
Journal of Software for

Algebra and Geometry

ChevLie: Constructing Lie algebras and Chevalley groups

MEINOLF GECK

vol 10 2020

JSAG 10 (2020), 41–49 The Journal of Software for
https://doi.org/10.2140/jsag.2020.10.41 Algebra and Geometry

ChevLie: Constructing Lie algebras and Chevalley groups

MEINOLF GECK

ABSTRACT: We present ChevLie-1.1, a module for Julia and, ultimately, the emerging OSCAR system. It
provides functions for constructing simple Lie algebras and the corresponding Chevalley groups (of adjoint
or other types), using a recently established approach via Lusztig’s “canonical bases”. These programs,
combined with the Julia interface to SINGULAR, supply an efficient, user-friendly way to establish a key
part of a new characterisation of Lusztig’s “special” nilpotent orbits in simple Lie algebras.

1. THE ε-CANONICAL CHEVALLEY BASIS OF A LIE ALGEBRA. Let g be a finite-dimensional, simple
Lie algebra over C. By the classical Cartan–Killing theory (see [Humphreys 1978]), one can associate
with g a Dynkin diagram 0 (that is, one of the graphs in Figure 1 below) and g is, up to isomorphism,
uniquely determined by 0. Conversely, an elegant way to construct a Lie algebra g corresponding to
such a diagram 0 is given by taking the quotient of the free Lie algebra on generators {ei , fi | i ∈ I }
(where I is an index set for the nodes of 0) by the ideal generated by the Serre relations in [Humphreys
1978, (18.1)] (which only depend on 0). The general theory then shows that g has a basis

B = {hi | i ∈ I } ∪ {eα | α ∈8},

where the elements hi := [ei , fi] (i ∈ I) span a Cartan subalgebra h ⊆ g, the set 8 is the root system
determined by 0, and the eα are chosen such that [hi , eα] ∈ Ceα for all i ∈ I ; the eα are unique up to
nonzero scalar multiples.

Now, for practical purposes, it is convenient to fix a choice of the elements eα. A general scheme for
making such a choice is described in [Cohen et al. 2004, §3], for example; however, there is a certain
amount of arbitrariness to it. Various ad hoc choices can also be found in the literature; see, for example,
[Mizuno 1980, Table 12]. Here, we wish to advertise the fact that a natural choice for the eα is provided
by Lusztig’s work on “canonical bases”.

For this purpose, we fix a function ε : I→{±1} such that ε(i)=−ε(j) whenever i 6= j in I are joined
by an edge in the Dynkin diagram 0. Note that such functions exist since there are no closed paths in
the diagram 0. Since 0 is a connected graph, there are exactly two such functions; if ε is one of them,

MSC2010: primary 20G40; secondary 17B45.
Keywords: Lie algebras, canonical bases, weighted Dynkin diagrams.
ChevLie version 1.1

41

https://doi.org/10.2140/jsag.2020.10-1
http://msp.org/jsag
http://https://doi.org/10.2140/jsag.2020.10.41
http://msp.org/jsag

42 Geck :::: ChevLie: Constructing Lie algebras and Chevalley groups

E7 t1+ t3− t4+t2−

t5− t6+ t7− E8 t1+ t3− t4+t2−

t5− t6+ t7− t8+
G2 u1+> u2− F4 t1+ t2−> t3+ t4− E6 t1+ t3− t4+t2−

t5− t6+
Dn
n>4

t1+
@
@@t2+�
��
t3− t4+ p p p tn± Cn

n>2
t1+> t2− t3+ p p p tn±

An
n>1

t1+ t2− t3+ p p p tn± Bn
n>2

t1+< t2− t3+ p p p tn±

Figure 1. Dynkin diagrams.

then the other one is −ε. In Figure 1, we have specified such a function ε by attaching a sign to each
label. Now, having fixed ε, we set

ui := −ε(i)hi ∈ h for i ∈ I .

Then it is shown in [Lusztig 1990a; 1990b; 2017] (see also [Geck 2017b] for an alternative proof) that
there is a natural choice for the eα such that the matrices of the linear operators

ad(ei) : g→ g and ad(fi) : g→ g (i ∈ I)

with respect to the basis Bε = {ui | i ∈ I } ∪ {eα | α ∈ 8} of g have all their entries in Z>0. In order to
indicate the dependence on ε, we shall write ui = uεi for i ∈ I and eα = eεα for α ∈8. If we replace ε
by −ε, then u−εi =−uεi for i ∈ I and e−εα =−eεα for α ∈8. Thus, we have B−ε =−Bε .

There is a simple recursive algorithm for constructing the elements eεα. First, we need some notation.
Given α, β ∈8, β 6= ±α, we define integers p = pα,β > 0 and q = qα,β > 0 by the condition that

β − qα, . . . , β −α, β, β +α, . . . , β + pα

are all contained in 8, but β− (q+ 1)α 6∈8 and β+ (p+ 1)α 6∈8. Furthermore, for each i ∈ I , there is
a unique αi ∈8 such that eαi is a scalar multiple of ei . Then 5= {αi | i ∈ I } is a system of simple roots
for 8. Every α ∈8 can be written uniquely as α =

∑
i∈I niαi where either all ni ∈ Z>0 or all ni ∈ Z60.

We set ht(α) :=
∑

i∈I ni , the “height” of α. Note also that 8=−8.
We now proceed as follows. If ht(α)= 1, then α = αi where i ∈ I . In this case, we set eεαi

:= ε(i)ei

and eε
−αi
:=−ε(i) fi . Now assume that ht(α) > 1 and that eε

±β has been already defined for all β ∈8 with
0< ht(β) < ht(α). Then there is some i ∈ I such that β := α−αi ∈8. In this case, eε

±α are defined by

[eεαi
, eεβ] = ε(i)(qαi ,β + 1)eεα and [eε

−αi
, eε
−β] = −ε(i)(qαi ,β + 1)eε

−α.

(Note that, if ht(α) > 1, then there may be several i ∈ I such that α−αi ∈8; but the whole point of the

Geck :::: ChevLie: Constructing Lie algebras and Chevalley groups 43

construction is that the resulting set {eεα | α ∈8} does not depend on the choice of those i .) By [Geck
2017b, §5], we have

[eεα, eεβ] = ±(qα,β + 1)eεα+β whenever α, β, α+β ∈8.

Thus, Bε = {uεi | i ∈ I } ∪ {eεα | α ∈8} is a particular Chevalley basis for g in the sense of [Humphreys
1978, §25]; it may be called the “ε-canonical Chevalley basis” of g.

2. THE Julia MODULE ChevLie-1.1. The ChevLie package was originally developed in [GAP] (see, e.g.,
[Geck 2020, §4] for a short description) and then rewritten and extended for Julia [Julia 2017]. On a
Linux system, one can just load the ChevLie package into a Julia session:

julia> include("chevlie1r1.jl"); using .ChevLie

The central command in this module is the Julia constructor LieAlg, with various fields containing basic
information about a Lie algebra of a given type (a Julia symbol like :g) and rank (a positive integer);
just type ?LieAlg for further details and examples. In particular, there are fields holding the matrices
(with entries in Z>0, as discussed in Section 1) for the operators ad(ei) and ad(fi).

julia> lie=LieAlg(:g,2)
#I dim = 14
LieAlg(’G2’)
julia> lie.cartan # the Cartan matrix given by the diagram
2x2 Array{Int8,2}:

2 -1
-3 2

julia> println(lie.epsilon) # values of the epsilon function
Int8[1, -1]
julia> println(lie.roots) # the roots of the Lie algebra
Array{Int8,1}[[1, 0], [0, 1], [1, 1], [1, 2], [1, 3], [2, 3],

[-1, 0], [0, -1], [-1, -1], [-1, -2], [-1, -3], [-2, -3]]
julia> size(lie.e_i[1]) # matrix representing ad(e_1)
(14, 14)

(The conventions for labelling the Dynkin diagrams are those in Figure 1, which are the same as in
CHEVIE [Geck et al. 1996].) The complete list of all matrices for the linear operators ad(eεα) : g→ g is
obtained by the function canchevbasis. Even when dim g becomes large, this should cause no problems
with computer memory, because (1) the matrices are extremely sparse (and stored as SparseArray) and
(2) the entries are small integers (and stored as Int8). Once these matrices are available, one can easily
compute the corresponding structure constants Nα,β such that [eεα, eεβ] = Nα,βeεα+β for α, β, α+β ∈8.
(One just needs to work out one nonzero entry in the matrix of the Lie bracket.) This is done by the
function structconst. There is some very basic functionality for working with the corresponding
Weyl group; see, e.g., allwords, reflsubgrp. (Much more functionality is available in [Gapjm.jl].)

44 Geck :::: ChevLie: Constructing Lie algebras and Chevalley groups

We mention some further useful functions.
rep_minuscule: returns a tuple of matrices representing the generators ei , fi , hi in a highest weight

representation with a given minuscule weight; the available minuscule weights are contained in the
field minuscule of a Lie algebra. The representing matrices are formed using the “canonical” models
discussed in [Geck 2017a].

chevrootelt: returns a generator, usually denoted xα(t) (where α ∈ 8 and t is an element in a
field), for the Chevalley group associated with a Lie algebra and a given representation of it (adjoint or
minuscule). See [Geck 2017b, §5] and [Geck 2017a, §5] for further details. This function (or rather, its
precursor in the GAP version of our package) has been extensively applied in [Geck 2020]. There is also
a function collect_chevrootelts that applies Chevalley’s commutator relations in order to collect an
arbitrary product of xα(t)’s (for positive α’s) into a normal form.

cross_regular: returns a set of representatives (given by “Steinberg’s cross section”, see [Humphreys
1995, §4.15]) of the conjugacy classes of regular elements in a finite Chevalley group of simply connected
type. Via the Jordan decomposition, this also yields a set of representatives of the semisimple conjugacy
classes.

The online help (e.g., ?structconst, ?rep_minuscule, ?chevrootelt and so on) contains further
details, examples, and also references to related functions.

3. AN APPLICATION: SPECIAL NILPOTENT ORBITS. Let g be a simple Lie algebra, and let Bε =
{uεi | i ∈ I } ∪ {eεα | α ∈ 8} be the basis constructed in Section 1. The classical Dynkin–Kostant theory
(see [Humphreys 1995, §7.6]) shows that the nilpotent orbits in g are classified by weighted Dynkin
diagrams; these are certain maps d : I → {0, 1, 2}. In ChevLie, the complete list of all such weighted
diagrams for g is returned by the function weighted_dynkin_diagrams, which simply implements the
explicitly known descriptions of those diagrams in all cases (see [Carter 1985, §13.1]).

julia> lie=LieAlg(:f,4); wdd=weighted_dynkin_diagrams(lie)
#I dim = 52
(Array{Int64,1}[[0, 0, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0],

[2, 0, 0, 0], [0, 0, 0, 2], [0, 0, 1, 0], [2, 0, 0, 1], [0, 1, 0, 1],
[1, 0, 1, 0], [0, 2, 0, 0], [2, 2, 0, 0], [1, 0, 1, 2], [0, 2, 0, 2],
[2, 2, 0, 2], [2, 2, 2, 2]],

[24, 16, 13, 10, 9, 9, 7, 6, 6, 5, 4, 3, 3, 2, 1, 0])

(The result is a tuple: the first component is the list of all d; the second component is the list of the
numbers dim Be where Be is the variety of Borel subalgebras containing a nilpotent element e in the
orbit parametrised by d .)

Now let us fix such a weighted diagram d : I → {0, 1, 2}. We extend d to a function on 8 by setting
d(α) :=

∑
i∈I ni d(i), where α ∈8 and α =

∑
i∈I niαi with ni ∈ Z for all i ∈ I (see Section 1). We set

8 j := {α ∈8 | d(α)= j} and gd(j) := 〈eα | α ∈8 j 〉C (j = 1, 2).

Geck :::: ChevLie: Constructing Lie algebras and Chevalley groups 45

Then an element in the nilpotent orbit parametrised by d is contained in gd(2). Furthermore, we have
[gd(1), gd(1)] ⊆ gd(2). Hence, given any linear map λ : gd(2)→C, we obtain an alternating bilinear form

σλ : gd(1)× gd(1)→ C, (x, y) 7→ λ([x, y]).

For sufficiently general λ, this bilinear form is known to be nondegenerate (see, e.g., [Geck 2018, Re-
mark 3.5]). We can reformulate this property as follows.

The condition is empty if gd(1) = {0}. Assume now that gd(1) 6= {0}. Let 81 = {β1, . . . , βn} and
82 = {γ1, . . . , γm}. Given λ : gd(2)→ C, we denote by Gλ ∈ Mn(C) the Gram matrix of σλ with respect
to the basis {eεβ1

, . . . , eεβn
} of gd(1). We set xl := λ(eεγl

) for 1 6 l 6 m. If 1 6 i, j 6 n and βi + β j ∈8,
then let l(i, j) ∈ {1, . . . ,m} be such that γl(i, j) = βi +β j . Thus, we have

(Gλ)i j = σλ(eεβi
, eεβ j

)=

{
Nβi ,β j xl(i, j) if βi +β j ∈8,

0 otherwise.

Then σλ is nondegenerate if and only if det(Gλ) 6= 0. Now, in the above description, we may replace the
values xl by (commuting) indeterminates Xl over Z. Then we obtain a well-defined matrix

Ĝd =
(

fi j
)
∈ Mn(Z[X1, . . . , Xm])

such that, for any λ : gd(1)→ C, the matrix Gλ is obtained by specialising the indeterminate Xl to
xl = λ(eγl) ∈ C for 1 6 l 6 m. We call Ĝd the generic Gram matrix associated with d. (Note that Ĝd

depends on the choice of ε; but if we replace ε by −ε, then Ĝd is replaced by −Ĝd .) The fact that σλ is
nondegenerate for sufficiently general λ now simply means that the polynomial

δ̂d := det(Ĝd) ∈ Z[X1, . . . , Xm]

is nonzero. We say that d is δ-special if Ĝd is “integrally nondegenerate”, that is, there exist integers
z1, . . . , zm ∈ Z such that δ̂d(z1, . . . , zm)=±1.

Conjecture 3.1 [Geck 2018, 4.10]. Let O be the nilpotent orbit corresponding to d. Then d is δ-special
if and only if O is “special” in the sense of Lusztig [1997].

According to Lusztig [1997], special nilpotent orbits play a key role in several problems in represen-
tation theory, but they are “often regarded as rather mysterious objects”. So the interest of the above
conjecture lies in the fact that it would provide an intrinsic characterisation in terms of an integrality
condition. The above conjecture is now known to hold (see [Geck 2018] and [Dong and Yang 2019]).
The proof for Lie algebras of exceptional type relies on explicit computations, but [Geck 2018] contains
no details about how this can be done concretely on a computer. As these computations are now part of
a proof of a general result, we believe it is useful to provide these details, where we use ChevLie and the
Julia interface to SINGULAR [Greuel and Pfister 2002], available via [OSCAR].

First, the ChevLie function generic_gram_wdd returns Ĝd for a given weighted diagram d. (This
uses the functions discussed in Section 2.)

46 Geck :::: ChevLie: Constructing Lie algebras and Chevalley groups

julia> d=[1,0,1,2]; gr=generic_gram_wdd(lie,d)
(Any[0 0 0 :(1x2);

0 0 :(1x2) :(2x3);
0 :(-1x2) 0 0;
:(-1x2) :(-2x3) 0 0], [1, 3, 5, 6], [4, 8, 9])

(The result is a triple: the second and third component contains the lists of roots with d(α) = 1 and
d(α) = 2, respectively. The first component is the 4× 4-matrix Ĝd ; its entries are formed using Julia
symbols x1, x2, x3.) The function eval_gram_wdd evaluates the symbols x1, x2, x3 to actual elements
in a field or a ring.

julia> println(eval_gram_wdd(gr,[1,1,1])) # all X_i->1
[0 0 0 1; 0 0 1 2; 0 -1 0 0; -1 -2 0 0]

Now we are ready to verify Conjecture 3.1 for a given weighted diagram d. Suppose first that d is
special in the sense of Lusztig. (Explicit lists of such d can be found in [Carter 1985, §13.4].) The
strategy for verifying that d is δ-special is explained in [Geck 2018, Corollary 4.11]: we simply run
through all possible vectors of values (z1, . . . , zm) ∈ {0, 1}m (starting with the vector 1, 1, . . . , 1 and
then increasing step by step the number of zeroes) until we find one such that det(Ĝd(z1, . . . , zm))=±1.
Of course, the number of vectors (z1, . . . , zm) to test can quickly become enormous. In a sense, we are
lucky because it turns out that, in all cases that we need to consider, this search is successful just after a
few steps. In ChevLie, this procedure is implemented in the function gram_wdd_search:

julia> println(gram_wdd_search(lie,wdd[1][3],1))
#I [0, 0, 0, 1] # the diagram under consideration
#I prime=1, dim g(1)=8, dim g(2)=7, k = 0 1
---> search successful for characterstic exponent 1
Rational{Int64}[0//1, 1//1, 1//1, 1//1, 1//1, 1//1, 1//1]

(Here, k = 0 1 ... indicates the number of zeroes in the vectors (z1, . . . , zm).) Thus, the above d
(which is special by [Carter 1985, §13,4]) is also δ-special; an integer vector as required is given by
(z1, z2, z3, z4, z5, z6, z7)= (0, 1, 1, 1, 1, 1, 1).

Conversely, assume that d is not special in the sense of Lusztig. Then the first idea would be to try to
determine the polynomial δ̂d explicitly. Some simplification can be achieved since Ĝd is skew-symmetric;
consequently, δ̂δ is the square of the pfaffian of Ĝd . For example:

julia> import Singular # requires singular.jl, see [18]
julia> R,x=Singular.PolynomialRing(Singular.QQ,

["x"*string(i) for i in 1:5]; ordering=:lex)
julia> gr=generic_gram_wdd(lie,wdd[1][9]); # d=[0, 1, 0, 1]
julia> pfaffian(eval_gram_wdd(gr,x))
-3*x1*x4^2*x5 + 3*x2*x3*x4^2

Geck :::: ChevLie: Constructing Lie algebras and Chevalley groups 47

Thus, we conclude that the above d (which is not special by [Carter 1985, §13,4]) is not δ-special either,
since δ̂d(z1, z2, z3, z4, z5) will be divisible by 3 for all zi ∈ Z.

Algorithm 1. A Julia/SINGULAR function for proving Proposition 5.10 of [Geck 2018].

function prop510(lie,d,pr)
gr=generic_gram_wdd(lie,d)
n,m=length(gr[2]),length(gr[3])
str=prod([string(i) for i in d])
print("#I ",str,", dim g(1), g(2) = ",n,", ",m," -> syz ")
if n==0 || m==0 # trivial cases

println("= 0"); return gr
end
xi=["x"*string(i) for i in 1:m]
F=Singular.Fp(pr) # field Z/pZ
R,x=Singular.PolynomialRing(F,xi; ordering=:lex)
gr1=eval_gram_wdd(gr,x)
vecs=[Singular.vector(R,[gr1[i,j] for j in 1:n]...) for i in 1:n]
sy=Singular.syz(Singular.Module(R,vecs...))
if Singular.iszero(sy)==true

println("= 0")
else

println("not 0 (",Singular.ngens(sy)," gens)")
end
return sy

end

The above method works in most cases but there are weighted diagrams in type E8 where, e.g., Ĝd ∈

M30(Z[X1, . . . , X30]) and the computation of the pfaffian becomes infeasible. But the above example
suggests that the reason for d not being δ-special might be the fact that the polynomial δ̂d becomes 0
upon reduction modulo a suitable prime p. (It turns out in the end that this is correct.) A. Steel and
U. Thiel pointed out that this question can be approached by computing syzygies (via Groebner bases),
instead of directly trying to compute δ̂d ; see [Greuel and Pfister 2002, §2.8.7] for general background.

In ChevLie, this can be realised through the function prop510 in Algorithm 1, which uses the interface
singular.jl. In that function, we first assign the generic Gram matrix Ĝd to the variable gr. Then we
form the polynomial ring R = Fp[X1, . . . , Xm] where m = dim gd(2) and p is given by the argument pr.
The symbols in Ĝd are evaluated to the variables X i , which yields the new matrix gr1 over R. We turn
the rows of that matrix into SINGULAR vectors and, finally, apply the SINGULAR function syz to the
module spanned by those row vectors. If syz returns nonzero vectors, then we will have δ̂d ≡ 0 (mod p).

Now we can also handle the hard cases in type E8, which was first done by Steel and Thiel; see

48 Geck :::: ChevLie: Constructing Lie algebras and Chevalley groups

[Geck 2018, Proposition 5.10]. We simply need to inspect the output of the following code (which takes
less than a minute to run).

julia> lie=LieAlg(:e,8); wdd=weighted_dynkin_diagrams(lie)
julia> p2=[prop510(lie,d,2) for d in wdd[1]]; # prime p=2
julia> p3=[prop510(lie,d,3) for d in wdd[1]]; # prime p=3
julia> p5=[prop510(lie,d,5) for d in wdd[1]]; # prime p=5

In each case where d is not special, one verifies that there is a prime p ∈ {2, 3, 5} such that prop510
prints “syz not 0” and, hence, d is not δ-special either.

The original verification in [Geck 2018] relied on a “naive” interface between GAP and SINGULAR:
using the older GAP version of ChevLie one could produce the matrices Ĝd inside GAP, write them to a
file in a format that could subsequently be read into SINGULAR, and finally perform the required syzygy
computations in SINGULAR. With the new module ChevLie, all this can be done conveniently within
Julia, together with the interface singular.jl. And everyone who wishes to do so, can easily verify
the code and the computations.

SUPPLEMENT. The online supplement contains version 1.1 of ChevLie.

REFERENCES.
[Carter 1985] R. W. Carter, Finite groups of Lie type: Conjugacy classes and complex characters, John Wiley & Sons, New
York, 1985. MR Zbl

[Cohen et al. 2004] A. M. Cohen, S. H. Murray, and D. E. Taylor, “Computing in groups of Lie type”, Math. Comp. 73:247
(2004), 1477–1498. MR

[Dong and Yang 2019] J. Dong and G. Yang, “Geck’s Conjecture and the generalized Gelfand–Graev representations in bad
characteristic”, preprint, 2019. arXiv

[GAP] The GAP Group, “GAP – Groups, Algorithms, and Programming”, available at https://www.gap-system.org.

[Gapjm.jl] J. Michel, “Experimental port of some GAP functionality to Julia”, Julia package, available at https://github.com/
jmichel7/Gapjm.jl.

[Geck 2017a] M. Geck, “Minuscule weights and Chevalley groups”, pp. 159–176 in Finite simple groups: thirty years of the
atlas and beyond, edited by M. Bhargava et al., Contemp. Math. 694, Amer. Math. Soc., Providence, RI, 2017. MR

[Geck 2017b] M. Geck, “On the construction of semisimple Lie algebras and Chevalley groups”, Proc. Amer. Math. Soc. 145:8
(2017), 3233–3247. MR Zbl

[Geck 2018] M. Geck, “Generalised Gelfand–Graev representations in bad characteristic?”, 2018. arXiv

[Geck 2020] M. Geck, “Computing Green functions in small characteristic”, J. Algebra (2020).

[Geck et al. 1996] M. Geck, G. Hiss, F. Lübeck, G. Malle, and G. Pfeiffer, “CHEVIE – a system for computing and processing
generic character tables”, Appl. Algebra Engrg. Comm. Comput. 7:3 (1996), 175–210. MR Zbl

[Greuel and Pfister 2002] G.-M. Greuel and G. Pfister, A Singular introduction to commutative algebra, Springer, 2002. MR
Zbl

[Humphreys 1978] J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics 9,
Springer, 1978. MR

[Humphreys 1995] J. E. Humphreys, Conjugacy classes in semisimple algebraic groups, Mathematical Surveys and Mono-
graphs 43, American Mathematical Society, Providence, RI, 1995. MR Zbl

http://msp.org/jsag/2020/10-1/jsag-v10-n1-x05-ChevLie.jl
http://msp.org/idx/mr/794307
http://msp.org/idx/zbl/0567.20023
http://dx.doi.org/10.1090/S0025-5718-03-01582-5
http://msp.org/idx/mr/2047097
http://msp.org/idx/arx/1910.03764
https://www.gap-system.org
https://github.com/jmichel7/Gapjm.jl
http://msp.org/idx/mr/3682597
http://dx.doi.org/10.1090/proc/13600
http://msp.org/idx/mr/3652779
http://msp.org/idx/zbl/1419.17018
http://msp.org/idx/arx/1810.08937
http://dx.doi.org/10.1016/j.jalgebra.2019.12.016
http://dx.doi.org/10.1007/BF01190329
http://dx.doi.org/10.1007/BF01190329
http://msp.org/idx/mr/1486215
http://msp.org/idx/zbl/0847.20006
http://dx.doi.org/10.1007/978-3-662-04963-1
http://msp.org/idx/mr/1930604
http://msp.org/idx/zbl/1023.13001
http://msp.org/idx/mr/499562
http://msp.org/idx/mr/1343976
http://msp.org/idx/zbl/0834.20048

Geck :::: ChevLie: Constructing Lie algebras and Chevalley groups 49

[Julia 2017] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to numerical computing”, SIAM
Review 59:1 (2017), 65–98. MR Zbl

[Lusztig 1990a] G. Lusztig, “On quantum groups”, J. Algebra 131:2 (1990), 466–475. MR Zbl

[Lusztig 1990b] G. Lusztig, “Quantum groups at roots of 1”, Geom. Dedicata 35:1-3 (1990), 89–113. MR Zbl

[Lusztig 1997] G. Lusztig, “Notes on unipotent classes”, Asian J. Math. 1:1 (1997), 194–207. MR

[Lusztig 2017] G. Lusztig, “The canonical basis of the quantum adjoint representation”, J. Comb. Algebra 1:1 (2017), 45–57.
MR Zbl

[Mizuno 1980] K. Mizuno, “The conjugate classes of unipotent elements of the Chevalley groups E7 and E8”, Tokyo J. Math.
3:2 (1980), 391–461. MR Zbl

[OSCAR] “OSCAR – A comprehensive open source computer algebra system for computations in algebra, geometry, and
number theory”, available at https://oscar.computeralgebra.de/.

RECEIVED: 13 Jan 2020 REVISED: 17 Mar 2020 ACCEPTED: 21 Apr 2020

MEINOLF GECK:

meinolf.geck@mathematik.uni-stuttgart.de
IAZ – Lehrstuhl für Algebra, Universität Stuttgart, Stuttgart, Germany

msp

http://dx.doi.org/10.1137/141000671
http://msp.org/idx/mr/3605826
http://msp.org/idx/zbl/1356.68030
http://dx.doi.org/10.1016/0021-8693(90)90187-S
http://msp.org/idx/mr/1058558
http://msp.org/idx/zbl/1356.68030
http://dx.doi.org/10.1007/BF00147341
http://msp.org/idx/mr/1066560
http://msp.org/idx/zbl/0714.17013
http://dx.doi.org/10.4310/AJM.1997.v1.n1.a7
http://msp.org/idx/mr/1480994
http://dx.doi.org/10.4171/JCA/1-1-2
http://msp.org/idx/mr/3589909
http://msp.org/idx/zbl/1422.17019
http://dx.doi.org/10.3836/tjm/1270473003
http://msp.org/idx/mr/605099
http://msp.org/idx/zbl/0454.20046
https://oscar.computeralgebra.de/
https://oscar.computeralgebra.de/
mailto:meinolf.geck@mathematik.uni-stuttgart.de
http://msp.org

	1. The epsilon-canonical Chevalley basis of a Lie algebra
	2. The Julia module ChevLie-1.1
	3. An application: special nilpotent orbits

