
Journal of Software for

Algebra and Geometry

Threaded Gröbner bases: a Macaulay2 package

SONJA PETROVIĆ AND SHAHRZAD ZELENBERG

vol 11 2021

JSAG 11 (2021), 123–127 The Journal of Software for
https://doi.org/10.2140/jsag.2021.11.123 Algebra and Geometry

Threaded Gröbner bases: a Macaulay2 package

SONJA PETROVIĆ AND SHAHRZAD ZELENBERG

ABSTRACT: The complexity of Gröbner computations has inspired many improvements to Buchberger’s
algorithm over the years. Looking for further insights into the algorithm’s performance, we offer a threaded
implementation of the classical Buchberger algorithm in Macaulay2. The output of the main function of
the package includes information about lineages of nonzero remainders that are added to the basis during
the computation. This information can be used for further algorithm improvements and optimization.

1. INTRODUCTION. The importance in computational algebra of Gröbner bases and therefore of Buch-
berger’s algorithm, as well as its many variants, is indisputable. Yet it is still a challenge to apply brute
force algorithms to larger problems primarily due to considerations in computer science. That is, the
current computing paradigm favors clusters of CPUs, or nodes, rather than one massive CPU. As a
result, there is a need to distribute this algorithm that is automated for the user (in that it does not require
a user to know how it should be distributed).

Past work in this area has focused on synchronized methods as detailed in [Mityunin and Pankrat’ev
2005]. One method spreads a key step in Buchberger’s algorithm — the reduction of S-pairs by division —
across nodes; another sends tasks to individual nodes while a central, coordinating node waits for all
threads to complete. Each of these still requires some central node and synchronization, which leads to
bottlenecks in the computation. A truly distributed algorithm would be decentralized and asynchronous.
Zelenberg [2018] discusses an asynchronous, decentralized distributed version of Buchberger’s algorithm
done generically with the potential of very good speedups. Zelenberg implemented a threaded version
in [Python] to explore this further, and as a result some important discoveries were made. It should be
noted that multithreaded algorithms are not necessarily distributed across distinct nodes; rather, threads
are sharing computation and passing information back and forth.

Of the discoveries made, the most important is this: in order for a distributed process to be both
generically usable and automated for the user, an effective algorithm will need to account for features of
the polynomials (relative to the starting basis) when deciding what tasks to assign to what node. This is
because transferring information between nodes is a very slow process and so needs to be minimized.

Given the need to analyze aspects of these polynomials, [Macaulay2] offers some clear advantages
over Python. Moreover, the Macaulay2 engine is written in C/C++, a language well suited for writing
distributed algorithms. Threads within Macaulay2 work differently than within Python and, as such,

MSC2020: 13P10.
Keywords: Gröbner basis, distributed computation, lineages, S-pairs.
ThreadedGB version 1.1

123

https://doi.org/10.2140/jsag.2021.11-1
http://msp.org/jsag
http://msp.org/jsag

124 Petrović and Zelenberg :::: Threaded Gröbner bases: a Macaulay2 package

Lineage Table

key poly
...

...
Lineage(gi) gi
Lineage(g j) g j

...
...

Thread

Compute S(gi , g j)

Compute gk = S(gi , g j)
G

If gk = 1: terminate
Else if gk 6= 0:

Store Lineage(gk), gk

Generate tasks

Task Table

key poly
...

...
(Lineage(gi)−Lineage(g j)) (gi , g j)

...
...

Figure 1. The lineage table is initialized with the starting basis, and the task table is
initialized with a task for each pair of starting generators. Then, all threads perform the
same task: they pull a pair of polynomials from the tasks hash table along with an associated
lineage key. They compute the S-polynomial and reduce it with respect to the current basis.
If the remainder, r , is nonzero, it is stored in the lineage table along with its lineage key,
and, for each g in the current basis, a new task indexed by the pair (g, r) is added to the
task table. If the remainder 1 is found, the process of creating tasks stops. The process is
repeated using n parallel threads, with n specified by the user, until the task table is empty.

some design changes were necessary from the implementation discussed in [Zelenberg 2018]. Queues
are replaced altogether with hash tables — an improvement since threads access the most up-to-date
version of the generating set at the time of reduction. Even so, this cannot eliminate redundancies as
threads may compute the same result (virtually) simultaneously.

One of the goals of our package ThreadedGB is to allow a user to analyze what we refer to as lineages
of polynomials in a Gröbner basis.

Definition 1.1. Let G be a Gröbner basis of I = (f0, . . . , fk). A lineage of a polynomial in G is a natural
number, or an ordered pair of lineages, tracing its history in the given Gröbner basis computation. It is
defined recursively as follows:

• For the starting generating set, Lineage(fi)= i ,

• For any subsequently created S-polynomial S(f, g), the lineage of its remainder r on division is the
pair Lineage(r)= (Lineage(f), Lineage(g)).

To illustrate, suppose I = (x2
− y, x3

− z)⊂Q[x, y, z] with graded reverse lexicographic order. Then
Lineage(x2

− y)= 0 and Lineage(x3
−z)= 1. Two additional elements are added to create a (nonminimal)

Gröbner basis: xy + z and y2
− xz, with lineages (0, 1) and ((0, 1), 0), respectively. According to

Lineage(y2
− xz), this element is constructed from S(xy+ z, x2

− y). Lineages are expressions of the
starting generating set and thus dependent on the choice and order of its elements. More importantly, a
lineage is not necessarily unique, as the same polynomial can be constructed multiple ways. The lineage
tables produced by ThreadedGB (see Figure 1) do not provide all possible lineages — only a particular
choice based on the order in which the generators are provided by the user.

Petrović and Zelenberg :::: Threaded Gröbner bases: a Macaulay2 package 125

2. EFFECT OF ORDERING OF POLYNOMIALS ON LINEAGES: A SIMPLE EXAMPLE. Consider the poly-
nomial ring Q[x1, x3, x0, x4, x2] with lexicographic order and the ideal of the rational normal curve in P4.
The six generators have lineages 0, . . . , 5, and Buchberger’s algorithm adds three new elements to the
Gröbner basis before final reduction. This can be seen by turning on the gbTrace option in Macaulay2,
which tells us three new polynomials are added to the basis. The function tgb lets us know exactly
which ones and their lineages. Specifically, a run of tgb reveals these are x0x4− x2

2 , −x3x0x4+ x3x2
2 ,

−x0x4x2+ x3
2 with lineages (2, 3), (1, 4), (1, 2), respectively.

i1 : needsPackage "ThreadedGB";

i2 : QQ[x_1,x_3,x_0,x_4,x_2,MonomialOrder=>Lex];

i3 : rnc = minors(2, matrix{{x_0..x_3},{x_1..x_4}});
o3 : Ideal of QQ[x , x , x , x , x]

1 3 0 4 2

i4 : allowableThreads = 4;

i5: g = tgb(rnc)
3

o5 = LineageTable{(1, 2) => - x x x + x }
0 4 2 2

2
(1, 4) => - x x x + x x

3 0 4 3 2
2

(2, 3) => x x - x
0 4 2

2
0 => - x + x x

1 0 2
1 => - x x + x x

1 2 3 0
2

2 => x x - x
1 3 2

3 => - x x + x x
1 3 0 4

4 => x x - x x
1 4 3 2

2
5 => - x + x x

3 4 2
o5 : LineageTable

Running the command reduce g will produce a reduced Gröbner basis; in particular, the lineage table
entries with keys (1, 2), (1, 4) and 2 will be replaced by null. This allows the user to see which
nonzero polynomials produced during the computation turn out not to be needed. Of course, to continue
computing with the given basis, one wishes to have it in standard Macaulay2 format, which is a matrix.

i6 : matrix reduce g
o6 = | x_1^2-x_0x_2 x_1x_2-x_3x_0 x_1x_3-x_2^2

x_1x_4-x_3x_2 x_3^2-x_4x_2 x_0x_4-x_2^2 |
1 6

o6 : Matrix (QQ[x , x , x , x , x]) <--- (QQ[x , x , x , x , x])
1 3 0 4 2 1 3 0 4 2

One can use the package to study, for example, how reordering the input basis affects the algorithm. In
Gröbner computations, Macaulay2 creates and processes S-polynomials in lexicographic order of pairs
(first and second, then first and third, and so on). Let S=Q[a, b, c, d] and I = (abc−1, abc, a+bd−c);
clearly I = S. But the order of generators listed affects the complexity of the particular run; namely,
listing the quadratic first makes the algorithm perform more steps. The method tgb can be verbose and

126 Petrović and Zelenberg :::: Threaded Gröbner bases: a Macaulay2 package

can tell us what is going on behind the scenes for each lineage.

i7 : QQ[a, b, c, d];

i8 : I = ideal (a*b*c, a*b*c - 1, a+b*d-c);

i9 : tgb(I,Verbose=>true)
Scheduling a task for lineage (0,1)
Scheduling a task for lineage (0,2)
Scheduling a task for lineage (1,2)
Adding the following remainder to GB: 1 from lineage (0,1)
Found a unit in the Groebner basis; reducing now.
o9 = LineageTable{(0, 1) => 1}

0 => null
1 => null
2 => null

o9 : LineageTable

Compare this to the following run of the threaded Buchberger’s algorithm under a different input order.
i10 : I = ideal (a+b*d-c, a*b*c-1, a*b*c);
o10 : Ideal of QQ[a, b, c, d]

i11 : tgb(I)
o11 = LineageTable{(0, 1) => null}

(0, 2) => null
(1, 2) => 1
0 => null
1 => null
2 => null

o11 : LineageTable

Three new elements are added to the basis, namely (0,1), (0,2), (1,2), if the quadratic generator is listed
first, but if it is listed last, then only the polynomial with lineage (0,1) is added — because it already
equals 1 — and the algorithm stops.

3. NUTS AND BOLTS. Given a list of polynomials L or an ideal I and an integer n, the main method
tgb uses Tasks in Macaulay2 to compute a Gröbner basis of I or (L) using n threads. It returns an
object of type LineageTable, which is an instance of HashTable, whose values are a Gröbner basis
of I or (L). The keys are polynomial lineages.

The starting basis L (meaning, the input list L or L=I∗) populates the entries of a lineage table G with
keys from 0 to one less than the number of elements of L . The method creates all possible S-polynomials
of L and schedules their reduction with respect to G as tasks. Throughout the computation, every nonzero
remainder added to the basis is added to G, with its lineage, as defined above, being the key. Each such
remainder also triggers the creation of S-polynomials using it and every element in G and scheduling
the reduction thereof as additional tasks. The process is done when there are no remaining tasks.

There is a way to track the tasks being created by turning on the option Verbose, or provide the
reduced or a minimal Gröbner basis using the functions reduce or minimalize, respectively. The users
who expect just a Gröbner basis in usual Macaulay2 format, without the lineages, can call matrix on
the LineageTable.

4. IMPROVEMENTS AND SPEED-UPS. As with any Macaulay2 package, improvements are easy to
make via GitHub. Our package’s GitHub repository will be made public shortly, so other users can im-
plement any extensions or add improvements to this threaded implementation of Buchberger’s algorithm.

Petrović and Zelenberg :::: Threaded Gröbner bases: a Macaulay2 package 127

These may include known speed-ups as optional ways to run the algorithm; for example, if one wishes
to study lineages produced by the F4 algorithm [Faugére 1999], then one can build that option into this
threaded computation.

The current goal is to explore algorithm performance and complexity and how input basis features
affect these; the lineages are designed specifically to aid in this goal. Of course, speed-ups should
come “naturally” from a threaded implementation. However, with Macaulay2’s current implementation
of threads, speed-ups aren’t observed with interpreted code, hence to achieve effective speed-ups in
practice, we plan to implement tgb in the engine, using C/C++.

SUPPLEMENT. The online supplement contains version 1.1 of ThreadedGB.

REFERENCES.
[Faugére 1999] J.-C. Faugére, “A new efficient algorithm for computing Gröbner bases (F4)”, pp. 61–88 in Effective methods
in algebraic geometry ((Saint-Malo, 1998)), vol. 139, 1999. MR Zbl

[Macaulay2] D. R. Grayson and M. E. Stillman, “Macaulay2, a software system for research in algebraic geometry”, available
at https://math.uiuc.edu/Macaulay2/.

[Mityunin and Pankrat’ev 2005] V. A. Mityunin and E. V. Pankrat’ev, “Parallel algorithms for the construction of Gröbner
bases”, Sovrem. Mat. Prilozh. 30 (2005), 46–64. Translated in J. of Math. Statistics, 142(4): 2248–2266, 2007. MR

[Python] G. Van Rossum and F. L. Drake, Python 3 Reference Manual, CreateSpace, Scotts Valley, CA.

[Zelenberg 2018] S. J. Zelenberg, Distributed computational systems, Ph.D. thesis, 2018, available at etda.libraries.psu.edu/
catalog/15329sxj937.

RECEIVED: 19 Jul 2020 REVISED: 6 Aug 2021 ACCEPTED: 8 Oct 2021

SONJA PETROVIĆ:

sonja.petrovic@iit.edu
Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL, United States

SHAHRZAD ZELENBERG:

szelenberg@mx.lakeforest.edu
Lake Forest College, Department of Mathematics and Computer Science, Lake Forest, IL, United States

msp

http://msp.org/jsag/2021/11-1/jsag-v11-n1-x11-ThreadedGB.m2
http://dx.doi.org/10.1016/S0022-4049(99)00005-5
http://msp.org/idx/mr/1700538
http://msp.org/idx/zbl/0930.68174
https://math.uiuc.edu/Macaulay2/
http://dx.doi.org/10.1007/s10958-007-0136-z
http://dx.doi.org/10.1007/s10958-007-0136-z
http://msp.org/idx/mr/2464549
mailto:sonja.petrovic@iit.edu
mailto:szelenberg@mx.lakeforest.edu
http://msp.org

1

JOURNAL OF SOFTWARE FOR ALGEBRA AND GEOMETRY vol 11, no 1, 2021

1Phylogenetic trees
Hector Baños, Nathaniel Bushek, Ruth Davidson, Elizabeth Gross, Pamela E.
Harris, Robert Krone, Colby Long, Allen Stewart and Robert Walker

9Software for doing computations in graded Lie algebras
Clas Löfwall and Samuel Lundqvist

15The relative canonical resolution: Macaulay2-package, experiments and conjectures
Christian Bopp and Michael Hoff

25The FrobeniusThresholds package for Macaulay2
Daniel J. Hernández, Karl Schwede, Pedro Teixeira and Emily E. Witt

41Computing theta functions with Julia
Daniele Agostini and Lynn Chua

53Decomposable sparse polynomial systems
Taylor Brysiewicz, Jose Israel Rodriguez, Frank Sottile and Thomas Yahl

61A package for computations with sparse resultants
Giovanni Staglianò

71ExteriorModules: a package for computing monomial modules over an exterior algebra
Luca Amata and Marilena Crupi

83The Schur–Veronese package in Macaulay2
Juliette Bruce, Daniel Erman, Steve Goldstein and Jay Yang

89admcycles - a Sage package for calculations in the tautological ring of the moduli space
of stable curves

Vincent Delecroix, Johannes Schmitt and Jason van Zelm
113Coding theory package for Macaulay2

Taylor Ball, Eduardo Camps, Henry Chimal-Dzul, Delio Jaramillo-Velez, Hiram
López, Nathan Nichols, Matthew Perkins, Ivan Soprunov, German Vera-Martínez
and Gwyn Whieldon

123Threaded Gröbner bases: a Macaulay2 package
Sonja Petrović and Shahrzad Zelenberg

129Standard pairs of monomial ideals over nonnormal affine semigroups in SageMath
Byeongsu Yu

143Computations with rational maps between multi-projective varieties
Giovanni Staglianò

	1. Introduction
	2. Effect of ordering of polynomials on lineages: a simple example
	3. Nuts and bolts
	4. Improvements and speed-ups
	
	

