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ABSTRACT: We present StdPairs, a SageMath library to compute standard pairs of a monomial ideal
over a pointed (nonnormal) affine semigroup ring. Moreover, StdPairs provides the associated prime
ideals, the corresponding multiplicities, and an irredundant irreducible primary decomposition of a mono-
mial ideal. The library expands on the standardPairs function on Macaulay2 over polynomial rings,
and is based on algorithms from Matusevich and Yu (2020). We also provide methods that allow the
outputs from this library to be compatible with the Normaliz package of Macaulay2 and SageMath.

1. INTRODUCTION.
Affine semigroup rings are the object of many studies in combinatorial commutative algebra. The

goal of this article is to present the SageMath library StdPairs, which systematizes computations for
monomial ideals in affine semigroup rings. The algorithms implemented here are based on the notion
of standard pairs, introduced for monomial ideals in polynomial rings by [Sturmfels et al. 1995], and
generalized to the semigroup ring case in [Matusevich and Yu 2020]. Standard pairs are combinatorial
structures that contain information on primary and irreducible decompositions of monomial ideals, as
well as multiplicities. One of the main contributions of [Matusevich and Yu 2020] is that standard pairs
and the associated algebraic concepts can be effectively computed over affine semigroup rings.

The SageMath library StdPairs implements the algorithms of [Matusevich and Yu 2020] to calculate
standard pairs for monomial ideals in any pointed (nonnormal) affine semigroup ring. This library can
be regarded as a generalization of the standardPairs function in Macaulay2 implemented by [Hoşten
and Smith 2002]. This library is provided as an online supplement to this paper.

Outline. Section 2 provides background on affine semigroup rings, their monomial ideals, and related
combinatorial notions. It also explains their implementation as SageMath classes. Section 3 presents the
implementation of algorithms to find standard pairs, proposed in [Matusevich and Yu 2020, Section 4].
Section 4 shows compatibility with the Normaliz package by introducing methods to translate objects
in SageMath into objects in Macaulay2 using Normaliz.
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1.1. Notation. We denote a semigroup of nonnegative integers including 0 by N= {0, 1, 2, . . .}. A ring
of integers is Z. All nonnegative real numbers are represented by R≥0. Boldface uppercase letters and
boldface lowercase letters denote matrices and vectors, respectively. This will be used when we call a
cone R≥0 A for some d × n matrix A over Z. Let K be an arbitrary field.

2. AFFINE SEMIGROUP, IDEAL, AND PROPER PAIR AS CLASSES OF SAGEMATH.

2.1. Mathematical background. An affine semigroup is a semigroup of Zd generated by finitely many
vectors a1, . . . , an for some n ∈N. We let A be a d×n matrix whose column vectors are a1, . . . , an ∈ Zd.
The set of all nonnegative integer linear combinations of a1, . . . , an , denoted by NA, is an affine semi-
group. These columns a1, . . . , an are the generators of the affine semigroup NA; the matrix A is called
the generating matrix. Since NA contains 0, an affine semigroup is a commutative monoid. Given
a field K, we are concerned with the affine semigroup ring K[NA]. A natural first example is the
polynomial ring in d-variables; in this case, A is the d × d identity matrix. We refer to [Miller and
Sturmfels 2005, Section 7] for more background on this topic. Throughout this article, we assume that
the affine semigroup NA under consideration is pointed, which means that the cone R≥0 A does not
contain lines.

An ideal of an affine semigroup is a set I ⊂ NA such that I + NA ⊆ I. There is a one-to-one
correspondence between monomial ideals of K[NA] and ideals of NA. Therefore, the definition of
prime, irreducible, and primary ideals of K[NA] can be naturally extended to the ideals of an affine
semigroup. The standard monomials of an ideal I ⊂ NA are all elements of NAr I. Let std(I ) be a set
of all standard monomials with respect to I.

A face of an affine semigroup NA is a subsemigroup NF ⊆ NA such that the complement NArNF
is an ideal of NA [Miller and Sturmfels 2005, Definition 7.8]. Equivalently, it is a subsemigroup NF
with the property that a + b ∈ NF if and only if a, b ∈ NF. The faces of an affine semigroup form
a lattice which is isomorphic to the face lattice of a (real) cone over the affine semigroup [Bruns and
Herzog 1993; Miller and Sturmfels 2005]. Thus, we may represent a face NF as a submatrix F of A.

A pair is a tuple (a, F) of an element a in NA and a face F of NA [Matusevich and Yu 2020]. A
proper pair of an ideal I is a pair (a, F) such that a+NF ⊆ std(I ). A pair (a, F) divides (b, G) if there
exists c ∈ NA such that a+ c+NF ⊆ b+NG [Matusevich and Yu 2020]. The set of all proper pairs
of an ideal I is partially ordered ≺ by inclusion. In other words, (a, F)≺ (b, G) if a+NF ⊂ b+NG.
The standard pairs of an ideal I are the maximal elements of the set of all proper pairs of I with this
partial order. We denote by Std(I ) the set of all standard pairs of an ideal I.

We remark that our notation here differs from existing notation for standard pairs over polynomial
rings. Over the polynomial ring K[x1, x2, . . . , xn], a pair is a tuple (x a, V ) where x a is a monomial
xa1

1 xa2
2 · · · x

an
n for some integer vector a = (a1, a2, . . . , an) and V is a set of variables [Hoşten and Smith

2002; Sturmfels et al. 1995]. From the viewpoint of affine semigroup rings, the polynomial ring is a
special case when the underlying affine semigroup is generated by an n× n identity matrix I . Since the
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cone R≥0 I is a simplicial cone, i.e., every subset of rays form a face, we may interpret V as a face. The
following example shows the different notations for the standard pairs of a monomial ideal

I =
〈
x

[
1
3
1

]
, x

[
1
2
2

]
, x

[ 0
3
2

]
, x

[ 0
2
3

]〉
in the polynomial ring K[x1, x2, x3]:

In Macaulay2,

i1 : R = QQ[x,y,z];

i2 : I = monomialIdeal(x*y^3*z, x*y^2*z^2, y^3*z^2, y^2*z^3)
3 2 2 3 2 2 3

o2 = monomialIdeal (x*y z, x*y z , y z , y z )

o2 : MonomialIdeal of R

i3 : standardPairs I
o3 = {{1, {x, z}}, {y, {x, z}}, {1, {x, y}}, {z, {y}},

2 2 2
{y z, {x}}, {y z , {}}}

o3 : List

whereas in the given library StdPairs in SageMath,

sage: from stdpairs import *

sage: A = matrix(ZZ,[[1,0,0],[0,1,0],[0,0,1]])

sage: Q = AffineMonoid(A)

sage: M = matrix(ZZ,[[1,1,0,0],[3,2,3,2],[1,2,2,3]])

sage: I = MonomialIdeal(M,Q)

sage: I.standard_cover()
{(1,): [([[0], [0], [1]]^T,[[0], [1], [0]])],
(0, 2): [([[0], [1], [0]]^T,[[1, 0], [0, 0], [0, 1]]),
([[0], [0], [0]]^T,[[1, 0], [0, 0], [0, 1]])],

(0, 1): [([[0], [0], [0]]^T,[[1, 0], [0, 1], [0, 0]])],
(): [([[0], [2], [2]]^T,[[], [], []])],
(0,): [([[0], [2], [1]]^T,[[1], [0], [0]])]}

(), (0,), (0, 2), (0, 1), and (1,) in StdPairs of SageMath are indices of columns of A.
These denote {}, {x}, {x, y}, {x, z}, and {y}, respectively, in Macaulay2. Therefore, for ex-
ample, the pair ([[0], [0], [1]]^T,[[0], [1], [0]]) will represent {z, {y}}, while the pair
([[0], [0], [0]]^T,[[1, 0], [0, 0], [0, 1]]) represents {1, {x, z }}, and so on. There-
fore, this example shows that StdPairs is consistent with Macaulay2.

2.2. Classes in StdPairs. We implement three classes related to affine semigroups, semigroup ideals,
and proper pairs respectively. This implementation is based on SageMath 9.1 with Python 3.7.3. and
the 4ti2 package. Detailed usage and examples of each method or object can be found using the com-
mand <method_name>? in SageMath or https://byeongsuyu.github.io/StdPairs/, the documentation of
StdPairs made by the Sphinx package.

Class AffineMonoid. This class is constructed by using an integer matrix A. The name follows the
convention of SageMath which distinguishes monoid from semigroup. In SageMath, A can be expressed

https://byeongsuyu.github.io/StdPairs/
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as a 2-dimensional NumPy.ndarray type or an integer matrix of SageMath. For example,

sage: from stdpairs import *

sage: A = matrix(ZZ,[[1,2],[0,2]])

sage: Q = AffineMonoid(A)

generates Q as a type of AffineMonoid. This class has several methods as explained below:

• Q.gens() returns a matrix generating an affine monoid Q as NumPy.ndarray type. This may not
be a minimal generating set of Q.

• Q.mingens() returns a minimal generating matrix of an affine monoid of Q.

• Q.poly() returns a real cone R≥0 Q represented as a type of Polyhedron in SageMath. If one
generates Q with True parameter, i.e.,

sage: from stdpairs import *

sage: A = matrix(ZZ,[[1,2],[0,2]])

sage: Q = AffineMonoid(A,is_normaliz=True)

then Q.poly() is of a class of Normaliz integral polyhedron. This requires the PyNormaliz
package. See [Köppe and Labbé 2019] for more details.

• Q.face_lattice() returns a finite lattice containing all faces of the affine semigroup. A face
in the lattice is saved as a tuple storing column numbers of generators A. This lattice is of type
FiniteLatticePoset in SageMath. For example,

sage: Q.face_lattice()
Finite lattice containing 5 elements

sage: Q.face_lattice().list()
[(-1,), (), (0,), (1,), (0, 1)]

• Q.index_to_face() returns a dictionary type object whose keys are tuples denoting indices
of column vectors consisting of faces, and whose items are corresponding faces of Q.poly(). For
example,

sage: Q.index_to_face()
{(-1,): A -1-dimensional face of a Polyhedron in ZZ^2,
(): A 0-dimensional face of a Polyhedron in ZZ^2
defined as the convex hull of 1 vertex,
(0,): A 1-dimensional face of a Polyhedron in ZZ^2
defined as the convex hull of 1 vertex and 1 ray,
(1,): A 1-dimensional face of a Polyhedron in ZZ^2
defined as the convex hull of 1 vertex and 1 ray,
(0,1): A 2-dimensional face of a Polyhedron in ZZ^2
defined as the convex hull of 1 vertex and 2 rays}

• Q.index_of_face(matrix face) returns a face as a tuple of indices of column vectors of a
generator A corresponding to a given submatrix face of A. For example,

sage: M = matrix(ZZ,[[2],[2]])

sage: Q.index_of_face(M)
(1,)

Here, face should be a submatrix of Q.gens() which form a face.
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• Q.face(tuple index) returns a face as a submatrix of a generator A corresponding to a given
tuple index. For example,

sage: Q.face((1,))
array([[2],

[2]])

• Q.integral_support_vectors() return a dictionary type object whose keys are tuples denot-
ing faces and whose items are integral support functions of facets containing F as a vector form. An
integral support function φH of a facet H is a linear function φH : R

d
→ R such that φH(Z

d)= Z,
φH(a) ≥ 0 for all column vectors a of generators A, and φH(a) = 0 if and only if a ∈ H . By
linearity, φH(a) = b · a for some rational vector b. We call b an integral support vector. Each
item of Q.integral_support_vectors() is a matrix as NumPy.ndarray type whose rows are
integral support vectors of facets containing the given face. For example,

sage: Q.integral_support_vectors()
{(): array([[ 0, 1],

[ 1, -1]]),
(0,): array([[0, 1]]),
(1,): array([[ 1, -1]]),
(0, 1): array([], dtype=int64)}

In this code, () denoting 0 has two integral support vectors, since it is an intersection of two facets
(0,) and (1,), while (0,1) has no such integral support vectors since it is not a proper face but
the affine semigroup itself. See [Matusevich and Yu 2020, Definition 2.1] for the precise definition
of a (primitive) integral support function.

• Q.is_empty() returns a boolean value indicating whether Q is a trivial affine semigroup or not. A
trivial affine semigroup is an empty set as an affine semigroup.

• Q.is_pointed() returns a boolean value indicating whether Q is a pointed affine semigroup or not.

• Q.is_element(vector b) returns nonnegative integral inhomogeneous solutions (minimal inte-
ger solutions) of Ax = b using zsolve in [4ti2]. If b is not an element of an affine semigroup Q,
then it returns an empty matrix. The vector b should be a NumPy.ndarray type 2-dimensional
object with one column, or a matrix of SageMath with only one column.

• Q.save_txt() returns a string containing information about Q. This can be loaded again using
txt_to_affinemonoid(string info), which will be explained in Section 2.3.

• Q.save(string path) saves the given object Q as binary file on the given path. This can be loaded
again using load(path), a pre-existing global function of SageMath.

Moreover, one can directly compare affine semigroups using the equality operator == in SageMath.

Class MonomialIdeal. This class is constructed by an affine semigroup Q and generators of an ideal as a
matrix form, say M , which is a 2-dimensional NumPy.ndarray object or an integer matrix of SageMath.
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For example,

sage: M = matrix(ZZ,[[4,6],[4,6]])

sage: I = MonomialIdeal(M,Q)

sage: I
An ideal whose generating set is
[[4]
[4]]

As shown in the example above, this class stores only minimal generators of the ideal. The attributes
and methods are explained below:

• I.gens() returns the minimal generators of I as a NumPy.ndarray type object.

• I.ambient_monoid() returns the ambient affine semigroup of I.

• I.standard_cover(verbose = False) returns the standard cover of I, a dictionary object
whose keys are faces and whose items are lists consisting of ProperPair type objects whose face is
equal to the corresponding key. ProperPair objects will be explained in Section 2.2. The definition
of the standard cover will be given in Section 3.1. Users can check the progress of the computation
if verbose=True.

• I.overlap_classes() returns a dictionary object whose keys are tuples denoting faces and
whose items are lists of lists representing overlap classes of I. An overlap class of an ideal I is a
set of standard pairs such that their representing submonoids intersect nontrivially.

• I.maximal_overlap_classes() returns all maximal overlap classes of I with divisibility. An
overlap class is maximal with divisibility if every pair in the overlap class can divide only pairs in
itself. See [Matusevich and Yu 2020, Section 3] for the detail.

• I.irreducible_decomposition() returns a list of components of the irredundant irreducible
primary decomposition of I.

• I.associated_primes() returns all associated prime ideals of I as a dictionary type. In other
words, the function returns a dictionary whose keys are faces of the affine semigroup as a tuple
and whose values are associated prime ideals corresponding to the face in its key.

• I.multiplicity(ideal P or face F) returns a multiplicity of I over the given associated
prime P. Since there is a one-to-one correspondence between monomial prime ideals and faces of
an affine semigroup, this method takes the face F (as a tuple) corresponding to a prime ideal P as
a valid input instead.

• I.is_element(vector b) returns nonnegative integral inhomogeneous solutions (minimal inte-
ger solutions) of Ax = b− a for each generator a of I using zsolve in [4ti2]. If b is an element
of the ideal, then it returns a list [x, a] for some generator a such that a+ AxT

= b. Otherwise, it
returns an empty matrix. The vector b should be a NumPy.ndarray type 2-dimensional object with
one column, or a matrix of SageMath with only one column.
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• I.is_standard_monomial(vector b) returns a boolean value indicating whether the given vec-
tor b is a standard monomial or not.

• I.is_principal() returns a boolean value indicating whether I is principal or not. Likewise, the
similar methods I.is_empty(), I.is_irreducible(), I.is_primary(), I.is_prime(), and
I.is_radical() return a boolean value indicating whether I has the properties implied by their
name or not.

• I.radical() returns the radical of I as a MonomialIdeal object.

• I.intersect(J) returns an intersection of two ideals I and J as a MonomialIdeal object. Like-
wise, addition +, multiplication ∗, and comparison == are defined between two objects. The follow-
ing example shows an addition of two monomial ideals in SageMath:

sage: I = MonomialIdeal(matrix(ZZ,[[4,6],[4,6]]),Q)

sage: J = MonomialIdeal(matrix(ZZ,[[5],[0]]),Q)

sage: I.intersect(J)
An ideal whose generating set is
[[9]
[4]]

sage: I+J
An ideal whose generating set is
[[5 4]
[0 4]]

sage: I*J
An ideal whose generating set is
[[9]
[4]]

• I.save_txt() returns a string which can be used to recover the object I and its precalculated prop-
erties without calculation. That is, it contains not only the generators of I, but also its standard cover,
overlap classes, associated primes, and irreducible primary decompositions if they were calculated.
This can be loaded again using txt_to_monomialideal(string info) (see Section 2.3).

• I.save(string path) saves the given object I as a binary file on the given path. This can be
loaded again using load(path), a pre-existing global function of SageMath.

Class ProperPair. A proper pair (a, F) of an ideal I can be declared in SageMath by specifying an
ideal I, a standard monomial a as a matrix form (or NumPy 2D array), and a face F as a tuple. If (a, F)
is not proper, then SageMath calls a ValueError. The following example shows two ways of defining
a proper pair:

sage: import numpy as np

sage: I = MonomialIdeal(matrix(ZZ,[[4,6],[4,6]]),Q)

sage: PP = ProperPair(np.array([2,0])[np.newaxis].T,(0,),I)

sage: PP
([[2], [0]]^T,[[1], [0]])

sage: QQ = ProperPair(np.array([2,0])[np.newaxis].T,(0,),I,
....: properness =True)

sage: QQ
([[2], [0]]^T,[[1], [0]])
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The second line tests whether the pair is a proper pair of the given ideal I or not before generating PP.
However, the fourth line with properness=True generates QQ without checking whether QQ is a proper
pair of I or not. Use the third parameter with True only if the generating pair is proper a priori. In any
case, each PP and QQ denotes a proper pair whose initial monomial is

[
2
0

]
and whose face is

[
1
0

]
.

The attributes and methods are explained below. We assume that PP denotes a proper pair (a, F).

• PP.monomial(), PP.face(), and PP.ambient_ideal() return the initial monomial a (as a NumPy
2D array), the face F (as a tuple), and its ambient ideal (as an object of AffineMonoid) respec-
tively.

• PP.is_maximal() returns a boolean value indicating whether the given pair is maximal with re-
spect to the divisibility of proper pairs of the ambient ideal. If PP is generated without testing
whether its monomial is in the given ideal I or not, this method raises a warning instead of returning
a boolean value.

• PP.is_element(vector b) returns nonnegative integral inhomogeneous solutions (minimal in-
teger solutions) of a+ Fx = b using zsolve in [4ti2]. If b is not an element of the submonoid
a+NF, then it returns an empty matrix.

• Like AffineMonoid or MonomialIdeal, one can directly compare proper pairs using the equality
operator == in SageMath.

2.3. Global functions.

• prime_ideal(tuple face, AffineMonoid Q) returns a prime ideal of the given AffineMonoid
object Q corresponding to the tuple object face as an object of MonomialIdeal.

sage: prime_ideal((1,),Q)
An ideal whose generating set is
[[1]
[0]]

• div_pairs(pair PP, pair QQ) will return a matrix whose column u is a minimal solution of
a + u + NF ⊆ b+ NG if P P = (a, F) and Q Q = (b, G). The returned value is a nonempty
matrix if and only if a pair PP divides a pair QQ. For example, suppose two pairs PP and QQ are[

2
0

]
+N

[
1
0

]
and

[
3
0

]
+N

[
1
0

]
respectively. Then,

sage: I = MonomialIdeal(matrix(ZZ,[[4,6],[4,6]]),Q)

sage: PP = ProperPair(matrix(ZZ,[[2],[0]]),(0,),I)

sage: QQ = ProperPair(matrix(ZZ,[[3],[0]]),(0,),I)

sage: div_pairs(PP,QQ)
[1]
[0]

sage: div_pairs(QQ,PP)
[0]
[0]

since
([

2
0

]
+N

[
1
0

])
⊇
([

3
0

]
+N

[
1
0

])
.
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• txt_to_affinemonoid(string info) (or txt_to_monomialideal(string info)) loads an
AffineMonoid object (or a MonomialIdeal object) in the string info, which is generated by
the AffineMonoid.save_txt() (or MonomialIdeal.save_txt()) methods. These are useful
for users who want to avoid repeating calculations which were previously done. For example, the
ideal J in

sage: I = MonomialIdeal(matrix(ZZ,[[4,2],[4,0]]),Q)

sage: I.standard_cover()
{(): [([[1], [0]]^T,[[], []]),

([[0], [0]]^T,[[], []]),
([[3], [2]]^T,[[], []]),
([[2], [2]]^T,[[], []])]}

sage: J=txt_to_monomialideal(I.save_txt())

sage: J.standard_cover()
{(): [([[1], [0]]^T,[[], []]),

([[0], [0]]^T,[[], []]),
([[3], [2]]^T,[[], []]),
([[2], [2]]^T,[[], []])]}

is a new MonomialIdeal object; however, it does not need time to calculate its standard cover,
since precalculated information of the standard cover was stored in I.save_txt() and transferred
to J.

• pair_difference(ProperPair PP, ProperPair QQ) is a global function which decomposes
PP \ QQ as a finite union of pairs. See Theorem 1 and subsequent arguments for details.

• from_macaulay2(string var_name) and to_macaulay2(MonomialIdeal I) are global func-
tions used for communicating with Macaulay2 objects. See Section 4 for details.

3. IMPLEMENTATION OF AN ALGORITHM FINDING STANDARD PAIRS.

3.1. Case 1: Principal ideal. A cover of standard monomials of an ideal I is a set of proper pairs of I
such that the union of all subsemigroups a+NF corresponding to an element (a, F) of the cover is equal
to the set of all standard monomials. The standard cover of an ideal I is a cover of I whose elements are
standard pairs. The standard cover of a monomial ideal I is unique by the maximality of standard pairs
among all proper pairs of I. A key idea in [Matusevich and Yu 2020, Section 4] is to construct covers
containing all standard pairs. Once a cover is obtained, we can then produce the standard cover.

The following result helps to compute the standard cover in the special case of a principal ideal.

Theorem 1 [Matusevich and Yu 2020, Theorem 4.1]. Let b, b′ ∈ NA and let G, G′ be faces of A such
that G ∩ G′ = G. There exists an algorithm to compute a finite collection C of pairs over faces of G such
that

(b+G)r (b′+G′)=
⋃

(a,F)∈C

(a+ F).

The pair difference of the pairs (b, G) and (b′, G′) is a finite collection of pairs over faces of G given
by Theorem 1.
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Corollary 2. Given a principal ideal I = 〈b〉, the pair difference of pairs (0, A) and (b, A) is the
standard cover of I.

Proof. Theorem 1 implies that the pair difference is a cover of I. To see it is the standard cover, suppose
that the ambient affine semigroup is generated by A= [a1 · · · an]. Let (c, F) be a proper pair in the pair
difference. Without loss of generality, we assume that F = [a1 · · · am] for some m < n by renumbering
indices. By the proof of Theorem 1 in [Matusevich and Yu 2020], c = A · u where xu

∈ K[Nn
] is a

standard monomial such that (xu, {x1, . . . , xm}) is a standard pair of some monomial ideal J in K[Nn
].

Suppose that there exists (d, G) such that F ⊆ G and d + g = c for some g ∈ G. Since d ∈ NA,
d = Aw for some w ∈Nn. Since A is pointed, w is, coordinatewise, less than u. Thus, (xw, {x1, . . . , xm})

contains (xu, {x1, . . . , xm}). Lastly, (xw, {x1, . . . , xm}) is a proper pair of J, otherwise, there exists
xv
∈K[x1, . . . , xm]⊆K[Nn

] such that xw+v
∈ J. Then, x gxw+v

∈ J =⇒ xu+v
∈ J∩(xu, {x1, . . . , xm})=∅

leads to a contradiction.
Thus, by maximality of the standard pair, w= u. This implies d= c. Moreover, G= F, otherwise there

exists j ∈{1, 2, . . . , n}r{1, . . . ,m} such that xux l
j 6∈ J for any l, which implies that (xu, {x1, . . . , xm, x j })

is a proper pair of J strictly containing a standard pair (xu, {x1, . . . , xm}) of J, a contradiction. �

Theorem 1 is implemented as a method pair_difference((b, F), (b′, F′)) within the library
StdPairs. The two input arguments should be of type ProperPair. It returns the pair difference of
pairs (b, F) and (b′, F′) with dictionary type, called Cover. Cover classifies pairs by their faces. For
example, the code below shows the pair difference of pairs (0, A) and ((0, 2), A), which are(

0,
[

2
0

])
,

([
0
1

]
,

[
2
0

])
,

([
1
2

]
,

[
2
0

])
, and

([
1
1

]
,

[
2
0

])
.

sage: from stdpairs import *

sage: Q = AffineMonoid(matrix(ZZ, [[2,0,1],[0,1,1]]))

sage: I = MonomialIdeal(matrix(ZZ,0),Q)

sage: C = ProperPair(np.array([[0,0]]).T, (0,1,2), I )

sage: D = ProperPair(np.array([[0,2]]).T, (0,1,2), I )

sage: print(pair_difference(C,D))
{(0,): [([[1], [2]]^T,[[2], [0]]), ([[1], [1]]^T,[[2], [0]]),
([[0], [1]]^T,[[2], [0]]), ([[0], [0]]^T,[[2], [0]])]}

By Corollary 2, this is the standard cover of the ideal I = 〈(0, 2)〉 in an affine semigroup N
[

2 0 1
0 1 1

]
.

The method pair_difference((b, F), (b′, F′)) uses standardPairs of Macaulay2 internally
to find standard pairs of a polynomial ring, which is implemented by [Hoşten and Smith 2002]. Briefly,
the method pair_difference((b, F), (b′, F′)) calculates minimal solutions of the integer linear
system [

F −F ′
] [u

v

]
= b′− b

using zsolve in 4ti2. The solutions form an ideal J of a polynomial ring in the proof of Theorem 1 on
Macaulay2. Next, standardPairs derives standard pairs of J. Lastly, the method pair_difference
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constructs proper pairs based on the standard pairs of J, and classifies the proper pairs based on their
faces and returns the pair difference.

3.2. Case 2: General ideal. [Matusevich and Yu 2020, Proposition 4.4] gives an algorithm to find the
standard cover of nonprincipal monomial ideals.

Proposition 3 [Matusevich and Yu 2020, Proposition 4.4]. Let I be a monomial ideal in K[NA]. There
is an algorithm whose input is a cover of the standard monomials of I, and whose output is the standard
cover of I.

According to the proof of [Matusevich and Yu 2020, Proposition 4.4], this is achieved by repeating the
procedures below.

(1) Input: C0, an initial cover of I.

(2) For each (a, F) ∈ C0, find minimal solutions of (a+RF)∩NA using the primitive integral support
functions. (See [Matusevich and Yu 2020, Lemma 4.2] for the detail.)

If b1, b2, . . . , bm are the minimal solutions of (a+RF)∩NA, then we construct pairs such as
(b1, F), (b2, F), . . . , (bm, F) and store them in the attribute C1.

(3) For each pair (b, F) ∈ C1, construct (b,G) for any face G which is not strictly contained in F. If
(b,G) is a proper pair of I, save (b,G) on the attribute C2.

(4) If C0 is equal to C2, we are done. Otherwise, set C0 := C2 and repeat the above process.

The method _czero_to_cone(C0, I) in the hidden module _stdpairs of StdPairs implements (2)
to return C1. It calls the method _minimal_holes(vector a, face F, affine semigroup A)
internally, which is the implementation of Lemma 4.2 in [Matusevich and Yu 2020]. The method
_cone_to_ctwo(C1, I) implements (3). Since the constructor function of the class ProperPair checks
whether the pair is proper or not, the method _cone_to_ctwo(C1, I) tries to construct proper pairs as
an attribute in SageMath and records them if it is successful.

Now we are ready to find the standard cover of a general ideal I whose minimal generators are
〈b1, . . . , bn〉. One can find standard pairs as in [Matusevich and Yu 2020, Theorem 4.5] as described
below:

(1) Find the standard cover C of 〈b1〉 using pair difference.

(2) For i = 2 to n:

(a) For each pair (b, F) in C , replace it with elements of the pair difference of pairs (b, F) and
(bi , A). After this process, C is a cover of an ideal 〈b1, b2, . . . , bi 〉.

(b) Using the algorithm of Proposition 3, find the standard cover C ′ of 〈b1, b2, . . . , bi 〉.
(c) Replace C with C ′.

(3) Return C .

The returned value C is now the standard cover of I.
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The library StdPairs implements [Matusevich and Yu 2020, Theorem 4.5] as a hidden method
_standard_pairs(I). This method has an input I whose type is MonomialIdeal. It returns a cover
whose type is dictionary, classifying standard pairs by its face. For example, the code below shows
that the standard cover of an ideal generated by [

2 2 2
0 1 2
2 2 2

]
in an affine semigroup

NA= N

[
0 1 1 0
0 0 1 1
1 1 1 1

]
is {(

0,
[

0 0
0 1
1 1

])
,

([
1
1
1

]
,

[
0 0
0 1
1 1

])
, and

([
1
0
1

]
,

[
0 0
0 1
1 1

])}
.

sage: from stdpairs import *

sage: Q=AffineMonoid(matrix(ZZ,[[0,1,1,0],[0,0,1,1],[1,1,1,1]]))

sage: I=MonomialIdeal(matrix(ZZ,[[2,2,2],[0,1,2],[2,2,2]]),Q)

sage: I.standard_cover()
{(0, 3): [([[1], [0], [1]]^T,[[0, 0], [0, 1], [1, 1]]),

([[1], [1], [1]]^T,[[0, 0], [0, 1], [1, 1]]),
([[0], [0], [0]]^T,[[0, 0], [0, 1], [1, 1]])]}

4. COMPATIBILITY WITH NORMALIZ PACKAGE IN SAGEMATH AND MACAUALAY2. Normaliz is a
package in SageMath and Macaulay2 for finding Hilbert bases of rational cones and their normal affine
monoid [Bruns and Ichim 2010]. StdPairs has methods translating classes in Section 2 into objects in
the Normaliz package. If an affine semigroup NA is normal, i.e., NA= Zd

∩R≥0 A, then this translation
works well. However, if it is not normal, then this translates NA into its saturation described in Section 2.

For SageMath, one can have a polyhedron over Z with the Normaliz package in SageMath by
adding an argument True on the constructor of AffineMonoid. For example, the code below gives
an AffineMonoid class attribute Q whose attribute Q.poly() is a polyhedron over Z with Normaliz.
Therefore, you can use all methods on Normaliz object. For example,

sage: from stdpairs import *

sage: Q=AffineMonoid(matrix(ZZ, [[0,1,1,0],[0,0,1,1],[1,1,1,1]]),
is_normaliz=True)

sage: Q.poly().hilbert_series([0,0,1])
(t + 1)/(-t^3 + 3*t^2 - 3*t + 1)

The method to_macaulay2( MonomialIdeal I) returns a dictionary storing attributes of Macaulay2
computations. This dictionary contains an affine semigroup ring, a list of generators of an ideal, and a
list of standard pairs in Macaulay2. For example,

sage: from stdpairs import *

sage: Q=AffineMonoid(matrix(ZZ,[[0,1,1,0],[0,0,1,1],[1,1,1,1]]))

sage: I=MonomialIdeal(matrix(ZZ,[[2,2,2],[0,1,2],[2,2,2]]),Q)
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sage: S=to_macaulay2(I)

sage: S
{’AffineSemigroupRing’: ZZ[c, a*c, a*b*c, b*c]

monomial subalgebra of PolyRing,
’MonomialIdeal’: 2 2 2 2 2 2 2
{a c , a b*c , a b c }

List,
’StandardCover’: {{1, {c, b*c}}, {a*c, {c, b*c}}, {a*b*c, {c, b*c}}}

List}

Moreover, Macaulay2 objects AffineSemigroupRing, MonomialSubalgebra, and list of a standard
cover can be accessed via macaulay.eval(string) method with strings R, I, and SC. For instance,
the example below shows how to access such Macaulay2 objects:

sage: macaulay2.eval(’R’)
ZZ[c, a*c, a*b*c, b*c]

monomial subalgebra of PolyRing

sage: macaulay2.eval(’I’)
2 2 2 2 2 2 2

{a c , a b*c , a b c }

List

sage: macaulay2.eval(’SC’)
{{1, {c, b*c}}, {a*c, {c, b*c}}, {a*b*c, {c, b*c}}}

List

In Macaulay2, a type MonomialSubalgebra in the Normaliz package may correspond to an affine
semigroup ring. Since Normaliz has no attributes for a monomial ideal of the type MonomialSubalgebra,
the ideal is stored as a list of its generators. The standard cover of I is also sent to Macaulay2 as a nested
list, similar to the output of the method standardPairs in Macaulay2.

In the other direction, from_macaulay(Macaulay2 S) translates monomialSubalgebra object S
of Macaulay2 into an AffineMonoid object in StdPairs. For example,

sage: R = macaulay2.eval(’ZZ[x,y,z]’)

sage: macaulay2.needsPackage(’"Normaliz"’)
Normaliz

sage: macaulay2.eval(’S=createMonomialSubalgebra {x^2*y, x*z, z^3}’)
2 3

ZZ[x y, x*z, z ]

monomial subalgebra of ZZ[x..z]

sage: Q=from_macaulay2(’S’)

sage: Q
An affine semigroup whose generating set is
[[2 1 0]
[1 0 0]
[0 1 3]]
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SUPPLEMENT. The online supplement contains version 1.0 of StdPairs.
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