sol#GramMatrix, sol#Monomials )

o4 = ( | 2 1 -83/40 |, | x2 | )
| 1 43/20 0 | | xy |
| -83/40 0 5 | | y2 |

The result of the semidefinite programming solver is a floating point approximation of the Gram
matrix. The SumsOfSquares package attempts to find a close enough rational Gram matrix by rounding
its entries [Peyrl and Parrilo 2008]. If this rounding procedure fails to find a feasible rational matrix, the
method returns the floating point solution. The procedure is guaranteed to work when the floating point
Gram matrix lies in the interior of SN

+
. See the Appendix for more details about rational rounding.

The method sosPoly extracts the sum-of-squares decomposition from the returned SDPResult. This
is done via an LDL factorization (a variant of Cholesky factorization) of the Gram matrix. For the
function f from above we get three squares:

i5 : s = sosPoly sol

83 2 2 2 43 20 2 2 231773 2 2
o5 = (5)(- ---x + y ) + (--)(--x + x*y) + (------)(x )

200 20 43 344000

The output above is an object of type SOSPoly. An object of this type stores the coefficients λi and
polynomials (or generators) fi such that f =

∑
i λi f 2

i . We can extract the coefficients and generators as
follows:

i5 : coefficients s

o5 = {5, 43/20, 231773/344000}

i6 : gens s

o6 = {-83/200*x^2 + y^2, 20/43*x^2 + x*y, x^2}

The method solveSOS can also compute sums-of-squares decompositions in quotient rings. This can
be useful to prove nonnegativity of a polynomial on a variety. We take an example from [Parrilo 2005].
Consider proving that f = 10−x2

−y is nonnegative on the circle defined by g = x2
+y2
−1. To do this,

we check if f is a sum of squares in the quotient ring Q[x, y]/〈g〉. For such a computation, an even
degree bound must be given by the user, as otherwise it is not obvious how to choose the monomial
vector v. In the following example we use 2d = 2 as the degree bound.
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i1 : R = QQ[x,y]/ideal(x^2 + y^2 - 1);

i2 : f = 10-x^2-y; d = 1;

i3 : sosPoly solveSOS (f, 2*d, TraceObj=>true)

Executing CSDP
Status: SDP solved, primal-dual feasible

1 2 35 2
o3 = (9)(- -- y + 1) + (--)(y)

18 36

In the computation above the option TraceObj=>true was used to reduce the number of squares in
the SOS decomposition (see Section 6).

2. SUMS OF SQUARES IN IDEALS. Let I ⊂K[x1, . . . , xn] be an ideal. Given an even bound 2d , consider
the problem of finding a nonzero sum-of-squares polynomial of degree ≤ 2d in the ideal I . If one of
the generators of I has degree ≤ d, then the problem is trivial. But otherwise the problem can be hard.
The method sosInIdeal can be used to solve it. One of the main motivations for this problem is that
it reveals information about the real radical of the ideal I , i.e., the vanishing ideal of the real zeros of I .
Indeed, if f =

∑
λi f 2

i ∈ I then each of the factors fi must lie in the real radical of I .
Given generators of the ideal I = 〈h1, . . . , hm〉, we may solve this problem by looking for some

polynomial multipliers li (x) such that
∑

i li (x)hi (x) is a sum of squares. The method sosInIdeal can
find these multipliers. The input is a matrix containing the generators, and the degree bound 2d. We
illustrate this for the ideal I = 〈x2

−4x+2y2, 2z2
−y2
+2〉:

i1 : R = QQ[x,y,z]; d = 1;

i2 : h = matrix {{x^2-4*x+2*y^2, 2*z^2-y^2+2}};

i3 : (sol,mult) = sosInIdeal (h, 2*d);

i4 : sosPoly sol

395 1 2 395 2
o4 = (---)(- - x + 1) + (---)(z)

2 2 2

i5 : h * mult == sosPoly sol

o5 = true

An alternative way to approach this problem is to construct the quotient S =K[x1, . . . , xn]/I and then
write 0 ∈ S as a sum of squares. In this case the input to sosInIdeal is simply the quotient ring S.

i6 : S = R/ideal h;

i7 : sosPoly sosInIdeal (S, 2*d);

1031833 1 2 1031833 2
o7 = (-------)(- - x + 1) + (-------)(z)

2048 2 2048

In both cases we obtained a multiple of the sum-of-squares polynomial
(1

2 x−1
)2
+z2. This computa-

tion reveals that x−2 and z lie in the real radical of I . Indeed, we have R
√

I = 〈x−2, z, y2
−2〉.

3. SOS DECOMPOSITIONS OF TERNARY FORMS. Hilbert showed that any nonnegative form f ∈
K[x, y, z] can be decomposed as a quotient of sums of squares. We can obtain this decomposition
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by iteratively calling sosInIdeal. Specifically, one can first find a multiplier q1 such that q1 f is a sum
of squares. Since q1 is also nonnegative, we can then search for a multiplier p1 such that p1q1 is a
sum of squares, and so on. The main observation is that the necessary degree of p1 is lower than that
of q1 [de Klerk and Pasechnik 2004]. Hence this procedure terminates, and we can write

f =
p1 · · · ps

q1 · · · qt
with pi , qi sums of squares.

As an illustration, we write the Motzkin polynomial as a quotient of sums of squares. We first use the
function library, which contains a small library of interesting nonnegative forms.

i1 : R = QQ[x,y,z]

i2 : f = library ("Motzkin", {x,y,z})

4 2 2 4 2 2 2 6
o2 = x y + x y - 3x y z + z

We now apply the function sosdecTernary, which implements the iterative algorithm from above.

i3 : (Nums,Dens) = sosdecTernary f;

Executing CSDP

i4 : num = first Nums

2267 2 2 4 2 2003 1013 3 990 3 2 2
o4 = (----)(x y - z ) + (----)(- ----x y - ----x*y + x*y*z ) + ...

64 64 2003 2003

i5 : den = first Dens

2267 2 1079 2 33 2
o5 = (----)(z) + (----)(x) + (--)(y)

64 64 2

The result consists of two sums of squares, the second being the denominator. We can check the
computation as follows.

i6 : f*value(den) == value(num)

o6 = true

4. PARAMETRIC SOS PROBLEMS. The SumsOfSquares package can also solve parametric problems.
Assume now that x 7→ f (x; t) is a polynomial function that depends affinely on some parameters t . The
command solveSOS can be used to search for values of the parameters such that the polynomial is a
sum of squares. In the following example, we change two coefficients of the Robinson polynomial so
that it becomes a sum of squares.

i1 : R = QQ[x,y,z][s,t];

i2 : g = library("Robinson", {x,y,z}) + s*x^6 + t*y^6;

i3 : sol = solveSOS g;

Executing CSDP
Status: SDP solved, primal-dual feasible

i4 : sol#Parameters

o4 = | 34 |
| 34 |
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In the code above, the ring construction (first line) indicates that s, t should be treated as parameters.
The values obtained were s = t = 34.

It is also possible find the values of the parameters that optimize a given linear function. This allows
us to find lower bounds for a polynomial function f (x), by finding the largest t such that f (x)− t is a
sum of squares. Here we apply this method to the dehomogenized Motzkin polynomial.

i1 : R = QQ[x,z][t];

i2 : f = library ("Motzkin", {x,1,z});

i3 : sol = solveSOS (f-t, -t, RoundTol=>12);

Executing CSDP
Status: SDP solved, primal-dual feasible

i4 : sol#Parameters

o4 = | -729/4096 |

Alternatively, the method lowerBound can be called with input f (x). The method internally declares
a new parameter t and optimizes f (x)− t .

i1 : R = QQ[x,z];

i2 : f = library ("Motzkin", {x,1,z});

i3 : (t,sol) = lowerBound (f, RoundTol=>12);

Executing CSDP
Status: SDP solved, primal-dual feasible

i4 : t

o4 = - 729/4096

5. POLYNOMIAL OPTIMIZATION. In applications one often needs to find lower bounds for polynomials
subject to some polynomial constraints. More precisely, consider the problem

min
x∈Rn

f (x) such that h1(x)= · · · = hm(x)= 0,

where f, h1, . . . , hm are polynomials. The SumsOfSquares package provides two ways to compute a
lower bound for such a problem. The most elegant approach is to construct the associated quotient ring,
and then call lowerBound. This will look for the largest t such that f (x)− t is a sum of squares (in the
quotient ring). A degree bound 2d must be given by the user.

i1 : R = QQ[x,y]/ideal(x^2 - x, y^2 - y);

i2 : f = x - y; d = 1;

i3 : (t,sol) = lowerBound(f,2*d);

Executing CSDP
Status: SDP solved, primal-dual feasible

i4 : t

o4 = -1

i5 : f - t == sosPoly sol

o5 = true

Calling lowerBound as above is conceptually simple, but requires knowledge of a Gröbner basis,
which is computed when constructing the quotient ring. If no Gröbner basis is available there is an
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alternative way to call lowerBound with just the equations h1, . . . , hm as the input. The method will
then look for polynomial multipliers li (x) such that f (x)− t +

∑
i li (x)hi (x) is a sum of squares. This

may result in larger semidefinite programs and weaker bounds.

i1 : R = QQ[x,y];

i2 : f = x - y; d = 1;

i3 : h = matrix{{x^2 - x, y^2 - y}};

i4 : (t,sol,mult) = lowerBound (f, h, 2*d);

Executing CSDP

Status: SDP solved, primal-dual feasible

i5 : t

o5 = -1

i6 : f - t + h*mult == sosPoly sol

o6 = true

Lower bounds for polynomial optimization problems critically depend on the degree bound chosen.
While higher degree bounds lead to better bounds, the computational complexity escalates quite rapidly.
Nonetheless, low degree SOS lower bounds often perform very well in applications. In some cases, the
minimizer might also be recovered from the SDPResult with the method recoverSolution.

i7 : recoverSolution sol

o7 = {x => 1.77345e-9, y => 1}

6. OPTIONAL ARGUMENTS.

SDP Solver. The optional argument Solver is available for many package methods and a particular
semidefinite programming solver can be picked by setting it. These solvers are interfaced via the auxiliary
Macaulay2 package [SemidefiniteProgramming]. The package provides interfaces to the open source
solvers CSDP [Borchers 1999] and SDPA [Yamashita et al. 2003], and the commercial solver [MOSEK].
There is also a built-in solver in the Macaulay2 language. In our experience CSDP and MOSEK give
the best results. CSDP is provided as part of Macaulay2 and configured as the default.

Rounding tolerance. The method lowerBound has the optional argument RoundTol, which specifies
the precision of the rational rounding. Smaller values of RoundTol lead to rational matrices with smaller
denominators but farther from the numerical solution. The rational rounding may be skipped by setting
it to infinity.

Trace objective. The option TraceObj tells the semidefinite programming solver to minimize the trace
of the Gram matrix. This is a known heuristic to reduce the number of squares in the SOS decomposition.

APPENDIX: RATIONAL ROUNDING. Sums-of-squares problems are solved numerically using a semi-
definite programming solver, and afterwards the package attempts to round the floating point solution to
rational numbers. We briefly describe the rounding procedure, which was proposed in [Peyrl and Parrilo
2008].
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Let f ∈ Q[x1, . . . , xn] and consider the affine space L := {Q : vT Qv = f }, where v is a given
monomial vector. A Gram matrix is an element of L∩SN

+
. The semidefinite programming solver returns

a numerical matrix Qn , an “approximate” Gram matrix, which may not lie exactly on L. The rounding
problem consists in finding a nearby Gram matrix Qr with rational entries.

The procedure from [Peyrl and Parrilo 2008] consists of two steps. First, the entries of Qn are rounded
to a rational matrix Q′r . Then Qr is obtained as the orthogonal projection of Q′r onto L. The image of the
projection is rational, lies in L, but need not be positive semidefinite. We may ensure Qr ∈ SN

+
if the nu-

merical matrix Qn is in the interior of SN
+

and sufficiently close to L. More precisely, assume λ, the small-
est eigenvalue of Qn , is greater than the distance δ := dist(Qn,L). Then setting the rounding tolerance
dist(Qn, Q′r ) smaller than

√
λ2− δ2 guarantees that Qr ∈SN

+
; see [Peyrl and Parrilo 2008, Proposition 8].
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