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Effective computation of degree bounded minimal models of GCDAs

VICTOR MANERO AND MIGUEL Á. MARCO BUZUNÁRIZ

ABSTRACT: Given a finitely presented graded commutative differential algebra (GCDA), we present
a method to compute its minimal model up to a specified degree, together with a map that is a quasi-
isomorphism up to the given degree. The method works by adding generators one by one. It terminates
if and only if the minimal model is finitely generated up to the given degree. A specific implementation
of the method is given.

The method allows us to develop and implement two criteria for i-formality, one necessary and one
sufficient. These criteria can be checked effectively, and have been able to determine the i-formality for
every example that we have tested.

1. INTRODUCTION.

Definition 1. A graded commutative differential algebra (or GCDA) over a ring R is a graded R-algebra
A =

⊕
∞

i=0 Ai , together with an R-linear map dA : A→ A that satisfies the following conditions:

• Ai A j ⊆ Ai+ j .

• d2
A = 0.

• dA(Ai )⊆ Ai+1 for all i ∈ N.

• ab = (−1)i j ba for all a ∈ Ai , b ∈ A j .

• dA(ab)= dA(a)b+ (−1)i adA(b) for all a ∈ Ai , b ∈ A.

From now on we will refer to a GCDA as a differential algebra, and when no confusion is possible we
will denote the pair (A, dA) by A. To further simplify the notation, we will assume that the base ring R

is the field of rationals Q, although the results will hold for more general fields. We will also assume
that A is connected, i.e., that A0 =Q.

We will consider finitely presented differential algebras given by the following data:

• A finite set of homogeneous generators {a1, . . . , an}.

• For each generator a j , a positive integer that will be its degree, which is denoted by |a j |.
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• For each generator of degree i , its differential, which is a homogeneous, degree i + 1 graded com-
mutative polynomial in the generators.

• A finite set of homogeneous relations {R1, . . . , Rm}, which are graded commutative polynomials in
the generators.

Given this data, A is the quotient of the free Q-algebra of graded commutative polynomials in a1, . . . , an

by the two-sided ideal I generated by the relations R1, . . . , Rm . Choosing a monomial ordering, a Gröb-
ner basis for I determines a normal form (and hence, a unique representation) for the elements in A.

The notion of i-minimal differential algebra is well known in the literature (see for example [Suciu
and Wang 2019]). We include the definition here for completeness.

Definition 2. A differential algebra A is said to be i -minimal (in the sense of Sullivan) if it is freely
generated as a graded commutative algebra by a collection of elements {al} with l ∈ J, of A, for a well-
ordered index set J, such that |al | ≤ |as | ≤ i if l ≤ s and the differential of a generator as is expressed in
terms of the al’s with l < s.

Given differential algebras A and B, a morphism of algebras

φ : A→ B

is said to be a morphism of differential algebras if it preserves the degree and commutes with the dif-
ferential. Those differential algebras are said to be i -quasi-isomorphic if there exists a morphism of
differential algebras φ : A→ B such that φ∗ : H j (A)→ H j (B) is an isomorphism for every j ≤ i and
φ∗ : H i+1(A)→ H i+1(B) is a monomorphism.

Definition 3. An i-minimal model of the differential algebra (A, dA) is an i-minimal differential algebra
(M, dM) together with an i-quasi-isomorphism,

φ : (M, dM)→ (A, dA).

The existence and uniqueness of the minimal model of a connected differential algebra is guaranteed
by the following result due to Halperin.

Theorem 1.1 [Morgan 1978; Sullivan 1977]. For any i ≥ 0, any connected differential algebra A has an
i-minimal model unique up to isomorphism.

Among the well-known examples of differential algebras is the de Rham complex (�∗(N ), dN ) of
differential forms on a manifold N. There is a construction that extends the idea of the de Rham algebra
for general topological spaces, called the algebra of polynomial differential forms AP L (see, for instance,
[Sullivan 1977]). An interesting well-known fact about this algebra is that its minimal model provides the
rational homotopy groups of the space. Every differential algebra (A, dA) has associated to it another
differential algebra, which is exactly the algebra given by its cohomology with zero differential, i.e.,
H∗(A). An algebra whose minimal model is isomorphic to the minimal model of its cohomology algebra
is called formal. Formality of de Rham algebras has been used to provide obstructions to the existence
of certain geometrical structures on differentiable manifolds (see [Deligne et al. 1975], for example).
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2. EFFECTIVE COMPUTATION OF THE MINIMAL MODEL. In this section we give a description of an
algorithm to compute the i-minimal model of a connected differential algebra. It follows the usual
approach in the literature, but is presented as an explicit algorithm.

We aim to construct a differential algebra M that is an i-minimal model of A, together with a morphism
of differential algebras φ : M→ A that is an i-quasi-isomorphism. In order to describe it, we need a set
of generators as in Definition 2, and for each of them, its degree, differential and image under φ. The
method consists of adding generators sequentially, in such a way that we get the needed conditions. We
will use the following notation:

• xk
j will denote a generator of M of degree k whose differential is zero.

• yk
j will denote a generator of M of degree k with nonzero differential.

Each time we add a new generator to M, we will use the diagram

bk
j ← yk

j → zk+1
j

to denote that we have added the generator yk
j , with dM(yk

j )= zk+1
j and φ(yk

j )= bk
j . The resulting algebra

will be the free graded commutative algebra generated by the elements of the middle column, following
the order in which they appear in the diagram. By abuse of notation, M will denote the algebra freely
generated by the generators found up to this point (that is, the meaning of M will be updated after each
step of the process).

2A. First step. We start by computing the smallest k0 > 0 for which H k0(A) is not trivial. Take a basis
[ak0

0 ], . . . , [a
k0
lk0
] of H k0(A). The first generators to add to M are xk0

0 , . . . , xk0
lk0

. That is, we start with the
diagram

ak0
1 ← xk0

0 → 0
...

ak0
lk0
← xk0

lk0
→ 0

At this point, we know that φ : M→ A induces an isomorphism H j (M)→ H j (A) for all j ≤ k0.

2B. Increase degree. Assume that we have already found generators of degree up to k − 1, such that
the map φ : M→ A induces isomorphisms φ∗m : H

m(M)→ H m(A) for all m ≤ k− 1. In this step, we
will add new generators to get also an isomorphism φ∗k : H

k(M)→ H k(A), without changing the lower
degree cohomologies.

This step has two phases. In the first phase, which might need to be run iteratively, we will add
generators of the form yk−1

j until the obtained map in φ∗k is injective.
Once we have an injective map, we will add generators xk

j , which will respect the lower degree
differentials and the injectivity at degree k, until we get a surjective map.

2B1. Adding generators of the form yk−1
j . Compute the k-th cohomology group H k(M) with the previ-

ously defined generators, and the induced map φ∗k : H k(M)→ H k(A). If this map φ∗k is not injective,
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take [zk
0], . . . , [z

k
l1
k−1
] a basis of Ker(φ∗k ). Now consider representatives zk

0, . . . , zk
l1
k−1
∈ M. Compute

ck
j = φ(z

k
j ) ∈ Ak . Since [zk

j ] is in the kernel of the cohomology map, ck
j must correspond to a trivial

cohomology class, that is, there must be bk−1
j ∈ Ak−1 such that dA(bk−1

j )= ck
j . So we add the generators

bk−1
0 ← yk−1

0 → zk
0...

bk−1
l1
k−1
← yk−1

l1
k−1
→ zk

l1
k−1

Note that, after adding these generators, new elements of Ker(φ∗k ) could have been added. We can
iterate this process, if required, by adding new generators

bk−1
0 ← yk−1

0 → zk
0...

bk−1
l1
k−1

← yk−1
l1
k−1

→ zk
l1
k−1

bk−1
l1
k−1+1

← yk−1
l1
k−1+1

→ zk
l1
k−1+1

...

bk−1
l1
k−1+l2

k−1
← yk−1

l1
k−1+l2

k−1
→ zk

l1
k−1+l2

k−1...

until the map φ∗k is injective.

2B2. Adding generators of the form xk
n . If this map φ∗k is not surjective, choose a basis

[ak
1], . . . , [a

k
j ], [a

k
j+1], . . . , [a

k
lk
],

of H k(A), where [ak
j+1], . . . , [a

k
lk
] is a basis of Im(φ∗k ). Add the new generators

ak
1 ← xk

1 → 0
...

ak
j ← xk

j → 0

Repeat these two steps until k = i . Then we repeat step 2B1 one last time to get injectivity in φ∗i+1.

Example 2.1. Let A be the algebra generated by six generators of degree 1; e1, . . . , e6, and one generator
of degree 2; e7, with no relations, and where the differential is given by

dA(e1)=−e1 ∧ e6, dA(e2)=−e2 ∧ e6, dA(e3)=−e3 ∧ e6,

dA(e4)=−e5 ∧ e6, dA(e5)= dA(e6)= dA(e7)= 0.

We can compute the first cohomology groups

• H 1(A)=Q〈e5, e6〉,

• H 2(A)=Q〈e4 ∧ e5, e4 ∧ e6, e7〉,

• H 3(A)=Q〈e4 ∧ e5 ∧ e6, e5 ∧ e7, e6 ∧ e7〉,

where Q〈E1, . . . , En〉 denotes the vector subspace with basis {E1, . . . , En}.
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So we can start the method at degree 1:

e6 ← x1
0 → 0

e5 ← x1
1 → 0

At this point, H 2(M) would be generated by the class of x1
0 ∧ x1

1 . But the image by the induced map
is −e5 ∧ e6, which is trivial in cohomology, because it is the differential of e4. So we have to add a new
generator in order to make this cohomology class trivial:

e4← y1
0 → x1

0 ∧ x1
1

Now we get that dM(x1
0 ∧ y1

0) = dM(x1
1 ∧ y1

1) = 0, so a basis of H 2(M) is formed by the classes of
(x1

0 ∧ y1
0 , x1

1 ∧ y1
0). Their images by φ are e4 ∧ e6 and e4 ∧ e5, which are two elements of the basis of

H 2(A) specified above. That is, we have an injective map at the second cohomology level. Proceed as
described in step 2B2; that is, add a new generator that will be mapped to the remaining element of the
basis of H 2(A):

e7← x2
0 → 0

Concerning degree 3, a basis for the cohomology of M is given by the classes of x1
0 ∧ x1

1 ∧ y1
0 , x1

0 ∧ x2
0 ,

and x1
1 ∧ x2

0 . Since these elements map to the basis of H 3(A), we already have an isomorphism in
degree 3. Up to degree 3 the minimal model of A is

M3 =
∧
(x1

0 , x1
1 , y1

0 , x2
0) with dM(y1

0)= x1
0 ∧ x1

1 ,

where
∧
(x1

0 , x1
1 , y1

0 , x2
0) denotes the commutative graded algebra freely generated by {x1

0 , x1
1 , y1

0 , x2
0},

with their corresponding degrees. In fact, in this case we can check that the result obtained is a minimal
model for A in any degree.

We can summarize the whole process with the complete diagram

e6 ← x1
0 → 0

e5 ← x1
1 → 0

e4 ← y1
0 → x1

0 ∧ x1
1

e7 ← x2
0 → 0

(1)

3. PROOF OF CORRECTNESS.

Lemma 3.1. The algebra M obtained after each step of the previous process is minimal.

Proof. It is free because we do not add any relation at any moment of the process. The generators are
added in increasing order, and the differential of each generator is always either zero or expressed in
terms of the previous generators. �

Lemma 3.2. Let φ : M→ A be the map obtained after step 2A. The induced map H k0(M)→ H k0(A) is
an isomorphism.
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Proof. Since each xk0
j has zero differential, and Mk0−1

= 0, they produce a basis of the cohomology
group H k0(M). It is clear that the map gives a bijection with a basis of H k0(A). �

Lemma 3.3. Assume that before an iteration of the step 2B1 the maps φ∗m are bijective for all m < k;
then they are also bijective after adding each generator yk−1

j .

Proof. For the groups H m(M) with m < k − 1, both the space of cocycles and coboundaries remain
untouched.

Consider the addition of a single generator yk−1
l . Let Mk−1 be the space of homogeneous graded

commutative polynomials of degree k − 1 on the previous generators. By construction, dM(yk−1
l ) /∈

dM(Mk−1), so
dim(dk−1

M (Qyk−1
l ⊕Mk−1))= 1+ dim(dk−1

M (Mk−1)).

This implies that
Ker(dk−1

M )= Ker(dk−1
M )∩Mk−1.

Hence at this degree also both cocycles and coboundaries remain untouched. �

Note that for certain algebras A, the i-minimal model is not finitely generated. For example, consider
the exterior algebra on two generators a0, a1 of degree 1, quotiented by the relation a0∧a1= 0, and trivial
differential. In this case, H 1(A) = A1

= Qa0⊕Qa1, and for higher degrees, everything is trivial. Its
minimal model M should have two elements x0, x1 in degree 1, that map to a0 and a1 respectively. But
since x0∧ x1 maps to an element that is trivial in homology, it should be a coboundary in M, that is, there
must exist some y0 ∈ M1 such that d(y0)= x0∧ x1. However, x0∧ y0 is also a cocycle, so it must be also
a coboundary: that is, there must exist some y1 ∈ M1 such that d(y1)= x0∧ y0. Repeating this reasoning,
we get that there must be an infinite sequence of elements y0, y1, . . ., such that d(yi+1)= x0 ∧ yi . It is
easy to prove by induction that they must be linearly independent, so M1 must have infinite dimension.

In these cases, step 2B1 cannot terminate, since the output would require an infinite number of gen-
erators. However, when the i-minimal model is finitely generated, the method does finish and gives a
correct result:

Lemma 3.4. If step 2B1 terminates, the resulting map φ : M→ A is a (k−1)-quasi-isomorphism.

Proof. The step terminates only if the kernel of the induced map in degree k is zero. �

Lemma 3.5. Assume that before step 2B2 the map φ : M → A is a (k−1)-quasi-isomorphism. Then,
after step 2B2, the new map φ : M→ A is also a (k−1)-quasi-isomorphism. Moreover the induced map
H k(M)→ H k(A) is an isomorphism.

Proof. For every m < k, the map H m(M)→ H m(A) does not change by the addition of the generators
xk

1 , . . . , xk
j in degree k.

Consider the map H k(M)→ H k(A). By the previous lemmas, it was injective before step 2B2. The
effect of adding the generators xk

1 , . . . , xk
j is precisely to extend the vector space H k(M) with the needed

generators to fill H k(A). �
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Joining these results, we get that, if the method terminates at degree i , we have obtained an i-minimal
model for A.

4. APPLICATION TO FORMALITY CRITERIA. In this section we will see how the previous method can
be useful to determine the formality of a differential algebra.

Definition 4. A differential algebra A is said to be i -formal if its i-minimal model is i-quasi-isomorphic
to its cohomology algebra H∗(A). Analogously, A is said to be formal if it is i-formal for every i ∈ Z+.

Remark 1. This definition is equivalent to the fact that the i-minimal model of A is also an i-minimal
model of H∗(A).

The notion of i-formality can be found in the literature under this same name. However, some authors
call it k-stage formality (see [Măcinic 2010]). It should be noted that there exists a different notion of
s-formality, introduced by Fernández and Muñoz [2005].

We will now see two criteria (one necessary and one sufficient) for i-formality that can be computed
making use of the method described before.

Necessary criterion: numerical invariants. Let A be a differential algebra. By using the previous
method, we can compute an i-minimal model MA → A. We can also compute a presentation of the
cohomology algebra H∗(A) up to degree i + 1, and then its i-minimal model MH → H∗(A). By the
previous remark, A is i-formal if and only if MA and MH are isomorphic.

Determining whether two presentations correspond to isomorphic algebras or not is, in general, a hard
problem. Therefore we will use some numerical invariants that are related to the construction process
described in Section 2, and hence can be computed. In particular, these invariants coincide with the
number of generators that are added in each step of the algorithm. Let us now see that these numbers
are, in fact, invariants under isomorphism.

Let M be a minimal algebra obtained by the method in Section 2. Consider the corresponding cochain
complex

M0 d0
−→ M1 d1

−→ M2 d2
−→ · · ·

We will define recursively two families of linear subspaces (denoted V i
j and W i

j ) and a family of
subalgebras (denoted by N i

j ):

• V 0
0 := {0}.

• N i
j is the subalgebra generated by all the vector spaces V l

k for l < i or l = i, k ≤ j.

• N i
∞
=

⋃
∞

k=0 N i
k .

• W i
0 := Ker(di )∩ N i−1

∞
for i > 0.

• V i
0 := Ker(di ).

• W i
j+1 := d−1

i (N i
j )∩ N i

j for i > 0, j ≥ 0.

• V i
j+1 := d−1

i (N i
j ) for i > 0, j ≥ 0.
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It is clear that these subalgebras and vector spaces must be preserved by isomorphism of differential
algebras, since their definition only involves the algebra structure and the differential.

Now consider the numbers vi
j := dim(V i

j /W i
j ). Let us now see that these numbers are related to the

steps followed in the algorithm of Section 2.
Denote by Mk0

0 the algebra obtained after step 2A of the algorithm, M i
j the algebra obtained after the

j-th iteration of step 2B1 in degree i , and M i
0 the algebra obtained after step 2B2 in degree i .

The following diagram summarizes the inclusion N i
j ↪→ M :

· · · (N i
j )

i−1 (N i
j )

i (N i
j )

i+1
· · ·

· · · (M)i−1 (M)i (M)i+1
· · ·

di−2 di−1

ι

di

ι

di+1

ι

di−2 di−1 di di+1

Lemma 4.1. The following properties hold

• N i
j = M i

j for every i, j.

• The numerical invariant vi
j coincides with the number of generators added in the algorithm in the

step that corresponds to M i
j .

Proof. To prove that N i
j = M i

j , we proceed by induction on the steps of the algorithm. It is clear that
for k < k0, Mk

= {0}, so all V k
j , W k

j and N k
j are zero too. Let us see what happens at k0.

By construction, Mk0 admits a basis xk0
0 , . . . , xk0

lk0
, yk0

0 , yk0
1 , . . .. The differentials of these elements are

of the form
Mk0 −→ Mk0+1

xk0
0 → 0
...

...
...

xk0
lk0
→ 0

yk0
0 → p0(x

k0
0 , . . . , xk0

lk0
)

yk0
1 → p1(x

k0
0 , . . . , xk0

lk0
, yk0

0 )
...

...
...

where the pi are linearly independent polynomials on the previous generators.
Then V k0

0 is the vector space generated by xk0
0 , . . . , xk0

lk0
, and N k0

0 the subalgebra generated by them,
which coincides with Mk0

0 . Also W k0
0 = {0}, so vk0

0 coincides with the number of generators added in this
step.

Now assume that N i
j coincides with M i

j for all previous steps of the algorithm, and we perform a new
iteration of step 2B1. To simplify the notation, denote by a the number of y generators already added
up to now. The difference between M i

j and M i
j+1 lies in the addition of b generators yi

a+1, . . . , yi
a+b.

The differential of all these generators lives in M i
j . Since the differential of all the y generators in

degree i are linearly independent, a basis of the space V i
j+1 is obtained precisely by adding the generators
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yi
a+1, . . . , yi

a+b to a basis of V i
j . Hence, N i

j+1 coincides with M i
j+1. Moreover, note that the generators

yi
a+1, . . . , yi

a+b extend a basis of W i
j+1 to a basis of V i

j+1, so vi
j+1 is indeed the number of generators

added in this step.
Finally, let’s see what happens at step 2B2. The generators x i

0, . . . , x i
li are chosen precisely to extend a

basis of (N i−1
∞
)i to a basis of (N i−1

∞
)i+Ker(di ). That is, V i

0 contains elements of N i−1
∞

plus the generators
added in this step, so again N i+1

0 = M i+1
0 . As before, the generators x i

0, . . . , x i
li extend a basis of W i

0 to
a basis of V i

0 , so again the number of generators added coincides with vi
0. �

Corollary 1. If A is formal, the numerical invariants vi
j of MA coincide with the ones of MH .

Sufficient criterion. As before, let A be a differential algebra and MA the i-minimal model obtained
by the previous method. Consider the corresponding cohomology algebra H∗(A)∼= H∗(MA). We can
compute its i-minimal model MH . Assume that the numerical invariants of MA and MH coincide.

Consider the diagram followed to compute MA:

ak0
0 ← xk0

0 → 0
...

ak0
lk0

← xk0
lk0

→ 0
...

bk−1
0 ← yk−1

0 → zk
0...

bk−1
l1
k−1

← yk−1
l1
k−1

→ zk
l1
k−1

bk−1
l1
k−1+1

← yk−1
l1
k−1+1

→ zk
l1
k−1+1

...

bk−1
l1
k−1+l2

k−1
← yk−1

l1
k−1+l2

k−1
→ zk

l1
k−1+l2

k−1
...

ak
0 ← xk

0 → 0
...

ak
lk

← xk
lk

→ 0
...

We define the morphism of algebras
ψ : MA→ H∗(MA),

x i
j → [x

i
j ],

yi
j → 0.

Definition 5. We will say that MA satisfies the ψ-condition if ψ(zk
j )= 0 for every zk

j .

Note that the previous definition is equivalent to asking that ψ is a morphism of differential algebras
ψ : MA→ H∗(MA).
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Lemma 4.2. If MA satisfies the ψ-condition and the numerical invariants of MA coincide with the ones
of MH , then ψ is a i-quasi-isomorphism.

Proof. We will see this by proving the i-minimal model of H∗(MA) can be computed using the diagram

[xk0
0 ] ← xk0

0 → 0
...

[xk0
lk0
] ← xk0

lk0
→ 0

...

0 ← yk−1
0 → zk

0...

0 ← yk−1
l1
k−1

→ zk
l1
k−1

0 ← yk−1
l1
k−1+1

→ zk
l1
k−1+1

...

0 ← yk−1
l1
k−1+l2

k−1
→ zk

l1
k−1+l2

k−1...

[xk
0 ] ← xk

0 → 0
...

[xk
lk
] ← xk

lk
→ 0

...

(2)

The proof will be done by induction on the steps of the algorithm in Section 2. Note that the left part
of the diagram is in fact the map ψ . That is, in this case, ψ will play the role of φ.

In step 2A we have to choose a basis of the first nontrivial cohomology group of H∗(MA). Since
H∗(MA) is itself the cohomology algebra of MA, its cohomology is isomorphic to itself. So we can
choose [xk0

0 ], . . . , [x
k0
lk0
] as the basis of its first nonzero cohomology group. Hence, we can start the

construction of the minimal model of H∗(MA) with the diagram

[xk0
0 ] ← xk0

0 → 0
...

[xk0
lk0
] ← xk0

lk0
→ 0

Now, for each iteration of step 2B1, let us assume as induction hypothesis that the diagram used up
to this step coincides with diagram (2). To proceed with the iteration of the step, we need to choose a
basis of Ker(ψ∗k ). Since the numerical invariants coincide, the dimension of this basis has to coincide
with the number of generators added in this step of the construction of MA. The cohomology classes
of zk

0, . . . , zk
l1
k−1

do live in Ker(ψ∗k ) because of the ψ-condition. And they are linearly independent on
the cohomology of MA because of the induction hypothesis (the cohomology of MA up to this point has
to coincide with the one of MH ). So the same zk

0, . . . , zk
l1
k−1

that were used for constructing MA can be
chosen to construct MH .
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For the left part of the diagram, we have to choose preimages by the differential of ψ(zk
0), . . . , ψ(z

k
l1
k−1
).

Since all these elements are zero, we can choose zero as its preimages, so we can extend the diagram with

0 ← yk−1
0 → zk

0...

0 ← yk−1
l1
k−1
→ zk

l1
k−1

For the step 2B2, again the condition on the numerical invariants tells us that we have to add the same
number of generators to the diagram. As before, the classes [xk

1 ], . . . , [x
k
j ] are linearly independent, in

H k(MA), and are not in the image of the previously added generators by ψ , so they are a suitable choice
for this step. �

Thanks to the previous lemma, given a GCDA A, we can try to decide the i-formality by the following
steps:

• Compute a presentation of MA, the i-minimal model of A. During the construction we get the
numerical invariants of MA.

• Compute a presentation of H∗(MA) up to degree i + 1.

• Compute a presentation of MH , the i-minimal model of H∗(MA). During the construction we get
the numerical invariants of MH .

• If the numerical invariants of MA and MH do not coincide, A is not i-formal.

• If the numerical invariants do coincide, check if the presentation of MA satisfies the ψ-condition. If
it does, A is i-formal.

In principle, it could happen that the numerical invariants coincide but the presentation of MA does
not satisfy the ψ-condition. If that happens we can not determine the i-formality in this way. However,
we have not found any such example. That is, in every case we have tried, the method above allows us
to determine if the algebra is i-formal or not. This motivates the following questions:

Question 1. Is the equality of numerical invariants up to degree i a sufficient condition for i-formality?

Question 2. Is the ψ-condition up to degree i necessary for i-formality?

5. IMPLEMENTATION AND EXAMPLES. We present an implementation of the previous algorithms
in [SageMath]. The computation of the minimal models and cohomology algebras have been included
since version 8.8. The formality criteria were merged in version 9.0.

We now illustrate our implementation with an example.

Examples of computations of minimal models with SageMath.

Example 5.1. In SageMath we can define the differential algebra in Example 2.1 as follows:
sage: A.<e1,e2,e3,e4,e5,e6,e7> = GradedCommutativeAlgebra(QQ,
degrees=[1,1,1,1,1,1,2])
sage: B = A.cdg_algebra({e1:-e1*e6,e2:-e2*e6,e3:-e3*e6,e4:-e5*e6})
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Its 4-minimal model can be computed by

sage: phi = B.minimal_model(4)
sage: phi
Commutative Differential Graded Algebra morphism:

From: Commutative Differential Graded Algebra with generators
(’x1_0’, ’x1_1’, ’y1_0’, ’x2_0’) in degrees (1, 1, 1, 2) over
Rational Field with differential:
x1_0 --> 0
x1_1 --> 0
y1_0 --> x1_0*x1_1
x2_0 --> 0

To: Commutative Differential Graded Algebra with generators
(’e1’, ’e2’, ’e3’, ’e4’, ’e5’, ’e6’, ’e7’) in degrees (1, 1, 1, 1, 1, 1, 2)
over Rational Field with differential:
e1 --> -e1*e6
e2 --> -e2*e6
e3 --> -e3*e6
e4 --> -e5*e6
e5 --> 0
e6 --> 0
e7 --> 0

Defn: (x1_0, x1_1, y1_0, x2_0) --> (e6, e5, e4, e7)

Notice that the result is given as a differential algebra morphism from the i-minimal model to the
algebra given as input. That is, we get not only an abstract description of the i-minimal model, but also
an explicit i-quasi-isomorphism. We can get the i-minimal model itself as the domain of the morphism:

sage: phi.domain()
Commutative Differential Graded Algebra with generators
(’x1_0’, ’x1_1’, ’y1_0’, ’x2_0’) in degrees (1, 1, 1, 2) over
Rational Field with differential:

x1_0 --> 0
x1_1 --> 0
y1_0 --> x1_0*x1_1
x2_0 --> 0

Note that here we see the right part of the diagram (1), whereas in the line

Defn: (x1_0, x1_1, y1_0, x2_0) --> (e6, e5, e4, e7)

we see the left part.

Example 5.2. We can also work with nonfree algebras. They must be introduced as the quotient of a
free algebra by a bilateral ideal. For instance, the cohomology algebra of S2

∨S3 has only elements in
degrees 2 and 3.

sage: A.<e2,e3> = GradedCommutativeAlgebra(QQ, degrees=[2,3])
sage: I = A.ideal([e2^2, e2*e3])
sage: Q = A.quotient(I)
sage: Q
Graded Commutative Algebra with generators (’e2’, ’e3’) in degrees (2, 3)
with relations [e2^2, e2*e3] over Rational Field



Manero and Marco Buzunáriz :::: Effective computation of degree bounded minimal models of GCDAs 37

We can check that this algebra only has elements in degrees 2 and 3:

sage: Q.basis(2)
[e2]
sage: Q.basis(3)
[e3]
sage: Q.basis(4)
[]
sage: Q.basis(5)
[]

Now we define its corresponding GCDA with trivial differential, and compute its 6-minimal model.

sage: B = Q.cdg_algebra({})
sage: B.minimal_model(6)
Commutative Differential Graded Algebra morphism:

From: Commutative Differential Graded Algebra with generators
(’x2_0’, ’x3_0’, ’y3_0’, ’y4_0’, ’y5_0’, ’y6_0’, ’y6_1’) in degrees
(2, 3, 3, 4, 5, 6, 6) over Rational Field with differential:
x2_0 --> 0
x3_0 --> 0
y3_0 --> x2_0^2
y4_0 --> x2_0*x3_0
y5_0 --> x3_0*y3_0 + x2_0*y4_0
y6_0 --> -y3_0*y4_0 + x2_0*y5_0
y6_1 --> x3_0*y4_0

To: Commutative Differential Graded Algebra with generators (’e2’, ’e3’) in degrees (2, 3)
with relations [e2^2, e2*e3] over Rational Field with differential:

e2 --> 0
e3 --> 0

Defn: (x2_0, x3_0, y3_0, y4_0, y5_0, y6_0, y6_1) --> (e2, e3, 0, 0, 0, 0, 0)

Examples of formality criteria with SageMath. Bock [2009] studied the formality of solvmanifolds up
to dimension 6. In the following we show some examples that were not covered there.

Example 5.3. The algebra G0
5.14 in [Bock 2009] is not formal (in fact, not even 2-formal):

sage: A.<x1,x2,x3,x4,x5> = GradedCommutativeAlgebra(QQ)
sage: B = A.cdg_algebra({x1:-x2*x5,x4:x3*x5,x3:-x4*x5})
sage: B.is_formal(2)
False

Indeed, we can look at the 3-minimal model:

sage: B.minimal_model(3).domain()
Commutative Differential Graded Algebra with generators
(’x1_0’, ’x1_1’, ’y1_0’, ’x2_0’, ’y3_0’) in degrees (1, 1, 1, 2, 3)
over Rational Field with differential:

x1_0 --> 0
x1_1 --> 0
y1_0 --> x1_0*x1_1
x2_0 --> 0
y3_0 --> x2_0^2
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We can see that the nonzero numerical invariants are v1
1 = 1, v2

0 = 1 and v3
1 = 1.

If we try to compute the 2-minimal model of the cohomology algebra, we get:
sage: H = B.cohomology_algebra(3)
sage: H
Commutative Differential Graded Algebra with generators (’x0’, ’x1’, ’x2’, ’x3’, ’x4’)
in degrees (1, 1, 2, 2, 2) with relations [x0*x1, x0*x2, x1*x2 + x0*x4, x1*x4] over
Rational Field with differential:

x0 --> 0
x1 --> 0
x2 --> 0
x3 --> 0
x4 --> 0

sage: H.minimal_model(2)
...
ValueError: could not cover all relations in max iterations in degree
2

This means that the algorithm did not finish after three iterations of step 2B1 in degree 1 (3 is the
default value to decide to give up). This implies that MH has more than three nonzero numerical invariants
v1

1, v
1
2, v

1
3 (in fact, it can be checked that for MH , the first numerical invariants are v1

0 = 2, v1
1 = 1, v1

2 = 2
and v1

3 = 3), and hence it cannot be isomorphic to MA.

Example 5.4. The case G−2,0
5.35 in [Bock 2009] is 6-formal:

sage: A.<x1,x2,x3,x4,x5> = GradedCommutativeAlgebra(QQ)
sage: B = A.cdg_algebra({x1:2*x1*x4,x2:-x2*x4-x3*x5,x3:-x3*x4+x2*x5})
sage: B.is_formal(6)
True

We can actually see that it is indeed formal. Since the algebra is generated by five generators of
degree 1, it is trivial beyond degree 5. We can see that its 5-minimal model is also trivial beyond
degree 5 (moreover, it coincides with its cohomology algebra):
sage: B.minimal_model(5)
Commutative Differential Graded Algebra morphism:

From: Commutative Differential Graded Algebra with generators (’x1_0’, ’x1_1’, ’x3_0’)
in degrees (1, 1, 3) over Rational Field with differential:

x1_0 --> 0
x1_1 --> 0
x3_0 --> 0

To: Commutative Differential Graded Algebra with generators (’x1’, ’x2’, ’x3’, ’x4’, ’x5’)
in degrees (1, 1, 1, 1, 1) over Rational Field with differential:

x1 --> 2*x1*x4
x2 --> -x2*x4 - x3*x5
x3 --> -x3*x4 + x2*x5
x4 --> 0
x5 --> 0

Defn: (x1_0, x1_1, x3_0) --> (x4, x5, x1*x2*x3)

So the 5-minimal model is in fact the minimal model. Observe that it is isomorphic to the cohomology
algebra.
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SUPPLEMENT. Version 1.0 of CommutativeDifferentialGradedAlgebras. is contained in the on-
line supplement.
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