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Computations with rational maps between multi-projective varieties

GIOVANNI STAGLIANÒ

ABSTRACT: We briefly describe the algorithms behind some of the functions provided by the Macaulay2
package MultiprojectiveVarieties, a package for multi-projective varieties and rational maps between them.

INTRODUCTION. This paper is a natural sequel of [Staglianò 2018], where we presented some of the
algorithms implemented in the Macaulay2 package [Cremona], related to computations with rational and
birational maps between closed subvarieties of projective spaces.

Here we describe methods for working with rational and birational maps between multiprojective
varieties, that is, closed subvarieties of products of projective spaces. For instance, we explain how to
compute the degrees of such maps, their graphs, and the inverses when they exist. All these methods are
implemented in the Macaulay2 package MultiprojectiveVarieties.

From a theoretical point of view, we know that every multiprojective variety is isomorphic, via the
Segre embedding, to a projective variety embedded into a single projective space. Therefore, every ratio-
nal map between multiprojective varieties can be regarded as a rational map between ordinary subvarieties
of projective spaces. This, however, introduces a lot of new variables, making computation more difficult.

Moreover, basic constructions on rational maps naturally lead one to consider rational maps between
multiprojective varieties. For instance, the graph of a rational map is a closed subvariety of the product
of the source and of the target of the map. Using the package Cremona, it is generally easy to verify
that the first projection from the graph is birational, but to calculate, for instance, its inverse we need the
tools provided by the package presented here.

In Section 1, we give a concise overview of the theory of rational maps between multiprojective
varieties, emphasizing the computational aspects and making clear how they can be represented in a
computer. For more details on the theory see, e.g., [Harris 1992; Hartshorne 1977]. In Section 2, with
the help of an example, we show how one can work with such maps using Macaulay2.

1. AN OVERVIEW OF RATIONAL MAPS BETWEEN MULTIPROJECTIVE VARIETIES.

1A. Notation and terminology. Throughout this paper, we keep the following notation. Let K denote
an arbitrary field. Consider the polynomial ring

R = K [x (1)0 , . . . , x (1)n1
; . . . ; x (r)0 , . . . , x (r)nr

]

in r groups of variables, equipped with the Zr -grading, where the degree of each variable is a standard
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basis vector. More precisely, we set deg(x ( j)
i )= (0, . . . , 0, 1, 0, . . . , 0)∈Zr , where 1 occurs at position j ;

we call this the standard Zr -grading on R. The polynomial ring R is the homogeneous coordinate ring
of the product of r projective spaces

Pn1,...,nr = Pn1 × · · ·×Pnr .

The closed subsets (of the Zariski topology) of Pn1,...,nr are of the form

V (a)= {p ∈ Pn1,...,nr : F(p)= 0 for all homogeneous F ∈ a},

where a is a homogeneous ideal in R. For any homogeneous ideal a⊆ R, the multisaturation of a is the
homogeneous ideal

sat(a)=
(
· · ·
((
a :
(
x (1)0 , . . . , x (1)n1

)∞)
:
(
x (2)0 , . . . , x (2)n2

)∞)
: · · ·

)
:
(
x (r)0 , . . . , x (r)nr

)∞
.

One says that a is multisaturated if a = sat(a). Two homogeneous ideals a, a′ ⊆ R define the same
subscheme of Pn1,...,nr if and only if sat(a) = sat(a′), and they define the same subset if and only if
√

sat(a)=
√

sat(a′).
We fix a homogeneous absolutely prime ideal I ⊂ R, and we may also assume that I is multisaturated.

The graded domain R/I is the homogeneous coordinate ring of an absolutely irreducible multiprojective
variety

X = V (I )⊆ Pn1,...,nr = Pn1 × · · ·×Pnr .

There is a similar correspondence between homogeneous ideals in R/I and closed subsets of X . The two
most important invariants of X are: the dimension (as a topological space), which is the (Krull) dimen-
sion of the homogeneous coordinate ring R/I minus r , and the multidegree, an integral homogeneous
polynomial of degree codim X = n1+· · ·+ nr − dim X in r variables (see [Harris 1992, Lecture 19] and
[Miller and Sturmfels 2005, p. 165]).

Similarly, let us take another polynomial ring in s groups of variables,

S = K [y(1)0 , . . . , y(1)m1
; . . . ; y(s)0 , . . . , y(s)ms

],

equipped with the standard Zs-grading. Let J ⊂ S be a multisaturated homogeneous absolutely prime
ideal, and let

Y = V (J )⊆ Pm1,...,ms = Pm1 × · · ·×Pms

be the absolutely irreducible multiprojective variety defined by J .

1B. Rational maps to an embedded projective variety. In this subsection we consider the particular case
when s = 1, and we set Pm

= Pm1,...,ms . Then Y ⊆ Pm is an embedded projective variety.
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Definition of rational map. We call multiform (or simply form) a homogeneous element of R/I . To a
vector F = (F0, . . . , Fm) of m + 1 forms in R/I of the same multidegree, which are not all zero, we
associate a continuous map

φF : X \ V (F)−→ Pm, defined by p ∈ X \ V (F)
φF
7−→ (F0(p), . . . , Fm(p)) ∈ Pm .

If G = (G0, . . . ,Gm) is another such vector of forms in R/I of the same multidegree, then we say that
F ∼ G if φF(p) = φG(p) for each p ∈ X \ (V (F)∪ V (G)). We have F ∼ G if and only if φF = φG

on some nonempty open subset U of X \ (V (F) ∪ V (G)); in particular ∼ is an equivalence relation.
A rational map 8 : X 99K Y is defined as an equivalence class of nonzero vectors of m + 1 forms
F = (F0, . . . , Fm) in R/I of the same multidegree, with respect to the relation ∼, such that for some
(and hence every) representative F we have that the image of φF is contained in Y . If p ∈ X \ V (F)
for some representative F, we set 8(p)= φF(p) and we say that 8 is defined at p. The domain of 8,
denoted by Dom(8), is the set of points where 8 is defined, that is, it is the largest open subset of X
such that the map φF is defined for some representative F. The complementary set in X of the domain
of 8 is called base locus. A rational map 8 : X 99K Y is called a morphism if it everywhere defined, that
is, if its base locus is empty.

Establishing the equality of rational maps. Notice that if a vector F = (F0, . . . , Fm) of forms in R/I
represents a rational map 8 : X 99K Y , then also the vector H · F = (H F0, . . . , H Fm) represents 8, for
each nonzero form H in R/I . More generally, two vectors F = (F0, . . . , Fm) and G = (G0, . . . ,Gm),
as the ones considered above, represent the same rational map 8 : X 99K Y if and only if

rk
(

F0 · · · Fm

G0 · · · Gm

)
< 2,

that is, if and only if Fi G j − F j Gi vanishes identically on X , for every i, j = 0, . . . ,m.

Determining the domain of a rational map. Let 8 : X 99K Y be a rational map and let F = (F0, . . . , Fm)

be one of its representatives. A syzygy of F is a vector H = (H0, . . . , Hm) of forms in R/I such that∑m
i=0 Hi Fi = 0. Let MF be a matrix whose columns form a set of generators for the module of syzygies

of F. The following result is proved in [Simis 2004, Proposition 1.1], although stated there only for
r = 1.

Proposition 1.1. The representatives of the rational map 8 correspond bijectively to the homogeneous
vectors in the rank one graded (R/I )-module

ker(M t
F)⊂ (R/I )m+1.

Let F1, . . . , Fp be a set of minimal homogeneous generators of ker(M t
F). The base locus of 8 is the

closed subset of X where all the entries of Fi , for i = 1, . . . , p, vanish. The sequence of multidegrees
(deg F1, . . . , deg Fp), defined up to ordering, is called the degree sequence of 8.
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Example 1.2. In the case when R/I is a unique factorization domain (e.g., X = Pn1 × · · ·×Pnr ), then a
rational map 8 : X 99K Y is uniquely represented up to proportionality, that is, the degree sequence of 8
consists of a unique element.

Direct and inverse images via rational maps. Let 8 : X 99K Y be a rational map, and let M be a set of
generators for the (R/I )-module of representatives of 8. For F = (F0, . . . , Fm) ∈M, we consider the
graded K -algebra homomorphism ϕF : S/J → R/I defined by ϕF(yi )= Fi ∈ R/I .

For each homogeneous ideal a⊆R/I (resp. b⊆ S/J ), we have a closed subset V(a)⊆ X (resp. V(b)⊆Y ).
The direct image of V (a) via 8, denoted by 8(V (a)), and the inverse image of V (b) via 8, denoted by
8−1(V (b)), as sets, are given by the closure

8(V (a))= {8(p) : p ∈ Dom(8)∩ V (a)}, 8−1(V (b))= {p ∈ Dom(8) :8(p) ∈ V (b)}.

The following result follows from elementary commutative algebra, and it tells us how to calculate direct
and inverse images.

Proposition 1.3. The following formulas hold:

8(V (a))=
⋃

F∈M

V (ϕ−1
F (a))= V

( ⋂
F∈M

ϕ−1
F (a)

)
;

8−1(V (b))=
⋃

F∈M

V (ϕF(b) : (F)∞)= V
( ⋂

F∈M

ϕF(b) : (F)∞
)
.

As a consequence, we obtain that if F is any of the representatives of 8, then

8(X)= V (kerϕF).

The direct image 8(X) is called the (closure of the) image of 8. We say that 8 is dominant if 8(X)= Y .

1C. Rational maps to a multiprojective variety. We now consider the general case when s ≥ 1, and
hence Y ⊆ Pm1,...,ms =Pm1×· · ·×Pms is a multiprojective variety. Let us denote by πi : Pm1,...,ms→Pmi

the i-th projection, and let Yi = πi (Y ).

Definition of multirational map. We define a multirational map (or simply rational map)

8 : X 99K Y

as an s-tuple of rational maps8i : X 99KPmi such that the image of8i is contained in Yi , for i = 1, . . . , s.
The domain of a multirational map 8 is the intersection

Dom(8)=
s⋂

i=1

Dom(8i ).

In other words, 8 is defined at a point p ∈ X if and only if 8i is defined at p for all i = 1, . . . , s, and
in that case we set 8(p)= (81(p), . . . , 8s(p)) ∈ Pm1,...,ms . Analogously with the case s = 1, we call
the base locus the complementary set in X of the domain of 8, and we say that 8 is a morphism if
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X = Dom(8). We say that 8 is dominant if for some (and hence every) open subset U of the domain
of 8, the set {8(p) : p ∈U } is dense in Y.

Composition of multirational maps. If 9 = (91, . . . , 9t) : Y 99K Z is another multirational map, then
8 and 9 can be composed if 8(Dom(8))∩Dom(9) 6= ∅; in particular, this happens when either 8
is dominant or 9 is a morphism. If F(1), . . . , F(s) are, respectively, representatives of 81, . . . , 8s , and
if G( j) is a representative of 9 j , then the vector G( j)(F(1), . . . , F(s)) is a representative of (9 ◦8) j =

9 j ◦8.
So we can consider the category of (multi)-projective varieties and dominant (multi)-rational maps.

An “isomorphism” in this category is called a birational map, that is, 8 : X 99K Y is a birational map if it
admits an inverse, namely a multirational map 8−1

: Y 99K X such that 8−1
◦8= idX and 8◦8−1

= idY

as (multi)-rational maps. A birational morphism 8 : X 99K Y is called an isomorphism if 8−1 is a
morphism. Also (multi)-projective varieties and morphisms form a category.

Example: the Segre embedding. Let N = (n1 + 1) · · · (nr + 1)− 1, and let us consider PN with the
homogeneous coordinate ring K [z(ι1,...,ιr ) : ι j = 0, . . . , n j , j = 1, . . . , r ], where the variables are the
entries of the generic r -dimensional matrix of shape (n1+ 1)× · · ·× (nr + 1). The Segre embedding of
Pn1 × · · ·×Pnr into PN is the rational map

Sn1,...,nr : P
n1 × · · ·×Pnr 99K PN ,

represented by the ring map

K [z(ι1,...,ιr ) : ι j = 0, . . . , n j , j = 1, . . . , r ] → K [x (1)0 , . . . , x (1)n1
, . . . , x (r)0 , . . . , x (r)nr

],

z(ι1,...,ιr ) 7→ x (1)ι1 · · · x
(r)
ιr
.

This ring map (or better the forms defining it) represents uniquely up to proportionality the rational map
Sn1,...,nr , and it is also clear that it is an injective morphism. The image of Sn1,...,nr is the projective variety
of all r -dimensional matrices of rank 1. If we consider Sn1,...,nr as a rational map onto its image, then we
have that Sn1,...,nr is an isomorphism. Indeed, for j = 1, . . . , r , the module of representatives of the j-th
component T j of the inverse T=S−1

n1,...,nr
is generated by the (n1+1) · · · (n j−1+1)(n j+1+1) · · · (nr+1)

vectors (z(ι1,...,ιr ) : ι j = 0, . . . , n j ), as ι1, . . . , ι j−1, ι j+1, . . . , ιr vary. Note, in particular, that T j is not
uniquely represented up to proportionality, provided that n1, . . . , n j−1, n j+1, . . . , nr are not all zero.

Multirational maps as ordinary rational maps. Let 8= (81, . . . , 8s) : X 99K Y be a multirational map.
Then, by composing8 with the restriction to Y of the Segre embedding Sm1,...,ms :P

m1×· · ·×Pms→PM ,
where M = (m1+ 1) · · · (ms + 1)− 1, we get an ordinary rational map 8̃ : X 99KSm1,...,ms (Y ) ⊆ PM .
The rational map 8̃ is the unique rational map that makes the following diagram commutative:

X 8̃
//

81

&&
++

8s

--

Sm1,...,ms (P
m1 × · · ·×Pms )

rr �� ,,
Pm1 · · · Pms
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Since Sm1,...,ms is an isomorphism onto its image, we have that 8 is a morphism (resp. birational; resp.
an isomorphism) if and only if 8̃ is a morphism (resp. birational; resp. an isomorphism). Thus, from
a theoretical point of view, it would be enough to consider only “ordinary” rational maps. In practice,
however, this complicates things considerably since the ambient space of the target of Sm1,...,ms is much
larger with respect to the source, and moreover the homogeneous coordinate ring of the image of Sm1,...,ms

is no longer a unique factorization domain (ruling out trivial cases).

Graph of a (multi)-rational map. Let F(1), . . . , F(s) be, respectively, representatives of the components
81, . . . , 8s of a multirational map 8 : X 99K Y . Consider the Zr

×Zs-graded coordinate ring of

Pn1 × · · ·×Pnr ×Pm1 × · · ·×Pms , (1-1)

given by

T = K [x1; . . . ; xr ; y1; . . . ; ys],

where x j = (x
( j)
0 , . . . , x ( j)

n j ) and yi = (y
(i)
0 , . . . , y(i)mi ), for j = 1, . . . , r and i = 1, . . . , s. Moreover, let

t1, . . . , ts be new variables, and consider the extended polynomial ring

T = K [t1, . . . , ts; x1; . . . ; xr ; y1; . . . ; ys].

We define an ideal in T as the following sum of ideals (by abuse of notation we also denote by F(i)

chosen lifts of F(i) to R):

I(F(1),...,F(s)) := I +
s∑

i=1

( yi − ti F(i)). (1-2)

The graph 0(8) of the multirational map 8 is the subvariety of (1-1) defined by the contraction ideal

I(F(1),...,F(s)) ∩ T, (1-3)

which no longer depends on the choice of the representatives F(i). Equivalently, we can consider the
homogeneous ideal in T given by

J(F(1),...,F(s)) := I +
(

2× 2 minors of
(

y(i)0 ··· y(i)mi

F (i)0 ··· F (i)mi

)
, i = 1, . . . , s

)
, (1-4)

and then we can calculate the ideal of 0(8) by the saturation:

(· · · (J(F(1),...,F(s)) : (F(1))∞) : · · · ) : (F(s))∞. (1-5)

We point out that the homogeneous coordinate ring of 0(8) is also known as “Rees algebra”; see [Eisen-
bud 2018]. We have two projections (which are morphisms) that fit in a commutative diagram

0(8)

π1

||

π2

""

X 8
// Y
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The first projection π1 :0(8)→ X is also known as the blowing up of X along B, where B= X \Dom(8)
is the base locus of8. It is a birational morphism, and it is an isomorphism if and only if8 is a morphism.
See, e.g., [Hartshorne 1977, Chapter II, Section 7] for more details. The second projection π2 :0(8)→ Y
is birational if and only if 8 is birational, and in that case the graph of 8−1 is the same as that of 8,
by exchanging the two projections. Moreover, π2 and 8 have always the same image in Y ; in particular,
we can calculate the homogeneous ideal of the image of 8 as the contraction of the ideal of 0(8) to
S = K [ y1; . . . ; ys].

Computing the inverse map of a birational map. Keep the notation as above, and assume moreover that
8 : X 99K Y is birational. We want to find the components 9 j : Y 99K Pn j , for j = 1, . . . , r , of the
inverse multirational map 9 : Y 99K X of 8.

Fix a minimal set of multiforms generating the homogeneous ideal of the graph 0(8) in the Zr
×Zs-

graded coordinate ring of (1-1). For each j = 1, . . . , r , we select in this set those of multidegree
(0, . . . , 0, 1, 0, . . . , 0; d1, . . . , ds), where 1 occurs at position j , and d1, . . . , ds are not subject to con-
ditions. Let us denote these multiforms by H1(x j , y1, . . . , ys), . . . , Hq(x j , y1, . . . , ys). Thus, for k =
1, . . . , q , we can write

Hk(x j , y1, . . . , ys)= x ( j)
0 G( j,k)

0 ( y1, . . . , ys)+ · · ·+ x ( j)
n j

G( j,k)
n j

( y1, . . . , ys),

for suitable uniquely determined forms G( j,k)
ι j ∈ S = K [ y1, . . . , ys]. We regard the q × (n j+1)-matrix

J( j)
=
(
G( j,k)
ι j

)ι j=0,...,n j

k=1,...,q

as a matrix over the homogeneous coordinate ring S/J of Y .

Proposition 1.4. The (S/J )-module of representatives of 9 j is given by ker(J( j)). More explicitly we
have that the rank of J( j) is n j , and 9 j is represented by the vector of signed n j × n j -minors of any full
rank n j × (n j+1)-submatrix of J( j).

A proof of the previous result can be found in [Simis 2004, Theorem 2.4], in the particular case when
r = s = 1 (see also [Doria et al. 2012] and [Busé et al. 2020, Theorem 4.4] for the case when s = 1 and
the source is a product of projective varieties). The proof in the general case is not so different; its main
ingredients are: the description of the equations of the graph 0(8) given by (1-4) and (1-5), and the fact
that 0(8) can be identified with 0(9). We leave the details to the reader.

Direct and inverse images via multirational maps. If Z ⊆ X is an irreducible subvariety such that
Z ∩ Dom(8) 6= ∅, we can consider the restriction of 8 to Z , 8|Z : Z 99K Y , defined as usual by
the composition of the inclusion Z ↪→ X with 8. Note that the graph (and hence the image) of 8|Z , can
be calculated as above, just by replacing in (1-2) the ideal I with the multisaturated homogeneous ideal
of Z , and by choosing the representatives F(i) such that Z * V (F(i)). This gives us a way to calculate
the direct image 8(Z)=8|Z (Z).

If W ⊆ Y is a subvariety, using Proposition 1.3, we can calculate the inverse image 8−1(W )⊆ X as
8−1(W ) = 8̃−1(Sm1,...,ms (W )). Alternatively (and more efficiently), let IW ⊆ S be the defining ideal
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of W , and let ϕ(F(1),...,F(s)) : S→ R/I be the map defined by y(i)ιi 7→ F (i)ιi ∈ R/I , for i = 1, . . . , s and
ιi = 0, . . . ,mi . Then the saturation of the extended ideal (ϕ(F(1),...,F(s))(IW ))⊆ R/I with respect to all
the ideals (F(i)), for i = 1, . . . , s, gives us the ideal of the closure of 8−1(W ) \ V (F(1), . . . , F(s)).

Multidegree of a multirational map. Let 8 : X 99K Y be a rational map. The projective degrees

d0(8), d1(8), . . . , ddim X (8)

of 8 are defined as the components of the multidegree of the graph, embedded as a subvariety of

Sn1,...,nr (P
n1 × · · ·×Pnr )×Sm1,...,ms (P

m1 × · · ·×Pms )⊂ PN
×PM ,

where N =5r
j=1(n j + 1)− 1 and M =5s

i=1(mi + 1)− 1. It follows that the composition 8̃ : X 99K PM

of 8 with the restriction to Y of the Segre embedding Sm1,...,ms has the same projective degrees as 8. If
L denotes the intersection of Y with dim X − i general hypersurfaces of multidegree (1, . . . , 1), then we
have

di (8)= deg(Sn1,...,nr (8
−1(L))),

if dim(8−1(L)) = i and di (8) = 0 otherwise. See also [Harris 1992, Example 19.4, p. 240]. This
gives us a probabilistic algorithm to compute the projective degrees, as already remarked in [Staglianò
2018]. A nonprobabilistic algorithm can be obtained by calculating the multidegree of the graph of 8
as a subvariety of Pn1,...,nr × Pm1,...,ms and then applying the following remark.

Remark 1.5. Let

P(a1, . . . , ar , b1, . . . , bs) ∈ Z[a1, . . . , ar , b1, . . . , bs]

be the multidegree of a k-dimensional subvariety of Pn1,...,nr × Pm1,...,ms . Then the multidegree of the
same variety embedded as a subvariety of Sn1,...,nr (Pn1,...,nr )×Sm1,...,ms (Pm1,...,ms ) ⊂ PN

× PM , is
given by

min(k,N )∑
i=max(0,k−M)

di aN−i bM−k+i
∈ Z[a, b],

where di denotes the coefficient of the monomial an1
1 · · · a

nr
r bm1

1 · · · b
ms
s in the polynomial

(a1+ · · ·+ ar )
i (b1+ · · ·+ bs)

k−i P(a1, . . . , ar , b1, . . . , bs).

In particular, when m1 = · · · = ms = 0, we get the degree of the variety embedded in PN from its
multidegree as a subvariety of Pn1,...,nr .

The last projective degree ddim X (8) is the degree of Sn1,...,nr (X)⊆PN . The first projective degree d0(8)

is the product of the degree of Sm1,...,ms (8(X))⊆ PM with the degree of 8. We have that 8 is birational
onto its image if and only if its degree is 1, that is, if and only if d0(8)= deg(Sm1,...,ms (8(X))). Thus
we can determine whether 8 is birational without computing its inverse.
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2. IMPLEMENTATION IN MACAULAY2. The Macaulay2 package MultiprojectiveVarieties provides sup-
port for multiprojective varieties and multirational maps. It implements, among other things, the methods
described in the previous section. As we previously said, a multirational map can be represented by a
list of rational maps having as target a projective space. Partial support for this particular kind of rational
maps is provided by the package Cremona, on which the first one depends.

Here we give just one simple example to illustrate how one can work with these packages. We refer
to the online documentation of Macaulay2 for more examples and technical details.

It is classically well known that a smooth cubic hypersurface X ⊂ P5 containing two disjoint planes
is birational to P2

×P2, and that the inverse map P2
×P2 99K X is not defined along a K3 surface of

degree 14. We now analyze this example using Macaulay2.
In the following lines of code, we first define the two projections f : P5 99K P2 and g : P5 99K P2

from two disjoint planes in P5, then we define the multirational map ( f, g) : P5 99K P2
×P2 and re-

strict it to a smooth cubic hypersurface X containing the two planes. So we get a multirational map
8 : X 99K P2

×P2.
M2 --no-preload

Macaulay2, version 1.18

i1 : needsPackage "MultiprojectiveVarieties"; -- version 2.2

i2 : K = QQ, K[t,u,v,x,y,z];

i3 : f = rationalMap {t,u,v};
o3 : RationalMap (linear rational map from PP^5 to PP^2)

i4 : g = rationalMap {x,y,z};
o4 : RationalMap (linear rational map from PP^5 to PP^2)

i5 : Phi = rationalMap {f,g};
o5 : MultirationalMap (rational map from PP^5 to PP^2 x PP^2)

i6 : X = projectiveVariety ideal(t*u*x-u^2*x+u*v*x-v^2*x+t*x^2-u*x^2+t^2*y-t*u*y-t*v*y-t*x*y
-v*x*y-t*y^2+t*u*z+v^2*z-t*x*z-u*y*z-v*y*z-t*z^2+u*z^2);

o6 : ProjectiveVariety, hypersurface in PP^5

i7 : Phi = Phi|X;
o7 : MultirationalMap (rational map from X to PP^2 x PP^2)

Next, we verify that 8 is dominant and birational, compute the inverse map 8−1, and “describe” the
base locus of 8−1.

i8 : image Phi == target Phi
o8 = true

i9 : degree Phi
o9 = 1

i10 : inverse Phi;
o10 : MultirationalMap (birational map from PP^2 x PP^2 to X)

i11 : describe baseLocus inverse Phi;
o11 = ambient:.............. PP^2 x PP^2

dim:.................. 2
codim:................ 2
degree:............... 14
multidegree:.......... 2 T_0^2 + 5 T_0 T_1 + 2 T_1^2
generators:........... (2,1)^1 (1,2)^1
purity:............... true
dim sing. l.:......... -1

https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/MultiprojectiveVarieties/html/index.html
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Now we take the graph of 8 with the two projections p1 : 0(8)→ X and p2 : 0(8)→ P2
×P2. We

calculate the projective degrees of p1 and p2, the inverse of p2, and verify that p1 ◦ p−1
2 =8

−1 and that
p2 is a morphism but not an isomorphism.

i12 : (p1,p2) = graph Phi;

i13 : (multidegree p1, multidegree p2)
o13 = ({141, 63, 25, 9, 3}, {141, 78, 40, 18, 6})

i14 : inverse p2;
o14 : MultirationalMap (birational map from PP^2 x PP^2 to 4-dimensional

subvariety of PP^5 x PP^2 x PP^2)

i15 : (inverse p2) * p1 == inverse Phi, isMorphism p2, isIsomorphism p2
o15 = (true, true, false)

We now calculate the exceptional locus of the first projection p1; this is the inverse image of the base
locus of p−1

1 .
i16 : baseLocus Phi == baseLocus inverse p1
o16 = true

i17 : E = p1^* (baseLocus Phi);
o17 : ProjectiveVariety, threefold in PP^5 x PP^2 x PP^2

i18 : dim E, degree E
o18 = (3, 48)

Finally, we take the first projection h : 0(p2)→ 0(8) from the graph of p2. This multirational map,
regarded as a rational map between embedded projective varieties, has as source a fourfold of degree 771
in P485 and as target a fourfold of degree 141 in P53.

i19 : h = first graph p2;
o19 : MultirationalMap (birational map from 4-dimensional subvariety of

PP^5 x PP^2 x PP^2 x PP^2 x PP^2 to 4-dimensional
subvariety of PP^5 x PP^2 x PP^2)

i20 : degree source h, degree target h
o20 = (771, 141)

By construction, we know (and Macaulay2 knows) that the map h is birational. We can also verify
this experimentally, by reducing to prime characteristic and calculating the fiber of h at a random point p
on its source.

i21 : h = h ** (ZZ/1000003),;

i22 : p = point source h;
o22 = ProjectiveVariety, a point in PP^5 x PP^2 x PP^2 x PP^2 x PP^2

i23 : p == h^* h p
o23 = true

On a standard laptop, the time to execute the 23 lines of code above is less than 5 seconds.

SUPPLEMENT. The online supplement contains version 2.3 of MultiprojectiveVarieties.
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