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Decomposable sparse polynomial systems

TAYLOR BRYSIEWICZ, JOSE ISRAEL RODRIGUEZ, FRANK SOTTILE AND THOMAS YAHL

ABSTRACT: The Macaulay2 package DecomposableSparseSystems implements methods for study-
ing and numerically solving decomposable sparse polynomial systems. We describe the structure of
decomposable sparse systems and explain how the methods in this package may be used to exploit this
structure, with examples.

1. INTRODUCTION. Améndola and Rodriguez [2016] gave numerical methods to efficiently solve sys-
tems of sparse polynomial equations in a family, when that family is decomposable (Definition 1). A
consequence of Esterov’s study of Galois groups of systems of sparse polynomial equations [2019] is that
for sparse systems, recognizing and computing a decomposition is algorithmic. Solving a decomposable
sparse system reduces to solving two smaller sparse polynomial systems. In [Brysiewicz et al. 2021],
we presented algorithms to detect and compute such decompositions, and a recursive algorithm exploit-
ing decomposability for solving a decomposable sparse polynomial system using numerical homotopy
continuation.

The Macaulay2 package DecomposableSparseSystems implements methods for decomposable
sparse polynomial systems. These include methods to detect decomposability, to compute a decomposi-
tion, and a recursive procedure to compute numerical solutions to a given decomposable sparse system.
Detection and computation of decompositions uses integer linear algebra, including computing a Smith
normal form and the corresponding monomial changes of variables. Numerical homotopy continuation
is used to compute solutions. When no further decompositions are possible, the algorithm solves multi-
variate systems using numerical software chosen by the user (default: PHCpack [Verschelde 1999]), and
solves univariate polynomials using companion matrices.

Using the methods in DecomposableSparseSystems to solve a decomposable system allows for
quicker solving and more accurate solution counts than calling other solvers. One reason is that after
each decomposition, the child systems always involve either fewer variables, or polynomials of smaller
degree. The cost of the methods in DecomposableSparseSystems is low as they rely only on linear
algebra and numerical homotopy algorithms.
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Figure 1. A pair of supports.

2. DECOMPOSABLE SPARSE POLYNOMIAL SYSTEMS. A branched cover is a dominant map π : X→ Y
of irreducible varieties X and Y of the same dimension. There is a number d (the degree of π) and an
open dense subset V of Y such that π−1(v) consists of d points for v ∈ V. When d > 1, the branched
cover is nontrivial.

Definition 1. A branched cover π : X→ Y is decomposable if it is a composition of nontrivial branched
covers. That is, if there is a dense open subset U ⊂ Y and a variety Z such that π−1(U )→U factors as

π−1(U )→ Z→U,

with each map a nontrivial branched cover.

In general it is not easy to determine if a branched cover is decomposable, or even to compute a decom-
position for a decomposable branched cover. (See [Améndola et al. 2016, Section 5.4] and [Brysiewicz
et al. 2021, Section 1.2] for examples and a discussion.)

An integer vector α ∈ Zn is the exponent of a (Laurent) monomial xα := xα1
1 · · · x

αn
n . A (complex)

linear combination of monomials
∑

cαxα is a (Laurent) polynomial. Monomials are multiplicative maps
(C×)n → C× and polynomials are maps (C×)n → C. For a finite set A ⊂ Zn of exponents, the set of
all polynomials whose monomials have exponents contained in A (have support A) forms the vector
space CA. Given a list A• = (A1, . . . ,An) of finite subsets of Zn, write CA• for the vector space
CA1 ⊕ · · · ⊕ CAn of lists F = ( f1, . . . , fn) of polynomials with fi having support Ai . Such a list
F ∈ CA• is a function F : (C×)n→ Cn, and F = 0 is a system of sparse polynomials with support A•
whose solutions are F−1(0).

Example 2. Let A• = (A1,A2) be the pair of supports in Z2 illustrated in Figure 1. The corresponding
vector spaces of polynomials are

CA1 = {a1+ a2xy2
+ a3x2 y+ a4x3 y3

| ai ∈ C},

CA2 = {b1+ b2 y3
+ b3xy2

+ b4x4 y2
| b j ∈ C},

and CA• is the space of systems of the form

F =
(

a1+ a2xy2
+ a3x2 y+ a4x3 y3

b1+ b2 y3
+ b3xy2

+ b4x4 y2

)
, ai , b j ∈ C.
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In DecomposableSparseSystems, the family CA• is encoded by a list of matrices whose column vectors
are the exponent vectors of each polynomial. Given a system F ∈ CA•, these data can be extracted from
a given system via the Macaulay2 function exponents.

The Bernstein–Kushnirenko theorem [Bernstein 1975] provides a sharp upper bound on the number of
solutions to a system of sparse polynomials. Denote the convex hull of a set A⊆ Rn by conv(A). Given
a list of supports A• = (A1, . . . ,An), let MV(A•) be the mixed volume (see [Ewald 1996, Section IV.3])
of the list (conv(A1), . . . , conv(An)).

Theorem 3 (Bernstein–Kushnirenko). Let A• be a list of n finite subsets of Zn. For F ∈ CA•, the number
of isolated solutions in (C×)n to the system F = 0 is bounded above by MV(A•) and this bound is
achieved for F lying in a dense, open subset of CA•.

Define XA• ⊂ (C
×)n ×CA• to be the set of pairs (x, F) such that F(x) = 0. For F ∈ CA•, the fiber

π−1(F) of the map π : XA•→CA• consists of solutions to F = 0. By the Bernstein–Kushnirenko theorem,
the map π has degree MV(A•). When MV(A•) ≥ 1, it is a branched cover. When the branched cover
π : XA•→ CA• is decomposable, we say the sparse system F ∈ CA• is decomposable. Decomposability
depends only on the support A• of a system.

There are two transparent ways for a sparse system to decompose.

Lacunary. A system F ∈CA• is lacunary if there is a surjective monomial map 8 : (C×)n→ (C×)n such
that F = G ◦8 for some sparse polynomial system G. We require that 8 be nontrivial in that its kernel
is not the identity subgroup. A lacunary system F = G ◦8= 0 can be solved by computing solutions,
z1, . . . , zd , to the system G = 0 and then computing the fibers 8−1(z1), . . . , 8

−1(zd). In appropriate
coordinates, 8 is diagonal, and 8−1(z) is obtained by extracting roots of the components of z.

Example 4. Consider the following system with support from Example 2:

F(x, y)=
(

1− 2xy2
+ 3x2 y− 4x3 y3

2+ 3y3
+ 5xy2

+ 7x4 y2

)
=

(
0
0

)
.

It is lacunary as it is the composition of the following maps:

G(s, t)=
(

1− 2st2
+ 3st − 4s2t3

2+ 3st3
+ 5st2

+ 7s2t2

)
, 8(x, y)= (x3, x−1 y).

This can be detected via the methods in DecomposableSparseSystems:

i1 : R = CC[x,y];

i2 : F = {1-2*x*y^2+3*x^2*y-4*x^3*y^3,2+3*y^3+5*x*y^2+7*x^4*y^2};

i3 : isLacunary F
o3 = true

The method isLacunary extracts the set of supports of the system and computes the Smith normal form
of a matrix associated to these supports to determine whether the system is lacunary.
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Figure 2. Triangular support.

Triangular. A system F ∈ CA• is triangular if there exists k < n so that after a monomial change of
variables, the system F has the form

F = (F1(x1, . . . , xk), . . . , Fk(x1, . . . , xk), Fk+1(x1, . . . , xn), . . . , Fn(x1, . . . , xn)).

Solutions to triangular systems are computed by first computing the solutions z1, . . . , zd of the square
subsystem (F1, . . . , Fk)= 0. A residual system is obtained by substituting z1 into the original system
for the first k variables, F2(z1, xk+1, . . . , xn). Solutions to the original system are obtained by solving
the residual system and then applying a homotopy algorithm as described in [Brysiewicz et al. 2021].

Example 5. Consider the system

F(x, y, z)=
(

y2
− 2x + 3x2 y

2+ 3x2 y+ 5x4 y2

)
=

(
0
0

)
.

Figure 2 shows the supports. This system is triangular as the second polynomial is quadratic in the
monomial x2 y. The method isTriangular detects this subsystem.

i4 : F = {y^2-2*x+3*x^2*y,2+3*x^2*y+5*x^4*y^2};

i5 : isTriangular F
o5 = true

A consequence of Esterov’s study of Galois groups of sparse polynomial systems [2019] and Pirola
and Schlesinger’s result that a branched cover is decomposable if and only if its Galois group is im-
primitive [2005] is that a sparse polynomial system is decomposable if and only if it is either lacunary or
triangular. In each case, the solutions to the original system are computed via solutions to simpler systems.
The methods in DecomposableSparseSystems iteratively decompose these sparse polynomial systems
to efficiently solve them.

3. MAIN METHOD: SOLVEDECOMPOSABLESYSTEM. The main method implemented in the pack-
age DecomposableSparseSystems is named solveDecomposableSystem and this implements Algo-
rithm 9 in [Brysiewicz et al. 2021]. It takes as input a sparse polynomial system F ∈ CA• and outputs all
solutions to F = 0 in the algebraic torus. It recursively checks whether or not the input sparse polyno-
mial system is decomposable, computes the decomposition, and then calls itself on each portion of the
decomposition. When the input is not decomposable it solves multivariate polynomial systems with the
numerical solver given by the option Software (default: PHCpack) and it solves univariate polynomial
systems using companion matrices. For complete details, see [Brysiewicz et al. 2021, Section 3.1].
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Figure 3. Support of F .

3.1. Using the main method. Consider the system

F =

 2+ xyz− x2 y
4− y2z+ 2xz2

− 3x2z
1− yz2

− 3xyz

=
0

0
0

.
This system is supported on the triple A• = (A1,A2,A3) shown in Figure 3.

The method isDecomposable determines that this system is decomposable. In particular, it is trian-
gular with a subsystem indexed by the first and third polynomials. This can be observed in the figure as
the span of the supports A1 and A3 are coplanar. It is also lacunary, as the exponent vectors lie in the
sublattice of Z3 of index 3 generated by the columns of1 1 2

1 0 0
1 2 1

.
The solutions to F = 0 are found via the main method, solveDecomposableSystem.

i6 : R = CC[x,y,z];

i7 : F = {2+x*y*z-x^2*y,4-y^2*z+2*x*z^2-3*x^2*z,1-y*z^2-3*x*y*z};

-- True if and only if the sparse system F is decomposable.

i8 : isDecomposable F
o8 : true

-- A list of numerical solutions to F=0.

i9 : S = solveDecomposableSystem F;

-- Evaluates F at the first numerical solution.

i10 : F/(f-> sub(f, matrix {S_0}))
o10 = {1.77636e-15, 4.44089e-16+1.4623e-16*ii, 4.66294e-15}

Our main method also accepts a two-argument input (A,C) where A is a list of matrices whose
columns support a system of (Laurent) polynomial equations, and C is a list, whose i-th entry is the
list of coefficients for the i-th polynomial equation. We demonstrate some of the other types of inputs
here, and leave details to the documentation.

i11 : (A,C) = (F/exponents/matrix/transpose,
F/coefficients/last/entries/flatten);

i12 : S = solveDecomposableSystem (A,C);
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-- Expected timing for solving a specific system.

i13 : benchmark "solveDecomposableSystem(A,C)";
o13 = .0605920270512821

-- Expected timing for solving a random system with support A.

i14 : benchmark "solveDecomposableSystem(A, )";
o14 = .0558867168108108

3.2. Options for the main method. Numerical in nature, the function solveDecomposableSystem
features a variety of options for the user. The option Software (default: PHCpack) dictates which
numerical solver is used to solve multivariate sparse systems which are not decomposable. The method
solveDecomposableSystem removes solutions having any coordinate which is numerically zero up
to Tolerance (default: 10−5) throughout the computation. Having this tolerance is necessary, as our
methods are for Laurent polynomials with solutions in the complex torus (C×)n, while the solvers we
call may return solutions in Cn that are not in the torus.

Setting the option Verify (default: 0) to have the value 1 significantly increases the probability
that solveDecomposableSystem computes the correct number of solutions. It does this by checking
that the algorithm specified by the Software option computes MV(A•) solutions to any system F
with support A•, where MV(A•) is probabilistically determined using mixedVolume in the package
Polyhedra [Birkner 2009]. If the mixed volume according to Polyhedra and the number of solu-
tions do not agree, then the missing solutions are searched for using techniques related to those in
MonodromySolver [Duff et al. 2019]. Lastly, we allow the user to compute the solutions to F by
first solving an internally generated random instance and then using that in a parameter homotopy [Li
et al. 1989] to solve F by setting Strategy to FromGeneric. We conclude by using the options Verify
and Strategy on an example with 6000 solutions.

i15 : A = <<< omitted, see example from Section 4 in [4] with
i_1=(2,0,0,2,0)
i_2=(4,4,2,2,2)
j_1=(0,2,0,1,3)
j_2=(0,0,1,0,2)
>>;

-- A has five supports, print the first one

i16 : print(length A, A_0)
(5, | 0 2 4 4 6 |)

| 0 0 0 4 4 |
| 0 0 0 2 2 |
| 0 2 4 2 4 |
| 0 0 0 2 2 |

i17 : elapsedTime (F,S) = solveDecomposableSystem(A,,Verify=>1);
-- 8.93938 seconds elapsed

i18 : elapsedTime S’ = solveDecomposableSystem(F,Strategy=>FromGeneric);
-- 29.0802 seconds elapsed

i19 : print(#S,#S’)
o19 = (6000, 6000)
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SUPPLEMENT. The online supplement contains version 1.0.1 of DecomposableSparseSystems.
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Sonja Petrović and Shahrzad Zelenberg

129Standard pairs of monomial ideals over nonnormal affine semigroups in SageMath
Byeongsu Yu

143Computations with rational maps between multi-projective varieties
Giovanni Staglianò


	1. Introduction
	2. Decomposable sparse polynomial systems
	3. Main method: solveDecomposableSystem
	3.1. Using the main method
	3.2. Options for the main method

	
	

