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CHRISTIAN BOPP AND MICHAEL HOFF

ABSTRACT: This short note provides a quick introduction to relative canonical resolutions of curves
on rational normal scrolls. We present our Macaulay2 package that computes the relative canonical
resolution associated to a curve and a pencil of divisors. We end with a list of conjectural shapes of
relative canonical resolutions. In particular, for curves of genus g = n · k + 1 and pencils of degree k
for n ≥ 1, we conjecture that the syzygy divisors on the Hurwitz scheme Hg,k constructed by Deopurkar
and Patel (Contemp. Math. 703 (2018) 209–222) all have the same support.

1. RELATIVE CANONICAL RESOLUTIONS.
The relative canonical resolution is the minimal free resolution of a canonically embedded curve C

inside a rational normal scroll. Every such scroll is swept out by linear spaces parametrized by pencils
of divisors on C .

Studying divisors on moduli spaces reveals certain aspects of the global geometry of these spaces. A
famous example for odd genus g is the Koszul divisor on the moduli space of curves Mg (see [Hirschowitz
and Ramanan 1998; Voisin 2005; Farkas 2009]). It can be derived from the minimal free resolution of
C ⊂ Pg−1. Set-theoretically the Koszul divisor consists of curves such that the minimal free resolution
of the canonical model has extra syzygies at a certain step. In [Bujokas and Patel 2015; Deopurkar and
Patel 2015; 2018], the relative canonical resolution was used to define similar syzygy divisors on Hurwitz
spaces Hg,k , parametrizing pairs of curves of genus g and pencils of divisors of degree k (equivalently,
covers of P1 of degree k by curves of genus g). We also refer to [Farkas 2018] for divisors on Hurwitz
spaces.

We will briefly summarize the connection between pencils of divisors on canonical curves and rational
normal scrolls in order to define the relative canonical resolution. The following definition and statements
can be found in [Harris 1981, §3] and [Schreyer 1986, §1]. Let C ⊂ Pg−1 be a canonically embedded
curve of genus g, and let

g1
k = {Dλ}λ∈P1 ⊂ |D|
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be a pencil of divisors of degree k. If we denote by Dλ ⊂ Pg−1 the linear span of the divisor, then

X :=
⋃
λ∈P1

Dλ ⊂ Pg−1

is a (k−1)-dimensional rational normal scroll of degree deg (X) := f = g− k+ 1.

Definition 1.1. Let e1≥ e2≥· · ·≥ ed ≥ 0 be integers, E =OP1(e1)⊕· · ·⊕OP1(ed), and let π :P(E )→P1

be the corresponding Pd−1-bundle. A rational normal scroll of type (e1, . . . , ed) is the image of

j : P(E )→ PH 0(P(E ),OP(E )(1))= Pr .

Note that r = f + d − 1 with f = e1+ · · · + ed ≥ 2. Conversely if X is a rational normal scroll of
degree f containing a canonical curve, then the ruling on X cuts out a pencil of divisors {Dλ} ⊂ |D|
such that h0(C, ωC ⊗OC(D)−1)= f .

Example 1.2. We consider a nonhyperelliptic canonically embedded curve C ⊂ P3 of genus 4. The
curve C is a complete intersection of a quadric surface Q and a cubic surface S. If C admits exactly two
pencils of degree 3 (which is also the maximal number), then the quadric Q is isomorphic to P1

×P1. By
Bézout’s theorem, the two rulings of lines on Q cut out the two pencils of degree 3 on C , and conversely,
the quadric is the scroll of type (1, 1) swept out by either of these pencils. If C admits only one pencil
of degree 3, then the quadric Q is isomorphic to a cone (i.e., a quadric of rank 3) and coincides with the
scroll of type (0, 2) swept out by the unique pencil.

In [Harris 1981] it is shown that the variety X defined above is a nondegenerate d-dimensional variety
of minimal degree deg X = f = r − d + 1= codim X + 1. If e1, . . . , ed > 0, then

j : P(E )→ X ⊂ PH 0(P(E ),OP(E )(1))= Pr

is an isomorphism. Otherwise, it is a resolution of singularities. Since Ri j∗OP(E ) = 0 for i > 0, it is
convenient to consider P(E ) instead of X for cohomological considerations.

It is known (see, e.g., [Eisenbud and Harris 1987b]) that the Picard group Pic(P(E )) is generated
by the class of the ruling R = [π∗OP1(1)] and the hyperplane class H = [ j∗OPr (1)] with intersection
products

H d
= f, H d−1

· R = 1, R2
= 0.

Hence, we will write a line bundle OP(E )(aH + bR) in the form

OP(E )(aH + bR)= π∗(OP1(b))(aH).

Theorem 1.3 [Schreyer 1986, Corollary 4.4]. Let C be a curve with a complete base point free g1
k , and

let P(E ) be the projective bundle associated to the scroll X swept out by the g1
k .

(a) C ⊂ P(E ) has a resolution F• of type

0→ π∗Nk−2(−k H)→ π∗Nk−3((−k+ 2)H)→ · · · → π∗N1(−2H)→ OP(E )→ OC → 0
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with

Ni =

βi⊕
j=1

OP1(a(i)j ) and βi =
i(k− 2− i)

k− 1

( k
i+1

)
.

(b) The complex F• is self-dual, i.e., Hom(F•,OP(E )(−k H + ( f − 2)R))∼= F•.

The resolution F• above is called the relative canonical resolution. The degree of the bundles Ni is
known.

Proposition 1.4 [Bopp and Hoff 2015, Proposition 2.9]. The degree of the bundle Ni of rank βi =
k

i+1(k− 2− i)
(k−2

i−1

)
in the relative canonical resolution F• is

deg(Ni )=

βi∑
j=1

a(i)j = (g− k− 1)(k− 2− i)
(

k− 2
i − 1

)
.

Since the rank and degree of the syzygy bundles Ni over P1 are known, the main object of investigation
is the splitting type.

Remark 1.5. Casnati and Ekedahl [1996] generalized the relative canonical resolution to finite Goren-
stein covers π : X → Y of degree k. They define a relative resolution of X ⊂ P(ET ), where ET is the
Tschirnhausen bundle on Y defined by the short exact sequence

0→ OY → π∗(OX )→ E ∨T → 0.

Note that for a cover C k:1
−→ P1, ET = E ⊗OP1(2), where E is the bundle associated to (C, g1

k ) as in
Theorem 1.3. The twists and hence the splitting types of the syzygy bundles in a resolution of C ⊂P(ET )

also differ from the ones in the relative canonical resolution of C ⊂ P(E ). Indeed, following the proof of
[Casnati and Ekedahl 1996, Step B, p. 445], for each i , the twist in the i-th syzygy bundle in a resolution
of C ⊂ P(ET ) differs by exactly 2 · (i + 1) from the ones given in our definition. Hence, we can deduce
the degrees of the bundles in this relative resolution of C ⊂ P(ET ) from Proposition 1.4. These degrees
have also been computed directly in [Deopurkar and Patel 2018].

Definition 1.6. We say that a bundle on P1 of the form N =
⊕β

j=1 OP1(a j ) is balanced if

max
i, j
|a j − ai | ≤ 1.

Equivalently, the bundle N is balanced if h1(P1, End(N ))= 0. The relative canonical resolution is called
balanced if all bundles Ni occurring in the resolution are balanced.

Remark 1.7. The locus of curves inside Hg,k that have a balanced relative canonical resolution forms an
open subset of Hg,k which might be empty. Hence, to show that a generic relative canonical resolution
is balanced for fixed values (g, k) it is sufficient to examine a single balanced example.

Remark 1.8. The scroll associated to a general element in Hg,k is always balanced by [Ballico 1989]
and [Harris 1981]. The sublocus inside Hg,k parametrizing covers such that the associated scroll is
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unbalanced defines a divisor on Hg,k precisely if g is a multiple of (k − 1). This divisor is called the
Maroni divisor (for more details on the Maroni divisor see, e.g., [van der Geer and Kouvidakis 2017]
and [Deopurkar and Patel 2015]).
On the other hand, knowing the splitting type of the syzygy bundles in the relative canonical resolution for
generic elements in Hg,k one can study the sublocus inside Hg,k consisting set-theoretically of curves for
which a certain syzygy bundle has nongeneric splitting type. This yields interesting subvarieties which
also turn out to be divisors in some cases (see [Deopurkar and Patel 2018]). Similar to Koszul divisors
on the moduli space Mg, the study of the divisors obtained from the relative canonical resolution sheds
light on the global geometry of the Hurwitz space.

2. MACAULAY2 PACKAGE. The Macaulay2 package [RelativeCanonicalResolution] includes various
useful functions to do experiments with k-gonal canonical curves and the relative canonical resolution of
those curves. We will briefly explain how functions in this package construct g-nodal k-gonal canonical
curves of genus g.

The main idea is that we start with a rational normalization of the desired curve and a degree k map
from the normalization to P1. In the next step we choose g pairs of points {Pi , Qi } for i = 1, . . . , g on
the normalization, and we glue the points in each pair to each other. If L is a line bundle of degree k on
a g-nodal curve C with rational normalization ν : P1

→ C , then L is given as ν(L )∼= OP1(k) together
with gluing data between the residue class fields

ai

bi
: OP1(k)⊗ k(Pi )→ OP1(k)⊗ k(Qi ), i = 1, . . . , g.

Let S = k[s, t] be the coordinate ring of P1. We start over by choosing two forms f, h ∈ Sk of degree k
and g points Ri = (R

(0)
i : R

(1)
i ) ∈ P1 such that for all i = 1, . . . , g the determinant

det

(
f R(0)i

h R(1)i

)
= l0

i · l
(1)
i · ri

has at least two linear factors l(0)i and l(1)i . Note that this step might be hard to perform over a field k

of characteristic 0 and we therefore work over a finite field. We compute 2g points Pi = V (l(0)i ) and
Qi = V (l(1)i ) as the vanishing loci of these linear forms. We want to define multipliers {ai , bi }i=1,...,g

such that

bi · f (Pi )= ai · h(Qi ) and bi · h(Pi )= ai · f (Qi ) for i = 1, . . . , g.

By construction, we can choose {ai , bi }i=1,...,g to be bi = 1 and ai =
f (Pi )

f (Qi )
=

h(Pi )
h(Qi )

. If we define

qi := det

(
s P (0)i

t P (1)i

)
· det

(
s Q(0)

i

t Q(1)
i

)
for i = 1, . . . , g,
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then a basis of H 0(C, ωC) is given by {
s j :=

g∏
i=1,i 6= j

qi

}
j=1,...,g

.

This basis {s j } j=1,...,g can furthermore be modified in such a way that the scroll defined by the line bundle
of degree k will have a “normalized” form, i.e., the 2× (g− k+ 1) matrix defining the scroll will consist
of blocks of the form (

ti ti+2

ti+1 ti+3

)
,

where T = k[t0, . . . , tg−1] is the coordinate ring of Pg−1.
In the package [RelativeCanonicalResolution] we also provide a function that describes the generators

of the ideal of C in terms of elements of the Cox ring of the scroll P(E ).

Remark 2.1. There is an explicit identification

H 0(P(E ),OP(E )(aH + bR))∼= H 0(P1, (SaE )(b)) for a ≥ 0,

where SaE is the a-th symmetric power of the vector bundle E (see [Schreyer 1986, (1.3)]). This gives
a description of the coordinate ring

RP(E ) =

⊕
a,b∈Z

H 0(P(E ),OP(E )(aH + bR))

of P(E ) as the Cox ring k[v,w, ϕ0, . . . , ϕd−1] equipped with bigrading deg v = deg w = (1, 0) and
deg ϕi = (e1− ei+1, 1).

Finally the relative canonical resolution of C ⊂ P(E ) can be computed by successively picking syzy-
gies in correct degrees.

Example 2.2. We compute a nodal 6-gonal canonical curve of genus 9.
i1 : loadPackage("RelativeCanonicalResolution")
i2 : g=9; -- the genus
i3 : k=6; -- the degree of the pencil
i4 : n=10000; -- characteristic: next prime number after n
i5 : Ican=canCurveWithFixedScroll(g,k,n); -- the canonical curve
i6 : (dim Ican,genus Ican, degree Ican)
o6 = (2, 9, 16)
i7 : betti(res(Ican,DegreeLimit=>1))

0 1 2 3
o7 = total: 1 15 35 21

0: 1 . . .
1: . 21 64 70

Next we compute the ideal of C inside the Cox ring of the scroll P(E ).
i8 : Jcan=curveOnScroll(Ican,g,k); -- the curve inside the scroll
i9 : RX=ring Jcan; -- the bigraded Cox ring of the scroll

ZZ
o9 = -----[pp , pp , pp , pp , pp , v,w]

10007 0 1 2 3 4
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We compute the relative canonical resolution:
i10 : T=ring Ican; -- the canonical ring
i11 : H=basis({1,1},RX); -- a basis of H^0(PE, OO_PE(H))
i12 : phi=map(RX,T,H)
i13 : Ican==preimage_phi(Jcan)
o13 = true
i14 : lengthRes=2; -- a lengthlimit for the resolution on the scroll

With respect to the total degree, the Betti table of the relative canonical resolution has the following
form:

-- the relative canonical resolution:
i15 : betti(resX=resCurveOnScroll(Jcan,g,lengthRes))

0 1 2 3 4
o15 = total: 1 9 16 9 1

0: 1 . . . .
1: . . . . .
2: . 6 2 . .
3: . 3 12 3 .
4: . . 2 6 .
5: . . . . 1

The scroll cut out by the g1
6 on C has the following normalized determinantal representation:

i16 : X=preimage_phi(ideal 0_RX); -- the ideal of the scroll
i17 : repX=matrix{{t_0,t_2,t_4,t_6},{t_1,t_3,t_5,t_7}}
o17 = | t_0 t_2 t_4 t_6 |

| t_1 t_3 t_5 t_7 |
i18 : minors(2,repX)==X
o18 = true

Remark 2.3. By o15, we see that the second syzygy bundle N2 is unbalanced in our example. Although
this single example does not show that the generic relative canonical resolution is unbalanced for this
case, one can show that this is indeed the generic form (see [Bopp and Hoff 2017]).

3. EXPERIMENTS AND CONJECTURES.

Database of experiments. Using our Macaulay2 package [RelativeCanonicalResolution] we have com-
puted the relative canonical resolution for various cases. For nonhyperelliptic, generic curves of genus
g ≤ 23 with a pencil of degree 3≤ k ≤min{g−1, 14}, all expected Betti tables are listed on the webpage
[Blug et al. 2018].

The web page was set up with the help of Sascha Blug. All the experiments that led to Betti tables
in [Blug et al. 2018] were performed over a finite field. If the examples for certain values (g, k) yield a
balanced relative canonical resolution, then by semi-continuity one can conclude that this is indeed the
general behavior (even for complex algebraic curves).

Since changing the characteristic for the unbalanced cases did not change the shape of the Betti tables,
we believe that the Betti tables in [Blug et al. 2018] reflect the generic behavior. In general, we do not
have a proof of this statement. However, it has been determined in some cases whether the first bundle N1

is balanced (see [Bopp and Hoff 2015] and [Bujokas and Patel 2015]). For several cases our examples
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lead to a conjecture that certain higher syzygy bundles in the relative canonical resolution are unbalanced.
Most of these cases remain mysterious.

Syzygy divisors on Hurwitz spaces. Deopurkar and Patel used the relative canonical resolution to de-
scribe new effective divisors on the Hurwitz scheme Hg,k . If the degree k divides g− 1, it is shown in
[Bujokas and Patel 2015] that the relative canonical resolution for a generic element in Hg,k is totally
balanced, and hence, the locus µi , corresponding set-theoretically to covers in Hg,k for which the i-th
syzygy bundle Ni is unbalanced, has expected codimension 1. Deopurkar and Patel [2018] give these
syzygy divisors µ1, . . . , µk−3 a scheme structure and compute their classes in a partial compactification
of the Hurwitz scheme H̃g,k . In their main theorem, they represent the divisor classes [µi ] in terms of
certain tautological classes κ, ζ and δ (see [Deopurkar and Patel 2018, §2] for the precise definition of
those classes).

Theorem 3.1 [Deopurkar and Patel 2018, Theorem 1.1]. Suppose k divides g− 1. Let i be an integer
with 1≤ i ≤ k− 3. The locus µi ⊂ H̃g,k is an effective divisor whose class in PicQ(H̃g,k) is given by

[µi ] = Ai ·
(
6(gk− 6g+ k+ 6) · ζ − k(k− 12) · κ − k2

· δ
)
,

where

Ai :=
(k− 2)(k− 3)

6(i + 1)(k− i − 1)
·

(k−4
i−1

)2
.

Note that all the classes [µi ] are proportional. The same phenomenon appears for classes of divisorial
Brill–Noether loci in the moduli space M g (see [Eisenbud and Harris 1987a] and [Harris and Mumford
1982]). For the divisorial Brill–Noether classes it is known that these classes are supported on different
sets, and in [Deopurkar and Patel 2018] the authors conjecture that this also happens for the syzygy
divisors on Hg,k .

We come to a different conclusion. Computing various examples of curves and their relative canonical
resolution for (g, k) ∈ {(6, 13), (7, 15), (8, 17), (6, 19)} over a field of small characteristic p ≤ 500 we
found the following pattern which we conjecture to be true in general. Note that the probability of a
random computed example to end up in a certain codimension 1 locus is roughly 1

p .

Conjecture 1. Let n and k be integers, and g− 1= n · k. Let i be an integer with 1 ≤ i ≤ k− 3. For a
general element (C, g1

k ) ∈ µi ⊂ H̃g,k , let N j be the j-th syzygy bundle in the relative canonical resolution
of C with 1≤ j ≤ k− 3. Then N j is unbalanced and the splitting type of N j is

N j = OP1
(
(n− 1)( j + 1)− 1

)⊕(k−4
j−1)⊕OP1

(
(n− 1)( j + 1)

)rk N j−2·(k−4
j−1)⊕OP1

(
(n− 1)( j + 1)+ 1

)⊕(k−4
j−1).

In particular, all the effective divisors µi are supported on the same set.

Remark 3.2. One can easily check that the number Ai in Theorem 3.1 is precisely

Ai =
1

6k
· rk Ni ·

(
k− 4
i − 1

)
.
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Conjecture 1 predicts that the factor
(k−4

i−1

)
of Ai also measures how unbalanced the bundle Ni is.

Remark 3.3. If (g − 1) 6= n · k then one can still consider the jumping loci set-theoretically defined
as the subset of H̃g,k consisting of covers such that the i-th syzygy bundle in the relative canonical
resolution does not have generic splitting type. As in the divisorial case, one could ask if all those loci
are supported on the same set. Experiments using our package [RelativeCanonicalResolution] show that
there are several examples where these jumping loci have different support.

Further conjectures. We state several conjectures concerning the shape of relative canonical resolutions.
This has partly also been discussed in [Bopp and Hoff 2015]. We refer to [Arbarello et al. 1985] for
basics about Brill–Noether theory. Recall that the Brill–Noether number is defined as ρ(g, k, r) :=
g− (r + 1)(g− k+ r) for integers g, k and r .

Conjecture 2. Let C ⊂ Pg−1 be a general canonical curve, and let k be a positive integer such that
ρ := ρ(g, k, 1) ≥ 0, and let g1

k be a general pencil in W 1
k (C). Then for bundles Ni =

⊕
OP1(a(i)j ),

i = 2, . . . ,
⌈ k−3

2

⌉
, there is the bound

max
j,l
|a(i)j − a(i)l | ≤min{g− k− 1, i + 1}.

This bound is furthermore sharp in the following sense. Given two integers k ≥ 3 and 2≤ i ≤
⌈ k−3

2

⌉
, there

exists an integer g such that the general canonical curve C of genus g has an i-th syzygy bundle Ni in the
relative canonical resolution, associated to a general pencil in W 1

k (C), that satisfies max j,l |a
(i)
j − a(i)l | =

min{g− k− 1, i + 1}. In particular, if g− k = 2, the relative canonical resolution is balanced.

Remark 3.4. Conjecture 2 in the case g− k = 2 says that the bundles in the relative canonical resolution
are of the form

Ni = O
⊕i ·(g−4

i+1)
P1 ⊕OP1(1)⊕(g−4−i)·( g−4

g−3−i).

Note that the Betti numbers i ·
(k−2

i+1

)
appearing in the conjecture are the Betti numbers of a rational normal

curve of degree k− 2.

We also verified Conjecture 3 for g ≤ 23.

Conjecture 3. For a general cover C→ P1 in Hg,k with ρ(g, k, 1)≤ 0, the bundle N1 is balanced.
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