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A package for computations with sparse resultants

GIOVANNI STAGLIANÒ

ABSTRACT: We introduce the Macaulay2 package SparseResultants, which provides general tools for
computing sparse resultants, sparse discriminants, and hyperdeterminants. We give some background on
the theory and briefly show how the package works.

INTRODUCTION. The classical Macaulay resultant [1903] (also called the dense resultant) of a system
of n+ 1 polynomial equations in n variables characterizes the solvability of the system, and therefore
it is a fundamental tool in computer algebra. However, it is a large polynomial, since it depends on all
coefficients of the equations. If we restrict attention to sparse polynomial equations, that is, to polyno-
mials which involve only monomials lying in a small set, then we can replace the dense resultant with
the sparse resultant.

The sparse resultant generalizes not only the dense resultant but, for specific choices of the set of
monomials, we can obtain other types of classical resultants, such as for instance the Dixon resultant
[1909] and the hyperdeterminant [Cayley 1845; Gelfand et al. 1992]. In the last decades, sparse re-
sultants have received a lot of interest, both from a theoretical point of view (see, e.g., [Gelfand et al.
2008; Sturmfels 1994; Cattani et al. 1998; D’Andrea and Sombra 2015]) and from more computational
and applied aspects (see, e.g., [Emiris and Mourrain 1999; Canny and Emiris 2000; Sturmfels 2002;
D’Andrea 2002; Jeronimo et al. 2004; Cox et al. 2005; Jeronimo et al. 2009]).

Using the computer program Macaulay2, dense resultants can be calculated using the package Resul-
tants [Staglianò 2018], while sparse resultants can be calculated using the new package SparseResultants.
We point out that in the latter most of the algorithms implemented are based on elimination via Gröbner
basis methods. The main defect of this approach is that even when the input polynomials have numerical
coefficients, in the calculation all the coefficients are replaced by variables. However, this approach
suffices for a number of applications, as we try to show in the following.

This short paper is organized as follows. In Section 1, we review the general theory of sparse resultants
(Sections 1A and 1B) and related topics such as the sparse discriminants (Section 1C) and the hyperde-
terminants (Section 1D). We focus on the computational aspects used in the package SparseResultants.
In Section 2, we illustrate how this package works with the help of some examples.
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1. AN OVERVIEW OF SPARSE ELIMINATION. In this section we give some background on the theory
of sparse resultants, sparse discriminants, and hyperdeterminants. For details and proofs we refer mainly
to [Gelfand et al. 2008, Chapters 8, 9, 13, and 14] and [Cox et al. 2005, Chapter 7]; other references are
[Sturmfels 1993; Ottaviani 2013].

1A. Sparse mixed resultant. Let R = C[x±1
1 , . . . , x±1

n ] be the ring of complex Laurent polynomials in
n variables. The set of monomials in R is identified with Zn by associating to xω = xω1

1 · · · x
ωn
n ∈ R

the exponent vector ω = (ω1, . . . , ωn) ∈ Zn. If A is a finite subset of Zn, we denote by CA the space of
polynomials in R involving only monomials from A, that is, of polynomials of the form

∑
ω∈A aωxω.

Let A0, . . . ,An be n+ 1 finite subsets of Zn satisfying the following conditions:

(1) Each Ai generates Rn as an affine space.

(2) The union of the sets Ai generates Zn as a Z-module.

Let ZA0,...,An ⊂
∏n

i=0 CAi be the Zariski closure in the product
∏n

i=0 CAi of the set{
( f0, . . . , fn) ∈

n∏
i=0

CAi : there exists x ∈ (C∗)n such that f0(x)= · · · = fn(x)= 0
}
, (1-1)

where C∗ = C \ {0} and fi (x)=
∑

ω∈Ai
ai,ωxω, for i = 0, . . . , n.

Proposition-Definition 1.1 [Gelfand et al. 2008, Chapter 8, §1]. Under the above assumptions, the
variety ZA0,...,An is an irreducible hypersurface in

∏n
i=0 CAi that can be defined by an integral irreducible

polynomial ResA0,...,An ∈ Z[(ai,ω), i = 0, . . . , n] in the coefficients ai,ω of fi , for i = 0, . . . , n. Such a
polynomial ResA0,...,An is unique up to sign and is called the (A0, . . . ,An)-resultant (also known as the
sparse (mixed) resultant).

The polynomial ResA0,...,An is homogeneous with respect to each group of variables (ai,ω), for i =
0, . . . , n. Moreover, ResA0,...,An ( f0, . . . , fn)= 0 if the (n+1)-tuple ( f0, . . . , fn) belongs to (1-1).

Example 1.2. Let d0, . . . , dn be positive integers. For i = 0, . . . , n, let

Ai =

{
ω = (ω1, . . . , ωn) ∈ Zn

≥0 :

n∑
j=1

ω j ≤ di

}
.

Then the (A0, . . . ,An)-resultant coincides with the classical (affine) resultant Resd0,...,dn , also called the
dense resultant. Therefore, if Fi ∈ C[x0, x1, . . . , xn] denotes the polynomial obtained by homogenizing
fi ∈ CAi with respect to a new variable x0, then ResA0,...,An ( f0, . . . , fn) = 0 if and only if F0, . . . , Fn

have a common nontrivial root.

1B. Sparse unmixed resultant. Keep the notation and assumptions as above. If all the sets Ai coincide
with each other, that is, A0 = · · · = An = A, then the (A0, . . . ,An)-resultant is called the A-resultant
(also known as the sparse (unmixed) resultant). In this case, we have a useful geometric interpretation
that allows us to write down the A-resultant in a compact form. By choosing a numbering ω(0), . . . , ω(k)
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of the elements of A, we get a map φA : (C∗)n→ Pk defined by φA(x) = (ω(0)(x) : · · · : ω(k)(x)). Let
XA⊂Pk be the closure of the image of φA, which is an irreducible toric variety of dimension n. Then, by
taking pull-backs we get an identification between the space of polynomials in CA with the space of linear
forms on Pk. Moreover, if f0, . . . , fn ∈ CA have a common root in (C∗)n then the corresponding linear
forms l0, . . . , ln on Pk define a linear subspace that intersects XA. From this, the following proposition
follows directly.

Proposition 1.3 [Gelfand et al. 2008, Chapter 8, §2]. The polynomial ResA ∈ Z[a(i)0 , . . . , a(i)k , i =
0, . . . , n] coincides with the X-resultant of XA ⊂ Pk. More precisely, let WA ⊂ G(k − n − 1,Pk) be
the Chow hypersurface of the variety XA, and let

ψ : P(C(n+1)×(k+1)) 99K G(n, k)' G(k− n− 1, k)

be the natural projection from the projectivization of the space of complex matrices which have the shape
(n+ 1)× (k+ 1) to G(n, k). Then we have that ResA is the polynomial defining the pull-back ψ−1(WA).

Remark 1.4. With the notation of the proposition above, in coordinates, the map ψ is defined by the
(n+ 1)× (n+ 1) minors of the generic (n+ 1)× (k+ 1) matrix of variablesa(0)0 a(0)1 · · · a(0)k

...
...

. . .
...

a(n)0 a(n)1 · · · a(n)k

. (1-2)

Notably, ResA can be expressed as a homogeneous polynomial of degree deg(XA) in the (n+1)×(n+1)
minors of the matrix (1-2).

Example 1.5. Let A = {(ω1, ω2) ∈ Z2
: ω1 + ω2 ≤ 2}, so that XA ⊂ P5 is the Veronese surface. The

A-resultant is a polynomial of degree 12 in 18 variables with 21894 terms. It can be expressed as a
polynomial of degree 4 in the Plücker coordinates of G(2, 5) with 74 terms.

1C. Sparse discriminant. We continue by letting A⊂ Zn be a finite set of k+ 1 elements that generate
Zn as a Z-module, and let φA : (C∗)n → Pk and XA ⊂ Pk be defined as above. Let ∇A ⊂ CA be the
Zariski closure of the set{

f ∈ CA
: there exists x ∈ (C∗)n such that f (x)=

∂ f
∂x1

(x)= · · · =
∂ f
∂xn

(x)= 0
}
. (1-3)

Proposition-Definition 1.6 [Gelfand et al. 2008, Chapter 9, §1]. The projectivization P(∇A)⊂Pk of the
variety ∇A coincides with the dual variety X∨A of XA. In the case where X∨A is a hypersurface, an integral
irreducible polynomial DiscA defining it (which is unique up to sign) is called the A-discriminant (also
known as the sparse discriminant).

Thus the A-discriminant (when it exists) is a homogeneous polynomial DiscA ∈ Z[aω, ω ∈ A], and
DiscA( f )= 0 for each polynomial f belonging to (1-3).
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Example 1.7. Let d ≥ 1 and let A =
{
(ω1, . . . , ωn) ∈ Zn

≥0 :
∑n

j=1 ω j ≤ d
}
. Then the A-discriminant

coincides with the classical (affine) discriminant Discd , also called the dense discriminant. Therefore, if
F ∈ C[x0, x1, . . . , xn] denotes the polynomial obtained by homogenizing f ∈ CA with respect to a new
variable x0, then DiscA( f )= 0 if and only if the hypersurface {F = 0} ⊂ Pn is not smooth.

Remark 1.8 (“Cayley trick”, [Gelfand et al. 2008, Chapter 9, Proposition 1.7]). Let A0, . . . ,An ⊂ Zn

be finite subsets satisfying the assumptions in Section 1A. Let A⊂ Zn
×Zn be defined by

A= (A0×{0})∪ (A1×{e1})∪ · · · ∪ (An ×{en}),

where the ei are the standard basis vectors of Zn . Thus a polynomial f ∈ CA has the form

f0(x)+
n∑

i=1

yi fi (x) ∈ C[x1, . . . , xn, y1, . . . , yn],

where fi ∈ CAi . We have the following relation (up to sign), known as the “Cayley trick”:

ResA0,...,An ( f0, . . . , fn)= DiscA

(
f0(x)+

n∑
i=1

yi fi (x)
)
. (1-4)

1D. Hyperdeterminant. An important special type of sparse discriminant is the determinant (or hyper-
determinant) of multidimensional matrices, which was introduced by Cayley [1845] (see also [Gelfand
et al. 2008, Chapter 14] and [Ottaviani 2013]). Let f be a multilinear form in r groups of variables
x (1)0 , . . . , x (1)k1

; . . . ; x (r)0 , . . . , x (r)kr
, that is

f =
∑

0≤iι≤kι

ai1,...,ir x (1)i1
· · · x (r)ir

.

Let A⊂ Z(k1+1)+···+(kr+1) denote the set of exponent vectors that can occur in such a form f . Notice that
to give f is equivalent to giving an r -dimensional matrix

M f = (ai1,...,ir )0≤iι≤kι

of shape (k1+ 1)×· · ·× (kr + 1). The determinant of shape (k1+ 1)×· · ·× (kr + 1) is defined to be the
A-discriminant, that is, for a form f as above, we have

det(M f )= DiscA( f ).

One sees that the variety XA is the image of the Segre embedding of Pk1 × · · · ×Pkr . Therefore, the
hypersurface in P(C(k1+1)×···×(kr+1)) defined by the determinant of shape (k1+ 1)× · · ·× (kr + 1) is the
dual variety of Pk1 × · · ·×Pkr . Notice also that we have det(M f )= 0 if and only if the hypersurface

{ f = 0} ⊂ Pk1 × · · ·×Pkr

is not smooth.
The next two basic results have been proved in [Gelfand et al. 2008, Chapter 14, Theorems 1.3 and 2.4].
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Theorem 1.9 [Gelfand et al. 2008]. The determinant of shape (k1+ 1)× · · ·× (kr + 1) exists (that is the
dual variety of Pk1 × · · ·×Pkr is a hypersurface) if and only if

2 max
1≤ j≤r

(k j )≤

r∑
j=1

k j . (1-5)

Theorem 1.10 [Gelfand et al. 2008]. Denote by N (k1, . . . , kr ) the degree of the determinant of shape
(k1+ 1)× · · ·× (kr + 1) when (1-5) is satisfied, and let N (k1, . . . , kr )= 0 otherwise. We have∑

k1,...,kr≥0

N (k1, . . . , kr )z
k1
1 · · · z

kr
r =

1(
1−

∑r
i=2(i − 2)ei (z1, . . . , zr )

)2 ,

where ei (z1, . . . , zr ) is the i-th elementary symmetric polynomial.

Remark 1.11 [Gelfand et al. 2008, Chapter 4, Propositions 1.4 and 1.8]. The determinant of shape
(k1+ 1)× · · ·× (kr + 1) is invariant under the action of SL(k1+ 1)× · · ·× SL(kr + 1) on the space of
matrices of shape (k1+ 1)× · · · × (kr + 1). It is also invariant under permutations of the dimensions,
that is, if M = (ai1,...,ir ) is a matrix of shape (k1+ 1)× · · ·× (kr + 1) and σ is a permutation of indices
1, . . . , r , denoting by σ(M) the matrix of shape (kσ−1(1)+ 1)× · · ·× (kσ−1(r)+ 1), whose (i1, . . . , ir )-th
entry is equal to aiσ(1),...,iσ(r) , we have det(σ (M))= det(M).

There are at least two important cases where determinants can be computed without resorting to
elimination. We briefly recall them in 1D1 and 1D2.

1D1. Schläfli’s method. Let M be an r -dimensional matrix of shape (k1+1)×· · ·×(kr+1) corresponding
to a multilinear form f ∈ C[x (1)0 , . . . , x (1)k1

; . . . ; x (r)0 , . . . , x (r)kr
]. Assume that there exist both the determi-

nants of shapes (k1+1)×· · ·×(kr+1) and (k1+1)×· · ·×(kr−1+1). We can interpret the r -dimensional
matrix M as an (r−1)-dimensional matrix M̃(x (r)0 , . . . , x (r)kr

) of shape (k1+ 1)× · · ·× (kr−1+ 1) whose
entries are linear forms in the variables x (r)0 , . . . , x (r)kr

; in other words, we can see f as a polynomial
f̃ ∈ (C[x (r)0 , . . . , x (r)kr

])[x (1)0 , . . . , x (1)k1
; . . . ; x (r−1)

0 , . . . , x (r−1)
kr−1
]. Let

FM = FM(x
(r)
0 , . . . , x (r)kr

)= det(M̃(x (r)0 , . . . , x (r)kr
)),

which is a homogeneous polynomial in x (r)0 , . . . , x (r)kr
, and let Disc(FM) be the (classical) discriminant

of FM . Then we have the following:

Theorem 1.12 [Gelfand et al. 2008; Schläfli 1852]. The polynomial Disc(FM) is divisible by the deter-
minant det(M). Moreover if the shape of M is one of

m×m× 2, m×m× 3, 2× 2× 2× 2, with m ≥ 2, (1-6)

then we have Disc(FM)= det(M).

The method above turns out to be very effective; however it was conjectured in [Gelfand et al. 2008,
p. 479], and later proved in [Weyman and Zelevinsky 1996], that the shapes in (1-6) are the only ones
for which the method gives the determinant exactly.
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1D2. Determinants of boundary shape. For an (r+1)-dimensional matrix M of shape (k0+1)×(k1+1)×
· · · × (kr + 1), we say that it is of boundary shape if the inequality (1-5) is an equality. Without
loss of generality, we can assume that k0 = max0≤ j≤r (k j ), so that k0 = k1 + · · · + kr . Let f ∈
C[x (0)0 , . . . , x (0)k0

; . . . ; x (r)0 , . . . , x (r)kr
] be the corresponding multilinear form of such a matrix M. Thinking

of f as a linear polynomial in

(C[x (1)0 , . . . , x (1)k1
; . . . ; x (r)0 , . . . , x (r)kr

])[x (0)0 , . . . , x (0)k0
],

we can interpret M as a list of k0+ 1 multilinear forms f0, . . . , fk0 in the r groups of variables

x (1)0 , . . . , x (1)k1
; . . . ; x (r)0 , . . . , x (r)kr

.

A simple consequence of the “Cayley trick” (see [Gelfand et al. 2008, Chapter 3, Corollary 2.8]) gives
the following:

Proposition 1.13 [Gelfand et al. 2008]. The determinant of an (r+1)-dimensional matrix M of boundary
shape (k0+ 1)× · · ·× (kr + 1) coincides with the resultant of the multilinear forms f0, . . . , fk0 , that is,
det(M)= 0 if and only if the system of multilinear equations f0(x)= · · · = fk0(x)= 0 has a nontrivial
solution on Pk1 × · · ·×Pkr . In other words, the determinant of shape (k0+ 1)× · · ·× (kr + 1) coincides
with the X-resultant of the Segre embedding of Pk1 × · · ·×Pkr .

Remark 1.14. The determinant of a matrix M of boundary shape (k0+1)×· · ·×(kr+1) can be explicitly
expressed as the determinant of an ordinary square matrix of order (k0+ 1)!/(k1! · · · kr !) whose entries
are linear forms in the entries of M ; see [Gelfand et al. 2008, Chapter 14, Theorem 3.3].

2. SPARSE RESULTANTS IN Macaulay2. In this section, we describe some of the functions imple-
mented in the package SparseResultants. For more details and examples, we refer to its documentation.

One of the main functions is sparseResultant, which via elimination techniques calculates sparse
mixed resultants ResA0,...,An (see Section 1A) and sparse unmixed resultants ResA (see Section 1B).
This function can be called in two ways. The first one is to pass a list of n + 1 matrices A0, . . . , An

over Z and with n rows to represent the sets A0, . . . ,An ⊂ Zn (it is enough to pass just one matrix A
in the unmixed case). Then the output will be another function that takes as input n+ 1 polynomials
fi =

∑
ω∈Ai

ai,ωxω, for i = 0, . . . , n, and returns their sparse resultant. An error is thrown if the poly-
nomials fi do not have the correct form. Roughly, this returned function is a container for the general
expression of the sparse resultant (possibly written out in a compact form as in Proposition 1.3) and for
the rule to evaluate it at the n+ 1 polynomials fi . The second way to call sparseResultant is to pass
directly the polynomials fi . This is equivalent to forming the matrices Ai whose columns are given by
{ω ∈ Zn

: the coefficient in fi of xω is 6= 0} (see the function exponentsMatrix) and then proceeding
as described above.

As an example we now calculate a particular type of sparse unmixed resultant, known as the Dixon
resultant (see [Sturmfels 1993, Section 2.4] and [Cox et al. 2005, Chapter 7, §2, Exercise 10]; see also
the classical reference [Dixon 1909]).
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Example 2.1. Consider the following system of three bihomogeneous polynomials of bidegree (2, 1) in
the two groups of variables (x0, x1), (y0, y1):

c1,1x2
1 y1+ c1,2x1x2 y1+ c1,3x2

2 y1+ c1,4x2
1 y2+ c1,5x1x2 y2+ c1,6x2

2 y2 = 0,

c2,1x2
1 y1+ c2,2x1x2 y1+ c2,3x2

2 y1+ c2,4x2
1 y2+ c2,5x1x2 y2+ c2,6x2

2 y2 = 0, (2-1)

c3,1x2
1 y1+ c3,2x1x2 y1+ c3,3x2

2 y1+ c3,4x2
1 y2+ c3,5x1x2 y2+ c3,6x2

2 y2 = 0.

Putting x2 = y2 = 1 we get a system of three nonhomogeneous polynomials in two variables (x, y)=
(x1, y1), of which we can calculate the sparse (unmixed) resultant. This polynomial is homogeneous of
degree 12 in the 18 variables c1,1, . . . , c3,6 with 20791 terms, which vanishes if and only if (2-1) has a
nontrivial solution. The time for this computation is less than one second (on a standard laptop).

$ M2 --no-preload
Macaulay2, version 1.17
i1 : needsPackage "SparseResultants";

i2 : R = ZZ[c_(1,1)..c_(3,6)][x,y];

i3 : f = (c_(1,1)*x^2*y+c_(1,2)*x*y+c_(1,3)*y+c_(1,4)*x^2+c_(1,5)*x+c_(1,6),
c_(2,1)*x^2*y+c_(2,2)*x*y+c_(2,3)*y+c_(2,4)*x^2+c_(2,5)*x+c_(2,6),
c_(3,1)*x^2*y+c_(3,2)*x*y+c_(3,3)*y+c_(3,4)*x^2+c_(3,5)*x+c_(3,6));

i4 : A = exponentsMatrix f
o4 = | 0 0 1 1 2 2 |

| 0 1 0 1 0 1 |

2 6
o4 : Matrix ZZ <--- ZZ

i5 : time Res = sparseResultant A;
-- used 0.241391 seconds

o5 : SparseResultant (sparse unmixed resultant associated to | 0 0 1 1 2 2 |)
| 0 1 0 1 0 1 |

i6 : time U = Res f;
-- used 0.574002 seconds

i7 : (first degree U, # terms U)
o7 = (12, 20791)

Another function, sparseDiscriminant, calculates sparse discriminants DiscA (see Section 1C).
This function works similarly to the previous one. In particular, it accepts as input either a matrix
representing the exponent vectors of a (Laurent) polynomial or the polynomial directly.

Example 2.2. Using the Cayley trick (1-4), we express the dense resultant of three generic ternary
forms of degrees 1, 1, 2 (which is a special type of sparse mixed resultant) as a sparse discriminant. The
calculation time is less than one second.

i8 : clearAll;

i9 : K = ZZ[a_0..a_2,b_0..b_2,c_0..c_5], Rx = K[x_1,x_2];

i10 : f = (a_0+a_1*x_1+a_2*x_2,
b_0+b_1*x_1+b_2*x_2,
c_0+c_1*x_1+c_2*x_2+c_3*x_1^2+c_4*x_1*x_2+c_5*x_2^2);

i11 : Rxy = K[x_1,x_2,y_1,y_2], f’ = (sub(f_0,Rxy), sub(f_1,Rxy), sub(f_2,Rxy));

i12 : time sparseResultant(f_0,f_1,f_2) ==
-sparseDiscriminant(f’_0 + y_1*f’_1 + y_2*f’_2)

-- used 0.746274 seconds
o12 = true
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A derived function of sparseDiscriminant is determinant (or simply det), which calculates
determinants of multidimensional matrices (see Section 1D). However for this last one, more specialized
algorithms are also available and automatically applied.

Example 2.3. We calculate the determinant of a generic four-dimensional matrix of shape 2× 2× 2× 2
(see also [Huggins et al. 2008]). This polynomial is homogeneous of degree 24 in the 16 variable entries
of the matrix and it has 2894276 terms. The approach for this calculation is to apply (1-6) recursively.
The calculation time is about 10 minutes, but it takes much less time if we specialize the entries of the
matrix to be random numbers.

i13 : M = genericMultidimensionalMatrix {2,2,2,2}
o13 = {{{{a , a }, {a , a }}, {{a , a }, ...

0,0,0,0 0,0,0,1 0,0,1,0 0,0,1,1 0,1,0,0 0,1,0,1 ...

o13 : 4-dimensional matrix of shape 2 x 2 x 2 x 2 over ZZ[a , a , ...
0,0,0,0 0,0,0,1 ...

i14 : time D = det M;
-- used 634.773 seconds

i15 : (first degree D, # terms D)
o15 = (24, 2894276)

Example 2.4. Here we take A and B to be random matrices of shapes 2× 2× 2× 4 and 4× 2× 5,
respectively. We calculate the convolution A ∗ B (see [Gelfand et al. 2008, p. 449]), which is a matrix
of shape 2 × 2 × 2 × 2 × 5. Then we verify a formula proved in [Dionisi and Ottaviani 2003] for
det(A ∗ B), which generalizes the Cauchy–Binet formula in the multidimensional case. The approach for
the calculation of the determinant of shape 4× 2× 5 is using Proposition 1.13, while the determinants
of shapes 2× 2× 2× 4 and 2× 2× 2× 2× 5 are calculated using Remark 1.14. The calculation time is
less than one second.

i16 : K = ZZ/33331;

i17 : A = randomMultidimensionalMatrix({2,2,2,4},CoefficientRing=>K);
o17 : 4-dimensional matrix of shape 2 x 2 x 2 x 4 over K

i18 : B = randomMultidimensionalMatrix({4,2,5},CoefficientRing=>K);
o18 : 3-dimensional matrix of shape 4 x 2 x 5 over K

i19 : time det(A * B) == (det A)^5 * (det B)^6
-- used 0.535271 seconds

o19 = true

SUPPLEMENT. The online supplement contains version 1.1 of SparseResultants.
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