
Journal of Software for

Algebra and Geometry

The FrobeniusThresholds package for Macaulay2

DANIEL J. HERNÁNDEZ, KARL SCHWEDE, PEDRO TEIXEIRA AND EMILY E. WITT

vol 11 2021

JSAG 11 (2021), 25–39 The Journal of Software for
https://doi.org/10.2140/jsag.2021.11.25 Algebra and Geometry

The FrobeniusThresholds package for Macaulay2

DANIEL J. HERNÁNDEZ, KARL SCHWEDE, PEDRO TEIXEIRA AND EMILY E. WITT

ABSTRACT: This article describes the Macaulay2 package FrobeniusThresholds, designed to estimate
and calculate F-pure thresholds, more general F-thresholds, and related numerical invariants arising in
the study of singularities in prime characteristic commutative algebra.

1. INTRODUCTION. This paper describes the Macaulay2 package FrobeniusThresholds [Grayson and
Stillman; Bruce et al.] (previously named FThresholds), which provides tools for computing or esti-
mating certain fundamental invariants in positive characteristic commutative algebra, namely F-pure
thresholds, F-thresholds, and F-jumping exponents. Recall that a ring of prime characteristic p > 0 is
F-pure if the Frobenius map — that is, the ring endomorphism sending an element to its p-th power —
is a pure morphism; under natural geometric hypotheses, this is equivalent to the condition that the
Frobenius morphism is a split injection of rings. The concept of F-purity has proven to be important in
commutative algebra, and has a rich history. It first appeared in [Hochster and Roberts 1976] to study
local cohomology, was compared with rational singularities in [Fedder 1983], and was used to study
global properties of Schubert varieties in [Mehta and Ramanathan 1985].

After the advent of tight closure [Hochster and Huneke 1990], the use of the Frobenius map to quantify
singularity — that is, deviation from regularity — proliferated, and based on a connection discovered
between F-pure and log canonical singularities [Hara and Watanabe 2002], the concept of F-purity was
generalized to the context of pairs. Along these lines, the F-pure threshold was defined in analogy with
the log canonical threshold [Takagi and Watanabe 2004], and F-thresholds were introduced as a natural
extension [Mustat,ǎ et al. 2005].

The connection between the F-pure threshold and the log canonical threshold, however, extends be-
yond mere analogy. For example, suppose h is a polynomial with integer coefficients, and that hp is the
polynomial obtained by reducing the coefficients of h modulo a prime p. Then, the F-pure thresholds of
the reductions hp converge to the log canonical threshold of h as p tends to infinity [Hara and Yoshida
2003]. A related result is [Zhu 2017, Corollary 4.2], which proves that the log canonical threshold of h
is at least the F-pure threshold of any reduction hp.

D. J. Hernández was partially supported by NSF DMS #1600702. K. Schwede was supported by NSF CAREER Grant DMS
#1252860/1501102, NSF FRG Grant DMS #1265261/1501115, NSF grant #1801849 and a Sloan Fellowship. E. E. Witt was
partially supported by NSF DMS #1623035.
MSC2010: 13A35.
Keywords: Macaulay2, F-singularity, Frobenius, F-threshold, F-pure threshold.
FrobeniusThresholds version 2.1

25

https://doi.org/10.2140/jsag.2021.11-1
http://msp.org/jsag
http://msp.org/jsag

26 Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2

This latter result is interesting from a computational perspective, in that it provides lower bounds for
log canonical thresholds. Though there is a general purpose implementation of an algorithm for comput-
ing log canonical thresholds in the Dmodules package [Leykin and Tsai],1 the function for computing
F-pure thresholds contained in the FrobeniusThresholds package is typically much faster, especially so
in low characteristic.

In summary, the F-pure threshold is an interesting numerical invariant, related to many other measures
of singularity across all characteristics, and has been the focus of intense study over the past fifteen years.
Unfortunately, it is typically difficult to calculate. The package FrobeniusThresholds is centered on
calculating and estimating the F-pure threshold and other F-thresholds, with the function fpt at its core.
It builds heavily upon the TestIdeals package for Macaulay2 [Bela et al.; Boix et al. 2019], which provides
a broad range of functionality for effective computation in prime characteristic commutative algebra.

1.1. Some background and notation. Though some functionality implemented in FrobeniusThresholds
is not restricted to regular ambient rings (see Section 3), for the sake of concreteness, in this introduction
we will work in a polynomial ring over a finite field of characteristic p. The ideal of this ring generated
by its variables is denoted m.

Let us outline a way in which natural numerical invariants in prime characteristic commutative algebra
are often constructed: For every natural number e, associate to some fixed data—often, a collection
of polynomials or ideals—an integer describing something of relevance that depends on e (e.g., the
dimension of some interesting vector space constructed in terms of the initial data). Normalize this
integer by dividing by some power of pe, and then take the limit as the integer e tends to infinity. The
resulting limit, if it exists, should encode interesting information about the initial data.

For example, the Hilbert–Kunz multiplicity is realized in this way. Suppose that I is an ideal of a
ring R of characteristic p > 0. Given an integer e > 1, I [p

e
] denotes the pe-th Frobenius power of I, that

is, the ideal generated by the pe-th powers of the elements of I. If R has dimension d and λ(R/I [p
e
])

denotes the length of R/I [p
e
], then the limit of λ(R/I [p

e
])/ped as e tends to infinity is the Hilbert–Kunz

multiplicity of R with respect to I.
Consider a nonzero polynomial f and a natural number e. If f does not vanish at the origin, then set

νmf (p
e) :=∞. Otherwise, f ∈m, and we instead define

νmf (p
e) :=max{n ∈ N : f n /∈m[p

e
]
}.

If f n /∈ m[p
e
] for some n, then by the flatness of Frobenius [Kunz 1969], f pn /∈ (m[p

e
])[p] = m[p

e+1
].

Hence the sequence (νmf (p
e)/pe)∞e=0 is nondecreasing, and since f pe

∈m[p
e
], the sequence is bounded

above by 1. Following our outline, we define

cm(f) := lim
e→∞

νmf (p
e)

pe .

1The MultiplierIdeals package [Teitler et al.; Teitler 2015] also computes log canonical thresholds in many special cases,
including monomial ideals, hyperplane arrangements, generic determinantal ideals, and certain binomial ideals.

Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2 27

This limit exists by the above discussion, and is a rational number when f ∈m, though the latter is far
from obvious [Blickle et al. 2008, Theorem 3.1]. Inspired by its connections with the F-purity of pairs,
this limit is called the F-pure threshold of f at the origin.

The F-pure threshold is closely related to many other fundamental concepts in prime characteristic
commutative algebra. For instance,

cm(f)= inf{t > 0 : τ(f t)⊆m} = sup{t > 0 : σ(f t) 6= 0},

where τ(f t) and σ(f t) are the test ideal and F-signature, respectively, associated to f and the formal
nonnegative real exponent t . The former is an ideal in the ambient ring of f , and the latter is a real number;
both depend on the parameter t and the characteristic p in subtle ways [Blickle et al. 2008; 2012].

In the literature, the F-pure threshold cm(f) is often denoted fpt(f), for obvious reasons. However, in
this note we adopt the former notation to avoid any possible confusion with the function fpt described
in Section 4, which sometimes does not output the number cm(f)= fpt(f), but returns, instead, lower
and upper bounds for that number.

It turns out that the sequence (νmf (p
e))∞e=0 itself, and not just its limit, encodes interesting informa-

tion about f . For example, it is closely related to the Bernstein–Sato polynomial of f [Mustat,ǎ et al.
2005]. Remarkably, one can recover the sequence (νmf (p

e))∞e=0 from the limit cm(f) [Mustat,ǎ et al. 2005;
Hernández 2012]: For each e, we have

νmf (p
e)= dpe

· cm(f)e− 1.

We conclude this subsection by briefly reviewing some natural generalizations. Suppose that I and J
are ideals. If I is contained in the radical of J, then we set

ν J
I (p

e) :=max{n ∈ N : I n
6⊆ J [p

e
]
},

or ν J
I (p

e) := 0, when the set on the right-hand side is empty. Otherwise, we set ν J
I (p

e) := ∞. This
clearly generalizes the quantity νmf (p

e) considered earlier, and we call

cJ (I) := lim
e→∞

ν J
I (p

e)

pe

the F-threshold of I with respect to J . This limit again exists, and the value cm(I) is called the F-pure
threshold of I at the origin, and if I = 〈 f 〉 is principal, cJ (f) := cJ (I) is called the F-threshold of f with
respect to J . Like F-pure thresholds, F-thresholds are rational (when finite), and can be characterized
in terms of test ideals.

2. THE frobeniusNu FUNCTION. We first describe the frobeniusNu function, a fundamental compo-
nent of the package FrobeniusThresholds. We adopt the setup established in the introduction: we work in
a polynomial ring R over a finite field of characteristic p > 0, m denotes the ideal generated by the vari-
ables, and e is a natural number. If I and J are ideals of R, the command frobeniusNu(e,I,J) outputs
the extended integer ν J

I (p
e) defined in the introduction; if f is an element of R, frobeniusNu(e,f,J)

28 Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2

outputs ν J
f (p

e) := ν J
〈 f 〉(p

e). When the third argument is omitted from the function frobeniusNu, it is
assumed to be the maximal ideal m.

i1 : R = ZZ/11[x,y];

i2 : I = ideal(x^2 + y^3, x*y);

o2 : Ideal of R

i3 : J = ideal(x^2, y^3);

o3 : Ideal of R

i4 : frobeniusNu(2, I, J)

o4 = 281

i5 : f = x*y*(x^2 + y^2);

i6 : frobeniusNu(2, f, J)

o6 = 120

In general, the function frobeniusNu works by searching through a list of integers n, and checking
containments of the n-th power of I in the specified Frobenius power of J. It is well known that, for any
positive integer e,

ν J
I (p

e)= ν J
I (p

e−1) · p+ L ,

where the error term L is nonnegative and can be explicitly bounded from above in terms of p and the
number of generators of I and J. For instance, the error term L is at most p−1 when I is principal and J
is arbitrary. This implies that when searching for the maximal exponent defining frobeniusNu(e,I,J)
for positive e, it is safe to start at p times the output of frobeniusNu(e-1,I,J), and one need not
search too far past this number.

2.1. Options for frobeniusNu. The user can specify how the search is approached through the option
Search, which can take two values: Binary (the default value) and Linear. In the example below, the
default search method, Binary, is used.

i7 : R = ZZ/5[x,y,z];

i8 : m = ideal(x, y, z);

o8 : Ideal of R

i9 : time frobeniusNu(2, m, m^2)
-- used 1.82479 seconds

o9 = 97

However, a linear search is faster in this case.
i10 : time frobeniusNu(2, m, m^2, Search => Linear)

-- used 0.597035 seconds

o10 = 97

If the option ReturnList is changed from its default value of false to true, frobeniusNu outputs
a list of the values ν J

I (p
s), for s = 0, . . . , e, at no additional computational cost.

i11 : frobeniusNu(5, x^2*y^4 + y^2*z^7 + z^2*x^8, ReturnList => true)

o11 = {0, 1, 8, 44, 224, 1124}

o11 : List

Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2 29

The same information can be found by setting the option Verbose to true, to request that the values
ν J

I (p
s) be printed as they are iteratively computed (serving also as a way to monitor the progress of the

computation).
As described in the introduction, the integer ν J

I (p
e) is the maximal integer n such that the n-th power

of I is not contained in the pe-th Frobenius power of J. However,

I n
⊆ J [p

e
]
⇐⇒ (I n)[1/pe

]
⊆ J,

where (I n)[1/pe
] denotes the pe-th Frobenius root of I n, as defined in [Blickle et al. 2008]. The option

ContainmentTest for frobeniusNu allows the user to choose which of the two types of containment
statements appearing above to use toward the calculation of ν J

I (p
e).

If ContainmentTest is set to StandardPower, then frobeniusNu(e,I,J) is computed by testing
the left-hand containment above, and when it is set to FrobeniusRoot, the right-hand containment is
checked. For efficiency reasons, the default value for ContainmentTest is set to FrobeniusRoot if the
second argument passed to frobeniusNu is a polynomial, and is set to StandardPower if the second
argument is an ideal.

In this example, ContainmentTest is set to its default value for polynomials, namely, FrobeniusRoot:

i12 : R = ZZ/11[x,y,z];

i13 : f = x^3 + y^3 + z^3 + x*y*z;

i14 : time frobeniusNu(3, f)
-- used 0.153691 seconds

o14 = 1209

If ContainmentTest is set to StandardPower, instead, the computation is significantly slower.

i15 : time frobeniusNu(3, f, ContainmentTest => StandardPower)
-- used 10.1343 seconds

o15 = 1209

The option ContainmentTest has a third possible value, called FrobeniusPower, which allows
frobeniusNu to compute a different but analogous invariant. In [Hernández et al. 2020], we introduced
the notion of a (generalized) Frobenius power I [n] of an ideal I, when n is an arbitrary nonnegative inte-
ger. When ContainmentTest is set to FrobeniusPower, rather than computing ν J

I (p
e), the function

frobeniusNu computes the maximal integer n for which I [n] is not contained in J [p
e
]. We denoted this

number by µJ
I (p

e), and it equals ν J
I (p

e) when I is a principal ideal. However, these numbers need not
agree in general, as we see below:

i16 : R = ZZ/3[x,y];

i17 : m = ideal(x, y);

o17 : Ideal of R

i18 : frobeniusNu(4, m^5)

o18 = 32

i19 : frobeniusNu(4, m^5, ContainmentTest => FrobeniusPower)

o19 = 26

30 Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2

As pointed out in the introduction, if f ∈m, the values νmf (p
e) can be recovered from the F-pure thresh-

old of f . This is used to speed up computations for certain polynomials whose F-pure thresholds can
be computed quickly via specialized algorithms or formulas, namely diagonal polynomials, binomials,
forms in two variables, and polynomials that define simple normal crossing divisors (see Section 4). This
feature can be disabled by setting the option UseSpecialAlgorithms (default value true) to false.2

The following example shows, for a diagonal polynomial, how much faster the computation can be
when special algorithms are enabled:

i20 : R = ZZ/17[x,y,z];

i21 : f = x^3 + y^4 + z^5;

i22 : time frobeniusNu(10, f)
-- used 0.0161622 seconds

o22 = 1541642394460

i23 : time frobeniusNu(10, f, UseSpecialAlgorithms => false)
-- used 2.06877 seconds

o23 = 1541642394460

The last option we describe for frobeniusNu is AtOrigin. Recall that νmI (p
e) can be interpreted

as the maximum integer n for which (I n)[1/pe
] is not contained in m. When the option AtOrigin is set

to false (from its default value true), the function frobeniusNu determines, instead, the maximum
integer n for which (I n)[1/pe

] is the unit ideal, which can also be characterized as the minimal integer
νnI (p

e) as n varies among all maximal ideals of the ring.

i24 : R = ZZ/7[x,y];

i25 : f = (x - 1)^3 - (y - 2)^2;

i26 : frobeniusNu(3, f)

o26 = infinity

o26 : InfiniteNumber

i27 : frobeniusNu(3, f, AtOrigin => false)

o27 = 285

3. isFPT, compareFPT AND isFJumpingExponent. The FrobeniusThresholds package contains meth-
ods to test candidate values for F-pure thresholds and F-jumping numbers, even in some singular rings.
Consider a Q-Gorenstein ring R of characteristic p > 0, whose index is not divisible by p. Given a
parameter t ∈ Q and an element f of R, the command isFPT(t, f) checks whether t is the F-pure
threshold of f , while compareFPT(t, f) provides further information, returning -1, 0, or 1 when t is,
respectively, less than, equal to, or greater than the F-pure threshold of f . Setting the option AtOrigin
to true tells the function to consider the F-pure threshold at the origin.

i1 : R = ZZ/11[x,y,z]/(x^2 - y*(z - 1));

i2 : compareFPT(5/11, z - 1)

o2 = -1

2In Section 4.1 we discuss a couple of situations in which this may be desirable.

Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2 31

i3 : isFPT(1/2, z - 1)

o3 = true

i4 : isFPT(1/2, z - 1, AtOrigin => true)

o4 = false

The general method applied calls upon functionality from the TestIdeals package. The test ideals τ(f t)

of f vary discretely with the parameter t ; the function FPureModule in TestIdeals is used to compute
the “last” test ideal of f with parameter in the interval [0, t). Comparing this with the test ideal τ(f t),
computed by the function testIdeal, we can determine whether t is an F-jumping number of f , or
more specifically, the F-pure threshold of f .

i5 : R = ZZ/13[x,y];

i6 : f = y*((y + 1) - (x - 1)^2)*(x - 2)*(x + y - 2);

i7 : isFJumpingExponent(3/4, f)

o7 = true

i8 : isFPT(3/4, f)

o8 = false

4. THE fpt FUNCTION. The core function in the package FrobeniusThresholds is called fpt. Through-
out this section, let f be a polynomial with coefficients in a finite field of characteristic p. When passed
the polynomial f , the function fpt attempts to find the exact value for the F-pure threshold of f at the
origin, and returns that value, if possible. Otherwise, it returns lower and upper bounds for the F-pure
threshold, as demonstrated below.

i1 : R = ZZ/5[x,y,z];

i2 : fpt(x^3 + y^3 + z^3 + x*y*z)

4
o2 = -

5

o2 : QQ

i3 : fpt(x^5 + y^6 + z^7 + (x*y*z)^3)

7 2
o3 = {--, -}

25 5

o3 : List

4.1. The option UseSpecialAlgorithms. The fpt function has an option UseSpecialAlgorithms,
which, when set to true (its default value), tells fpt to first check whether f is a diagonal polynomial,
a binomial, a form in two variables, or a polynomial that defines a simple normal crossing divisor, in that
order. When f is a diagonal polynomial, a binomial, or a form in two variables, algorithms of Hernández
[2015; 2014] or Hernández and Teixeira [2017] are executed to compute the F-pure threshold.

In the example below, we compute the F-pure threshold of a diagonal polynomial.
i4 : fpt(x^17 + y^20 + z^24)

94
o4 = ---

625

o4 : QQ

32 Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2

Next, we compute the F-pure threshold of a binomial.

i5 : fpt(x^2*y^6*z^10 + x^10*y^5*z^3)

997
o5 = ----

6250

o5 : QQ

Finally, we compute the F-pure threshold of a form in two variables.

i6 : R = ZZ/5[x,y];

i7 : fpt(x^2*y^6*(x + y)^9*(x + 3*y)^10)

5787
o7 = -----

78125

o7 : QQ

The algorithm for computing the F-pure threshold of a binary form f requires factoring f into linear
forms, and that may be difficult or impossible when that factorization occurs in a Galois field of exces-
sively large order. This is a situation when the user will want to set the option UseSpecialAlgorithms
to false. However, when a factorization is already known, instead of passing f to fpt, the user can pass
a list of all the pairwise coprime linear factors of f to fpt, and a list of their respective multiplicities.

i8 : fpt({x, y, x + y, x + 3*y}, {2, 6, 9, 10}) == oo

o8 = true

If UseSpecialAlgorithms is set to true and f does not fall into any of the aforementioned cases,
then the function fpt next calls isSimpleNormalCrossing(f) (see Section 4.3) to check whether the
polynomial f defines (locally, at the origin) a simple normal crossing divisor, in which case the F-pure
threshold is simply the reciprocal of the largest multiplicity occurring in that factorization. Note that the
function factor is called whenever isSimpleNormalCrossing is used, and that can sometimes make
the verification slow. The user can avoid this by setting UseSpecialAlgorithms to false.

4.2. When no special algorithm applies. We now explain how the function fpt proceeds when no
special algorithm is available, or when UseSpecialAlgorithms is set to false. In this case, fpt
computes a sequence of lower and upper bounds for the F-pure threshold of f , and either finds its exact
value in this process, or outputs the last of these sets of bounds, which will be the tightest among all
computed. The value of the option DepthOfSearch determines the precision of the initial set of bounds,
and the option Attempts determines, roughly, how many new, tighter sets of bounds are to be computed.

More specifically, let e denote the value of the option DepthOfSearch, which conservatively defaults
to 1. The fpt function first computes ν = ν f (pe), which agrees with the output of frobeniusNu(e,f).
It is well known that the F-pure threshold of f is greater than ν/pe and at most (ν+1)/pe, and applying
[Hernández 2012, Proposition 4.2] to the lower bound tells us that the F-pure threshold of f must be at
least ν/(pe

− 1). In summary, we know that the F-pure threshold of f must lie in the closed interval[
ν

pe− 1
,
ν+ 1

pe

]
. (†)

Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2 33

With these estimates in hand, the subroutine guessFPT is called to make some “educated guesses”
in an attempt to identify the F-pure threshold within this interval, or at least narrow down this interval
to produce improved estimates. The number of “guesses” is controlled by the option Attempts, which
conservatively defaults to 3. If Attempts is set to 0, then guessFPT is bypassed. If Attempts is set
to at least 1, then a first check is run to verify whether the right-hand endpoint (ν+ 1)/pe of the above
interval (†) is the F-pure threshold.

To illustrate these options, first we obtain a rather crude estimate for the F-threshold of a polynomial.

i9 : f = x^2*(x + y)^3*(x + 3*y^2)^5;

i10 : fpt(f, Attempts => 0)

1
o10 = {0, -}

5

o10 : List

Increasing the depth of search, we obtain a better estimate.

i11 : fpt(f, Attempts => 0, DepthOfSearch => 3)

21 22
o11 = {---, ---}

124 125

o11 : List

Finally, increasing the number of attempts we find that the right-hand endpoint of the above interval
is the desired F-pure threshold.

i12 : fpt(f, Attempts => 1, DepthOfSearch => 3)

22
o12 = ---

125

o12 : QQ

If Attempts is set to at least 2 and the right-hand endpoint (ν + 1)/pe of the interval (†) is not the
F-pure threshold, then a second check is run to verify whether the left-hand endpoint ν/(pe

− 1) of this
interval is the F-pure threshold.

i13 : f = x^6*y^4 + x^4*y^9 + (x^2 + y^3)^3;

i14 : fpt(f, Attempts => 1, DepthOfSearch => 3)

17 7
o14 = {--, --}

62 25

o14 : List

With Attempts set to 2, we find that the left-hand endpoint of the above interval is the desired F-pure
threshold.

i15 : fpt(f, Attempts => 2, DepthOfSearch => 3)

17
o15 = --

62

o15 : QQ

34 Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2

If neither endpoint is the F-pure threshold and Attempts is set to more than 2, then additional checks
are performed at certain numbers within the interval. First, a number in the interval is selected, according
to criteria specified by the value of the option GuessStrategy; we refer the reader to the documentation
of this option for more details. Then the function compareFPT is used to test that number. If that “guess”
is correct, its value is returned; otherwise, the information returned by compareFPT is used to narrow
down the interval, and this process is repeated as many times as specified by Attempts.

i16 : f = x^3*y^11*(x + y)^8*(x^2 + y^3)^8;

i17 : fpt(f, DepthOfSearch => 3, Attempts => 4)

1 4
o17 = {--, --}

20 75

o17 : List

i18 : fpt(f, DepthOfSearch => 3, Attempts => 6)

13 4
o18 = {---, --}

250 75

o18 : List

i19 : fpt(f, DepthOfSearch => 3, Attempts => 8)

1
o19 = --

19

o19 : QQ

The option Bounds allows the user to specify known lower and upper bounds for the F-pure threshold
of f , in order to speed up computations or to refine previously obtained estimates.

i20 : f = x^7*y^5*(x + y)^5*(x^2 + y^3)^4;

i21 : fpt(f, DepthOfSearch => 3, Attempts => 5)

19 1
o21 = {---, --}

250 13

o21 : List

i22 : fpt(f, DepthOfSearch => 3, Attempts => 5, Bounds => oo)

45 1
o22 = {---, --}

589 13

o22 : List

If guessFPT is unsuccessful and FinalAttempt is set to true, the fpt function proceeds to use the
convexity of the F-signature function and a secant line argument to attempt to narrow down the interval
bounding the F-pure threshold. If successful, the new lower bound may coincide with the upper bound,
in which case we can conclude that it is the desired F-pure threshold. If this is not the case, a check is
performed to verify if the new lower bound is the F-pure threshold.

i23 : f = 2*x^10*y^8 + x^4*y^7 - 2*x^3*y^8;

i24 : numeric fpt(f, DepthOfSearch => 3)

o24 = {.14, .144}

o24 : List

Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2 35

With FinalAttempt set to true, we can slightly improve this estimate.

i25 : numeric fpt(f, DepthOfSearch => 3, FinalAttempt => true)

o25 = {.142067, .144}

o25 : List

The computations performed when FinalAttempt is set to true are often slow, and often fail to
improve the estimate, and for this reason, this option should be used sparingly. It is typically more
effective to increase the values of Attempts or DepthOfSearch, instead.

i26 : time numeric fpt(f, DepthOfSearch => 3, FinalAttempt => true)
-- used 0.72874 seconds

o26 = {.142067, .144}

o26 : List

i27 : time fpt(f, DepthOfSearch => 3, Attempts => 7)
-- used 0.452872 seconds

1
o27 = -

7

o27 : QQ

i28 : time fpt(f, DepthOfSearch => 4)
-- used 0.338834 seconds

1
o28 = -

7

o28 : QQ

As seen in several examples above, when the exact answer is not found, a list containing the endpoints
of an interval containing the F-pure threshold of f is returned. Whether that interval is open, closed, or
a mixed interval depends on the options passed (it will be open whenever Attempts is set to at least 3);
if the option Verbose is set to true, the precise interval will be printed.

i29 : fpt(f, DepthOfSearch => 3, FinalAttempt => true, Verbose => true)
Starting fpt ...
fpt is not 1 ...
Verifying whether special algorithms apply...
Special fpt algorithms were not used ...
ν has been computed: ν = frobeniusNu(3,f) = 17 ...
fpt lies in the interval [ν/(p^e-1),(ν+1)/p^e] = [17/124,18/125] ...
Starting guessFPT ...
The right-hand endpoint is not the fpt ...
The left-hand endpoint is not the fpt ...
guessFPT narrowed the interval down to (7/50,18/125) ...
Beginning F-signature computation ...
First F-signature computed: s(f,(ν-1)/p^e) = 793/15625 ...
Second F-signature computed: s(f,ν/p^e) = 342/15625 ...
Computed F-signature secant line intercept: 8009/56375 ...
F-signature intercept is an improved lower bound;
Using F-regularity to check if it is the fpt ...
The new lower bound is not the fpt ...
fpt failed to find the exact answer; try increasing the value of

DepthOfSearch or Attempts.
fpt lies in the interval (8009/56375,18/125).

8009 18
o29 = -----, ---

56375 125

o29 : List

36 Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2

Finally, we point out that one can set the option AtOrigin from its default value of true to false, to
compute the F-pure threshold globally. In other words, it computes the minimum of the F-pure threshold
at all maximal ideals.

i30 : R = ZZ/7[x,y];

i31 : f = x*(y - 1)^2 - y*(x - 1)^3;

i32 : fpt(f)

o32 = 1

i33 : fpt(f, AtOrigin => false)

5
o33 = -

6

o33 : QQ

In this case, most features enabled by UseSpecialAlgorithms => true are ignored, except for the
check for simple normal crossings; FinalAttempt => true is also ignored.

4.3. The function isSimpleNormalCrossing. As mentioned earlier, isSimpleNormalCrossing ver-
ifies whether a polynomial f defines a simple normal crossing divisor. Suppose that f has factorization
f ai
1 f a2

2 · · · f an
n . Recall that f defines a simple normal crossing divisor at a point if, locally, its factors form

part of a regular system of parameters. The function isSimpleNormalCrossing determines whether f
defines a simple normal crossing divisor at the origin by computing the Jacobian matrix of each subset
of { f1, . . . , fn} (evaluated at the origin), and checking that these matrices have the expected rank, and
that these subsets generate ideals of the appropriate height.

i34 : R = ZZ/7[x,y,z];

i35 : isSimpleNormalCrossing(x^2 - y^2)

o35 = true

i36 : isSimpleNormalCrossing(x^2 - y*z)

o36 = false

The function isSimpleNormalCrossing is exposed to the user, so can be used independently of any
F-pure threshold calculation. If the user sets its option AtOrigin to false (its default value is true),
then the function checks whether f defines a simple normal crossing divisor everywhere, which can be
much slower, since Jacobian ideals are computed.

i37 : R = QQ[x,y,z];

i38 : f = (y - (x - 1)^2)*y^2;

i39 : isSimpleNormalCrossing(f)

o39 = true

i40 : isSimpleNormalCrossing(f, AtOrigin => false)

o40 = false

5. POSSIBLE FUTURE DIRECTIONS. As a natural and simple way to extend the functionality of the
FrobeniusThresholds package, we wish to implement a method analogous to fpt to compute F-thresholds
of polynomials with respect to arbitrary ideals. Although most of our current specialized algorithms do

Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2 37

not extend to such generality, our “guess-and-check” methods do, and will likely give us an effective
tool in computing or estimating F-thresholds.

The lack of specialized algorithms for the computation of F-thresholds, noted above, has one excep-
tion: the algorithm for computing the F-pure threshold of a homogeneous polynomial in two variables.
Results of [Hernández and Teixeira 2017] show that this algorithm can be easily modified to compute
F-thresholds of such polynomials with respect to ideals generated by two relatively prime homogeneous
polynomials. Once this is implemented, we will be able to compute F-thresholds of polynomials in
two variables homogeneous under nonstandard grading, as those agree with F-thresholds of standard-
homogeneous polynomials (with respect to different ideals). For instance, the F-pure threshold of the
polynomial x6

+ x2 y2
+ y3, homogeneous under the grading deg x = 1, deg y = 2, can be computed as the

F-threshold of the standard-homogeneous polynomial x6
+ x2 y4

+ y6 with respect to the ideal 〈x, y2
〉.

It would be desirable to develop and implement additional algorithms for computing F-pure thresholds
and F-jumping numbers for additional classes of polynomials. Along with Josep Álvarez Montaner,
Jack Jeffries, and Luis Núñez-Betancourt, we are currently working on developing such algorithms. The
theoretical foundation of these algorithms lies in polyhedral geometry and integer programming, making
them natural candidates for implementation in Macaulay2.

Finally, one natural direction of development would be to incorporate the test ideals τ(I t) when
computing F-thresholds in the case where the ideal I is nonprincipal. The theoretical foundation for
computing such test ideals has already largely been worked out in [Schwede and Tucker 2014], but such
an update to the FrobeniusThresholds package would require the TestIdeals package to be updated first.

ACKNOWLEDGEMENTS. The authors enthusiastically thank everyone who helped complete the Frobe-
niusThresholds package: the package coauthors Juliette Bruce and Daniel Smolkin, and contributors
Erin Bela, Zhibek Kadyrsizova, Moty Katzman, Sara Malec, and Marcus Robinson. We also thank the
authors of the TestIdeals package, which, beyond the authors of the present paper and those listed above,
are Alberto Boix, Drew Ellingson, Matthew Mastroeni, and Maral Mostafazadehfard.

Thanks go to the organizers of the Macaulay2 workshops where much of the functionality described
herein was developed, hosted by Wake Forest University in 2012, the University of California, Berkeley
in 2014 and 2017, Boise State University in 2015, and the University of Utah in 2016.

Finally, the authors are grateful to the University of Utah for hosting a collaborative development visit
in 2018, and to the Institute of Mathematics and its Applications for its generous support for our 2019
Coding Sprint. The current version of the package was finalized during these events.

SUPPLEMENT. The online supplement contains version 2.1 of FrobeniusThresholds.

REFERENCES.
[Bela et al.] E. Bela, A. F. Boix, J. Bruce, D. Ellingson, D. J. Hernández, Z. Kadyrsizova, M. Katzman, S. Malec, M. Mastroeni,
M. Mostafazadehfard, M. Robinson, K. Schwede, D. Smolkin, P. Teixeira, and E. E. Witt, “TestIdeals: a package for calcula-
tions of singularities in positive characteristic, version 1.01”, available at https://github.com/Macaulay2/M2/tree/ba24e16/M2/
Macaulay2/packages.

http://msp.org/jsag/2021/11-1/jsag-v11-n1-x04-FrobeniusThresholds.m2
https://github.com/Macaulay2/M2/tree/ba24e16/M2/Macaulay2/packages
https://github.com/Macaulay2/M2/tree/ba24e16/M2/Macaulay2/packages

38 Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2

[Blickle et al. 2008] M. Blickle, M. Mustat,ǎ, and K. E. Smith, “Discreteness and rationality of F-thresholds”, pp. 43–61 , 2008.
MR

[Blickle et al. 2012] M. Blickle, K. Schwede, and K. Tucker, “F-signature of pairs and the asymptotic behavior of Frobenius
splittings”, Adv. Math. 231:6 (2012), 3232–3258. MR

[Boix et al. 2019] A. F. Boix, D. J. Hernández, Z. Kadyrsizova, M. Katzman, S. Malec, M. Robinson, K. Schwede, D. Smolkin,
P. Teixeira, and E. E. Witt, “The TestIdeals package for Macaulay2”, J. Softw. Algebra Geom. 9:2 (2019), 89–110. MR

[Bruce et al.] J. Bruce, D. J. Hernández, K. Schwede, D. Smolkin, P. Teixeira, and E. E. Witt, “FrobeniusThresholds: a
package for computing F-pure thresholds and related invariants, version 2.0”, available at https://github.com/Macaulay2/M2/
tree/5f330a2/M2/Macaulay2/packages.

[Fedder 1983] R. Fedder, “F-purity and rational singularity”, Trans. Amer. Math. Soc. 278:2 (1983), 461–480. MR

[Grayson and Stillman] D. R. Grayson and M. E. Stillman, “Macaulay2, a software system for research in algebraic geometry”,
available at http://www.math.uiuc.edu/Macaulay2/.

[Hara and Watanabe 2002] N. Hara and K.-I. Watanabe, “F-regular and F-pure rings vs. log terminal and log canonical singu-
larities”, J. Algebraic Geom. 11:2 (2002), 363–392. MR

[Hara and Yoshida 2003] N. Hara and K.-I. Yoshida, “A generalization of tight closure and multiplier ideals”, Trans. Amer.
Math. Soc. 355:8 (2003), 3143–3174. MR

[Hernández 2012] D. J. Hernández, “F-purity of hypersurfaces”, Math. Res. Lett. 19:2 (2012), 389–401. MR

[Hernández 2014] D. J. Hernández, “F-pure thresholds of binomial hypersurfaces”, Proc. Amer. Math. Soc. 142:7 (2014),
2227–2242. MR

[Hernández 2015] D. J. Hernández, “F-invariants of diagonal hypersurfaces”, Proc. Amer. Math. Soc. 143:1 (2015), 87–104.
MR

[Hernández and Teixeira 2017] D. J. Hernández and P. Teixeira, “F-threshold functions: syzygy gap fractals and the two-
variable homogeneous case”, J. Symbolic Comput. 80:part 2 (2017), 451–483. MR

[Hernández et al. 2020] D. J. Hernández, P. Teixeira, and E. E. Witt, “Frobenius powers”, Math. Z. 296:1-2 (2020), 541–572.
MR

[Hochster and Huneke 1990] M. Hochster and C. Huneke, “Tight closure, invariant theory, and the Briançon–Skoda theorem”,
J. Amer. Math. Soc. 3:1 (1990), 31–116. MR

[Hochster and Roberts 1976] M. Hochster and J. L. Roberts, “The purity of the Frobenius and local cohomology”, Advances
in Math. 21:2 (1976), 117–172. MR

[Kunz 1969] E. Kunz, “Characterizations of regular local rings of characteristic p”, Amer. J. Math. 91 (1969), 772–784. MR

[Leykin and Tsai] A. Leykin and H. Tsai, “Dmodules: functions for computations with D-modules, version 1.4.0.1”, available
at https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages.

[Mehta and Ramanathan 1985] V. B. Mehta and A. Ramanathan, “Frobenius splitting and cohomology vanishing for Schubert
varieties”, Ann. of Math. (2) 122:1 (1985), 27–40. MR

[Mustat,ǎ et al. 2005] M. Mustat,ǎ, S. Takagi, and K.-i. Watanabe, “F-thresholds and Bernstein–Sato polynomials”, pp. 341–364
in European Congress of Mathematics, edited by A. Laptev, Eur. Math. Soc., Zürich, 2005. MR

[Schwede and Tucker 2014] K. Schwede and K. Tucker, “Test ideals of non-principal ideals: computations, jumping numbers,
alterations and division theorems”, J. Math. Pures Appl. (9) 102:5 (2014), 891–929. MR

[Takagi and Watanabe 2004] S. Takagi and K.-i. Watanabe, “On F-pure thresholds”, J. Algebra 282:1 (2004), 278–297. MR

[Teitler 2015] Z. Teitler, “Software for multiplier ideals”, J. Softw. Algebra Geom. 7 (2015), 1–8. MR

[Teitler et al.] Z. Teitler, B. Snapp, and C. Raicu, “MultiplierIdeals: A Macaulay2 package, version 1.1”, available at https://
github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages.

[Zhu 2017] Z. Zhu, “Log canonical thresholds in positive characteristic”, Math. Z. 287:3-4 (2017), 1235–1253. MR

RECEIVED: 24 Jun 2019 REVISED: 16 Jun 2020 ACCEPTED: 11 Sep 2020

http://dx.doi.org/10.1307/mmj/1220879396
http://msp.org/idx/mr/2492440
http://dx.doi.org/10.1016/j.aim.2012.09.007
http://dx.doi.org/10.1016/j.aim.2012.09.007
http://msp.org/idx/mr/2980498
http://dx.doi.org/10.2140/jsag.2019.9.89
http://msp.org/idx/mr/4020642
https://github.com/Macaulay2/M2/tree/5f330a2/M2/Macaulay2/packages
https://github.com/Macaulay2/M2/tree/5f330a2/M2/Macaulay2/packages
http://dx.doi.org/10.2307/1999165
http://msp.org/idx/mr/701505
http://www.math.uiuc.edu/Macaulay2/
http://dx.doi.org/10.1090/S1056-3911-01-00306-X
http://dx.doi.org/10.1090/S1056-3911-01-00306-X
http://msp.org/idx/mr/1874118
http://dx.doi.org/10.1090/S0002-9947-03-03285-9
http://msp.org/idx/mr/1974679
http://dx.doi.org/10.4310/MRL.2012.v19.n2.a11
http://msp.org/idx/mr/2955770
http://dx.doi.org/10.1090/S0002-9939-2014-11941-1
http://msp.org/idx/mr/3195749
http://dx.doi.org/10.1090/S0002-9939-2014-12260-X
http://msp.org/idx/mr/3272734
http://dx.doi.org/10.1016/j.jsc.2016.07.003
http://dx.doi.org/10.1016/j.jsc.2016.07.003
http://msp.org/idx/mr/3574521
http://dx.doi.org/10.1007/s00209-019-02442-2
http://msp.org/idx/mr/4140753
http://dx.doi.org/10.2307/1990984
http://msp.org/idx/mr/1017784
http://dx.doi.org/10.1016/0001-8708(76)90073-6
http://msp.org/idx/mr/417172
http://dx.doi.org/10.2307/2373351
http://msp.org/idx/mr/252389
https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages
http://dx.doi.org/10.2307/1971368
http://dx.doi.org/10.2307/1971368
http://msp.org/idx/mr/799251
http://msp.org/idx/mr/2185754
http://dx.doi.org/10.1016/j.matpur.2014.02.009
http://dx.doi.org/10.1016/j.matpur.2014.02.009
http://msp.org/idx/mr/3271293
http://dx.doi.org/10.1016/j.jalgebra.2004.07.011
http://msp.org/idx/mr/2097584
http://dx.doi.org/10.2140/jsag.2015.7.1
http://msp.org/idx/mr/3368077
https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages
http://dx.doi.org/10.1007/s00209-017-1866-3
http://msp.org/idx/mr/3719534

Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2 39

DANIEL J. HERNÁNDEZ:

hernandez@ku.edu
Department of Mathematics, University of Kansas, Lawrence, KS, United States

KARL SCHWEDE:

schwede@math.utah.edu
Department of Mathematics, The University of Utah, Salt Lake City, UT, United States

PEDRO TEIXEIRA:

pteixeir@knox.edu
Department of Mathematics, Knox College, Galesburg, IL, United States

EMILY E. WITT:

witt@ku.edu
Department of Mathematics, University of Kansas, Lawrence, KS, United States

msp

mailto:hernandez@ku.edu
mailto:schwede@math.utah.edu
mailto:pteixeir@knox.edu
mailto:witt@ku.edu
http://msp.org

1

JOURNAL OF SOFTWARE FOR ALGEBRA AND GEOMETRY vol 11, no 1, 2021

1Phylogenetic trees
Hector Baños, Nathaniel Bushek, Ruth Davidson, Elizabeth Gross, Pamela E.
Harris, Robert Krone, Colby Long, Allen Stewart and Robert Walker

9Software for doing computations in graded Lie algebras
Clas Löfwall and Samuel Lundqvist

15The relative canonical resolution: Macaulay2-package, experiments and conjectures
Christian Bopp and Michael Hoff

25The FrobeniusThresholds package for Macaulay2
Daniel J. Hernández, Karl Schwede, Pedro Teixeira and Emily E. Witt

41Computing theta functions with Julia
Daniele Agostini and Lynn Chua

53Decomposable sparse polynomial systems
Taylor Brysiewicz, Jose Israel Rodriguez, Frank Sottile and Thomas Yahl

61A package for computations with sparse resultants
Giovanni Staglianò

71ExteriorModules: a package for computing monomial modules over an exterior algebra
Luca Amata and Marilena Crupi

83The Schur–Veronese package in Macaulay2
Juliette Bruce, Daniel Erman, Steve Goldstein and Jay Yang

89admcycles - a Sage package for calculations in the tautological ring of the moduli space
of stable curves

Vincent Delecroix, Johannes Schmitt and Jason van Zelm
113Coding theory package for Macaulay2

Taylor Ball, Eduardo Camps, Henry Chimal-Dzul, Delio Jaramillo-Velez, Hiram
López, Nathan Nichols, Matthew Perkins, Ivan Soprunov, German Vera-Martínez
and Gwyn Whieldon

123Threaded Gröbner bases: a Macaulay2 package
Sonja Petrović and Shahrzad Zelenberg

129Standard pairs of monomial ideals over nonnormal affine semigroups in SageMath
Byeongsu Yu

143Computations with rational maps between multi-projective varieties
Giovanni Staglianò

	1. Introduction
	1.1. Some background and notation

	2. The frobeniusNu function
	2.1. Options for frobeniusNu

	3. isFPT, compareFPT and isFJumpingExponent
	4. The fpt function
	4.1. The option UseSpecialAlgorithms
	4.2. When no special algorithm applies
	4.3. The function isSimpleNormalCrossing

	5. Possible future directions
	
	

