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JULIETTE BRUCE, DANIEL ERMAN, STEVE GOLDSTEIN AND JAY YANG

ABSTRACT: This note introduces the Macaulay2 package SchurVeronese, which gathers together data
about Veronese syzygies and makes it readily accessible in Macaulay2. In addition to standard Betti ta-
bles, the package includes information about the Schur decompositions of the various spaces of syzygies.
The package also includes a number of functions useful for manipulating and studying this data.

In [Bruce et al. 2020] the authors used a combination of high-throughput and high-performance compu-
tation and numerical techniques to compute the Betti tables of P2 under the d-fold Veronese embedding,
as well as the Betti tables of the pushforwards of line bundles OP2(b) under that embedding, for a number
of values of b and d. These computations resulted in new data, such as Betti tables, multigraded Betti
numbers, and Schur Betti numbers. (For b= 0, most the cases had been previously computed in [Castryck
et al.].) This note introduces the SchurVeronese package for Macaulay2, which makes this data readily
accessible via Macaulay2 for further experimentation and study.

1. VERONESE SYZYGIES. Throughout this section we fix n ∈ N and let S = C[x0, x1, . . . , xn] be the
polynomial ring with the standard grading. The d-th Veronese module of S twisted by b is

S(b; d) :=
⊕
i∈Z

Sdi+b.

If b = 0, then S(0; d) is the Veronese subring of S, and if b 6= 0 then S(b; d) is an S(0; d)-module.
Moreover, if we set R = Sym(Sd) to be the symmetric algebra on Sd , then we may consider S(b; d) as
a graded R-module. Geometrically, if b = 0 this corresponds to the homogenous coordinate ring of Pn

under the d-fold embedding Pn
→ P(

n+d
d )−1, and for other b it corresponds to the pushforward of OPn (b)

under the d-fold embedding.
Our interest is in studying the syzygies of S(b; d). See the introduction of [Bruce et al. 2020] for

background on Veronese syzygies including a summary of known results. Throughout this paper, we set
K p,q(P

n, b; d) :=TorR
p (S(b; d),C)p+q , which is isomorphic to the vector space of degree p+q syzygies

of S(b; d) of homological degree p. Using the standard conventions for graded Betti numbers, the rank

Bruce received support from the NSF GRFP under grant DGE-1256259, NSF grant DMS-1502553, NSF MSPRF DMS-
2002239, and from the Graduate School and the Office of the Vice Chancellor for Research and Graduate Education at the
University of Wisconsin–Madison with funding from the Wisconsin Alumni Research Foundation. She is grateful for the
support of the Mathematical Sciences Research Institute in Berkeley, California, where she was in residence for the Fall 2020
semester. Erman received support from NSF grant DMS-1601619. Yang received support from NSF grant DMS-1502553.
MSC2010: 13D02.
Keywords: syzygies, free resolutions, Veronese syzygies.
SchurVeronese version 1.1

83

https://doi.org/10.2140/jsag.2021.11-1
http://msp.org/jsag
https://doi.org/10.2140/jsag.2021.11.83
http://msp.org/jsag


84 Bruce, Erman, Goldstein and Yang :::: The Schur–Veronese package in Macaulay2

of the vector space K p,q corresponds to the Betti number βp,p+q , and we write βp,p+q(S(b; d)) :=
dim TorR

p (S(b; d),C)p+q = dim K p,q(P
n, b; d). Following the usual Macaulay2 notation, the Betti table

of S(b; d) will be the table where βp,p+q(S(b; d)) is placed in the (p, q)-spot.
Outside of the case n = 1, the Betti tables of S(b; d) are unknown even for modest values of d . There

is not even a conjecture about what the Betti table of S(b; d) should be for n = 2 and d ≥ 7.
This package provides an array of computed data about S(b; d) in the case n = 2 and for 0≤ b< d ≤ 8

(though the data are incomplete for some of the larger values of d). While computing this data, including
the Schur functor decompositions, took substantial time, the resulting data are concise and easy to work
with in Macaulay2. The bulk of this package thus consists of these output data, which are included as
auxiliary files. The functions provided in this package make this data accessible in a user-friendly way.
Our hope is that this will allow those interested in Veronese syzygies to make headway on formulating
conjectures and proving results in this area. Moreover, as new cases of Veronese syzygies are computed,
these can easily be incorporated into future versions of the package.

2. AN OVERVIEW OF THE DATA. When computing data for S(b; d) we always work under the hypoth-
esis that 0 ≤ b < d, as the Betti table of S(b; d) and S(b + d; d) differ only by a vertical shift. We
have included data for the cases n = 1 and d ≤ 10, although this can also easily be computed using the
Eagon–Northcott complex. The main data are for the cases n = 2 and 0 ≤ b < d ≤ 8. In [Bruce et al.
2020], we obtained full computations for d ≤ 6; moreover since those algorithms worked in parallel
with respect to multidegrees, we obtained incomplete data for some cases where d = 7, 8, and we have
included these partial data in this package as well.

The algorithms in [Bruce et al. 2020] are a mix of symbolic and numeric algebra. Thus some entries
in the data are not provably correct, while others are. One can determine precisely when K p,q 6= 0 by
combining [Ein and Lazarsfeld 2012, Remark 6.5], [Green 1984b, Theorem 2.2], and [Green 1984a,
Theorem 2.c.6]. Our computation of a K p,q -group (and all related data such as the Schur functor decom-
position) will be provably correct if and only if K p+1,q−1 and K p−1,q+1 both vanish; in cases where this
does not occur, the data for K p,q may have been computed numerically, and thus may not be provably
correct. For a longer discussion of potential numerical error issues, see [Bruce et al. 2020, §5.2].

3. TOTAL BETTI TABLES. The Betti table for S(b; d) can be called up using the totalBettiTally
command. For example, the Betti table of S(2; 4) when n = 2 is produced below.

i6 : totalBettiTally(4,2,0)

0 1 2 3 4 5 6 7 8 9 10 11 12
o6 = total: 1 75 536 1947 4488 7095 7920 6237 3344 1089 175 24 3

0: 1 . . . . . . . . . . . .
1: . 75 536 1947 4488 7095 7920 6237 3344 1089 120 . .
2: . . . . . . . . . . 55 24 3

o6 : BettiTally

Note that this is purely numeric: the package does not produce a minimal free resolution; the function
simply returns the Betti numbers obtained by a previous computation. The command totalBetti is
similar, but expresses the Betti numbers simply as a hash table.
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There is also a distinction between the indexing conventions. When working with hash tables, we
follow the more concise K p,q indexing conventions, instead of the βp,p+q indexing conventions used for
Betti tallies. Thus, for instance, in the above example, the Betti number β2,3 would correspond to key
(2, {3}, 3) in the Betti tally, but in the hash table totalBetti it corresponds to key (2, 1):

i4 :E = totalBetti(4,2,0);

i5 : E#(2,1)
o5 = 536

If one tries to call a Betti table outside of the acceptable range of n, b, d , we return an error message.
i10 : totalBettiTally(4,3,0)
o10 = Need n = 1 or 2

As noted above, there were instances where we were able to partially compute Betti tables, for instance
in the case of the 7-uple embedding of P2. In those cases, we have recorded the entries that we know,
and we mark the unknown entries with “infinity”. For example:

i14 : B = totalBetti(7,2,0);

i15 : B#(4,1)
o15 = 1031184

i16 : B#(20,1)
o16 = infinity
o16 : InfiniteNumber

Thus, in this case, we see dim K4,1(P
2, 2; 7)= 1031184, but were unable to compute dim K20,1(P

2, 2; 7).

4. SCHUR DECOMPOSITION. When n = 2 and d ≥ 5, the Betti tables of S(b; d) are often unwieldy to
work with, as they and their entries tend to be quite large. For example, the Betti table of S(0; 6) has 26
columns and many of the entries are on the order of 107.

A more concise way of recording the syzygies would be to take into account the symmetries coming
from representation theory. The natural linear action of GLn+1(C) on S induces an action on each vector
space K p,q(P

n, b; d). We can thus decompose this as a direct sum of Schur functors of total weight
d(p+ q)+ b, i.e.,

K p,q(P
n, b; d)=

⊕
|λ|=d(p+q)+b

Sλ(Cn+1)⊕m p,λ(P
n,b;d),

with m p,λ(P
n, b; d) being the Schur Betti numbers and Sλ being the Schur functor corresponding to the

partition λ [Fulton and Harris 1991, p. 76]. The Schur Betti numbers can be accessed via the schurBetti
command, which returns a hash table whose keys correspond to pairs (p, q) for which K p,q(P

n, b; d) 6= 0,
and whose values are lists corresponding to the Schur decomposition of this syzygy module.

For example, let us consider K2,1(P
2, 0; 4), which is a vector space of dimension 536. As a representa-

tion of GL3(C), it turns out to be the sum of 9 distinct Schur functors, each appearing with multiplicity 1:

K2,1(P
2, 0; 4)= S(9,2,1)⊕ S(8,4,0)⊕ S(8,3,1)⊕ S(7,5,0)⊕ S(7,4,1)⊕ S(7,3,2)⊕ S(6,5,1)⊕ S(6,4,2)⊕ S(5,4,1).

i26 : (schurBetti(4,2,0))#(2,1)

o26 = {({9, 2, 1}, 1), ({8, 4, 0}, 1), ({8, 3, 1}, 1), ({7, 5, 0}, 1),
---------------------------------------------------------------------

({7, 4, 1}, 1), ({7, 3, 2}, 1), ({6, 5, 1}, 1), ({6, 4, 2}, 1), ({5, 4, 3}, 1)}

o8 : List
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From this, it is easy to compute statistics such as the number of representations and the number
of distinct representations appearing in the Schur decomposition of K p,q(n, b; d). The SchurVeronese
package provides commands for these. For instance, in our example above we see that:

i11 : (numDistinctRepsBetti(4,2,0))#(2,1)
o11 = 9

We can also display the number of representations appearing in each entry of the Betti table. In the
following example, the first table counts distinct Schur functors and the second counts the number of
Schur functors with multiplicity:

i29 : makeBettiTally numDistinctRepsBetti(4,2,0)

0 1 2 3 4 5 6 7 8 9 10 11 12
o29 = total: 1 2 9 17 23 23 26 25 21 13 3 1 1

0: 1 . . . . . . . . . . . .
1: . 2 9 17 23 23 26 25 21 13 1 . .
2: . . . . . . . . . . 2 1 1

i30 : makeBettiTally numRepsBetti(4,2,0)

0 1 2 3 4 5 6 7 8 9 10 11 12
o30 = total: 1 2 9 28 55 79 86 69 38 14 3 1 1

0: 1 . . . . . . . . . . . .
1: . 2 9 28 55 79 86 69 38 14 1 . .
2: . . . . . . . . . . 2 1 1

Thus, K4,1(P
2, 0; 4) is the sum of 55 irreducible representations, 23 of which are distinct.

5. MULTIGRADED BETTI NUMBERS. One can also specialize the action of GLn+1(C) to the torus
action via (C∗)n+1. This gives a decomposition of K p,q(P

n, b; d) into a sum of Zn+1-graded vector
spaces of total weight d(p+ q)+ b. Specifically, writing C(−a) for the vector space C together with the
(C∗)n+1-action given by (λ0, λ1, . . . , λn) ·µ= λ

a0
0 λ

a1
1 · · · λ

an
n µ, we have

K p,q(P
n, b; d)=

⊕
a∈Zn+1

|a|=d(p+q)+b

C(−a)⊕βp,a(P
n,b;d)

as Zn+1-graded vector spaces, or equivalently as (C∗)n+1 representations.
The SchurVeronese package produces these multigraded Betti numbers for a number of examples

via the multiBetti command. As schurBetti does, this command returns a hash table whose keys
correspond to pairs (p, q) for which K p,q(P

n, b; d) 6= 0, and whose values are multigraded Hilbert
polynomials encoding the multigraded decomposition of K p,q(n, b; d). More specifically, the value of
(multiBetti(d,n,b))#(p,q) is the polynomial∑

a∈Zn+1

|a|=d(p+q)+b

βp,a(n, b; d)ta

where ta denotes ta0
0 ta1

1 · · · t
an
n .

For example, K12,2(2, 0; 4) is the 3-dimensional Z3-graded vector space

K12,2(2, 0; 4)∼= C(−(19, 19, 18))⊕C(−(19, 18, 19))⊕C(−(18, 19, 19)).
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The following code computes this, illustrating that the multigraded Hilbert function for K12,2(2, 0; 4) is
t19
0 t19

1 t18
2 + t19

0 t18
1 t19

2 + t18
0 t19

1 t19
2 .

i4 : (multiBetti(4,2,0))#(12,2)

19 19 18 19 18 19 18 19 19
o4 = t t t + t t t + t t t

0 1 2 0 1 2 0 1 2

o4 : QQ[t , t , t ]
0 1 2

SUPPLEMENT. The online supplement contains version 1.1 of SchurVeronese.
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