
Journal of Software for

Algebra and Geometry

vol 11 2021

1

JSAG 11 (2021), 1–7 The Journal of Software for
https://doi.org/10.2140/jsag.2021.11.1 Algebra and Geometry

Phylogenetic trees

HECTOR BAÑOS, NATHANIEL BUSHEK, RUTH DAVIDSON,
ELIZABETH GROSS, PAMELA E. HARRIS, ROBERT KRONE,
COLBY LONG, ALLEN STEWART AND ROBERT WALKER

ABSTRACT: We introduce the package PhylogeneticTrees for Macaulay2, which allows users to com-
pute phylogenetic invariants for group-based tree models. We provide some background information on
phylogenetic algebraic geometry and show how the package PhylogeneticTrees can be used to calculate
a generating set for a phylogenetic ideal as well as a lower bound for its dimension. Finally, we show
how methods within the package can be used to compute a generating set for the join of any two ideals.

MOTIVATION. A central problem in phylogenetics is to describe the evolutionary history of n species
from their aligned DNA sequences. One way to do this is through a model-based approach. A phylo-
genetic model is a statistical model, specified parametrically, of molecular evolution at a single DNA
site. We can regard the aligned sequences as a collection of n-tuples of the four DNA bases, one from
each site. Each choice of parameters results in a probability distribution on the 4n possible n-tuples. The
goal of model-based reconstruction is to find a choice of parameters that yields a distribution close to the
empirical distribution. If we are able to do so then it is reasonable to assume that the model is an accurate
reflection of the underlying evolutionary process. Most significantly, we can infer that the underlying
tree parameter of the phylogenetic model is the evolutionary tree of the species under consideration.

MATHEMATICAL BACKGROUND. In phylogenetic algebraic geometry, the statistical models under con-
sideration are tree-based Markov models. This means that we assume a Markov process proceeds along
a tree with a transition matrix associated to each edge. A κ-state phylogenetic model on an n-leaf tree T
induces a polynomial map from the parameter space 2T ⊆ Rm to the probability simplex 1κ

n
−1,

ψT :2T →1κ
n
−1
⊂ Cκ

n
.

The image of this map is the set of all probability distributions we obtain by varying the entries of the
transition matrices; we refer to the image as the model MT . For phylogenetic applications, usually κ = 2
or κ = 4.

The Zariski closure of the model VT :=MT ⊆ Cκ
n

is an affine algebraic variety. For the models we
consider, the entries of ψT are homogeneous polynomials of uniform degree. Thus, VT can be viewed

MSC2010: primary 13P25; secondary 05C05, 14M25, 92D15.
Keywords: phylogenetic trees, secant ideals, algebraic statistics, toric ideals.
PhylogeneticTrees version 2.0

1

https://doi.org/10.2140/jsag.2021.11-1
http://msp.org/jsag
https://doi.org/10.2140/jsag.2021.11.1
http://msp.org/jsag

2 Baños, Bushek, Davidson, Gross, Harris, Krone, Long, Stewart and Walker :::: Phylogenetic trees

as the affine cone of a projective variety in Pκ
n
−1. The ideal IT := I (VT) ⊆ C[x1, . . . , xκn] of all

polynomials vanishing on VT is a homogeneous ideal called the ideal of phylogenetic invariants; this
ideal carries useful information about the model that can be used for determining model identifiability
and performing model selection [E. S. Allman and Sullivant 2011; Allman et al. 2012; Cavender and
Felsenstein 1987; Casanellas and Fernández-Sánchez 2006; A. 1987; Long and Sullivant 2015; Matsen
et al. 2008; Matsen and Steel 2007; Rhodes and Sullivant 2012; Rusinko and Hipp 2012].

Given two models, MT1 and MT2 , we define the mixture model MT1 ∗MT2 to be the image of the
map

ψT1,T2 :2T1 ×2T2 ×[0, 1] →1κ
n
−1
⊂ Cκ

n
;

ψT1,T2(θ1, θ2, π)= πψT1(θ1)+ (1−π)ψT2(θ2).
(1)

As before, we take the Zariski closure MT1 ∗MT2 ⊆ Cκ
n
, and now we obtain the algebraic variety

VT1∗T2 = VT1 ∗ VT2 , the join of VT1 and VT2 . The join of two algebraic varieties V and W embedded in a
common ambient space is the variety

V ∗W := {λv+ (1− λ)w | λ ∈ C, v ∈ V, w ∈W }.

In the special case when V =W, the join variety V ∗ V is called the secant variety of V . Similarly, given
two ideals I1, I2 ⊂ C[x1, . . . , xn], the ideal I1 ∗ I2 ⊂ C[x1, . . . , xn] is the join ideal. As for varieties, if
I1 = I2, the ideal I1 ∗ I2 is the secant ideal. We refer to [Sturmfels and Sullivant 2006, Section 2] for the
definition of I1 ∗ I2, but note the following important property:

IT1 ∗ IT2 = I (VT1 ∗ VT2). (2)

Our package provides a means of computing invariants for those working in phylogenetic algebraic
geometry. We handle a class of commonly used models called group-based models that have special
restrictions on the entries of the transition matrices. These entries are indexed by elements of a group
and thus are subject to the Fourier–Hadamard coordinate transformation, which makes the parametriza-
tion monomial and the ideals toric [Evans and Speed 1993; Székely et al. 1993]. We will refer to the
original coordinates, which represent leaf probabilities, as probability coordinates and the transformed
coordinates as Fourier coordinates; furthermore, following the literature, we will use p for probability
coordinates and q for Fourier coordinates. For these group-based models, we implement a theoretical
construction for inductively determining the ideal of phylogenetic invariants for any tree from the invari-
ants for claw trees [Sturmfels and Sullivant 2005]. We also handle the join and secant ideals formed
from these ideals, which allows for computations involving mixture models.

FUNCTIONALITY FOR TORIC PHYLOGENETIC VARIETIES. As an example, let T be the four-leaf tree
illustrated in Figure 1 and consider the Cavender–Farris–Neyman (CFN) model, a two-state group-based
model, on T . Then the toric ideal IT is generated in degree 2. Using our package, we can compute a
generating set for IT using two different methods, phyloToric42 and phyloToricFP.

Baños, Bushek, Davidson, Gross, Harris, Krone, Long, Stewart and Walker :::: Phylogenetic trees 3

20

1 3

Figure 1. Four leaf tree

The first method phyloToric42 calls FourTiTwo.m2, the [Macaulay2] interface to [4ti2], a software
package with functionality for computing generating sets of toric ideals. We input T by its set of non-
trivial splits. In this instance, 01|23 is the only nontrivial split of T , which we can enter as either {0, 1}
or {2, 3}. The indices on the q’s correspond to two-state labelings of the four leaves of T :

Macaulay2, version 1.7

i1: load "PhylogeneticTrees.m2"

i2: n = 4; T = {{0,1}}; M = CFNmodel;

i5: toString phyloToric42(n,T,M)

o5: = ideal(-q_(0,1,1,0)*q_(1,0,0,1)+q_(0,1,0,1)*q_(1,0,1,0),
-q_(0,0,1,1)*q_(1,1,0,0)+q_(0,0,0,0)*q_(1,1,1,1))

The second method phyloToricFP computes generators of IT using Theorem 24 in [Sturmfels and
Sullivant 2005]; the “FP” in the method name stands for fiber product [Sullivant 2007]. For this example,
this theorem allows us to explicitly construct a generating set of IT from generators of IK1,3 , the ideal
associated to the CFN model on the claw tree K1,3. While our example here is binary, we note that this
method is implemented for all trees, binary or not.

i6: = toString phyloToricFP(n,T,M)

o6: = ideal(-q_(0,0,1,1)*q_(1,1,0,0)+q_(0,0,0,0)*q_(1,1,1,1),
q_(0,0,1,1)*q_(1,1,0,0)-q_(0,0,0,0)*q_(1,1,1,1),
q_(0,0,1,1)*q_(1,1,0,0)-q_(0,0,0,0)*q_(1,1,1,1),

-q_(0,0,1,1)*q_(1,1,0,0)+q_(0,0,0,0)*q_(1,1,1,1),
-q_(0,1,1,0)*q_(1,0,0,1)+q_(0,1,0,1)*q_(1,0,1,0),
q_(0,1,1,0)*q_(1,0,0,1)-q_(0,1,0,1)*q_(1,0,1,0),
q_(0,1,1,0)*q_(1,0,0,1)-q_(0,1,0,1)*q_(1,0,1,0),

-q_(0,1,1,0)*q_(1,0,0,1)+q_(0,1,0,1)*q_(1,0,1,0))

The algorithm used by phyloToricFP returns more polynomials than are required to generate the
ideal. If we wish to directly compare this ideal to that returned by phyloToric42 we must reconstruct
both ideals in the same ring. Thus, we use the function qRing to define the ring of Fourier coordinates
and use the option of specifying the ring for our ideals:

i7: R = qRing(n,M)

i8: = phyloToric42(n,T,M,QRing=>R) == phyloToricFP(n,T,M,QRing=>R)

o8: = true

4 Baños, Bushek, Davidson, Gross, Harris, Krone, Long, Stewart and Walker :::: Phylogenetic trees

In our experiments, for most cases, phyloToric42 runs much faster than phyloToricFP. This is
likely because we have implemented a naive version of the toric fiber product algorithm from [Sturmfels
and Sullivant 2005] with no attempt to avoid producing redundant polynomials. It would be worth
investigating if there is a faster implementation of this algorithm. Still, one advantage offered by the
fiber product method is the ability to inductively construct a single invariant when computing the entire
ideal is infeasible. The method phyloToricRandom returns such a randomly constructed invariant.

The polynomials that are returned by both methods are in Fourier coordinates, however, they can be
converted to probability coordinates using the function fourierToProbability. To do so, we must first
construct the ring of probability coordinates using pRing. Then the method fourierToProbability
returns a ring map that converts polynomials in Fourier coordinates to probability coordinates:

i9: = S = pRing(n,M);

i10: = phi = fourierToProbability(S,R,4,M);

i11: = f = (vars R)_(0,0)

o11: = q_(0,0,0,0)

i12: = phi(f)

o12: = (1/2)*p_(0,0,0,0)+(1/2)*p_(0,0,0,1)+(1/2)*p_(0,0,1,0)+(1/2)*p_(0,0,1,1)
+(1/2)*p_(0,1,0,0)+(1/2)*p_(0,1,0,1)+(1/2)*p_(0,1,1,0)+(1/2)*p_(0,1,1,1)
+(1/2)*p_(1,0,0,0)+(1/2)*p_(1,0,0,1)+(1/2)*p_(1,0,1,0)+(1/2)*p_(1,0,1,1)
+(1/2)*p_(1,1,0,0)+(1/2)*p_(1,1,0,1)+(1/2)*p_(1,1,1,0)+(1/2)*p_(1,1,1,1)

FUNCTIONALITY FOR SECANT VARIETIES. Mixtures of group-based phylogenetic models correspond
to secants and joins of toric ideals, objects that are of interest in combinatorial commutative algebra,
but are notoriously hard to compute. In the methods joinIdeal and secant, we implement the elim-
ination method described in [Sturmfels and Sullivant 2006, Section 2] for computing the join of two
homogeneous ideals or the secant of one homogeneous ideal.

Consider now the Jukes–Cantor model on T from Figure 1. The phylogenetic ideal for the mixture of
MT with itself is the second secant ideal of the homogeneous ideal IT , denoted IT ∗IT . For secants, the
method secant takes as input a homogenous ideal and an integer k and returns a generating set for the
k-th secant ideal. The method also accepts the optional argument DegreeLimit=>{l}, which computes
generators of the ideal only up to degree l. Thus, we can obtain generators of degree 3 or less of IT ∗ IT
with the following commands. The minimal generating set of SecI3 contains 49 linear invariants; we
only print the generators with degree greater than one:

i13: = I = phyloToric42(n,T,JCmodel);

i14: SecI3 = secant(I,2,DegreeLimit={3});

i15: toString for i in flatten entries mingens SecI3
list (if (degree i)#0 == 1 then continue; i)

o15 = {q_(0,3,3,0)*q_(3,0,2,1)*q_(3,2,0,1)-q_(0,3,2,1)*q_(3,0,3,0)*q_(3,2,0,1)
+q_(0,3,2,1)*q_(3,0,0,3)*q_(3,2,1,0)-q_(0,3,0,3)*q_(3,0,2,1)*q_(3,2,1,0)
-q_(0,3,3,0)*q_(3,0,0,3)*q_(3,2,3,2)+q_(0,3,0,3)*q_(3,0,3,0)*q_(3,2,3,2)}

Baños, Bushek, Davidson, Gross, Harris, Krone, Long, Stewart and Walker :::: Phylogenetic trees 5

The degree bound allows for the possibility of obtaining some invariants when computing a generating
set for the secant ideal is infeasible. Let (IT ∗ IT)l be the ideal generated by the elements of IT ∗ IT of
degree less than or equal to l. In some instances (IT ∗ IT)l may be equal to IT ∗ IT . To prove this, we
must verify that dim((IT ∗ IT)l) = dim(IT ∗ IT) and that (IT ∗ IT)l is prime. Assuming we are able
to compute (IT ∗ IT)l , we can compute its dimension and verify that it is prime. We then know that
dim((IT ∗ IT)l) ≥ dim(IT ∗ IT), leaving the inequality dim((IT ∗ IT)l) ≤ dim(IT ∗ IT) to show. The
method toricSecantDim enables us to do this using a probabilistic method based on Terracini’s lemma
[1911] to compute a lower bound on dim(IT ∗ IT).

Using this method, we can show that the secant of the ideal from the previous example is in fact
generated in degree less than three:

i16: = dim(SecI3)

o16: = 12

i17: = isPrime(SecI3)

o17: = true

i18: = toricSecantDim(phyloToricAMatrix(4,{{0,1}},JCmodel),2))

o18: = 12

In the code above, we used phyloToricAMatrix(n,T,JCmodel) to construct the defining integral
matrix of the toric ideal. For more details, see the documentation and [Sturmfels 1996]. In this instance,
the method outlined is substantially faster than using the secant method without a degree bound.

ADDITIONAL FUNCTIONALITY. Although this package was developed with toric ideals from phyloge-
netics in mind, the methods secant and joinIdeal can be used for any homogeneous ideals. Thus,
these can be employed for computations outside of phylogenetic algebraic geometry.

The following models are loaded with the package: the Cavender–Farris–Neyman model, the Jukes–
Cantor model, the Kimura 2-parameter model, and the Kimura 3-parameter model. Additionally, some
functionality for working with trees is available in this package, which includes the methods edgeCut,
vertexCut, edgeContract, internalEdges, internalVertices.

ACKNOWLEDGEMENTS. This work began at the 2016 AMS Mathematics Research Community on
“Algebraic Statistics,” which was supported by the National Science Foundation under grant number
DMS-1321794. Ruth Davidson was supported by NSF DMS-1401591. Elizabeth Gross was supported
by NSF DMS-1620109. Robert Walker was primarily supported by an NSF GRF under grant number
PGF-031543 and partially supported by the NSF RTG grant 0943832.

SUPPLEMENT. The online supplement contains version 2.0 of PhylogeneticTrees.

REFERENCES.
[4ti2] 4ti2 team, “4ti2: a software package for algebraic, geometric and combinatorial problems on linear spaces”, available at
www.4ti2.de.

http://msp.org/jsag/2021/11-1/jsag-v11-n1-x01-PhylogeneticTrees.m2
www.4ti2.de

6 Baños, Bushek, Davidson, Gross, Harris, Krone, Long, Stewart and Walker :::: Phylogenetic trees

[A. 1987] L. J. A., “A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony”, Mol. Biol.
Evol. 4:2 (1987), 167–191.

[Allman et al. 2012] E. S. Allman, J. A. Rhodes, and S. Sullivant, “When Do Phylogenetic Mixture Models Mimic Other
Phylogenetic Models?”, Systematic Biology 61:6 (2012), 1049–1059.

[Casanellas and Fernández-Sánchez 2006] M. Casanellas and J. Fernández-Sánchez, “Performance of a New Invariants Method
on Homogeneous and Nonhomogeneous Quartet Trees”, Molecular Biology and Evolution 24:1 (10 2006), 288–293.

[Cavender and Felsenstein 1987] J. A. Cavender and J. Felsenstein, “Invariants of phylogenies in a simple case with discrete
states”, Journal of Classification 4 (1987), 57–71.

[E. S. Allman and Sullivant 2011] J. A. R. E. S. Allman, S. Petrović and S. Sullivant, “Identifiability of Two-Tree Mixtures for
Group-Based Models”, IEEE/ACM Transactions on Computational Biology and Bioinformatics 8:3 (2011), 710–722.

[Evans and Speed 1993] S. N. Evans and T. P. Speed, “Invariants of some probability models used in phylogenetic inference”,
Ann. Statist. 21:1 (1993), 355–377. MR

[Long and Sullivant 2015] C. Long and S. Sullivant, “Identifiability of 3-class Jukes–Cantor mixtures”, Adv. in Appl. Math. 64
(2015), 89–110. MR

[Macaulay2] D. R. Grayson and M. E. Stillman, “Macaulay2: a software system for research in algebraic geometry”, available
at http://www.math.uiuc.edu/Macaulay2.

[Matsen and Steel 2007] F. A. Matsen and M. Steel, “Phylogenetic Mixtures on a Single Tree Can Mimic a Tree of Another
Topology”, Systematic Biology 56:5 (10 2007), 767–775.

[Matsen et al. 2008] F. A. Matsen, E. Mossel, and M. Steel, “Mixed-up trees: the structure of phylogenetic mixtures”, Bull.
Math. Biol. 70:4 (2008), 1115–1139. MR

[Rhodes and Sullivant 2012] J. A. Rhodes and S. Sullivant, “Identifiability of large phylogenetic mixture models”, Bull. Math.
Biol. 74:1 (2012), 212–231. MR

[Rusinko and Hipp 2012] J. P. Rusinko and B. Hipp, “Invariant based quartet puzzling”, Algorithms for Molecular Biology 7:1
(2012).

[Sturmfels 1996] B. Sturmfels, Gröbner bases and convex polytopes, University Lecture Series 8, American Mathematical
Society, Providence, RI, 1996. MR

[Sturmfels and Sullivant 2005] B. Sturmfels and S. Sullivant, “Toric ideals of phylogenetic invariants”, Journal of Computa-
tional Biology 12:2 (2005), 204–228.

[Sturmfels and Sullivant 2006] B. Sturmfels and S. Sullivant, “Combinatorial secant varieties”, Pure Appl. Math. Q. 2:3, Special
Issue: In honor of Robert D. MacPherson. Part 1 (2006), 867–891. MR

[Sullivant 2007] S. Sullivant, “Toric fiber products”, J. Algebra 316:2 (2007), 560–577. MR
[Székely et al. 1993] L. A. Székely, P. L. Erdős, M. A. Steel, and D. Penny, “A Fourier inversion formula for evolutionary
trees”, Appl. Math. Lett. 6:2 (1993), 13–16. MR

[Terracini 1911] A. Terracini, “Sulle Vk per cui la varieta degli Sh(h+ 1)-seganti ha dimensione minore dell’ordinario”, Rend.
Circ. Mat. Palermo (1911).

RECEIVED: 16 Nov 2016 REVISED: 4 Jan 2020 ACCEPTED: 8 Aug 2020

HECTOR BAÑOS:

hbanos@gatech.edu
School of Mathematics, Georgia Institute of Technology, Atlanta, GA, United States

NATHANIEL BUSHEK:

nbushek@css.edu
Department of Mathematics and Physics, The College of St. Scholastica, Duluth, MN, United States

RUTH DAVIDSON:

redavid2@illinois.edu
Department of Mathematics, University of Illinois Urbana-Champaign, Urbana, IL, United States

http://dx.doi.org/10.1093/oxfordjournals.molbev.a040433
http://dx.doi.org/10.1093/sysbio/sys064
http://dx.doi.org/10.1093/sysbio/sys064
http://dx.doi.org/10.1093/molbev/msl153
http://dx.doi.org/10.1093/molbev/msl153
http://dx.doi.org/10.1007/BF01890075
http://dx.doi.org/10.1007/BF01890075
http://dx.doi.org/10.1109/TCBB.2010.79
http://dx.doi.org/10.1109/TCBB.2010.79
http://dx.doi.org/10.1214/aos/1176349030
http://msp.org/idx/mr/1212181
http://dx.doi.org/10.1016/j.aam.2014.12.003
http://msp.org/idx/mr/3300329
http://www.math.uiuc.edu/Macaulay2
http://dx.doi.org/10.1080/10635150701627304
http://dx.doi.org/10.1080/10635150701627304
http://dx.doi.org/10.1007/s11538-007-9293-y
http://msp.org/idx/mr/2391182
http://dx.doi.org/10.1007/s11538-011-9672-2
http://msp.org/idx/mr/2877216
http://dx.doi.org/10.1090/ulect/008
http://msp.org/idx/mr/1363949
http://dx.doi.org/10.1089/cmb.2005.12.204
http://dx.doi.org/10.4310/PAMQ.2006.v2.n3.a12
http://msp.org/idx/mr/2252121
http://dx.doi.org/10.1016/j.jalgebra.2006.10.004
http://msp.org/idx/mr/2356844
http://dx.doi.org/10.1016/0893-9659(93)90004-7
http://dx.doi.org/10.1016/0893-9659(93)90004-7
http://msp.org/idx/mr/1347767
mailto:hbanos@gatech.edu
mailto:nbushek@css.edu
mailto:redavid2@illinois.edu

Baños, Bushek, Davidson, Gross, Harris, Krone, Long, Stewart and Walker :::: Phylogenetic trees 7

ELIZABETH GROSS:

egross@hawaii.edu
Department of Mathematics, University of Hawaii‘i at Manoa, Honolulu, HI, United States

PAMELA E. HARRIS:

pamela.e.harris@williams.edu
Department of Mathematics and Statistics, Williams College, Williamstown, MA, United States

ROBERT KRONE:

rckrone@ucdavis.edu
Department of Mathematics, UC Davis, Davis, CA, United States

COLBY LONG:

clong@wooster.edu
Department of Mathematics and Computational Sciences, The College of Wooster, 308 E. University Street,
Wooster, OH 44691, United States

ALLEN STEWART:

stewaral@seattleu.edu
Department of Mathematics, Seattle University, Seattle, WA, United States

ROBERT WALKER:

rwalker@math.wisc.edu
Department of Mathematics, University of Wisconsin–Madison, Madison, WI, United States

msp

mailto:egross@hawaii.edu
mailto:pamela.e.harris@williams.edu
mailto:rckrone@ucdavis.edu
mailto:clong@wooster.edu
mailto:stewaral@seattleu.edu
mailto:rwalker@math.wisc.edu
http://msp.org

JSAG 11 (2021), 9–14 The Journal of Software for
https://doi.org/10.2140/jsag.2021.11.9 Algebra and Geometry

Software for doing computations in graded Lie algebras

CLAS LÖFWALL AND SAMUEL LUNDQVIST

ABSTRACT: We introduce the Macaulay2 package GradedLieAlgebras for doing computations in graded
Lie algebras presented by generators and relations.

1. INTRODUCTION. In order to support computer based research on graded Lie (super-)algebras, we
have developed the package GradedLieAlgebras as part of [Macaulay2].

The package has basic routines for computing Hilbert series, for doing operations on ideals, subalge-
bras, derivations, and maps. It also has support for constructing holonomy Lie algebras of arrangements,
computing homology and constructing minimal models. For a full list of features, we refer to the docu-
mentation of the package [GradedLieAlgebras].

The algorithmic idea used in the package goes back to [Löfwall and Roos 1997, Theorem 5.3], which
was used to identify a periodic structure in a certain 1,2-presented Lie algebra. The first author then
developed an algorithm and implemented that algorithm in Mathematica, under the name [Liedim]. That
implementation has been cited or referred to in a number of papers; see for instance [Fröberg and Löfwall
2002; Löfwall et al. 2015; Peeva 2003; Roos 2008].

The aim of this paper is to describe the Macaulay2 implementation, which is a major extension of the
implementation in Mathematica.

In the next two sections, we discuss implementation details and present the algorithmic theory used
in the package. In the last section, we give a brief introduction to using the package.

2. REPRESENTING LIE ALGEBRAS IN Macaulay2. In order to be able to use the built-in operations
in Macaulay2, we decided to convert each computational step in the algorithm to a computation in a
corresponding polynomial ring over the same field as the Lie algebra. That polynomial ring is referred
to as lieRing in the code.

Let g be a Lie algebra given by a finite set {xi } of generators and a set of relations. The generators
have predefined degrees given by a function deg : {xi } → Z+ and the relations are supposed to be
homogeneous with respect to this degree function. This makes g a positively graded Lie algebra. When
g is a Lie super-algebra, the generators have an additional Z/2Z-grading, and the relations are then
supposed to be homogeneous also with respect to this grading.

MSC2010: primary 17-04, 17B70; secondary 13-04.
Keywords: graded Lie algebras, Hilbert series, holonomy Lie algebras, Koszul duality, differential graded Lie algebras.
GradedLieAlgebras version 3.0

9

https://doi.org/10.2140/jsag.2021.11-1
http://msp.org/jsag
https://doi.org/10.2140/jsag.2021.11.9
http://msp.org/jsag

10 Löfwall and Lundqvist :::: Software for doing computations in graded Lie algebras

An iterated Lie product in g of the form [xi1, [xi2, [xi3, . . . , [xim−1, xim], . . .]]] is called a Lie monomial.
In the program, Lie monomials are identified with monomials in lieRing, and the Lie product of two
elements is performed by a repeated series of normal form computations in lieRing, where the normal
form computations are being performed with respect to a family of Gröbner bases in lieRing. It is
important to understand that we use the Gröbner bases only as a way of doing Gaussian elimination, and
that there is no connection to the Buchberger algorithm.

We now describe this correspondence in detail. To make the notation more easy to follow, we will
use a slightly different way of naming the generators than in the program.

Each generator xi in g corresponds to n generators xi1, . . . , xin in lieRing, where n is an upper bound
on the degrees handled during our computations. A Lie monomial [xi1, [xi2, [xi3, . . . , [xim−1, xim], . . .]]]

in g is represented as a monomial in lieRing in the following way. A generator xi is represented by xi1,
and if e is a Lie monomial of degree d − 1 represented by m, then [xi , e] is represented by xid ·m, which
is also denoted xi .m.

Remark 1. We were informed by Jörgen Backelin that similar approaches to coding noncommuta-
tive monomials as commutative monomials have been considered independently in [Gerasimov 1976;
La Scala and Levandovskyy 2009].

From the algorithm described in Section 3, it follows that the basis elements of degree d are of the
form [xi , ej], with ej a basis element of degree < d .

If ej is a basis element of degree r − 1 represented by the monomial m in lieRing, and [xi , ej] is of
degree d but not a basis element, then xi .m = xir ·m will be the leading monomial of a polynomial in
a reduced Gröbner basis associated to degree d. This polynomial then has the form xir ·m −

∑
ci mi ,

where each mi corresponds to a Lie monomial in g that is a basis element in degree d , and where each ci

is an element in the underlying field.
The reduced Gröbner basis associated to degree d is the degree d part of the reduced Gröbner basis of

the ideal generated by the set of polynomials of degree d corresponding to the elements that come from
the expressions (2), (3), (5) and (6) in the next section.

3. COMPUTING A VECTOR SPACE BASIS OF A GRADED LIE ALGEBRA IN A GIVEN DEGREE. A Lie
(super-)algebra g over a field k may be specified by giving a positively graded finite set X of generators
and a finite set Y of homogenous relations,

y =
∑
x∈X

λx,y x +
∑

i

[gi,y, hi,y],

where λx,y ∈ k and gi,y and hi,y are in F(X), the free Lie algebra on X over k. Throughout this section
we will use the following example to illustrate the steps in the algorithm.

Let k = Z/3Z. The set of generators is X = {a, b, c} where a is odd, and b, c are even, and a, b
have degree 1, and c has degree 2. The set of relations is Y = {[a, a], [b, [b, a]] − [a, c]}. We want

Löfwall and Lundqvist :::: Software for doing computations in graded Lie algebras 11

to compute a basis in degree 3, and we will use lieRing=Z/3Z[a1, b1, c1, a2, b2, c2, a3, b3, c3] with
GRevLex, where ai , bi have degree 1, and ci has degree 2 for i = 1, 2, 3.

The program constructs, degree by degree, starting with degree 1, a graded g-module M that is a
subspace of lieRing. The g-module operation on M is denoted g.m, where g ∈ g and m ∈ M. There
is also a g-module map def : M→ g. Assume n ≥ 1 and everything is done in degree < n. This means
that def : M<n → g/g≥n is an isomorphism of g-modules, with an inverse to be denoted by fed. If
deg(g)+ deg(m)≥ n, g.m is defined to be zero.

In the example {a1, b1} is a basis for M in degree 1 and {b2a1, c1} is a basis for M in degree 2. We
also have the reduction rules a2a1→ 0, a2b1→−b2a1, b2b1→ 0. Moreover, def(a1)= a, def(b1)= b,
def(b2a1)= [b, a], def(c1)= c.

To construct Mn , the first step is to construct a subspace M̂n of lieRing, with basis

{x .m | x ∈ X,m ∈ M, deg(x)+ deg(m)= n} ∪ {xi1 | xi ∈ X, deg(xi)= n}.

In a natural way we get an F(X)-module M̂ = M<n ⊕ M̂n by first defining the action of X, and then
extending this action by the derivation rule. Also def is defined on M̂n by def(x .m)= [x, def(m)] and
def(xi1)= xi . It follows that def is surjective in degree n.

In the example, a basis for M̂3 is

{a3b2a1, a3c1, b3b2a1, b3c1, c2a1, c2b1}. (1)

The next step is to divide out by a subspace Rn of M̂n to obtain a g-module. For this reason we compute

R = Y.M̂ . (2)

It is a subspace of M̂n , since M<n is a g-module. A generating set for Rn is obtained by computing y.m
for each relation y and basis element m ∈ M such that deg(y)+ deg(m)= n.

In the example, the space R3 is spanned by [a, a].a1 = 2a.(a2a1) = 0 and [a, a].b1 = 2a.(a2b1) =

−2a3b2a1, yielding the reduction rule a3b2a1→ 0.
We apply [Löfwall and Roos 1997, Theorem 5.3] to obtain Mn as M̂n modulo Rn and the expressions∑

x∈X

λx,ymx +
∑

i

gi,y .fed(hi,y) for all y ∈ Yn, (3)

x .m+ ε(m, x)def(m).mx , (4)

where mx is the element in lieRing corresponding to x ∈ X, and where the last expression is computed
for all basis elements m ∈ M and all x ∈ X such that deg(x)+ deg(m)= n. Here ε(m, x) is the sign of
interchanging the super-elements m and x .

In fact, using a linearization idea described in [Löfwall and Roos 1997], the “commutative” law (4) —
the computationally most heavy part — does not need to be checked for all elements. Indeed, in charac-
teristic zero, a basis is computed for the quotient space M̃n of M̂n with respect to (2), (3), and the extra
expressions

gi,y .fed(hi,y)+ ε(gi,y, hi,y)hi,y .fed(gi,y) for all y ∈ Yn and for all i . (5)

12 Löfwall and Lundqvist :::: Software for doing computations in graded Lie algebras

If char(k) > 0 then a basis for the quotient space M̃n of M̂n is computed with respect to (2), (3), (5), and
also the expressions

x .m+ ε(m, x)def(m).mx (6)

coming from (4), for which deg x is a multiple of the characteristic.
Finally, Mn is obtained from M̃n by factoring out (4) applied to the basis elements x .m of M̃n .
In the example, (6) gives nothing, while (3) and (5) give

b.b2a1− a.c1 = b3b2a1− a3c1 =⇒ a3c1→ b3b2a1,

b.b2a1+ [b, a].b1 = b3b2a1− b.(b2a1)− a.(b2b1)= b3b2a1− b3b2a1− 0= 0,

a.c1+ c.a1 = a3c1+ c2a1 =⇒ c2a1→−a3c1→−b3b2a1.

Hence, we have the reduction rules a3b2a1→ 0 (from (2)), a3c1→−b3b2a1, c2a1→ b3b2a1 and hence
M̃3 has the basis {b3b2a1, b3c1, c2b1}. Finally, (4) gives the reduction rule c2b1→−b3c1 yielding the
basis {b3b2a1, b3c1} for M3 and def(b3b2a1)= [b, [b, a]], def(b3c1)= [b, c].

4. USING THE PACKAGE. The main introduction to using the package is by means of the tutorials that
are part of the documentation [GradedLieAlgebras]. Here we give three small examples of possible
computations.

The most common way to construct a Lie algebra is by means of the constructor lieAlgebra. In
our first example, we construct the free Lie algebra on three even generators, all of degree 1:

i2 : L1=lieAlgebra({a,b,c})

o2 : LieAlgebra

i3 : dims(1,6,L1)

o3 = {3, 3, 8, 18, 48, 116}

i4 : basis(2,L1)

o4 = {(b a), (c a), (c b)}

Here is the example from Section 3:
i5 : L2=lieAlgebra({a,b,c}, Field=>ZZ/3, Signs=>{1,0,0}, Weights=>{1,1,2})/{a a, b b a - a c}

o5 : LieAlgebra

i6 : dims(1,5,L2)

o6 = {2, 2, 2, 3, 5}

i7 : b c c a

o7 = (b a b b c) + (b b a b c) + (b b b b b a)

o7 : L2

i8 : basis(3,L2)

o8 = {(b b a), (b c)}

Let us now give a short example of computing the homology of a Lie algebra. The generators are
odd, a and b have degree 1, and homological degree 0, c has degree 2, and homological degree 1. The
differential is defined by a, b 7→ 0, c 7→ [a, b]. The homology can now be obtained using lieHomology,

Löfwall and Lundqvist :::: Software for doing computations in graded Lie algebras 13

basis and dims (the columns refer to the first degree, and the rows refer to the homological degree). The
Lie subalgebras consisting of the cycles and boundaries of the Lie algebra are obtained using cycles
and boundaries. The underlying field is Q by default.

i9 : F3=lieAlgebra({a,b,c},Signs=>1,
Weights=>{{1,0},{1,0},{2,1}},LastWeightHomological=>true)

o9 : LieAlgebra

i10 : L3 = differentialLieAlgebra{0_F3,0_F3,a b}/{a a, b b}

o10 : L3

o10 : LieAlgebra

i11 : H = lieHomology L3

o11 : H

o11 : VectorSpace

i12 : dims(4,H)

o12 = | 2 0 0 0 |
| 0 0 2 1 |
| 0 0 0 0 |
| 0 0 0 0 |

i13 : basis(4,1,H)

o13 : {(b a c)}

i14 : B = boundaries L3

o14 : B

o14 : LieSubAlgebra

i15 : basis(4,1,B)

o15 : {(a b c) + b a c)}

ACKNOWLEDGEMENT. The authors want to thank Dan Grayson for his help with many of the imple-
mentation issues we faced during the development of the package.

SUPPLEMENT. The online supplement contains version 3.0 of GradedLieAlgebras.

REFERENCES.
[Fröberg and Löfwall 2002] R. Fröberg and C. Löfwall, “Koszul homology and Lie algebras with application to generic forms
and points”, Homology Homotopy Appl. 4:2, part 2 (2002), 227–258. MR

[Gerasimov 1976] V. N. Gerasimov, “Distributive lattices of subspaces and the word problem for one-relator algebras”, Algebra
i Logika 15:4 (1976), 384–435, 487. In Russian. MR

[GradedLieAlgebras] C. Löfwall and S. Lundqvist, “GradedLieAlgebras”, Macaulay2 package, available at https://github.com/
Macaulay2/M2/tree/master/M2/Macaulay2/packages.

[La Scala and Levandovskyy 2009] R. La Scala and V. Levandovskyy, “Letterplace ideals and non-commutative Gröbner
bases”, J. Symbolic Comput. 44:10 (2009), 1374–1393. MR

[Liedim] C. Löfwall, “Liedim: a Mathematica program for Lie-calculations”, available at http://www2.math.su.se/liedim/.
[Löfwall and Roos 1997] C. Löfwall and J.-E. Roos, “A nonnilpotent 1-2-presented graded Hopf algebra whose Hilbert series
converges in the unit circle”, Adv. Math. 130:2 (1997), 161–200. MR

[Löfwall et al. 2015] C. Löfwall, S. Lundqvist, and J.-E. Roos, “A Gorenstein numerical semi-group ring having a transcenden-
tal series of Betti numbers”, J. Pure Appl. Algebra 219:3 (2015), 591–621. MR

[Macaulay2] D. R. Grayson and M. E. Stillman, “Macaulay2: a software system for research in algebraic geometry”, available
at http://www.math.uiuc.edu/Macaulay2.

http://msp.org/jsag/2021/11-1/jsag-v11-n1-x02-GradedLieAlgebras.zip
http://dx.doi.org/10.4310/hha.2002.v4.n2.a11
http://dx.doi.org/10.4310/hha.2002.v4.n2.a11
http://msp.org/idx/mr/1918511
http://msp.org/idx/mr/0447303
https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages
http://dx.doi.org/10.1016/j.jsc.2009.03.002
http://dx.doi.org/10.1016/j.jsc.2009.03.002
http://msp.org/idx/mr/2543425
http://www2.math.su.se/liedim/
http://dx.doi.org/10.1006/aima.1997.1667
http://dx.doi.org/10.1006/aima.1997.1667
http://msp.org/idx/mr/1472316
http://dx.doi.org/10.1016/j.jpaa.2014.05.016
http://dx.doi.org/10.1016/j.jpaa.2014.05.016
http://msp.org/idx/mr/3279377
http://www.math.uiuc.edu/Macaulay2

14 Löfwall and Lundqvist :::: Software for doing computations in graded Lie algebras

[Peeva 2003] I. Peeva, “Hyperplane arrangements and linear strands in resolutions”, Trans. Amer. Math. Soc. 355:2 (2003),
609–618. MR

[Roos 2008] J.-E. Roos, “The homotopy Lie algebra of a complex hyperplane arrangement is not necessarily finitely presented”,
Experiment. Math. 17:2 (2008), 129–143. MR

RECEIVED: 21 Aug 2017 REVISED: 22 Jun 2020 ACCEPTED: 28 Aug 2020

CLAS LÖFWALL:

clas.lofwall@gmail.com
Department of Mathematics, Stockholm University, Stockholm, Sweden

SAMUEL LUNDQVIST:

samuel@math.su.se
Department of Mathematics, Stockholm University, Stockholm, Sweden

msp

http://dx.doi.org/10.1090/S0002-9947-02-03128-8
http://msp.org/idx/mr/1932716
http://dx.doi.org/10.1080/10586458.2008.10129030
http://msp.org/idx/mr/2433880
mailto:clas.lofwall@gmail.com
mailto:samuel@math.su.se
http://msp.org

JSAG 11 (2021), 15–24 The Journal of Software for
https://doi.org/10.2140/jsag.2021.11.15 Algebra and Geometry

The relative canonical resolution:
Macaulay2-package, experiments and conjectures

CHRISTIAN BOPP AND MICHAEL HOFF

ABSTRACT: This short note provides a quick introduction to relative canonical resolutions of curves
on rational normal scrolls. We present our Macaulay2 package that computes the relative canonical
resolution associated to a curve and a pencil of divisors. We end with a list of conjectural shapes of
relative canonical resolutions. In particular, for curves of genus g = n · k + 1 and pencils of degree k
for n ≥ 1, we conjecture that the syzygy divisors on the Hurwitz scheme Hg,k constructed by Deopurkar
and Patel (Contemp. Math. 703 (2018) 209–222) all have the same support.

1. RELATIVE CANONICAL RESOLUTIONS.
The relative canonical resolution is the minimal free resolution of a canonically embedded curve C

inside a rational normal scroll. Every such scroll is swept out by linear spaces parametrized by pencils
of divisors on C .

Studying divisors on moduli spaces reveals certain aspects of the global geometry of these spaces. A
famous example for odd genus g is the Koszul divisor on the moduli space of curves Mg (see [Hirschowitz
and Ramanan 1998; Voisin 2005; Farkas 2009]). It can be derived from the minimal free resolution of
C ⊂ Pg−1. Set-theoretically the Koszul divisor consists of curves such that the minimal free resolution
of the canonical model has extra syzygies at a certain step. In [Bujokas and Patel 2015; Deopurkar and
Patel 2015; 2018], the relative canonical resolution was used to define similar syzygy divisors on Hurwitz
spaces Hg,k , parametrizing pairs of curves of genus g and pencils of divisors of degree k (equivalently,
covers of P1 of degree k by curves of genus g). We also refer to [Farkas 2018] for divisors on Hurwitz
spaces.

We will briefly summarize the connection between pencils of divisors on canonical curves and rational
normal scrolls in order to define the relative canonical resolution. The following definition and statements
can be found in [Harris 1981, §3] and [Schreyer 1986, §1]. Let C ⊂ Pg−1 be a canonically embedded
curve of genus g, and let

g1
k = {Dλ}λ∈P1 ⊂ |D|

MSC2010: 13D02, 14H51, 14Q05.
Keywords: Hurwitz space, syzygy modules, relative canonical resolution.
RelativeCanonicalResolution version 1.0

15

https://doi.org/10.2140/jsag.2021.11-1
http://msp.org/jsag
https://doi.org/10.2140/jsag.2021.11.15
http://msp.org/jsag
https://doi.org/10.1090/conm/703/14139

16 Bopp and Hoff :::: The relative canonical resolution

be a pencil of divisors of degree k. If we denote by Dλ ⊂ Pg−1 the linear span of the divisor, then

X :=
⋃
λ∈P1

Dλ ⊂ Pg−1

is a (k−1)-dimensional rational normal scroll of degree deg (X) := f = g− k+ 1.

Definition 1.1. Let e1≥ e2≥· · ·≥ ed ≥ 0 be integers, E =OP1(e1)⊕· · ·⊕OP1(ed), and let π :P(E)→P1

be the corresponding Pd−1-bundle. A rational normal scroll of type (e1, . . . , ed) is the image of

j : P(E)→ PH 0(P(E),OP(E)(1))= Pr .

Note that r = f + d − 1 with f = e1+ · · · + ed ≥ 2. Conversely if X is a rational normal scroll of
degree f containing a canonical curve, then the ruling on X cuts out a pencil of divisors {Dλ} ⊂ |D|
such that h0(C, ωC ⊗OC(D)−1)= f .

Example 1.2. We consider a nonhyperelliptic canonically embedded curve C ⊂ P3 of genus 4. The
curve C is a complete intersection of a quadric surface Q and a cubic surface S. If C admits exactly two
pencils of degree 3 (which is also the maximal number), then the quadric Q is isomorphic to P1

×P1. By
Bézout’s theorem, the two rulings of lines on Q cut out the two pencils of degree 3 on C , and conversely,
the quadric is the scroll of type (1, 1) swept out by either of these pencils. If C admits only one pencil
of degree 3, then the quadric Q is isomorphic to a cone (i.e., a quadric of rank 3) and coincides with the
scroll of type (0, 2) swept out by the unique pencil.

In [Harris 1981] it is shown that the variety X defined above is a nondegenerate d-dimensional variety
of minimal degree deg X = f = r − d + 1= codim X + 1. If e1, . . . , ed > 0, then

j : P(E)→ X ⊂ PH 0(P(E),OP(E)(1))= Pr

is an isomorphism. Otherwise, it is a resolution of singularities. Since Ri j∗OP(E) = 0 for i > 0, it is
convenient to consider P(E) instead of X for cohomological considerations.

It is known (see, e.g., [Eisenbud and Harris 1987b]) that the Picard group Pic(P(E)) is generated
by the class of the ruling R = [π∗OP1(1)] and the hyperplane class H = [j∗OPr (1)] with intersection
products

H d
= f, H d−1

· R = 1, R2
= 0.

Hence, we will write a line bundle OP(E)(aH + bR) in the form

OP(E)(aH + bR)= π∗(OP1(b))(aH).

Theorem 1.3 [Schreyer 1986, Corollary 4.4]. Let C be a curve with a complete base point free g1
k , and

let P(E) be the projective bundle associated to the scroll X swept out by the g1
k .

(a) C ⊂ P(E) has a resolution F• of type

0→ π∗Nk−2(−k H)→ π∗Nk−3((−k+ 2)H)→ · · · → π∗N1(−2H)→ OP(E)→ OC → 0

Bopp and Hoff :::: The relative canonical resolution 17

with

Ni =

βi⊕
j=1

OP1(a(i)j) and βi =
i(k− 2− i)

k− 1

(k
i+1

)
.

(b) The complex F• is self-dual, i.e., Hom(F•,OP(E)(−k H + (f − 2)R))∼= F•.

The resolution F• above is called the relative canonical resolution. The degree of the bundles Ni is
known.

Proposition 1.4 [Bopp and Hoff 2015, Proposition 2.9]. The degree of the bundle Ni of rank βi =
k

i+1(k− 2− i)
(k−2

i−1

)
in the relative canonical resolution F• is

deg(Ni)=

βi∑
j=1

a(i)j = (g− k− 1)(k− 2− i)
(

k− 2
i − 1

)
.

Since the rank and degree of the syzygy bundles Ni over P1 are known, the main object of investigation
is the splitting type.

Remark 1.5. Casnati and Ekedahl [1996] generalized the relative canonical resolution to finite Goren-
stein covers π : X → Y of degree k. They define a relative resolution of X ⊂ P(ET), where ET is the
Tschirnhausen bundle on Y defined by the short exact sequence

0→ OY → π∗(OX)→ E ∨T → 0.

Note that for a cover C k:1
−→ P1, ET = E ⊗OP1(2), where E is the bundle associated to (C, g1

k) as in
Theorem 1.3. The twists and hence the splitting types of the syzygy bundles in a resolution of C ⊂P(ET)

also differ from the ones in the relative canonical resolution of C ⊂ P(E). Indeed, following the proof of
[Casnati and Ekedahl 1996, Step B, p. 445], for each i , the twist in the i-th syzygy bundle in a resolution
of C ⊂ P(ET) differs by exactly 2 · (i + 1) from the ones given in our definition. Hence, we can deduce
the degrees of the bundles in this relative resolution of C ⊂ P(ET) from Proposition 1.4. These degrees
have also been computed directly in [Deopurkar and Patel 2018].

Definition 1.6. We say that a bundle on P1 of the form N =
⊕β

j=1 OP1(a j) is balanced if

max
i, j
|a j − ai | ≤ 1.

Equivalently, the bundle N is balanced if h1(P1, End(N))= 0. The relative canonical resolution is called
balanced if all bundles Ni occurring in the resolution are balanced.

Remark 1.7. The locus of curves inside Hg,k that have a balanced relative canonical resolution forms an
open subset of Hg,k which might be empty. Hence, to show that a generic relative canonical resolution
is balanced for fixed values (g, k) it is sufficient to examine a single balanced example.

Remark 1.8. The scroll associated to a general element in Hg,k is always balanced by [Ballico 1989]
and [Harris 1981]. The sublocus inside Hg,k parametrizing covers such that the associated scroll is

18 Bopp and Hoff :::: The relative canonical resolution

unbalanced defines a divisor on Hg,k precisely if g is a multiple of (k − 1). This divisor is called the
Maroni divisor (for more details on the Maroni divisor see, e.g., [van der Geer and Kouvidakis 2017]
and [Deopurkar and Patel 2015]).
On the other hand, knowing the splitting type of the syzygy bundles in the relative canonical resolution for
generic elements in Hg,k one can study the sublocus inside Hg,k consisting set-theoretically of curves for
which a certain syzygy bundle has nongeneric splitting type. This yields interesting subvarieties which
also turn out to be divisors in some cases (see [Deopurkar and Patel 2018]). Similar to Koszul divisors
on the moduli space Mg, the study of the divisors obtained from the relative canonical resolution sheds
light on the global geometry of the Hurwitz space.

2. MACAULAY2 PACKAGE. The Macaulay2 package [RelativeCanonicalResolution] includes various
useful functions to do experiments with k-gonal canonical curves and the relative canonical resolution of
those curves. We will briefly explain how functions in this package construct g-nodal k-gonal canonical
curves of genus g.

The main idea is that we start with a rational normalization of the desired curve and a degree k map
from the normalization to P1. In the next step we choose g pairs of points {Pi , Qi } for i = 1, . . . , g on
the normalization, and we glue the points in each pair to each other. If L is a line bundle of degree k on
a g-nodal curve C with rational normalization ν : P1

→ C , then L is given as ν(L)∼= OP1(k) together
with gluing data between the residue class fields

ai

bi
: OP1(k)⊗ k(Pi)→ OP1(k)⊗ k(Qi), i = 1, . . . , g.

Let S = k[s, t] be the coordinate ring of P1. We start over by choosing two forms f, h ∈ Sk of degree k
and g points Ri = (R

(0)
i : R

(1)
i) ∈ P1 such that for all i = 1, . . . , g the determinant

det

(
f R(0)i

h R(1)i

)
= l0

i · l
(1)
i · ri

has at least two linear factors l(0)i and l(1)i . Note that this step might be hard to perform over a field k

of characteristic 0 and we therefore work over a finite field. We compute 2g points Pi = V (l(0)i) and
Qi = V (l(1)i) as the vanishing loci of these linear forms. We want to define multipliers {ai , bi }i=1,...,g

such that

bi · f (Pi)= ai · h(Qi) and bi · h(Pi)= ai · f (Qi) for i = 1, . . . , g.

By construction, we can choose {ai , bi }i=1,...,g to be bi = 1 and ai =
f (Pi)

f (Qi)
=

h(Pi)
h(Qi)

. If we define

qi := det

(
s P (0)i

t P (1)i

)
· det

(
s Q(0)

i

t Q(1)
i

)
for i = 1, . . . , g,

Bopp and Hoff :::: The relative canonical resolution 19

then a basis of H 0(C, ωC) is given by {
s j :=

g∏
i=1,i 6= j

qi

}
j=1,...,g

.

This basis {s j } j=1,...,g can furthermore be modified in such a way that the scroll defined by the line bundle
of degree k will have a “normalized” form, i.e., the 2× (g− k+ 1) matrix defining the scroll will consist
of blocks of the form (

ti ti+2

ti+1 ti+3

)
,

where T = k[t0, . . . , tg−1] is the coordinate ring of Pg−1.
In the package [RelativeCanonicalResolution] we also provide a function that describes the generators

of the ideal of C in terms of elements of the Cox ring of the scroll P(E).

Remark 2.1. There is an explicit identification

H 0(P(E),OP(E)(aH + bR))∼= H 0(P1, (SaE)(b)) for a ≥ 0,

where SaE is the a-th symmetric power of the vector bundle E (see [Schreyer 1986, (1.3)]). This gives
a description of the coordinate ring

RP(E) =

⊕
a,b∈Z

H 0(P(E),OP(E)(aH + bR))

of P(E) as the Cox ring k[v,w, ϕ0, . . . , ϕd−1] equipped with bigrading deg v = deg w = (1, 0) and
deg ϕi = (e1− ei+1, 1).

Finally the relative canonical resolution of C ⊂ P(E) can be computed by successively picking syzy-
gies in correct degrees.

Example 2.2. We compute a nodal 6-gonal canonical curve of genus 9.
i1 : loadPackage("RelativeCanonicalResolution")
i2 : g=9; -- the genus
i3 : k=6; -- the degree of the pencil
i4 : n=10000; -- characteristic: next prime number after n
i5 : Ican=canCurveWithFixedScroll(g,k,n); -- the canonical curve
i6 : (dim Ican,genus Ican, degree Ican)
o6 = (2, 9, 16)
i7 : betti(res(Ican,DegreeLimit=>1))

0 1 2 3
o7 = total: 1 15 35 21

0: 1 . . .
1: . 21 64 70

Next we compute the ideal of C inside the Cox ring of the scroll P(E).
i8 : Jcan=curveOnScroll(Ican,g,k); -- the curve inside the scroll
i9 : RX=ring Jcan; -- the bigraded Cox ring of the scroll

ZZ
o9 = -----[pp , pp , pp , pp , pp , v,w]

10007 0 1 2 3 4

20 Bopp and Hoff :::: The relative canonical resolution

We compute the relative canonical resolution:
i10 : T=ring Ican; -- the canonical ring
i11 : H=basis({1,1},RX); -- a basis of H^0(PE, OO_PE(H))
i12 : phi=map(RX,T,H)
i13 : Ican==preimage_phi(Jcan)
o13 = true
i14 : lengthRes=2; -- a lengthlimit for the resolution on the scroll

With respect to the total degree, the Betti table of the relative canonical resolution has the following
form:

-- the relative canonical resolution:
i15 : betti(resX=resCurveOnScroll(Jcan,g,lengthRes))

0 1 2 3 4
o15 = total: 1 9 16 9 1

0: 1
1:
2: . 6 2 . .
3: . 3 12 3 .
4: . . 2 6 .
5: 1

The scroll cut out by the g1
6 on C has the following normalized determinantal representation:

i16 : X=preimage_phi(ideal 0_RX); -- the ideal of the scroll
i17 : repX=matrix{{t_0,t_2,t_4,t_6},{t_1,t_3,t_5,t_7}}
o17 = | t_0 t_2 t_4 t_6 |

| t_1 t_3 t_5 t_7 |
i18 : minors(2,repX)==X
o18 = true

Remark 2.3. By o15, we see that the second syzygy bundle N2 is unbalanced in our example. Although
this single example does not show that the generic relative canonical resolution is unbalanced for this
case, one can show that this is indeed the generic form (see [Bopp and Hoff 2017]).

3. EXPERIMENTS AND CONJECTURES.

Database of experiments. Using our Macaulay2 package [RelativeCanonicalResolution] we have com-
puted the relative canonical resolution for various cases. For nonhyperelliptic, generic curves of genus
g ≤ 23 with a pencil of degree 3≤ k ≤min{g−1, 14}, all expected Betti tables are listed on the webpage
[Blug et al. 2018].

The web page was set up with the help of Sascha Blug. All the experiments that led to Betti tables
in [Blug et al. 2018] were performed over a finite field. If the examples for certain values (g, k) yield a
balanced relative canonical resolution, then by semi-continuity one can conclude that this is indeed the
general behavior (even for complex algebraic curves).

Since changing the characteristic for the unbalanced cases did not change the shape of the Betti tables,
we believe that the Betti tables in [Blug et al. 2018] reflect the generic behavior. In general, we do not
have a proof of this statement. However, it has been determined in some cases whether the first bundle N1

is balanced (see [Bopp and Hoff 2015] and [Bujokas and Patel 2015]). For several cases our examples

Bopp and Hoff :::: The relative canonical resolution 21

lead to a conjecture that certain higher syzygy bundles in the relative canonical resolution are unbalanced.
Most of these cases remain mysterious.

Syzygy divisors on Hurwitz spaces. Deopurkar and Patel used the relative canonical resolution to de-
scribe new effective divisors on the Hurwitz scheme Hg,k . If the degree k divides g− 1, it is shown in
[Bujokas and Patel 2015] that the relative canonical resolution for a generic element in Hg,k is totally
balanced, and hence, the locus µi , corresponding set-theoretically to covers in Hg,k for which the i-th
syzygy bundle Ni is unbalanced, has expected codimension 1. Deopurkar and Patel [2018] give these
syzygy divisors µ1, . . . , µk−3 a scheme structure and compute their classes in a partial compactification
of the Hurwitz scheme H̃g,k . In their main theorem, they represent the divisor classes [µi] in terms of
certain tautological classes κ, ζ and δ (see [Deopurkar and Patel 2018, §2] for the precise definition of
those classes).

Theorem 3.1 [Deopurkar and Patel 2018, Theorem 1.1]. Suppose k divides g− 1. Let i be an integer
with 1≤ i ≤ k− 3. The locus µi ⊂ H̃g,k is an effective divisor whose class in PicQ(H̃g,k) is given by

[µi] = Ai ·
(
6(gk− 6g+ k+ 6) · ζ − k(k− 12) · κ − k2

· δ
)
,

where

Ai :=
(k− 2)(k− 3)

6(i + 1)(k− i − 1)
·

(k−4
i−1

)2
.

Note that all the classes [µi] are proportional. The same phenomenon appears for classes of divisorial
Brill–Noether loci in the moduli space M g (see [Eisenbud and Harris 1987a] and [Harris and Mumford
1982]). For the divisorial Brill–Noether classes it is known that these classes are supported on different
sets, and in [Deopurkar and Patel 2018] the authors conjecture that this also happens for the syzygy
divisors on Hg,k .

We come to a different conclusion. Computing various examples of curves and their relative canonical
resolution for (g, k) ∈ {(6, 13), (7, 15), (8, 17), (6, 19)} over a field of small characteristic p ≤ 500 we
found the following pattern which we conjecture to be true in general. Note that the probability of a
random computed example to end up in a certain codimension 1 locus is roughly 1

p .

Conjecture 1. Let n and k be integers, and g− 1= n · k. Let i be an integer with 1 ≤ i ≤ k− 3. For a
general element (C, g1

k) ∈ µi ⊂ H̃g,k , let N j be the j-th syzygy bundle in the relative canonical resolution
of C with 1≤ j ≤ k− 3. Then N j is unbalanced and the splitting type of N j is

N j = OP1
(
(n− 1)(j + 1)− 1

)⊕(k−4
j−1)⊕OP1

(
(n− 1)(j + 1)

)rk N j−2·(k−4
j−1)⊕OP1

(
(n− 1)(j + 1)+ 1

)⊕(k−4
j−1).

In particular, all the effective divisors µi are supported on the same set.

Remark 3.2. One can easily check that the number Ai in Theorem 3.1 is precisely

Ai =
1

6k
· rk Ni ·

(
k− 4
i − 1

)
.

22 Bopp and Hoff :::: The relative canonical resolution

Conjecture 1 predicts that the factor
(k−4

i−1

)
of Ai also measures how unbalanced the bundle Ni is.

Remark 3.3. If (g − 1) 6= n · k then one can still consider the jumping loci set-theoretically defined
as the subset of H̃g,k consisting of covers such that the i-th syzygy bundle in the relative canonical
resolution does not have generic splitting type. As in the divisorial case, one could ask if all those loci
are supported on the same set. Experiments using our package [RelativeCanonicalResolution] show that
there are several examples where these jumping loci have different support.

Further conjectures. We state several conjectures concerning the shape of relative canonical resolutions.
This has partly also been discussed in [Bopp and Hoff 2015]. We refer to [Arbarello et al. 1985] for
basics about Brill–Noether theory. Recall that the Brill–Noether number is defined as ρ(g, k, r) :=
g− (r + 1)(g− k+ r) for integers g, k and r .

Conjecture 2. Let C ⊂ Pg−1 be a general canonical curve, and let k be a positive integer such that
ρ := ρ(g, k, 1) ≥ 0, and let g1

k be a general pencil in W 1
k (C). Then for bundles Ni =

⊕
OP1(a(i)j),

i = 2, . . . ,
⌈ k−3

2

⌉
, there is the bound

max
j,l
|a(i)j − a(i)l | ≤min{g− k− 1, i + 1}.

This bound is furthermore sharp in the following sense. Given two integers k ≥ 3 and 2≤ i ≤
⌈ k−3

2

⌉
, there

exists an integer g such that the general canonical curve C of genus g has an i-th syzygy bundle Ni in the
relative canonical resolution, associated to a general pencil in W 1

k (C), that satisfies max j,l |a
(i)
j − a(i)l | =

min{g− k− 1, i + 1}. In particular, if g− k = 2, the relative canonical resolution is balanced.

Remark 3.4. Conjecture 2 in the case g− k = 2 says that the bundles in the relative canonical resolution
are of the form

Ni = O
⊕i ·(g−4

i+1)
P1 ⊕OP1(1)⊕(g−4−i)·(g−4

g−3−i).

Note that the Betti numbers i ·
(k−2

i+1

)
appearing in the conjecture are the Betti numbers of a rational normal

curve of degree k− 2.

We also verified Conjecture 3 for g ≤ 23.

Conjecture 3. For a general cover C→ P1 in Hg,k with ρ(g, k, 1)≤ 0, the bundle N1 is balanced.

ACKNOWLEDGEMENTS. We would like to thank Sascha Blug for setting up the web page [Blug et al.
2018] that displays all the experimental data. This work is a contribution to the Project 1.7 of the SFB-
TRR 195 “Symbolic Tools in Mathematics and their Application” of the German Research Foundation
(DFG). We also thank the referees for suggestions and comments improving the presentation of the article
and the Macaulay2 package.

SUPPLEMENT. The online supplement contains version 1.0 of [RelativeCanonicalResolution].

http://msp.org/jsag/2021/11-1/jsag-v11-n1-x03-RelativeCanonicalResolution.m2

Bopp and Hoff :::: The relative canonical resolution 23

REFERENCES.
[Arbarello et al. 1985] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves, I, Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 267, Springer, 1985. MR

[Ballico 1989] E. Ballico, “A remark on linear series on general k-gonal curves”, Boll. Un. Mat. Ital. A (7) 3:2 (1989), 195–197.
MR

[Blug et al. 2018] S. Blug, C. Bopp, and M. Hoff, “Relative canonical resolutions”, 2018, available at https://www.math.uni-sb.de/
ag/schreyer/images/data/computeralgebra/relcanres/html/.

[Bopp and Hoff 2015] C. Bopp and M. Hoff, “Resolutions of general canonical curves on rational normal scrolls”, Arch. Math.
(Basel) 105:3 (2015), 239–249. MR

[Bopp and Hoff 2017] C. Bopp and M. Hoff, “Moduli of lattice polarized K3 surfaces via relative canonical resolutions”,
preprint, 2017. arXiv

[Bujokas and Patel 2015] G. Bujokas and A. Patel, “Invariants of a general branched cover of P1”, preprint, 2015. arXiv

[Casnati and Ekedahl 1996] G. Casnati and T. Ekedahl, “Covers of algebraic varieties, I: A general structure theorem, covers
of degree 3, 4 and Enriques surfaces”, J. Algebraic Geom. 5:3 (1996), 439–460. MR

[Deopurkar and Patel 2015] A. Deopurkar and A. Patel, “The Picard rank conjecture for the Hurwitz spaces of degree up to
five”, Algebra Number Theory 9:2 (2015), 459–492. MR

[Deopurkar and Patel 2018] A. Deopurkar and A. Patel, “Syzygy divisors on Hurwitz spaces”, pp. 209–222 in Higher genus
curves in mathematical physics and arithmetic geometry, edited by A. Malmendier and T. Shaska, Contemp. Math. 703, Amer.
Math. Soc., Providence, RI, 2018. MR

[Eisenbud and Harris 1987a] D. Eisenbud and J. Harris, “The Kodaira dimension of the moduli space of curves of genus ≥ 23”,
Invent. Math. 90:2 (1987), 359–387. MR

[Eisenbud and Harris 1987b] D. Eisenbud and J. Harris, “On varieties of minimal degree (a centennial account)”, pp. 3–13
in Algebraic geometry (Brunswick, Maine, 1985), edited by S. J. Bloch, Proc. Sympos. Pure Math. 46, Amer. Math. Soc.,
Providence, RI, 1987. MR

[Farkas 2009] G. Farkas, “Koszul divisors on moduli spaces of curves”, Amer. J. Math. 131:3 (2009), 819–867. MR

[Farkas 2018] G. Farkas, “Effective divisors on Hurwitz spaces”, preprint, 2018. arXiv

[van der Geer and Kouvidakis 2017] G. van der Geer and A. Kouvidakis, “The cycle classes of divisorial Maroni loci”, Int.
Math. Res. Not. 2017:11 (2017), 3463–3509. MR

[Harris 1981] J. Harris, “A bound on the geometric genus of projective varieties”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8:1
(1981), 35–68. MR

[Harris and Mumford 1982] J. Harris and D. Mumford, “On the Kodaira dimension of the moduli space of curves”, Invent.
Math. 67:1 (1982), 23–88. MR

[Hirschowitz and Ramanan 1998] A. Hirschowitz and S. Ramanan, “New evidence for Green’s conjecture on syzygies of
canonical curves”, Ann. Sci. École Norm. Sup. (4) 31:2 (1998), 145–152. MR

[Macaulay2] D. R. Grayson and M. E. Stillman, “Macaulay2: a software system for research in algebraic geometry”, available
at http://www.math.uiuc.edu/Macaulay2.

[RelativeCanonicalResolution] C. Bopp and M. Hoff, “RelativeCanonicalResolution - construction of relative canonical res-
olutions and Eagon–Northcott type complexes”, Macaulay2 package, available at https://www.math.uni-sb.de/ag/schreyer/
index.php/computeralgebra.

[Schreyer 1986] F.-O. Schreyer, “Syzygies of canonical curves and special linear series”, Math. Ann. 275:1 (1986), 105–137.
MR

[Voisin 2005] C. Voisin, “Green’s canonical syzygy conjecture for generic curves of odd genus”, Compos. Math. 141:5 (2005),
1163–1190. MR

RECEIVED: 31 Jul 2018 REVISED: 22 Jun 2020 ACCEPTED: 28 Aug 2020

http://dx.doi.org/10.1007/978-1-4757-5323-3
http://msp.org/idx/mr/770932
http://msp.org/idx/mr/1008591
https://www.math.uni-sb.de/ag/schreyer/images/data/computeralgebra/relcanres/html/
http://dx.doi.org/10.1007/s00013-015-0794-x
http://msp.org/idx/mr/3391483
http://msp.org/idx/arx/1704.02753
http://msp.org/idx/arx/1504.03756
http://msp.org/idx/mr/1382731
http://dx.doi.org/10.2140/ant.2015.9.459
http://dx.doi.org/10.2140/ant.2015.9.459
http://msp.org/idx/mr/3320849
http://dx.doi.org/10.1090/conm/703/14139
http://msp.org/idx/mr/3782468
http://dx.doi.org/10.1007/BF01388710
http://msp.org/idx/mr/910206
http://dx.doi.org/10.1090/pspum/046.1/927946
http://msp.org/idx/mr/927946
http://dx.doi.org/10.1353/ajm.0.0053
http://msp.org/idx/mr/2530855
http://msp.org/idx/arx/1804.01898.pdf
http://dx.doi.org/10.1093/imrn/rnw133
http://msp.org/idx/mr/3693656
http://www.numdam.org/item?id=ASNSP_1981_4_8_1_35_0
http://msp.org/idx/mr/616900
http://dx.doi.org/10.1007/BF01393371
http://msp.org/idx/mr/664324
http://dx.doi.org/10.1016/S0012-9593(98)80013-X
http://dx.doi.org/10.1016/S0012-9593(98)80013-X
http://msp.org/idx/mr/1603255
http://www.math.uiuc.edu/Macaulay2
https://www.math.uni-sb.de/ag/schreyer/index.php/computeralgebra
https://www.math.uni-sb.de/ag/schreyer/index.php/computeralgebra
http://dx.doi.org/10.1007/BF01458587
http://msp.org/idx/mr/849058
http://dx.doi.org/10.1112/S0010437X05001387
http://msp.org/idx/mr/2157134

24 Bopp and Hoff :::: The relative canonical resolution

CHRISTIAN BOPP:

bopp@math.uni-sb.de
Universität des Saarlandes, Saarbrücken, Germany

MICHAEL HOFF:

hahn@math.uni-sb.de
Universität des Saarlandes, Saarbrücken, Germany

msp

mailto:bopp@math.uni-sb.de
mailto:hahn@math.uni-sb.de
http://msp.org

JSAG 11 (2021), 25–39 The Journal of Software for
https://doi.org/10.2140/jsag.2021.11.25 Algebra and Geometry

The FrobeniusThresholds package for Macaulay2

DANIEL J. HERNÁNDEZ, KARL SCHWEDE, PEDRO TEIXEIRA AND EMILY E. WITT

ABSTRACT: This article describes the Macaulay2 package FrobeniusThresholds, designed to estimate
and calculate F-pure thresholds, more general F-thresholds, and related numerical invariants arising in
the study of singularities in prime characteristic commutative algebra.

1. INTRODUCTION. This paper describes the Macaulay2 package FrobeniusThresholds [Grayson and
Stillman; Bruce et al.] (previously named FThresholds), which provides tools for computing or esti-
mating certain fundamental invariants in positive characteristic commutative algebra, namely F-pure
thresholds, F-thresholds, and F-jumping exponents. Recall that a ring of prime characteristic p > 0 is
F-pure if the Frobenius map — that is, the ring endomorphism sending an element to its p-th power —
is a pure morphism; under natural geometric hypotheses, this is equivalent to the condition that the
Frobenius morphism is a split injection of rings. The concept of F-purity has proven to be important in
commutative algebra, and has a rich history. It first appeared in [Hochster and Roberts 1976] to study
local cohomology, was compared with rational singularities in [Fedder 1983], and was used to study
global properties of Schubert varieties in [Mehta and Ramanathan 1985].

After the advent of tight closure [Hochster and Huneke 1990], the use of the Frobenius map to quantify
singularity — that is, deviation from regularity — proliferated, and based on a connection discovered
between F-pure and log canonical singularities [Hara and Watanabe 2002], the concept of F-purity was
generalized to the context of pairs. Along these lines, the F-pure threshold was defined in analogy with
the log canonical threshold [Takagi and Watanabe 2004], and F-thresholds were introduced as a natural
extension [Mustat,ǎ et al. 2005].

The connection between the F-pure threshold and the log canonical threshold, however, extends be-
yond mere analogy. For example, suppose h is a polynomial with integer coefficients, and that hp is the
polynomial obtained by reducing the coefficients of h modulo a prime p. Then, the F-pure thresholds of
the reductions hp converge to the log canonical threshold of h as p tends to infinity [Hara and Yoshida
2003]. A related result is [Zhu 2017, Corollary 4.2], which proves that the log canonical threshold of h
is at least the F-pure threshold of any reduction hp.

D. J. Hernández was partially supported by NSF DMS #1600702. K. Schwede was supported by NSF CAREER Grant DMS
#1252860/1501102, NSF FRG Grant DMS #1265261/1501115, NSF grant #1801849 and a Sloan Fellowship. E. E. Witt was
partially supported by NSF DMS #1623035.
MSC2010: 13A35.
Keywords: Macaulay2, F-singularity, Frobenius, F-threshold, F-pure threshold.
FrobeniusThresholds version 2.1

25

https://doi.org/10.2140/jsag.2021.11-1
http://msp.org/jsag
https://doi.org/10.2140/jsag.2021.11.25
http://msp.org/jsag

26 Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2

This latter result is interesting from a computational perspective, in that it provides lower bounds for
log canonical thresholds. Though there is a general purpose implementation of an algorithm for comput-
ing log canonical thresholds in the Dmodules package [Leykin and Tsai],1 the function for computing
F-pure thresholds contained in the FrobeniusThresholds package is typically much faster, especially so
in low characteristic.

In summary, the F-pure threshold is an interesting numerical invariant, related to many other measures
of singularity across all characteristics, and has been the focus of intense study over the past fifteen years.
Unfortunately, it is typically difficult to calculate. The package FrobeniusThresholds is centered on
calculating and estimating the F-pure threshold and other F-thresholds, with the function fpt at its core.
It builds heavily upon the TestIdeals package for Macaulay2 [Bela et al.; Boix et al. 2019], which provides
a broad range of functionality for effective computation in prime characteristic commutative algebra.

1.1. Some background and notation. Though some functionality implemented in FrobeniusThresholds
is not restricted to regular ambient rings (see Section 3), for the sake of concreteness, in this introduction
we will work in a polynomial ring over a finite field of characteristic p. The ideal of this ring generated
by its variables is denoted m.

Let us outline a way in which natural numerical invariants in prime characteristic commutative algebra
are often constructed: For every natural number e, associate to some fixed data—often, a collection
of polynomials or ideals—an integer describing something of relevance that depends on e (e.g., the
dimension of some interesting vector space constructed in terms of the initial data). Normalize this
integer by dividing by some power of pe, and then take the limit as the integer e tends to infinity. The
resulting limit, if it exists, should encode interesting information about the initial data.

For example, the Hilbert–Kunz multiplicity is realized in this way. Suppose that I is an ideal of a
ring R of characteristic p > 0. Given an integer e > 1, I [p

e
] denotes the pe-th Frobenius power of I, that

is, the ideal generated by the pe-th powers of the elements of I. If R has dimension d and λ(R/I [p
e
])

denotes the length of R/I [p
e
], then the limit of λ(R/I [p

e
])/ped as e tends to infinity is the Hilbert–Kunz

multiplicity of R with respect to I.
Consider a nonzero polynomial f and a natural number e. If f does not vanish at the origin, then set

νmf (p
e) :=∞. Otherwise, f ∈m, and we instead define

νmf (p
e) :=max{n ∈ N : f n /∈m[p

e
]
}.

If f n /∈ m[p
e
] for some n, then by the flatness of Frobenius [Kunz 1969], f pn /∈ (m[p

e
])[p] = m[p

e+1
].

Hence the sequence (νmf (p
e)/pe)∞e=0 is nondecreasing, and since f pe

∈m[p
e
], the sequence is bounded

above by 1. Following our outline, we define

cm(f) := lim
e→∞

νmf (p
e)

pe .

1The MultiplierIdeals package [Teitler et al.; Teitler 2015] also computes log canonical thresholds in many special cases,
including monomial ideals, hyperplane arrangements, generic determinantal ideals, and certain binomial ideals.

Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2 27

This limit exists by the above discussion, and is a rational number when f ∈m, though the latter is far
from obvious [Blickle et al. 2008, Theorem 3.1]. Inspired by its connections with the F-purity of pairs,
this limit is called the F-pure threshold of f at the origin.

The F-pure threshold is closely related to many other fundamental concepts in prime characteristic
commutative algebra. For instance,

cm(f)= inf{t > 0 : τ(f t)⊆m} = sup{t > 0 : σ(f t) 6= 0},

where τ(f t) and σ(f t) are the test ideal and F-signature, respectively, associated to f and the formal
nonnegative real exponent t . The former is an ideal in the ambient ring of f , and the latter is a real number;
both depend on the parameter t and the characteristic p in subtle ways [Blickle et al. 2008; 2012].

In the literature, the F-pure threshold cm(f) is often denoted fpt(f), for obvious reasons. However, in
this note we adopt the former notation to avoid any possible confusion with the function fpt described
in Section 4, which sometimes does not output the number cm(f)= fpt(f), but returns, instead, lower
and upper bounds for that number.

It turns out that the sequence (νmf (p
e))∞e=0 itself, and not just its limit, encodes interesting informa-

tion about f . For example, it is closely related to the Bernstein–Sato polynomial of f [Mustat,ǎ et al.
2005]. Remarkably, one can recover the sequence (νmf (p

e))∞e=0 from the limit cm(f) [Mustat,ǎ et al. 2005;
Hernández 2012]: For each e, we have

νmf (p
e)= dpe

· cm(f)e− 1.

We conclude this subsection by briefly reviewing some natural generalizations. Suppose that I and J
are ideals. If I is contained in the radical of J, then we set

ν J
I (p

e) :=max{n ∈ N : I n
6⊆ J [p

e
]
},

or ν J
I (p

e) := 0, when the set on the right-hand side is empty. Otherwise, we set ν J
I (p

e) := ∞. This
clearly generalizes the quantity νmf (p

e) considered earlier, and we call

cJ (I) := lim
e→∞

ν J
I (p

e)

pe

the F-threshold of I with respect to J . This limit again exists, and the value cm(I) is called the F-pure
threshold of I at the origin, and if I = 〈 f 〉 is principal, cJ (f) := cJ (I) is called the F-threshold of f with
respect to J . Like F-pure thresholds, F-thresholds are rational (when finite), and can be characterized
in terms of test ideals.

2. THE frobeniusNu FUNCTION. We first describe the frobeniusNu function, a fundamental compo-
nent of the package FrobeniusThresholds. We adopt the setup established in the introduction: we work in
a polynomial ring R over a finite field of characteristic p > 0, m denotes the ideal generated by the vari-
ables, and e is a natural number. If I and J are ideals of R, the command frobeniusNu(e,I,J) outputs
the extended integer ν J

I (p
e) defined in the introduction; if f is an element of R, frobeniusNu(e,f,J)

28 Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2

outputs ν J
f (p

e) := ν J
〈 f 〉(p

e). When the third argument is omitted from the function frobeniusNu, it is
assumed to be the maximal ideal m.

i1 : R = ZZ/11[x,y];

i2 : I = ideal(x^2 + y^3, x*y);

o2 : Ideal of R

i3 : J = ideal(x^2, y^3);

o3 : Ideal of R

i4 : frobeniusNu(2, I, J)

o4 = 281

i5 : f = x*y*(x^2 + y^2);

i6 : frobeniusNu(2, f, J)

o6 = 120

In general, the function frobeniusNu works by searching through a list of integers n, and checking
containments of the n-th power of I in the specified Frobenius power of J. It is well known that, for any
positive integer e,

ν J
I (p

e)= ν J
I (p

e−1) · p+ L ,

where the error term L is nonnegative and can be explicitly bounded from above in terms of p and the
number of generators of I and J. For instance, the error term L is at most p−1 when I is principal and J
is arbitrary. This implies that when searching for the maximal exponent defining frobeniusNu(e,I,J)
for positive e, it is safe to start at p times the output of frobeniusNu(e-1,I,J), and one need not
search too far past this number.

2.1. Options for frobeniusNu. The user can specify how the search is approached through the option
Search, which can take two values: Binary (the default value) and Linear. In the example below, the
default search method, Binary, is used.

i7 : R = ZZ/5[x,y,z];

i8 : m = ideal(x, y, z);

o8 : Ideal of R

i9 : time frobeniusNu(2, m, m^2)
-- used 1.82479 seconds

o9 = 97

However, a linear search is faster in this case.
i10 : time frobeniusNu(2, m, m^2, Search => Linear)

-- used 0.597035 seconds

o10 = 97

If the option ReturnList is changed from its default value of false to true, frobeniusNu outputs
a list of the values ν J

I (p
s), for s = 0, . . . , e, at no additional computational cost.

i11 : frobeniusNu(5, x^2*y^4 + y^2*z^7 + z^2*x^8, ReturnList => true)

o11 = {0, 1, 8, 44, 224, 1124}

o11 : List

Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2 29

The same information can be found by setting the option Verbose to true, to request that the values
ν J

I (p
s) be printed as they are iteratively computed (serving also as a way to monitor the progress of the

computation).
As described in the introduction, the integer ν J

I (p
e) is the maximal integer n such that the n-th power

of I is not contained in the pe-th Frobenius power of J. However,

I n
⊆ J [p

e
]
⇐⇒ (I n)[1/pe

]
⊆ J,

where (I n)[1/pe
] denotes the pe-th Frobenius root of I n, as defined in [Blickle et al. 2008]. The option

ContainmentTest for frobeniusNu allows the user to choose which of the two types of containment
statements appearing above to use toward the calculation of ν J

I (p
e).

If ContainmentTest is set to StandardPower, then frobeniusNu(e,I,J) is computed by testing
the left-hand containment above, and when it is set to FrobeniusRoot, the right-hand containment is
checked. For efficiency reasons, the default value for ContainmentTest is set to FrobeniusRoot if the
second argument passed to frobeniusNu is a polynomial, and is set to StandardPower if the second
argument is an ideal.

In this example, ContainmentTest is set to its default value for polynomials, namely, FrobeniusRoot:

i12 : R = ZZ/11[x,y,z];

i13 : f = x^3 + y^3 + z^3 + x*y*z;

i14 : time frobeniusNu(3, f)
-- used 0.153691 seconds

o14 = 1209

If ContainmentTest is set to StandardPower, instead, the computation is significantly slower.

i15 : time frobeniusNu(3, f, ContainmentTest => StandardPower)
-- used 10.1343 seconds

o15 = 1209

The option ContainmentTest has a third possible value, called FrobeniusPower, which allows
frobeniusNu to compute a different but analogous invariant. In [Hernández et al. 2020], we introduced
the notion of a (generalized) Frobenius power I [n] of an ideal I, when n is an arbitrary nonnegative inte-
ger. When ContainmentTest is set to FrobeniusPower, rather than computing ν J

I (p
e), the function

frobeniusNu computes the maximal integer n for which I [n] is not contained in J [p
e
]. We denoted this

number by µJ
I (p

e), and it equals ν J
I (p

e) when I is a principal ideal. However, these numbers need not
agree in general, as we see below:

i16 : R = ZZ/3[x,y];

i17 : m = ideal(x, y);

o17 : Ideal of R

i18 : frobeniusNu(4, m^5)

o18 = 32

i19 : frobeniusNu(4, m^5, ContainmentTest => FrobeniusPower)

o19 = 26

30 Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2

As pointed out in the introduction, if f ∈m, the values νmf (p
e) can be recovered from the F-pure thresh-

old of f . This is used to speed up computations for certain polynomials whose F-pure thresholds can
be computed quickly via specialized algorithms or formulas, namely diagonal polynomials, binomials,
forms in two variables, and polynomials that define simple normal crossing divisors (see Section 4). This
feature can be disabled by setting the option UseSpecialAlgorithms (default value true) to false.2

The following example shows, for a diagonal polynomial, how much faster the computation can be
when special algorithms are enabled:

i20 : R = ZZ/17[x,y,z];

i21 : f = x^3 + y^4 + z^5;

i22 : time frobeniusNu(10, f)
-- used 0.0161622 seconds

o22 = 1541642394460

i23 : time frobeniusNu(10, f, UseSpecialAlgorithms => false)
-- used 2.06877 seconds

o23 = 1541642394460

The last option we describe for frobeniusNu is AtOrigin. Recall that νmI (p
e) can be interpreted

as the maximum integer n for which (I n)[1/pe
] is not contained in m. When the option AtOrigin is set

to false (from its default value true), the function frobeniusNu determines, instead, the maximum
integer n for which (I n)[1/pe

] is the unit ideal, which can also be characterized as the minimal integer
νnI (p

e) as n varies among all maximal ideals of the ring.

i24 : R = ZZ/7[x,y];

i25 : f = (x - 1)^3 - (y - 2)^2;

i26 : frobeniusNu(3, f)

o26 = infinity

o26 : InfiniteNumber

i27 : frobeniusNu(3, f, AtOrigin => false)

o27 = 285

3. isFPT, compareFPT AND isFJumpingExponent. The FrobeniusThresholds package contains meth-
ods to test candidate values for F-pure thresholds and F-jumping numbers, even in some singular rings.
Consider a Q-Gorenstein ring R of characteristic p > 0, whose index is not divisible by p. Given a
parameter t ∈ Q and an element f of R, the command isFPT(t, f) checks whether t is the F-pure
threshold of f , while compareFPT(t, f) provides further information, returning -1, 0, or 1 when t is,
respectively, less than, equal to, or greater than the F-pure threshold of f . Setting the option AtOrigin
to true tells the function to consider the F-pure threshold at the origin.

i1 : R = ZZ/11[x,y,z]/(x^2 - y*(z - 1));

i2 : compareFPT(5/11, z - 1)

o2 = -1

2In Section 4.1 we discuss a couple of situations in which this may be desirable.

Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2 31

i3 : isFPT(1/2, z - 1)

o3 = true

i4 : isFPT(1/2, z - 1, AtOrigin => true)

o4 = false

The general method applied calls upon functionality from the TestIdeals package. The test ideals τ(f t)

of f vary discretely with the parameter t ; the function FPureModule in TestIdeals is used to compute
the “last” test ideal of f with parameter in the interval [0, t). Comparing this with the test ideal τ(f t),
computed by the function testIdeal, we can determine whether t is an F-jumping number of f , or
more specifically, the F-pure threshold of f .

i5 : R = ZZ/13[x,y];

i6 : f = y*((y + 1) - (x - 1)^2)*(x - 2)*(x + y - 2);

i7 : isFJumpingExponent(3/4, f)

o7 = true

i8 : isFPT(3/4, f)

o8 = false

4. THE fpt FUNCTION. The core function in the package FrobeniusThresholds is called fpt. Through-
out this section, let f be a polynomial with coefficients in a finite field of characteristic p. When passed
the polynomial f , the function fpt attempts to find the exact value for the F-pure threshold of f at the
origin, and returns that value, if possible. Otherwise, it returns lower and upper bounds for the F-pure
threshold, as demonstrated below.

i1 : R = ZZ/5[x,y,z];

i2 : fpt(x^3 + y^3 + z^3 + x*y*z)

4
o2 = -

5

o2 : QQ

i3 : fpt(x^5 + y^6 + z^7 + (x*y*z)^3)

7 2
o3 = {--, -}

25 5

o3 : List

4.1. The option UseSpecialAlgorithms. The fpt function has an option UseSpecialAlgorithms,
which, when set to true (its default value), tells fpt to first check whether f is a diagonal polynomial,
a binomial, a form in two variables, or a polynomial that defines a simple normal crossing divisor, in that
order. When f is a diagonal polynomial, a binomial, or a form in two variables, algorithms of Hernández
[2015; 2014] or Hernández and Teixeira [2017] are executed to compute the F-pure threshold.

In the example below, we compute the F-pure threshold of a diagonal polynomial.
i4 : fpt(x^17 + y^20 + z^24)

94
o4 = ---

625

o4 : QQ

32 Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2

Next, we compute the F-pure threshold of a binomial.

i5 : fpt(x^2*y^6*z^10 + x^10*y^5*z^3)

997
o5 = ----

6250

o5 : QQ

Finally, we compute the F-pure threshold of a form in two variables.

i6 : R = ZZ/5[x,y];

i7 : fpt(x^2*y^6*(x + y)^9*(x + 3*y)^10)

5787
o7 = -----

78125

o7 : QQ

The algorithm for computing the F-pure threshold of a binary form f requires factoring f into linear
forms, and that may be difficult or impossible when that factorization occurs in a Galois field of exces-
sively large order. This is a situation when the user will want to set the option UseSpecialAlgorithms
to false. However, when a factorization is already known, instead of passing f to fpt, the user can pass
a list of all the pairwise coprime linear factors of f to fpt, and a list of their respective multiplicities.

i8 : fpt({x, y, x + y, x + 3*y}, {2, 6, 9, 10}) == oo

o8 = true

If UseSpecialAlgorithms is set to true and f does not fall into any of the aforementioned cases,
then the function fpt next calls isSimpleNormalCrossing(f) (see Section 4.3) to check whether the
polynomial f defines (locally, at the origin) a simple normal crossing divisor, in which case the F-pure
threshold is simply the reciprocal of the largest multiplicity occurring in that factorization. Note that the
function factor is called whenever isSimpleNormalCrossing is used, and that can sometimes make
the verification slow. The user can avoid this by setting UseSpecialAlgorithms to false.

4.2. When no special algorithm applies. We now explain how the function fpt proceeds when no
special algorithm is available, or when UseSpecialAlgorithms is set to false. In this case, fpt
computes a sequence of lower and upper bounds for the F-pure threshold of f , and either finds its exact
value in this process, or outputs the last of these sets of bounds, which will be the tightest among all
computed. The value of the option DepthOfSearch determines the precision of the initial set of bounds,
and the option Attempts determines, roughly, how many new, tighter sets of bounds are to be computed.

More specifically, let e denote the value of the option DepthOfSearch, which conservatively defaults
to 1. The fpt function first computes ν = ν f (pe), which agrees with the output of frobeniusNu(e,f).
It is well known that the F-pure threshold of f is greater than ν/pe and at most (ν+1)/pe, and applying
[Hernández 2012, Proposition 4.2] to the lower bound tells us that the F-pure threshold of f must be at
least ν/(pe

− 1). In summary, we know that the F-pure threshold of f must lie in the closed interval[
ν

pe− 1
,
ν+ 1

pe

]
. (†)

Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2 33

With these estimates in hand, the subroutine guessFPT is called to make some “educated guesses”
in an attempt to identify the F-pure threshold within this interval, or at least narrow down this interval
to produce improved estimates. The number of “guesses” is controlled by the option Attempts, which
conservatively defaults to 3. If Attempts is set to 0, then guessFPT is bypassed. If Attempts is set
to at least 1, then a first check is run to verify whether the right-hand endpoint (ν+ 1)/pe of the above
interval (†) is the F-pure threshold.

To illustrate these options, first we obtain a rather crude estimate for the F-threshold of a polynomial.

i9 : f = x^2*(x + y)^3*(x + 3*y^2)^5;

i10 : fpt(f, Attempts => 0)

1
o10 = {0, -}

5

o10 : List

Increasing the depth of search, we obtain a better estimate.

i11 : fpt(f, Attempts => 0, DepthOfSearch => 3)

21 22
o11 = {---, ---}

124 125

o11 : List

Finally, increasing the number of attempts we find that the right-hand endpoint of the above interval
is the desired F-pure threshold.

i12 : fpt(f, Attempts => 1, DepthOfSearch => 3)

22
o12 = ---

125

o12 : QQ

If Attempts is set to at least 2 and the right-hand endpoint (ν + 1)/pe of the interval (†) is not the
F-pure threshold, then a second check is run to verify whether the left-hand endpoint ν/(pe

− 1) of this
interval is the F-pure threshold.

i13 : f = x^6*y^4 + x^4*y^9 + (x^2 + y^3)^3;

i14 : fpt(f, Attempts => 1, DepthOfSearch => 3)

17 7
o14 = {--, --}

62 25

o14 : List

With Attempts set to 2, we find that the left-hand endpoint of the above interval is the desired F-pure
threshold.

i15 : fpt(f, Attempts => 2, DepthOfSearch => 3)

17
o15 = --

62

o15 : QQ

34 Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2

If neither endpoint is the F-pure threshold and Attempts is set to more than 2, then additional checks
are performed at certain numbers within the interval. First, a number in the interval is selected, according
to criteria specified by the value of the option GuessStrategy; we refer the reader to the documentation
of this option for more details. Then the function compareFPT is used to test that number. If that “guess”
is correct, its value is returned; otherwise, the information returned by compareFPT is used to narrow
down the interval, and this process is repeated as many times as specified by Attempts.

i16 : f = x^3*y^11*(x + y)^8*(x^2 + y^3)^8;

i17 : fpt(f, DepthOfSearch => 3, Attempts => 4)

1 4
o17 = {--, --}

20 75

o17 : List

i18 : fpt(f, DepthOfSearch => 3, Attempts => 6)

13 4
o18 = {---, --}

250 75

o18 : List

i19 : fpt(f, DepthOfSearch => 3, Attempts => 8)

1
o19 = --

19

o19 : QQ

The option Bounds allows the user to specify known lower and upper bounds for the F-pure threshold
of f , in order to speed up computations or to refine previously obtained estimates.

i20 : f = x^7*y^5*(x + y)^5*(x^2 + y^3)^4;

i21 : fpt(f, DepthOfSearch => 3, Attempts => 5)

19 1
o21 = {---, --}

250 13

o21 : List

i22 : fpt(f, DepthOfSearch => 3, Attempts => 5, Bounds => oo)

45 1
o22 = {---, --}

589 13

o22 : List

If guessFPT is unsuccessful and FinalAttempt is set to true, the fpt function proceeds to use the
convexity of the F-signature function and a secant line argument to attempt to narrow down the interval
bounding the F-pure threshold. If successful, the new lower bound may coincide with the upper bound,
in which case we can conclude that it is the desired F-pure threshold. If this is not the case, a check is
performed to verify if the new lower bound is the F-pure threshold.

i23 : f = 2*x^10*y^8 + x^4*y^7 - 2*x^3*y^8;

i24 : numeric fpt(f, DepthOfSearch => 3)

o24 = {.14, .144}

o24 : List

Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2 35

With FinalAttempt set to true, we can slightly improve this estimate.

i25 : numeric fpt(f, DepthOfSearch => 3, FinalAttempt => true)

o25 = {.142067, .144}

o25 : List

The computations performed when FinalAttempt is set to true are often slow, and often fail to
improve the estimate, and for this reason, this option should be used sparingly. It is typically more
effective to increase the values of Attempts or DepthOfSearch, instead.

i26 : time numeric fpt(f, DepthOfSearch => 3, FinalAttempt => true)
-- used 0.72874 seconds

o26 = {.142067, .144}

o26 : List

i27 : time fpt(f, DepthOfSearch => 3, Attempts => 7)
-- used 0.452872 seconds

1
o27 = -

7

o27 : QQ

i28 : time fpt(f, DepthOfSearch => 4)
-- used 0.338834 seconds

1
o28 = -

7

o28 : QQ

As seen in several examples above, when the exact answer is not found, a list containing the endpoints
of an interval containing the F-pure threshold of f is returned. Whether that interval is open, closed, or
a mixed interval depends on the options passed (it will be open whenever Attempts is set to at least 3);
if the option Verbose is set to true, the precise interval will be printed.

i29 : fpt(f, DepthOfSearch => 3, FinalAttempt => true, Verbose => true)
Starting fpt ...
fpt is not 1 ...
Verifying whether special algorithms apply...
Special fpt algorithms were not used ...
ν has been computed: ν = frobeniusNu(3,f) = 17 ...
fpt lies in the interval [ν/(p^e-1),(ν+1)/p^e] = [17/124,18/125] ...
Starting guessFPT ...
The right-hand endpoint is not the fpt ...
The left-hand endpoint is not the fpt ...
guessFPT narrowed the interval down to (7/50,18/125) ...
Beginning F-signature computation ...
First F-signature computed: s(f,(ν-1)/p^e) = 793/15625 ...
Second F-signature computed: s(f,ν/p^e) = 342/15625 ...
Computed F-signature secant line intercept: 8009/56375 ...
F-signature intercept is an improved lower bound;
Using F-regularity to check if it is the fpt ...
The new lower bound is not the fpt ...
fpt failed to find the exact answer; try increasing the value of

DepthOfSearch or Attempts.
fpt lies in the interval (8009/56375,18/125).

8009 18
o29 = -----, ---

56375 125

o29 : List

36 Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2

Finally, we point out that one can set the option AtOrigin from its default value of true to false, to
compute the F-pure threshold globally. In other words, it computes the minimum of the F-pure threshold
at all maximal ideals.

i30 : R = ZZ/7[x,y];

i31 : f = x*(y - 1)^2 - y*(x - 1)^3;

i32 : fpt(f)

o32 = 1

i33 : fpt(f, AtOrigin => false)

5
o33 = -

6

o33 : QQ

In this case, most features enabled by UseSpecialAlgorithms => true are ignored, except for the
check for simple normal crossings; FinalAttempt => true is also ignored.

4.3. The function isSimpleNormalCrossing. As mentioned earlier, isSimpleNormalCrossing ver-
ifies whether a polynomial f defines a simple normal crossing divisor. Suppose that f has factorization
f ai
1 f a2

2 · · · f an
n . Recall that f defines a simple normal crossing divisor at a point if, locally, its factors form

part of a regular system of parameters. The function isSimpleNormalCrossing determines whether f
defines a simple normal crossing divisor at the origin by computing the Jacobian matrix of each subset
of { f1, . . . , fn} (evaluated at the origin), and checking that these matrices have the expected rank, and
that these subsets generate ideals of the appropriate height.

i34 : R = ZZ/7[x,y,z];

i35 : isSimpleNormalCrossing(x^2 - y^2)

o35 = true

i36 : isSimpleNormalCrossing(x^2 - y*z)

o36 = false

The function isSimpleNormalCrossing is exposed to the user, so can be used independently of any
F-pure threshold calculation. If the user sets its option AtOrigin to false (its default value is true),
then the function checks whether f defines a simple normal crossing divisor everywhere, which can be
much slower, since Jacobian ideals are computed.

i37 : R = QQ[x,y,z];

i38 : f = (y - (x - 1)^2)*y^2;

i39 : isSimpleNormalCrossing(f)

o39 = true

i40 : isSimpleNormalCrossing(f, AtOrigin => false)

o40 = false

5. POSSIBLE FUTURE DIRECTIONS. As a natural and simple way to extend the functionality of the
FrobeniusThresholds package, we wish to implement a method analogous to fpt to compute F-thresholds
of polynomials with respect to arbitrary ideals. Although most of our current specialized algorithms do

Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2 37

not extend to such generality, our “guess-and-check” methods do, and will likely give us an effective
tool in computing or estimating F-thresholds.

The lack of specialized algorithms for the computation of F-thresholds, noted above, has one excep-
tion: the algorithm for computing the F-pure threshold of a homogeneous polynomial in two variables.
Results of [Hernández and Teixeira 2017] show that this algorithm can be easily modified to compute
F-thresholds of such polynomials with respect to ideals generated by two relatively prime homogeneous
polynomials. Once this is implemented, we will be able to compute F-thresholds of polynomials in
two variables homogeneous under nonstandard grading, as those agree with F-thresholds of standard-
homogeneous polynomials (with respect to different ideals). For instance, the F-pure threshold of the
polynomial x6

+ x2 y2
+ y3, homogeneous under the grading deg x = 1, deg y = 2, can be computed as the

F-threshold of the standard-homogeneous polynomial x6
+ x2 y4

+ y6 with respect to the ideal 〈x, y2
〉.

It would be desirable to develop and implement additional algorithms for computing F-pure thresholds
and F-jumping numbers for additional classes of polynomials. Along with Josep Álvarez Montaner,
Jack Jeffries, and Luis Núñez-Betancourt, we are currently working on developing such algorithms. The
theoretical foundation of these algorithms lies in polyhedral geometry and integer programming, making
them natural candidates for implementation in Macaulay2.

Finally, one natural direction of development would be to incorporate the test ideals τ(I t) when
computing F-thresholds in the case where the ideal I is nonprincipal. The theoretical foundation for
computing such test ideals has already largely been worked out in [Schwede and Tucker 2014], but such
an update to the FrobeniusThresholds package would require the TestIdeals package to be updated first.

ACKNOWLEDGEMENTS. The authors enthusiastically thank everyone who helped complete the Frobe-
niusThresholds package: the package coauthors Juliette Bruce and Daniel Smolkin, and contributors
Erin Bela, Zhibek Kadyrsizova, Moty Katzman, Sara Malec, and Marcus Robinson. We also thank the
authors of the TestIdeals package, which, beyond the authors of the present paper and those listed above,
are Alberto Boix, Drew Ellingson, Matthew Mastroeni, and Maral Mostafazadehfard.

Thanks go to the organizers of the Macaulay2 workshops where much of the functionality described
herein was developed, hosted by Wake Forest University in 2012, the University of California, Berkeley
in 2014 and 2017, Boise State University in 2015, and the University of Utah in 2016.

Finally, the authors are grateful to the University of Utah for hosting a collaborative development visit
in 2018, and to the Institute of Mathematics and its Applications for its generous support for our 2019
Coding Sprint. The current version of the package was finalized during these events.

SUPPLEMENT. The online supplement contains version 2.1 of FrobeniusThresholds.

REFERENCES.
[Bela et al.] E. Bela, A. F. Boix, J. Bruce, D. Ellingson, D. J. Hernández, Z. Kadyrsizova, M. Katzman, S. Malec, M. Mastroeni,
M. Mostafazadehfard, M. Robinson, K. Schwede, D. Smolkin, P. Teixeira, and E. E. Witt, “TestIdeals: a package for calcula-
tions of singularities in positive characteristic, version 1.01”, available at https://github.com/Macaulay2/M2/tree/ba24e16/M2/
Macaulay2/packages.

http://msp.org/jsag/2021/11-1/jsag-v11-n1-x04-FrobeniusThresholds.m2
https://github.com/Macaulay2/M2/tree/ba24e16/M2/Macaulay2/packages
https://github.com/Macaulay2/M2/tree/ba24e16/M2/Macaulay2/packages

38 Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2

[Blickle et al. 2008] M. Blickle, M. Mustat,ǎ, and K. E. Smith, “Discreteness and rationality of F-thresholds”, pp. 43–61 , 2008.
MR

[Blickle et al. 2012] M. Blickle, K. Schwede, and K. Tucker, “F-signature of pairs and the asymptotic behavior of Frobenius
splittings”, Adv. Math. 231:6 (2012), 3232–3258. MR

[Boix et al. 2019] A. F. Boix, D. J. Hernández, Z. Kadyrsizova, M. Katzman, S. Malec, M. Robinson, K. Schwede, D. Smolkin,
P. Teixeira, and E. E. Witt, “The TestIdeals package for Macaulay2”, J. Softw. Algebra Geom. 9:2 (2019), 89–110. MR

[Bruce et al.] J. Bruce, D. J. Hernández, K. Schwede, D. Smolkin, P. Teixeira, and E. E. Witt, “FrobeniusThresholds: a
package for computing F-pure thresholds and related invariants, version 2.0”, available at https://github.com/Macaulay2/M2/
tree/5f330a2/M2/Macaulay2/packages.

[Fedder 1983] R. Fedder, “F-purity and rational singularity”, Trans. Amer. Math. Soc. 278:2 (1983), 461–480. MR

[Grayson and Stillman] D. R. Grayson and M. E. Stillman, “Macaulay2, a software system for research in algebraic geometry”,
available at http://www.math.uiuc.edu/Macaulay2/.

[Hara and Watanabe 2002] N. Hara and K.-I. Watanabe, “F-regular and F-pure rings vs. log terminal and log canonical singu-
larities”, J. Algebraic Geom. 11:2 (2002), 363–392. MR

[Hara and Yoshida 2003] N. Hara and K.-I. Yoshida, “A generalization of tight closure and multiplier ideals”, Trans. Amer.
Math. Soc. 355:8 (2003), 3143–3174. MR

[Hernández 2012] D. J. Hernández, “F-purity of hypersurfaces”, Math. Res. Lett. 19:2 (2012), 389–401. MR

[Hernández 2014] D. J. Hernández, “F-pure thresholds of binomial hypersurfaces”, Proc. Amer. Math. Soc. 142:7 (2014),
2227–2242. MR

[Hernández 2015] D. J. Hernández, “F-invariants of diagonal hypersurfaces”, Proc. Amer. Math. Soc. 143:1 (2015), 87–104.
MR

[Hernández and Teixeira 2017] D. J. Hernández and P. Teixeira, “F-threshold functions: syzygy gap fractals and the two-
variable homogeneous case”, J. Symbolic Comput. 80:part 2 (2017), 451–483. MR

[Hernández et al. 2020] D. J. Hernández, P. Teixeira, and E. E. Witt, “Frobenius powers”, Math. Z. 296:1-2 (2020), 541–572.
MR

[Hochster and Huneke 1990] M. Hochster and C. Huneke, “Tight closure, invariant theory, and the Briançon–Skoda theorem”,
J. Amer. Math. Soc. 3:1 (1990), 31–116. MR

[Hochster and Roberts 1976] M. Hochster and J. L. Roberts, “The purity of the Frobenius and local cohomology”, Advances
in Math. 21:2 (1976), 117–172. MR

[Kunz 1969] E. Kunz, “Characterizations of regular local rings of characteristic p”, Amer. J. Math. 91 (1969), 772–784. MR

[Leykin and Tsai] A. Leykin and H. Tsai, “Dmodules: functions for computations with D-modules, version 1.4.0.1”, available
at https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages.

[Mehta and Ramanathan 1985] V. B. Mehta and A. Ramanathan, “Frobenius splitting and cohomology vanishing for Schubert
varieties”, Ann. of Math. (2) 122:1 (1985), 27–40. MR

[Mustat,ǎ et al. 2005] M. Mustat,ǎ, S. Takagi, and K.-i. Watanabe, “F-thresholds and Bernstein–Sato polynomials”, pp. 341–364
in European Congress of Mathematics, edited by A. Laptev, Eur. Math. Soc., Zürich, 2005. MR

[Schwede and Tucker 2014] K. Schwede and K. Tucker, “Test ideals of non-principal ideals: computations, jumping numbers,
alterations and division theorems”, J. Math. Pures Appl. (9) 102:5 (2014), 891–929. MR

[Takagi and Watanabe 2004] S. Takagi and K.-i. Watanabe, “On F-pure thresholds”, J. Algebra 282:1 (2004), 278–297. MR

[Teitler 2015] Z. Teitler, “Software for multiplier ideals”, J. Softw. Algebra Geom. 7 (2015), 1–8. MR

[Teitler et al.] Z. Teitler, B. Snapp, and C. Raicu, “MultiplierIdeals: A Macaulay2 package, version 1.1”, available at https://
github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages.

[Zhu 2017] Z. Zhu, “Log canonical thresholds in positive characteristic”, Math. Z. 287:3-4 (2017), 1235–1253. MR

RECEIVED: 24 Jun 2019 REVISED: 16 Jun 2020 ACCEPTED: 11 Sep 2020

http://dx.doi.org/10.1307/mmj/1220879396
http://msp.org/idx/mr/2492440
http://dx.doi.org/10.1016/j.aim.2012.09.007
http://dx.doi.org/10.1016/j.aim.2012.09.007
http://msp.org/idx/mr/2980498
http://dx.doi.org/10.2140/jsag.2019.9.89
http://msp.org/idx/mr/4020642
https://github.com/Macaulay2/M2/tree/5f330a2/M2/Macaulay2/packages
https://github.com/Macaulay2/M2/tree/5f330a2/M2/Macaulay2/packages
http://dx.doi.org/10.2307/1999165
http://msp.org/idx/mr/701505
http://www.math.uiuc.edu/Macaulay2/
http://dx.doi.org/10.1090/S1056-3911-01-00306-X
http://dx.doi.org/10.1090/S1056-3911-01-00306-X
http://msp.org/idx/mr/1874118
http://dx.doi.org/10.1090/S0002-9947-03-03285-9
http://msp.org/idx/mr/1974679
http://dx.doi.org/10.4310/MRL.2012.v19.n2.a11
http://msp.org/idx/mr/2955770
http://dx.doi.org/10.1090/S0002-9939-2014-11941-1
http://msp.org/idx/mr/3195749
http://dx.doi.org/10.1090/S0002-9939-2014-12260-X
http://msp.org/idx/mr/3272734
http://dx.doi.org/10.1016/j.jsc.2016.07.003
http://dx.doi.org/10.1016/j.jsc.2016.07.003
http://msp.org/idx/mr/3574521
http://dx.doi.org/10.1007/s00209-019-02442-2
http://msp.org/idx/mr/4140753
http://dx.doi.org/10.2307/1990984
http://msp.org/idx/mr/1017784
http://dx.doi.org/10.1016/0001-8708(76)90073-6
http://msp.org/idx/mr/417172
http://dx.doi.org/10.2307/2373351
http://msp.org/idx/mr/252389
https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages
http://dx.doi.org/10.2307/1971368
http://dx.doi.org/10.2307/1971368
http://msp.org/idx/mr/799251
http://msp.org/idx/mr/2185754
http://dx.doi.org/10.1016/j.matpur.2014.02.009
http://dx.doi.org/10.1016/j.matpur.2014.02.009
http://msp.org/idx/mr/3271293
http://dx.doi.org/10.1016/j.jalgebra.2004.07.011
http://msp.org/idx/mr/2097584
http://dx.doi.org/10.2140/jsag.2015.7.1
http://msp.org/idx/mr/3368077
https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages
http://dx.doi.org/10.1007/s00209-017-1866-3
http://msp.org/idx/mr/3719534

Hernández, Schwede, Teixeira and Witt :::: The FrobeniusThresholds package for Macaulay2 39

DANIEL J. HERNÁNDEZ:

hernandez@ku.edu
Department of Mathematics, University of Kansas, Lawrence, KS, United States

KARL SCHWEDE:

schwede@math.utah.edu
Department of Mathematics, The University of Utah, Salt Lake City, UT, United States

PEDRO TEIXEIRA:

pteixeir@knox.edu
Department of Mathematics, Knox College, Galesburg, IL, United States

EMILY E. WITT:

witt@ku.edu
Department of Mathematics, University of Kansas, Lawrence, KS, United States

msp

mailto:hernandez@ku.edu
mailto:schwede@math.utah.edu
mailto:pteixeir@knox.edu
mailto:witt@ku.edu
http://msp.org

JSAG 11 (2021), 41–51 The Journal of Software for
https://doi.org/10.2140/jsag.2021.11.41 Algebra and Geometry

Computing theta functions with Julia

DANIELE AGOSTINI AND LYNN CHUA

ABSTRACT: We present a new package Theta.jl for computing the Riemann theta function. It is
implemented in Julia and offers accurate numerical evaluation of theta functions with characteristics
and their derivatives of arbitrary order. Our package is optimized for multiple evaluations of theta func-
tions for the same Riemann matrix, in small dimensions. As an application, we report on experimental
approaches to the Schottky problem in genus 5.

1. INTRODUCTION. The Riemann theta function is the holomorphic function

θ : Cg
×Hg→ C, θ(z, τ)=

∑
n∈Zg

e
(1

2 ntτn+ nt z
)

(1)

where e(x) = e2π i x and Hg is the Siegel upper-half space, which consists of all complex symmetric
g× g matrices with positive definite imaginary part. Theta functions occupy a central role throughout
mathematics, appearing in fields as diverse as algebraic geometry [Birkenhake and Lange 2004; Mumford
2007], number theory [Mumford 2007; Eichler and Zagier 1985], differential geometry [Agostini et al.
2020], integrable systems [Krichever and Shiota 2013; Segur 2008], discrete mathematics [Regev and
Stephens-Davidowitz 2017], cryptography [Gaudry 2007] and statistics [Agostini and Améndola 2019].

We present a new package Theta.jl for numerical computations of theta functions, programmed in
Julia [Bezanson et al. 2017]. Our package is specialized for multiple evaluations of theta functions for
the same Riemann matrix τ ∈Hg and different z, for small values of the genus g. Our implementation
is based on the algorithm from [Deconinck et al. 2004], which we extend to support computations of
theta functions with characteristics and derivatives of arbitrary order. Our package is designed as an
alternative to existing packages such as algcurves [Deconinck et al. 2004] in Maple, abelfunctions
[Swierczewski and Deconinck 2016] in Sage and [Frauendiener et al. 2019] in Matlab, with additional
functionalities and optimizations.

As an application, we study numerical approaches to the Schottky problem in genus 5. The Schottky
problem seeks to recognize Jacobians of curves amongst principally polarized abelian varieties, and has
been one of the central questions in algebraic geometry since the 19th century [Grushevsky 2012]. The
first nontrivial case of the Schottky problem is in genus 4, which is completely solved [Igusa 1981]. For
a recent approach linking computations and tropical geometry, see [Chua et al. 2019]. In this paper, we

MSC2010: 14-04, 14H42, 14K25, 32-04, 65E99.
Keywords: theta function, numerical, Julia, abelian varieties, Riemann surfaces, Schottky problem, Jacobian.
Theta.jl version 1.0

41

https://doi.org/10.2140/jsag.2021.11-1
http://msp.org/jsag
https://doi.org/10.2140/jsag.2021.11.41
http://msp.org/jsag

42 Agostini and Chua :::: Computing theta functions with Julia

describe computational approaches for studying the Schottky problem in genus 5, using our new package.
In particular, we use Theta.jl to compute the equations in [Farkas et al. 2021; Accola 1983] which
give a weak solution to the Schottky problem in genus 5. We also use our package for computations
on the genus 5 Schottky problem for Jacobians with a vanishing theta null, which is described in our
companion paper [Agostini and Chua 2019].

2. THETA FUNCTIONS. We recall here the basic definitions about theta functions with characteristics.
For a more detailed account we refer to [Birkenhake and Lange 2004; Mumford 2007; Igusa 1981]. A
characteristic is an element m ∈ (Z/2Z)2g, which we represent as a vector m =

[
ε
δ

]
where ε, δ ∈ {0, 1}g.

The Riemann theta function with characteristic m is defined as

θ [m](z, τ)= θ
[
ε

δ

]
(z, τ)=

∑
n∈Zg

e
(

1
2

(
n+ ε

2

)t

τ

(
n+ ε

2

)
+

(
n+ ε

2

)t(
z+ δ

2

))
(2)

and it is a holomorphic function θ [m] : Cg
×Hg→ C. The Riemann theta function in (1) is a special

case of (2), where the characteristic is the all-zero vector. The sign of a characteristic m is defined as
e(m)= (−1)ε

t δ, and we call a characteristic even or odd if the sign is 1 or −1, respectively. As a function
of z, θ [m](z, τ) is even (respectively, odd) if and only if the characteristic m is even (respectively, odd).
There are 2g−1(2g

+ 1) even theta characteristics and 2g−1(2g
− 1) odd theta characteristics.

The theta constants are the functions on Hg obtained by evaluating the theta functions with character-
istics at z = 0,

θ [m](τ)= θ [m](0, τ). (3)

Theta constants corresponding to odd characteristics vanish identically.

3. NUMERICALLY APPROXIMATING THETA FUNCTIONS. We describe in this section the algorithm
that we use to compute theta functions in Theta.jl. In our implementation, we modify the algorithm
from [Deconinck et al. 2004], generalizing it for theta functions with characteristics and derivatives of
arbitrary order.

In this section, we separate z ∈ Cg and τ ∈ Hg into real and imaginary parts, by writing z = x + iy,
τ = X + iY, where x, y ∈ Rg and X, Y are real symmetric g× g matrices. We also denote by Y = T t T
the Cholesky decomposition of Y, where T is upper-triangular. For any real vector V ∈ Rg, we use [V]
to denote the vector whose entries are the entries of V rounded to the closest integers, and we denote
[[V]] = V − [V].

We set v(n) =
√
πT (n + [[Y−1 y]]) and we define the lattice 3 = {v(n) | n ∈ Zg

}, letting ρ be the
length of the shortest nonzero vector in 3. We denote by 0(z, x)=

∫
∞

x t z−1e−t dt the incomplete Gamma
function.

3A. Theta functions with characteristics. Deconick et al. [2004] derive numerical approximations of
the theta function and its first and second derivatives. We extend their results for computing theta func-
tions with characteristics and derivatives of arbitrary order.

Agostini and Chua :::: Computing theta functions with Julia 43

We denote the N -th order derivative of the theta function along the vectors k(1), . . . , k(N) as

D(k(1), . . . , k(N))θ(z, τ)=
g∑

i1,...,iN=1

k(1)i1
· · · k(N)iN

∂Nθ(z, τ)
∂zi1 · · · ∂ziN

. (4)

By the quasiperiodicity of the theta function, it suffices to consider inputs z of the form z = a+ τb,
for a, b ∈ [0, 1)g.

Theorem 3.1. Fix τ ∈ Hg, ε > 0. Let k(1), . . . , k(N) ∈ Cg be unit vectors, and let R be the greater of
1
2

√
g+ 2N +

√
g2+ 8N + ρ

2 and the real positive solution of R in

ε = (2π)N g
2

(
2
ρ

)g N∑
j=0

(
N
j

)
1
π j/2 ‖T

−1
‖

j√gN− j
0

(
g+ j

2
,

(
R−

ρ

2

)2)
. (5)

For z of the form z = a+ τb, for a, b ∈ [0, 1)g, and
[
ε
δ

]
∈ {0, 1}2g, the N-th derivative

D(k(1), . . . , k(N))θ
[
ε

δ

]
(z, τ)

of the theta function with characteristic is approximated by

eπyt Y−1 y(2π i)N
∑

n∈CR

(k(1)·(n− η)) · · · (k(N)·(n− η))

×e
(

1
2
(n− η)t X (n− η)+ (n− η)t

(
x +

δ

2

))
e−‖v(n+

ε
2)‖

2
, (6)

with an absolute error ε on the product of (2π i)N with the sum, where η = [Y−1 y] − ε
2 and

CR = {n ∈ Zg
| π(n− c)t Y (n− c) < R2, |c j |< 1, for all j = 1, . . . , g}. (7)

Proof. We first consider the case N = 0 without derivatives. Then the result for characteristics ε = δ = 0
is proven in [Deconinck et al. 2004, Theorem 2], where they replace the deformed ellipsoid CR in (7)
with the ellipsoid

SR = {n ∈ Zg
| ‖v(n)‖< R}. (8)

For arbitrary characteristics ε, δ, we see from (2) that we can compute the corresponding theta function
in a similar way to the usual theta function, by translating z to z+ δ

2 , and translating the lattice points in
the sum from n to n+ ε

2 . Note that this only changes the real part of z, while the imaginary part stays
the same. Hence the approximation in Theorem 3.1 holds for theta functions with characteristics, if we
take the sum over the ellipsoid

SR,ε =

{
n ∈ Zg

∣∣∣∣ ∥∥∥∥v(n+
ε

2

)∥∥∥∥< R
}
. (9)

To obtain a uniform approximation for any z ∈ Cg and any characteristic, we take the union of the
ellipsoids SR,ε from (9) as z and ε vary. Since v

(
n + ε

2

)
=
√
πT

(
n + [[Y−1 y]] + ε

2

)
, and the entries

44 Agostini and Chua :::: Computing theta functions with Julia

of [[Y−1 y]] + ε
2 have absolute value at most 1, it follows that the deformed ellipsoid CR from (7) is the

union of the ellipsoids SR,ε.
To prove the result in the case of derivatives of order N, it will be enough to prove it for the case of

zero characteristics, and then follow the same strategy as above. More precisely, we are going to prove
the same statement as in Theorem 3.1, where ε = δ = 0 and CR is replaced by

UR = {n ∈ Zg
| π(n− c)t Y (n− c) < R2, |c j |< 1/2, for all j = 1, . . . , g}. (10)

To do so, we write the derivative as

D(k(1), . . . , k(N))θ(z, τ)= (2π i)N
∑
n∈Zg

(k(1)·n) · · · (k(N)·n)e
(1

2 ntτn+ nt z
)

and then the error in the approximation is

ε =

∣∣∣∣(2π i)N
∑

n∈Zg\UR

(k(1)·(n− [Y−1 y])) · · · (k(N)·(n− [Y−1 y]))

×e
(1

2(n− [Y
−1 y])t X (n− [Y−1 y])+ (n− [Y−1 y])t x

)
e−‖v(n)‖

2
∣∣∣∣

Since the k(i) have norm one, using the triangle inequality and the Cauchy–Schwarz inequality we can
bound this by

ε ≤ (2π)N
∑

n∈Zg\UR

‖n− [Y−1 y]‖N e−‖v(n)‖
2
= (2π)N

∑
n∈Zg\UR

∥∥∥∥ 1
√
π

T−1v(n)− Y−1 y
∥∥∥∥N

e−‖v(n)‖
2

.

Using again the triangle inequality and the binomial expansion, we get to the bound

ε ≤ (2π)N
N∑

j=0

(
N
j

)
1
π j/2 ‖T

−1
‖

j
‖Y−1 y‖N− j

∑
n∈Zg\UR

‖v(n)‖ j e−‖v(n)‖
2
.

We then apply [Deconinck et al. 2004, Lemma 2] to get the bound

ε ≤ (2π)N
N∑

j=0

(
N
j

)
1
π j/2 ‖T

−1
‖

j
‖Y−1 y‖N− j g

2

(
2
ρ

)g

0

(
g+ j

2
,

(
R−

ρ

2

)2)
,

≤ (2π)N g
2

(
2
ρ

)g N∑
j=0

(
N
j

)
1
π j/2 ‖T

−1
‖

j
‖Y−1 y‖N− j0

(
g+ j

2
,

(
R−

ρ

2

)2)
.

For inputs z of the form z = a+ τb, we can write z as z = a+ (X + iY)b = (a+ Xb)+ iY b = x + iy.
Then ‖Y−1 y‖ = ‖b‖ ≤

√
g. Substituting this into the expression for ε, the result follows. �

Remark 3.2. The R appearing in Theorem 3.1 is computed numerically.

4. COMPUTING THETA FUNCTIONS IN JULIA.

4A. Interface. Our Julia package Theta.jl is available at the following website, which has instructions
and a link to more detailed documentation:

https://github.com/chualynn/Theta.jl

https://github.com/chualynn/Theta.jl

Agostini and Chua :::: Computing theta functions with Julia 45

We describe the basic interface of the package here. Starting with a matrix τ ∈Hg, we first construct a
RiemannMatrix from it. This is a type in Theta.jl which contains information needed to compute the
theta function with input τ . As an example, we start with a genus 5 curve defined by the singular model

x6 y2
−4x4 y2

−2x3 y3
−2x4 y+2x3 y+4x2 y2

+3xy3
+y4
+4x2 y+2xy2

+x2
−4xy−2y2

−2x+1. (11)

We compute the Riemann matrix τ of the curve using the package [Bruin et al. 2019] in [SageMath], and
we type it as an input in Julia. We then construct a RiemannMatrix in Theta.jl, where we specify in
the input the options to compute a Siegel transformation, an error of 10−12, and to compute derivatives
up to the fourth order.

julia> R = RiemannMatrix(τ, siegel=true, ϵ=1.0e-12, nderivs=4);

We pick some input z and compute the theta function θ(z, τ) as follows:

julia> z = [1.041+0.996im; 1.254+0.669im; 0.591+0.509im; -0.301+0.599im; 0.388+0.051im];

julia> theta(z, R)

-854877.6514446283 + 2.3935081163150463e6im

We can compute derivatives of theta functions by specifying the directions using the optional argument
derivs. For instance, to compute ∂3θ

∂z3∂z4
(z, τ), we use

julia> theta(z, R, derivs=[[0,0,1,0,0], [0,0,0,1,0]])

1.0478325534969474e8 - 3.369999441122761e8im

We can also compute derivatives of theta functions with characteristics, where we specify the charac-
teristic using the optional argument char.

julia> theta(z, R, derivs=[[1,0,0,0,0]], char=[[0,1,0,0,1],[1,1,0,0,1]])

-2.448093122926732e7 + 3.582557740667034e7im

4B. Algorithms. We describe here some details of the algorithms and the design choices that we made
in our implementation.

Choice of ellipsoid. We optimize our package for multiple evaluations of theta functions at the same
Riemann matrix τ , and with different inputs z, characteristics and derivatives. We do this using the
approximation in Theorem 3.1, which allows us to compute derivatives of theta functions with charac-
teristics, for inputs z of the form z = a+ τb, for a, b ∈ [0, 1)g. In this approximation, we take the sum
over the deformed ellipsoid CR of (7), which depends only on the order N of the derivative for a fixed τ .
Hence it suffices to compute the ellipsoids CR once for each order of the derivative that we are interested
in, after which we can compute theta functions for any N -th order derivatives. These ellipsoids are stored
in the RiemannMatrix type.

Lattice reductions. In [Deconinck et al. 2004], the authors approximate the length ρ of the shortest vector
of the lattice generated by T using the LLL algorithm by Lenstra, Lenstra and Lovász [Lenstra et al. 1982].

46 Agostini and Chua :::: Computing theta functions with Julia

This is a reasonable choice if g is large, since the LLL algorithm gives a polynomial time approximation,
but with an error that grows exponentially with g. In our implementation, since we focus on lattices with
small dimensions, we compute the shortest vector exactly using the enumeration algorithm in [Schnorr
and Euchner 1994]. Moreover, by computing ρ exactly, we obtain a smaller ellipsoid (7) than if we use
the LLL algorithm.

If we are interested in computing the theta function for a fixed τ at many values of z, it may be more
efficient if we transform τ such that the ellipsoids in (7) contain fewer lattice points. For this purpose,
we use Siegel’s algorithm, which iteratively finds a new matrix where the corresponding ellipsoid has
a smaller eccentricity. In our implementation, we compute the Siegel transformation once for each
Riemann matrix, and work with the Siegel-transformed matrix for all computations. We use the algorithm
for Siegel reduction described in [Deconinck et al. 2004; Frauendiener et al. 2019], where we use the
algorithm for HKZ reduction in [Zhang et al. 2012] as a subroutine.

4C. Comparisons with other packages. The main advantage of Theta.jl over other packages [De-
coninck et al. 2004; Frauendiener et al. 2019; Swierczewski and Deconinck 2016] is that we support
computations of theta functions with characteristics, as well as their derivatives, which to our knowledge
is not implemented elsewhere. Moreover, we make optimizations described in Section 4B for faster
computations with a fixed Riemann matrix of low genus.

We compare the performance of Theta.jl with the Sage package abelfunctions [Swierczewski
and Deconinck 2016], by comparing the average time taken to compute the genus 5 FGSM relations of
Section 5A, as well as to compute the Hessian matrix of Section 5C. For our experiments, we sample
matrices in the Siegel upper-half space as follows. First we sample 5× 5 matrices MX ,MY such that
the entries are random floating point numbers between −1 and 1, using the random number generators
in Julia and NumPy. Then we sample τ ∈ H5 as τ = 1

2(MX + M t
X)+ M t

Y MY i . This is implemented
in Theta.jl for general dimensions g, in the function random_siegel(g). In each experiment, we
randomly sample 1000 such matrices, then we compute the FGSM relations and the Hessian matrix using
both packages on a standard laptop. We list in the table below the average time and standard deviation.

experiment package average time (s) standard deviation (s)

FGSM Theta.jl 2.5 0.6
abelfunctions 114.2 290.5

Hessian Theta.jl 0.7 0.2
abelfunctions 20.3 58.0

One major reason for the faster runtime on Theta.jl is the use of the Siegel transformation on the
Riemann matrix, which is not implemented in abelfunctions. This also leads to the higher standard
deviation in the computations for the latter.

5. APPLICATIONS TO THE SCHOTTKY PROBLEM IN GENUS 5. Here we describe the main application
that we had in mind when designing our package: experiments around the Schottky problem in genus 5.
We start with a brief account of the background of the problem; see [Grushevsky 2012] for more details.

Agostini and Chua :::: Computing theta functions with Julia 47

An abelian variety is a projective variety that has the structure of an algebraic group, and it is a fun-
damental object in algebraic geometry. Especially important are principally polarized abelian varieties,
which can all be described in terms of Riemann matrices. For every τ ∈ Hg, we define the corresponding
principally polarized abelian variety (ppav) as the quotient Aτ = Cg/3τ , where 3τ = Zg

⊕ τZg is a
sublattice of Cg. The polarization on Aτ is given by the theta divisor

2τ = {z ∈ Aτ | θ(z, τ)= 0}. (12)

Two ppavs Aτ and Aτ ′ are isomorphic if and only if the corresponding Riemann matrices are related
via an action of the symplectic group 0g = Sp(2g,Z). Hence, the quotient Ag = Hg/Sp(2g,Z) is the
moduli space of principally polarized abelian varieties of dimension g. This is a quasiprojective variety
of dimension dimAg = dim Hg =

1
2 g(g + 1), and we can look at the theta constants θ [m](0, τ) as

homogeneous coordinates on (a finite cover of) Ag.
Perhaps the most important examples of abelian varieties are Jacobians of Riemann surfaces. The

Jacobian of a Riemann surface C of genus g is defined as the quotient

J (C)= H 0(C, ωC)
∨/H1(C,Z), (13)

where the lattice H 1(C,Z) is embedded in H 0(C, ωC)
∨ via the integration pairing

H 0(C, ωC)× H 1(C,Z)→ C, (ω, α) 7→

∫
α

ω. (14)

The Jacobian is a principally polarized abelian variety, and the corresponding Riemann matrix τ ∈Ag

can be obtained by computing bases of H 0(C, ωC) and H 1(C,Z), as well as the integration pairing. This
is implemented numerically in the packages abelfunctions [Swierczewski and Deconinck 2016] and
RiemannSurfaces [Bruin et al. 2019] in Sage, and algcurves [Deconinck et al. 2004] in Maple.

The Schottky locus Jg is the closure of the set of Jacobian varieties in Ag, and the Schottky problem
asks for a characterization of Jg inside Ag. It is one of the most celebrated questions in algebraic
geometry, dating from the 19th century. There are many possible interpretations of and solutions to
the Schottky problem. Here we focus on the most classical one, which asks for equations in the theta
constants θ [m](0, τ) that vanish exactly on the Schottky locus. In this form, the Schottky problem is
completely solved only in genus 4, with an explicit equation given by Schottky and Igusa [Igusa 1981].
A computational implementation and analysis of this solution was presented in [Chua et al. 2019].

The weak Schottky problem asks for explicit equations that characterize Jacobians up to extra irre-
ducible components. A solution to this problem was given in genus 5 by Accola [1983], and in a recent
breakthrough, by Farkas, Grushevsky and Salvati Manni in all genera [Farkas et al. 2021]. In the rest of
this section, we discuss briefly these two solutions, together with related algorithms that we implemented
in Theta.jl. We also present a computational solution of a weak Schottky problem for genus 5 Jacobians
with a theta null, from our companion paper [Agostini and Chua 2019].

5A. Farkas, Grushevsky and Salvati Manni’s solution. In [Farkas et al. 2021], H. Farkas, Grushevsky
and Salvati Manni give a solution to the weak Schottky problem in arbitrary genus. More precisely, for

48 Agostini and Chua :::: Computing theta functions with Julia

every genus g ≥ 4 they give
(g−2

2

)
=

1
2(g− 2)(g− 3) explicit homogeneous equations of degree 23·2g−4

+1

in the theta constants, such that their zero locus contains the Schottky locus as an irreducible component.
In the case of genus 5, this gives three equations of degree 128. We implement them in the function

fgsm() in Theta.jl. Using the same example matrix τ from Section 4A, the function fgsm(τ) gives
us the output 7.850462293418876e-16. This is expected since τ is the Jacobian of a genus 5 curve.

5B. Accola’s equations in genus 5. A solution to the weak Schottky problem in genus 5 was given
in [Accola 1983], in the form of eight equations of degree 32 in the theta constants whose zero locus
contains the Schottky locus as an irreducible component. We implement these equations in the function
accola() in Theta.jl. Again using the example τ from Section 4A, the function accola(τ) gives us
the output 3.062334813867916e-9, which is expected since τ is in the Schottky locus.

5C. The Schottky problem for Jacobians with a vanishing theta null. We describe here a variant of
the Schottky problem focusing on two-torsion points on Jacobians, referring to our companion article
[Agostini and Chua 2019] for a more complete account. A two-torsion point on an abelian variety Aτ is
a point z ∈ Aτ such that 2z = 0. These can be written as

z = ε
2
+ τ

δ

2
, for m =

[
ε

δ

]
∈ (Z/2Z)2g. (15)

Hence two-torsion points correspond to characteristics, and we say that such a point is even or odd if the
corresponding characteristic is. Observe that

θ
(
ε

2
+ τ

δ

2
, τ
)
= 0 if and only if θ

[
ε

δ

]
(0, τ)= 0. (16)

Thus the two-torsion points in 2τ correspond to the characteristics m such that the theta constants
θ [m](0, τ) vanish. For this reason, we say that Aτ has a vanishing theta null if it has an even two-
torsion point in the theta divisor. The abelian varieties with this property have been intensely studied and
they form a divisor θnull in Ag. The Jacobians with a vanishing theta null lie in the locus Jg ∩ θnull and
they correspond to Riemann surfaces with an effective even theta characteristic. The Schottky problem
in this case becomes that of recognizing Jg ∩ θnull inside θnull.

The first observation is that a vanishing theta null is automatically a singular point of the theta divisor,
because the partial derivatives ∂θ [m]/∂zi are odd. Hence one is led to study the local structure of 2τ
around the singular point, and the first natural invariant is the rank of the quadric tangent cone, which
corresponds to the rank of the Hessian matrix of θ at the theta null. In particular, if a Jacobian has a
vanishing theta null, then the quadric tangent cone has rank at most 3. Hence

Jg ∩ θnull ⊆ θ
3
null, (17)

where we denote by θ3
null the locus of abelian varieties with a vanishing theta null whose quadric tangent

cone has rank at most 3. Conversely, Grushevsky and Salvati Manni [2008] proved that this inclu-
sion is actually an equality in genus 4, confirming a conjecture of Farkas. In the same paper, they ask

Agostini and Chua :::: Computing theta functions with Julia 49

whether Jg ∩ θnull is an irreducible component of θ3
null in higher genera, which would imply a solution to

the weak Schottky problem for Jacobians with a vanishing theta null. The main result of our companion
paper [Agostini and Chua 2019] is an affirmative answer in genus 5.

Theorem 5.1 [Agostini and Chua 2019]. In genus 5, the locus J5 ∩ θnull is an irreducible component
of θ3

null.

We observe that the containment τ ∈ θ3
null can be checked explicitly. Indeed, the condition of having

an even two-torsion point in the theta divisor can be checked by evaluating the finitely many theta
constants θ [m](0, τ), and then numerically computing the rank of the Hessian matrix. We present such
a computation here, which is also in [Agostini and Chua 2019]. From the example in Section 4A, we
use the function schottky_null(τ) in Theta.jl. The output gives the even characteristic

m =
[

1 0 0 1 0
1 0 1 1 0

]
, (18)

where the theta constant vanishes. The output also gives the corresponding Hessian matrix
−2.79665+ 5.29764i −9.57825− 9.04671i 7.36305+ 2.28697i 7.58338+ 5.34729i 6.15667− 1.90199i
−9.57825− 9.04671i 18.9738+ 8.34582i −23.1027− 3.10545i −9.31944− 0.822821i 0.524289− 3.64991i
7.36305+ 2.28697i −23.1027− 3.10545i 16.8441− 1.15986i 13.9363− 4.56541i −3.32248+ 4.10698i
7.58338+ 5.34729i −9.31944− 0.822821i 13.9363− 4.56541i 2.89309+ 1.21773i 3.86617− 0.546202i
6.15667− 1.90199i 0.524289− 3.64991i −3.32248+ 4.10698i 3.86617− 0.546202i −12.9726− 1.928i

.

The Hessian has the eigenvalues
47.946229109152995+ 9.491932144035298i,

−15.491689246713147+ 3.3401255907497958i,

−9.512858919129267− 1.0587349322052013i,

−2.7271385943272036× 10−15
− 1.1117459994936022i × 10−14,

−5.698014266322794× 10−15
+ 6.342925068807627i × 10−15,

so it has numerical rank 3 as expected.

ACKNOWLEDGMENTS. We are grateful to Bernd Sturmfels for the suggestion to study the Schottky
problem in genus 5, and for his continuous encouragement. We thank Paul Breiding, Gavril Farkas, Jörg
Frauendiener, Sam Grushevsky, Christian Klein, Riccardo Salvati Manni, Andrey Soldatenkov, Sasha
Timme and Sandro Verra for useful comments and discussions. We thank the anonymous referees for
their suggestions, which improved the quality of the paper and of the code. This project was initated at
the Max Planck Institute for Mathematics in the Sciences in Leipzig, which both authors would like to
thank for the hospitality and support at various stages of this work.

SUPPLEMENT. The online supplement contains version 1.0 of Theta.jl.

REFERENCES.
[Accola 1983] R. D. M. Accola, “On defining equations for the Jacobian locus in genus five”, Proc. Amer. Math. Soc. 89:3
(1983), 445–448. MR

http://msp.org/jsag/2021/11-1/jsag-v11-n1-x05-Theta.jl.zip
http://dx.doi.org/10.2307/2045493
http://msp.org/idx/mr/715863

50 Agostini and Chua :::: Computing theta functions with Julia

[Agostini and Améndola 2019] D. Agostini and C. Améndola, “Discrete Gaussian distributions via theta functions”, SIAM J.
Appl. Algebra Geom. 3:1 (2019), 1–30. MR

[Agostini and Chua 2019] D. Agostini and L. Chua, “On the Schottky problem for genus five Jacobians with a vanishing theta
null”, 2019. To appear in Ann. Scuola Norm. Sci. arXiv

[Agostini et al. 2020] D. Agostini, T. Çelik, J. Struwe, and B. Sturmfels, “Theta surfaces”, Vietnam J. Math. (2020).

[Bezanson et al. 2017] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: a fresh approach to numerical comput-
ing”, SIAM Rev. 59:1 (2017), 65–98. MR

[Birkenhake and Lange 2004] C. Birkenhake and H. Lange, Complex abelian varieties, 2nd ed., Grundlehren der Mathematis-
chen Wissenschaften [Fundamental Principles of Mathematical Sciences] 302, Springer, 2004. MR

[Bruin et al. 2019] N. Bruin, J. Sijsling, and A. Zotine, “Riemann matrices and endomorphism rings of algebraic Riemann
surfaces”, 2019, http://doc.sagemath.org/html/en/reference/curves/sage/schemes/riemann_surfaces/riemann_surface.html.

[Chua et al. 2019] L. Chua, M. Kummer, and B. Sturmfels, “Schottky algorithms: classical meets tropical”, Math. Comp.
88:319 (2019), 2541–2558. MR

[Deconinck et al. 2004] B. Deconinck, M. Heil, A. Bobenko, M. van Hoeij, and M. Schmies, “Computing Riemann theta
functions”, Math. Comp. 73:247 (2004), 1417–1442. MR

[Eichler and Zagier 1985] M. Eichler and D. Zagier, The theory of Jacobi forms, Progress in Mathematics 55, Birkhäuser,
Boston, 1985. MR

[Farkas et al. 2021] H. M. Farkas, S. Grushevsky, and R. S. Manni, “An explicit solution to the weak Schottky problem”, Algebr.
Geom. 8:3 (2021), 358–373. MR

[Frauendiener et al. 2019] J. Frauendiener, C. Jaber, and C. Klein, “Efficient computation of multidimensional theta functions”,
J. Geom. Phys. 141 (2019), 147–158. MR

[Gaudry 2007] P. Gaudry, “Fast genus 2 arithmetic based on theta functions”, J. Math. Cryptol. 1:3 (2007), 243–265. MR

[Grushevsky 2012] S. Grushevsky, “The Schottky problem”, pp. 129–164 in Current developments in algebraic geometry,
edited by M. M. Lucia Caporaso, James McKernan and M. Popa, Math. Sci. Res. Inst. Publ. 59, Cambridge Univ. Press, 2012.
MR

[Grushevsky and Manni 2008] S. Grushevsky and R. S. Manni, “Jacobians with a vanishing theta-null in genus 4”, Israel J.
Math. 164 (2008), 303–315. MR

[Igusa 1981] J.-i. Igusa, “On the irreducibility of Schottky’s divisor”, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28:3 (1981),
531–545. MR

[Krichever and Shiota 2013] I. Krichever and T. Shiota, “Soliton equations and the Riemann–Schottky problem”, pp. 205–258
in Handbook of moduli, II, edited by G. Farkas and I. Morrison, Adv. Lect. Math. (ALM) 25, International Press, Somerville,
MA, 2013. MR

[Lenstra et al. 1982] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, “Factoring polynomials with rational coefficients”, Math.
Ann. 261:4 (1982), 515–534. MR

[Mumford 2007] D. Mumford, Tata lectures on theta, I, Birkhäuser, Boston, 2007. MR

[Regev and Stephens-Davidowitz 2017] O. Regev and N. Stephens-Davidowitz, “An inequality for Gaussians on lattices”,
SIAM J. Discrete Math. 31:2 (2017), 749–757. MR

[SageMath] The Sage Developers, “SageMath, the Sage Mathematics Software System (Version 8.6)”, https://www.sagemath.org.

[Schnorr and Euchner 1994] C.-P. Schnorr and M. Euchner, “Lattice basis reduction: improved practical algorithms and solving
subset sum problems”, Math. Programming 66:2, Ser. A (1994), 181–199. MR

[Segur 2008] H. Segur, “Integrable models of waves in shallow water”, pp. 345–371 in Probability, geometry and integrable
systems, edited by M. Pinsky and B. Birnir, Math. Sci. Res. Inst. Publ. 55, Cambridge Univ. Press, 2008. MR

[Swierczewski and Deconinck 2016] C. Swierczewski and B. Deconinck, “Computing Riemann theta functions in Sage with
applications”, Math. Comput. Simulation 127 (2016), 263–272. MR

[Zhang et al. 2012] W. Zhang, S. Qiao, and Y. Wei, “HKZ and Minkowski reduction algorithms for lattice-reduction-aided
MIMO detection”, IEEE Trans. Signal Process. 60:11 (2012), 5963–5976. MR

http://dx.doi.org/10.1137/18M1164937
http://msp.org/idx/mr/3904412
http://msp.org/idx/arx/1905.09366
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1137/141000671
http://msp.org/idx/mr/3605826
http://dx.doi.org/10.1007/978-3-662-06307-1
http://msp.org/idx/mr/2062673
http://doc.sagemath.org/html/en/reference/curves/sage/schemes/riemann_surfaces/riemann_surface.html
http://doc.sagemath.org/html/en/reference/curves/sage/schemes/riemann_surfaces/riemann_surface.html
http://dx.doi.org/10.1090/mcom/3406
http://msp.org/idx/mr/3957905
http://dx.doi.org/10.1090/S0025-5718-03-01609-0
http://dx.doi.org/10.1090/S0025-5718-03-01609-0
http://msp.org/idx/mr/2047094
http://dx.doi.org/10.1007/978-1-4684-9162-3
http://msp.org/idx/mr/781735
http://dx.doi.org/10.14231/ag-2021-009
http://msp.org/idx/mr/4206440
http://dx.doi.org/10.1016/j.geomphys.2019.03.011
http://msp.org/idx/mr/3937404
http://dx.doi.org/10.1515/JMC.2007.012
http://msp.org/idx/mr/2372155
http://msp.org/idx/mr/2931868
http://dx.doi.org/10.1007/s11856-008-0031-4
http://msp.org/idx/mr/2391151
http://msp.org/idx/mr/656035
http://msp.org/idx/mr/3184178
http://dx.doi.org/10.1007/BF01457454
http://msp.org/idx/mr/682664
http://dx.doi.org/10.1007/978-0-8176-4578-6
http://msp.org/idx/mr/2352717
http://dx.doi.org/10.1137/15M1052226
http://msp.org/idx/mr/3632259
https://www.sagemath.org
http://dx.doi.org/10.1007/BF01581144
http://dx.doi.org/10.1007/BF01581144
http://msp.org/idx/mr/1297061
http://msp.org/idx/mr/2407604
http://dx.doi.org/10.1016/j.matcom.2013.04.018
http://dx.doi.org/10.1016/j.matcom.2013.04.018
http://msp.org/idx/mr/3501304
http://dx.doi.org/10.1109/TSP.2012.2210708
http://dx.doi.org/10.1109/TSP.2012.2210708
http://msp.org/idx/mr/2990298

Agostini and Chua :::: Computing theta functions with Julia 51

RECEIVED: 21 Feb 2020 REVISED: 21 Oct 2020 ACCEPTED: 9 Nov 2020

DANIELE AGOSTINI:

daniele.agostini@mis.mpg.de
Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, Germany

LYNN CHUA:

lchua@caltech.edu
Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, United States

msp

mailto:daniele.agostini@mis.mpg.de
mailto:lchua@caltech.edu
http://msp.org

JSAG 11 (2021), 53–59 The Journal of Software for
https://doi.org/10.2140/jsag.2021.11.53 Algebra and Geometry

Decomposable sparse polynomial systems

TAYLOR BRYSIEWICZ, JOSE ISRAEL RODRIGUEZ, FRANK SOTTILE AND THOMAS YAHL

ABSTRACT: The Macaulay2 package DecomposableSparseSystems implements methods for study-
ing and numerically solving decomposable sparse polynomial systems. We describe the structure of
decomposable sparse systems and explain how the methods in this package may be used to exploit this
structure, with examples.

1. INTRODUCTION. Améndola and Rodriguez [2016] gave numerical methods to efficiently solve sys-
tems of sparse polynomial equations in a family, when that family is decomposable (Definition 1). A
consequence of Esterov’s study of Galois groups of systems of sparse polynomial equations [2019] is that
for sparse systems, recognizing and computing a decomposition is algorithmic. Solving a decomposable
sparse system reduces to solving two smaller sparse polynomial systems. In [Brysiewicz et al. 2021],
we presented algorithms to detect and compute such decompositions, and a recursive algorithm exploit-
ing decomposability for solving a decomposable sparse polynomial system using numerical homotopy
continuation.

The Macaulay2 package DecomposableSparseSystems implements methods for decomposable
sparse polynomial systems. These include methods to detect decomposability, to compute a decomposi-
tion, and a recursive procedure to compute numerical solutions to a given decomposable sparse system.
Detection and computation of decompositions uses integer linear algebra, including computing a Smith
normal form and the corresponding monomial changes of variables. Numerical homotopy continuation
is used to compute solutions. When no further decompositions are possible, the algorithm solves multi-
variate systems using numerical software chosen by the user (default: PHCpack [Verschelde 1999]), and
solves univariate polynomials using companion matrices.

Using the methods in DecomposableSparseSystems to solve a decomposable system allows for
quicker solving and more accurate solution counts than calling other solvers. One reason is that after
each decomposition, the child systems always involve either fewer variables, or polynomials of smaller
degree. The cost of the methods in DecomposableSparseSystems is low as they rely only on linear
algebra and numerical homotopy algorithms.

Research of Sottile and Yahl was supported by grant 636314 from the Simons Foundation.
MSC2020: 14M25, 65H10, 65H20.
Keywords: sparse, decomposable, polynomial, solving.
DecomposableSparseSystems version 1.0.1

53

https://doi.org/10.2140/jsag.2021.11-1
http://msp.org/jsag
https://doi.org/10.2140/jsag.2021.11.53
http://msp.org/jsag

54 Brysiewicz, Rodriguez, Sottile and Yahl :::: Decomposable sparse polynomial systems

A1 A2

Figure 1. A pair of supports.

2. DECOMPOSABLE SPARSE POLYNOMIAL SYSTEMS. A branched cover is a dominant map π : X→ Y
of irreducible varieties X and Y of the same dimension. There is a number d (the degree of π) and an
open dense subset V of Y such that π−1(v) consists of d points for v ∈ V. When d > 1, the branched
cover is nontrivial.

Definition 1. A branched cover π : X→ Y is decomposable if it is a composition of nontrivial branched
covers. That is, if there is a dense open subset U ⊂ Y and a variety Z such that π−1(U)→U factors as

π−1(U)→ Z→U,

with each map a nontrivial branched cover.

In general it is not easy to determine if a branched cover is decomposable, or even to compute a decom-
position for a decomposable branched cover. (See [Améndola et al. 2016, Section 5.4] and [Brysiewicz
et al. 2021, Section 1.2] for examples and a discussion.)

An integer vector α ∈ Zn is the exponent of a (Laurent) monomial xα := xα1
1 · · · x

αn
n . A (complex)

linear combination of monomials
∑

cαxα is a (Laurent) polynomial. Monomials are multiplicative maps
(C×)n → C× and polynomials are maps (C×)n → C. For a finite set A ⊂ Zn of exponents, the set of
all polynomials whose monomials have exponents contained in A (have support A) forms the vector
space CA. Given a list A• = (A1, . . . ,An) of finite subsets of Zn, write CA• for the vector space
CA1 ⊕ · · · ⊕ CAn of lists F = (f1, . . . , fn) of polynomials with fi having support Ai . Such a list
F ∈ CA• is a function F : (C×)n→ Cn, and F = 0 is a system of sparse polynomials with support A•
whose solutions are F−1(0).

Example 2. Let A• = (A1,A2) be the pair of supports in Z2 illustrated in Figure 1. The corresponding
vector spaces of polynomials are

CA1 = {a1+ a2xy2
+ a3x2 y+ a4x3 y3

| ai ∈ C},

CA2 = {b1+ b2 y3
+ b3xy2

+ b4x4 y2
| b j ∈ C},

and CA• is the space of systems of the form

F =
(

a1+ a2xy2
+ a3x2 y+ a4x3 y3

b1+ b2 y3
+ b3xy2

+ b4x4 y2

)
, ai , b j ∈ C.

Brysiewicz, Rodriguez, Sottile and Yahl :::: Decomposable sparse polynomial systems 55

In DecomposableSparseSystems, the family CA• is encoded by a list of matrices whose column vectors
are the exponent vectors of each polynomial. Given a system F ∈ CA•, these data can be extracted from
a given system via the Macaulay2 function exponents.

The Bernstein–Kushnirenko theorem [Bernstein 1975] provides a sharp upper bound on the number of
solutions to a system of sparse polynomials. Denote the convex hull of a set A⊆ Rn by conv(A). Given
a list of supports A• = (A1, . . . ,An), let MV(A•) be the mixed volume (see [Ewald 1996, Section IV.3])
of the list (conv(A1), . . . , conv(An)).

Theorem 3 (Bernstein–Kushnirenko). Let A• be a list of n finite subsets of Zn. For F ∈ CA•, the number
of isolated solutions in (C×)n to the system F = 0 is bounded above by MV(A•) and this bound is
achieved for F lying in a dense, open subset of CA•.

Define XA• ⊂ (C
×)n ×CA• to be the set of pairs (x, F) such that F(x) = 0. For F ∈ CA•, the fiber

π−1(F) of the map π : XA•→CA• consists of solutions to F = 0. By the Bernstein–Kushnirenko theorem,
the map π has degree MV(A•). When MV(A•) ≥ 1, it is a branched cover. When the branched cover
π : XA•→ CA• is decomposable, we say the sparse system F ∈ CA• is decomposable. Decomposability
depends only on the support A• of a system.

There are two transparent ways for a sparse system to decompose.

Lacunary. A system F ∈CA• is lacunary if there is a surjective monomial map 8 : (C×)n→ (C×)n such
that F = G ◦8 for some sparse polynomial system G. We require that 8 be nontrivial in that its kernel
is not the identity subgroup. A lacunary system F = G ◦8= 0 can be solved by computing solutions,
z1, . . . , zd , to the system G = 0 and then computing the fibers 8−1(z1), . . . , 8

−1(zd). In appropriate
coordinates, 8 is diagonal, and 8−1(z) is obtained by extracting roots of the components of z.

Example 4. Consider the following system with support from Example 2:

F(x, y)=
(

1− 2xy2
+ 3x2 y− 4x3 y3

2+ 3y3
+ 5xy2

+ 7x4 y2

)
=

(
0
0

)
.

It is lacunary as it is the composition of the following maps:

G(s, t)=
(

1− 2st2
+ 3st − 4s2t3

2+ 3st3
+ 5st2

+ 7s2t2

)
, 8(x, y)= (x3, x−1 y).

This can be detected via the methods in DecomposableSparseSystems:

i1 : R = CC[x,y];

i2 : F = {1-2*x*y^2+3*x^2*y-4*x^3*y^3,2+3*y^3+5*x*y^2+7*x^4*y^2};

i3 : isLacunary F
o3 = true

The method isLacunary extracts the set of supports of the system and computes the Smith normal form
of a matrix associated to these supports to determine whether the system is lacunary.

56 Brysiewicz, Rodriguez, Sottile and Yahl :::: Decomposable sparse polynomial systems

Figure 2. Triangular support.

Triangular. A system F ∈ CA• is triangular if there exists k < n so that after a monomial change of
variables, the system F has the form

F = (F1(x1, . . . , xk), . . . , Fk(x1, . . . , xk), Fk+1(x1, . . . , xn), . . . , Fn(x1, . . . , xn)).

Solutions to triangular systems are computed by first computing the solutions z1, . . . , zd of the square
subsystem (F1, . . . , Fk)= 0. A residual system is obtained by substituting z1 into the original system
for the first k variables, F2(z1, xk+1, . . . , xn). Solutions to the original system are obtained by solving
the residual system and then applying a homotopy algorithm as described in [Brysiewicz et al. 2021].

Example 5. Consider the system

F(x, y, z)=
(

y2
− 2x + 3x2 y

2+ 3x2 y+ 5x4 y2

)
=

(
0
0

)
.

Figure 2 shows the supports. This system is triangular as the second polynomial is quadratic in the
monomial x2 y. The method isTriangular detects this subsystem.

i4 : F = {y^2-2*x+3*x^2*y,2+3*x^2*y+5*x^4*y^2};

i5 : isTriangular F
o5 = true

A consequence of Esterov’s study of Galois groups of sparse polynomial systems [2019] and Pirola
and Schlesinger’s result that a branched cover is decomposable if and only if its Galois group is im-
primitive [2005] is that a sparse polynomial system is decomposable if and only if it is either lacunary or
triangular. In each case, the solutions to the original system are computed via solutions to simpler systems.
The methods in DecomposableSparseSystems iteratively decompose these sparse polynomial systems
to efficiently solve them.

3. MAIN METHOD: SOLVEDECOMPOSABLESYSTEM. The main method implemented in the pack-
age DecomposableSparseSystems is named solveDecomposableSystem and this implements Algo-
rithm 9 in [Brysiewicz et al. 2021]. It takes as input a sparse polynomial system F ∈ CA• and outputs all
solutions to F = 0 in the algebraic torus. It recursively checks whether or not the input sparse polyno-
mial system is decomposable, computes the decomposition, and then calls itself on each portion of the
decomposition. When the input is not decomposable it solves multivariate polynomial systems with the
numerical solver given by the option Software (default: PHCpack) and it solves univariate polynomial
systems using companion matrices. For complete details, see [Brysiewicz et al. 2021, Section 3.1].

Brysiewicz, Rodriguez, Sottile and Yahl :::: Decomposable sparse polynomial systems 57

A•

x

y
z

A3

A1

x

y
z

A2

x

y
z

Figure 3. Support of F .

3.1. Using the main method. Consider the system

F =

 2+ xyz− x2 y
4− y2z+ 2xz2

− 3x2z
1− yz2

− 3xyz

=
0

0
0

.
This system is supported on the triple A• = (A1,A2,A3) shown in Figure 3.

The method isDecomposable determines that this system is decomposable. In particular, it is trian-
gular with a subsystem indexed by the first and third polynomials. This can be observed in the figure as
the span of the supports A1 and A3 are coplanar. It is also lacunary, as the exponent vectors lie in the
sublattice of Z3 of index 3 generated by the columns of1 1 2

1 0 0
1 2 1

.
The solutions to F = 0 are found via the main method, solveDecomposableSystem.

i6 : R = CC[x,y,z];

i7 : F = {2+x*y*z-x^2*y,4-y^2*z+2*x*z^2-3*x^2*z,1-y*z^2-3*x*y*z};

-- True if and only if the sparse system F is decomposable.

i8 : isDecomposable F
o8 : true

-- A list of numerical solutions to F=0.

i9 : S = solveDecomposableSystem F;

-- Evaluates F at the first numerical solution.

i10 : F/(f-> sub(f, matrix {S_0}))
o10 = {1.77636e-15, 4.44089e-16+1.4623e-16*ii, 4.66294e-15}

Our main method also accepts a two-argument input (A,C) where A is a list of matrices whose
columns support a system of (Laurent) polynomial equations, and C is a list, whose i-th entry is the
list of coefficients for the i-th polynomial equation. We demonstrate some of the other types of inputs
here, and leave details to the documentation.

i11 : (A,C) = (F/exponents/matrix/transpose,
F/coefficients/last/entries/flatten);

i12 : S = solveDecomposableSystem (A,C);

58 Brysiewicz, Rodriguez, Sottile and Yahl :::: Decomposable sparse polynomial systems

-- Expected timing for solving a specific system.

i13 : benchmark "solveDecomposableSystem(A,C)";
o13 = .0605920270512821

-- Expected timing for solving a random system with support A.

i14 : benchmark "solveDecomposableSystem(A,)";
o14 = .0558867168108108

3.2. Options for the main method. Numerical in nature, the function solveDecomposableSystem
features a variety of options for the user. The option Software (default: PHCpack) dictates which
numerical solver is used to solve multivariate sparse systems which are not decomposable. The method
solveDecomposableSystem removes solutions having any coordinate which is numerically zero up
to Tolerance (default: 10−5) throughout the computation. Having this tolerance is necessary, as our
methods are for Laurent polynomials with solutions in the complex torus (C×)n, while the solvers we
call may return solutions in Cn that are not in the torus.

Setting the option Verify (default: 0) to have the value 1 significantly increases the probability
that solveDecomposableSystem computes the correct number of solutions. It does this by checking
that the algorithm specified by the Software option computes MV(A•) solutions to any system F
with support A•, where MV(A•) is probabilistically determined using mixedVolume in the package
Polyhedra [Birkner 2009]. If the mixed volume according to Polyhedra and the number of solu-
tions do not agree, then the missing solutions are searched for using techniques related to those in
MonodromySolver [Duff et al. 2019]. Lastly, we allow the user to compute the solutions to F by
first solving an internally generated random instance and then using that in a parameter homotopy [Li
et al. 1989] to solve F by setting Strategy to FromGeneric. We conclude by using the options Verify
and Strategy on an example with 6000 solutions.

i15 : A = <<< omitted, see example from Section 4 in [4] with
i_1=(2,0,0,2,0)
i_2=(4,4,2,2,2)
j_1=(0,2,0,1,3)
j_2=(0,0,1,0,2)
>>;

-- A has five supports, print the first one

i16 : print(length A, A_0)
(5, | 0 2 4 4 6 |)

| 0 0 0 4 4 |
| 0 0 0 2 2 |
| 0 2 4 2 4 |
| 0 0 0 2 2 |

i17 : elapsedTime (F,S) = solveDecomposableSystem(A,,Verify=>1);
-- 8.93938 seconds elapsed

i18 : elapsedTime S’ = solveDecomposableSystem(F,Strategy=>FromGeneric);
-- 29.0802 seconds elapsed

i19 : print(#S,#S’)
o19 = (6000, 6000)

Brysiewicz, Rodriguez, Sottile and Yahl :::: Decomposable sparse polynomial systems 59

SUPPLEMENT. The online supplement contains version 1.0.1 of DecomposableSparseSystems.

REFERENCES.
[Améndola et al. 2016] C. Améndola, J. Lindberg, and J. I. Rodriguez, “Solving Parameterized Polynomial Systems with
Decomposable Projections”, 2016. arXiv

[Bernstein 1975] D. N. Bernstein, “The number of roots of a system of equations”, Funkcional. Anal. i Priložen. 9:3 (1975),
1–4. In Russian; translated in Functional Analysis and Its Applications, 9:3, (1975), 183–185. MR

[Birkner 2009] R. Birkner, “Polyhedra: a package for computations with convex polyhedral objects”, J. Softw. Algebra Geom.
1 (2009), 11–15. MR Zbl

[Brysiewicz et al. 2021] T. Brysiewicz, J. I. Rodriguez, F. Sottile, and T. Yahl, “Solving decomposable sparse systems”,
Numerical Algorithms (2021).

[Duff et al. 2019] T. Duff, C. Hill, A. Jensen, K. Lee, A. Leykin, and J. Sommars, “Solving polynomial systems via homotopy
continuation and monodromy”, IMA J. Numer. Anal. 39:3 (2019), 1421–1446. MR Zbl

[Esterov 2019] A. Esterov, “Galois theory for general systems of polynomial equations”, Compos. Math. 155:2 (2019), 229–
245. MR Zbl

[Ewald 1996] G. Ewald, Combinatorial convexity and algebraic geometry, Graduate Texts in Mathematics 168, Springer, 1996.
MR Zbl

[Li et al. 1989] T. Y. Li, T. Sauer, and J. A. Yorke, “The cheater’s homotopy: an efficient procedure for solving systems of
polynomial equations”, SIAM J. Numer. Anal. 26:5 (1989), 1241–1251. MR Zbl

[Pirola and Schlesinger 2005] G. P. Pirola and E. Schlesinger, “Monodromy of projective curves”, J. Algebraic Geom. 14:4
(2005), 623–642. MR Zbl

[Verschelde 1999] J. Verschelde, “Algorithm 795: PHCpack: A General-Purpose Solver for Polynomial Systems by Ho-
motopy Continuation”, ACM Trans. Math. Softw. 25:2 (1999), 251–276. Version containing reference manual available at
http://homepages.math.uic.edu/ jan/PHCpack/phcpack.html. Zbl

RECEIVED: 8 Jun 2020 REVISED: 24 Jan 2021 ACCEPTED: 25 Mar 2021

TAYLOR BRYSIEWICZ:

taylorbrysiewicz@gmail.com
Max-Planck Institut fur Mathematik, Leipzig, Germany

JOSE ISRAEL RODRIGUEZ:

jose@math.wisc.edu
Department of Mathematics, University of Wisconsin, Madison, WI, United States

FRANK SOTTILE:

sottile@math.tamu.edu
Department of Mathematics, Texas A&M University, College Station, TX, United States

THOMAS YAHL:

thomasjyahl@math.tamu.edu
Department of Mathematics, Texas A&M University, College Station, TX, United States

msp

http://msp.org/jsag/2021/11-1/jsag-v11-n1-x06-DecomposableSparseSystems.zip
http://msp.org/idx/arx/1612.08807
http://dx.doi.org/10.1007/BF01075595
http://msp.org/idx/mr/0435072
http://dx.doi.org/10.2140/jsag.2009.1.11
http://msp.org/idx/mr/2878670
http://msp.org/idx/zbl/1311.52001
http://dx.doi.org/10.1007/s11075-020-01045-x
http://dx.doi.org/10.1093/imanum/dry017
http://dx.doi.org/10.1093/imanum/dry017
http://msp.org/idx/mr/3984062
http://msp.org/idx/zbl/07323654
http://dx.doi.org/10.1112/s0010437x18007868
http://msp.org/idx/mr/3896565
http://msp.org/idx/zbl/1451.14152
http://dx.doi.org/10.1007/978-1-4612-4044-0
http://msp.org/idx/mr/1418400
http://msp.org/idx/zbl/0869.52001
http://dx.doi.org/10.1137/0726069
http://dx.doi.org/10.1137/0726069
http://msp.org/idx/mr/1014884
http://msp.org/idx/zbl/0689.65032
http://dx.doi.org/10.1090/S1056-3911-05-00408-X
http://msp.org/idx/mr/2147355
http://msp.org/idx/zbl/1084.14011
http://dx.doi.org/10.1145/317275.317286
http://dx.doi.org/10.1145/317275.317286
http://msp.org/idx/zbl/0961.65047
mailto:taylorbrysiewicz@gmail.com
mailto:jose@math.wisc.edu
mailto:sottile@math.tamu.edu
mailto:thomasjyahl@math.tamu.edu
http://msp.org

JSAG 11 (2021), 61–69 The Journal of Software for
https://doi.org/10.2140/jsag.2021.11.61 Algebra and Geometry

A package for computations with sparse resultants

GIOVANNI STAGLIANÒ

ABSTRACT: We introduce the Macaulay2 package SparseResultants, which provides general tools for
computing sparse resultants, sparse discriminants, and hyperdeterminants. We give some background on
the theory and briefly show how the package works.

INTRODUCTION. The classical Macaulay resultant [1903] (also called the dense resultant) of a system
of n+ 1 polynomial equations in n variables characterizes the solvability of the system, and therefore
it is a fundamental tool in computer algebra. However, it is a large polynomial, since it depends on all
coefficients of the equations. If we restrict attention to sparse polynomial equations, that is, to polyno-
mials which involve only monomials lying in a small set, then we can replace the dense resultant with
the sparse resultant.

The sparse resultant generalizes not only the dense resultant but, for specific choices of the set of
monomials, we can obtain other types of classical resultants, such as for instance the Dixon resultant
[1909] and the hyperdeterminant [Cayley 1845; Gelfand et al. 1992]. In the last decades, sparse re-
sultants have received a lot of interest, both from a theoretical point of view (see, e.g., [Gelfand et al.
2008; Sturmfels 1994; Cattani et al. 1998; D’Andrea and Sombra 2015]) and from more computational
and applied aspects (see, e.g., [Emiris and Mourrain 1999; Canny and Emiris 2000; Sturmfels 2002;
D’Andrea 2002; Jeronimo et al. 2004; Cox et al. 2005; Jeronimo et al. 2009]).

Using the computer program Macaulay2, dense resultants can be calculated using the package Resul-
tants [Staglianò 2018], while sparse resultants can be calculated using the new package SparseResultants.
We point out that in the latter most of the algorithms implemented are based on elimination via Gröbner
basis methods. The main defect of this approach is that even when the input polynomials have numerical
coefficients, in the calculation all the coefficients are replaced by variables. However, this approach
suffices for a number of applications, as we try to show in the following.

This short paper is organized as follows. In Section 1, we review the general theory of sparse resultants
(Sections 1A and 1B) and related topics such as the sparse discriminants (Section 1C) and the hyperde-
terminants (Section 1D). We focus on the computational aspects used in the package SparseResultants.
In Section 2, we illustrate how this package works with the help of some examples.

MSC2020: 13P15, 68W30.
Keywords: sparse resultant, sparse discriminant, hyperdeterminant.
SparseResultants version 1.1

61

https://doi.org/10.2140/jsag.2021.11-1
http://msp.org/jsag
https://doi.org/10.2140/jsag.2021.11.61
http://msp.org/jsag

62 Staglianò :::: A package for computations with sparse resultants

1. AN OVERVIEW OF SPARSE ELIMINATION. In this section we give some background on the theory
of sparse resultants, sparse discriminants, and hyperdeterminants. For details and proofs we refer mainly
to [Gelfand et al. 2008, Chapters 8, 9, 13, and 14] and [Cox et al. 2005, Chapter 7]; other references are
[Sturmfels 1993; Ottaviani 2013].

1A. Sparse mixed resultant. Let R = C[x±1
1 , . . . , x±1

n] be the ring of complex Laurent polynomials in
n variables. The set of monomials in R is identified with Zn by associating to xω = xω1

1 · · · x
ωn
n ∈ R

the exponent vector ω = (ω1, . . . , ωn) ∈ Zn. If A is a finite subset of Zn, we denote by CA the space of
polynomials in R involving only monomials from A, that is, of polynomials of the form

∑
ω∈A aωxω.

Let A0, . . . ,An be n+ 1 finite subsets of Zn satisfying the following conditions:

(1) Each Ai generates Rn as an affine space.

(2) The union of the sets Ai generates Zn as a Z-module.

Let ZA0,...,An ⊂
∏n

i=0 CAi be the Zariski closure in the product
∏n

i=0 CAi of the set{
(f0, . . . , fn) ∈

n∏
i=0

CAi : there exists x ∈ (C∗)n such that f0(x)= · · · = fn(x)= 0
}
, (1-1)

where C∗ = C \ {0} and fi (x)=
∑

ω∈Ai
ai,ωxω, for i = 0, . . . , n.

Proposition-Definition 1.1 [Gelfand et al. 2008, Chapter 8, §1]. Under the above assumptions, the
variety ZA0,...,An is an irreducible hypersurface in

∏n
i=0 CAi that can be defined by an integral irreducible

polynomial ResA0,...,An ∈ Z[(ai,ω), i = 0, . . . , n] in the coefficients ai,ω of fi , for i = 0, . . . , n. Such a
polynomial ResA0,...,An is unique up to sign and is called the (A0, . . . ,An)-resultant (also known as the
sparse (mixed) resultant).

The polynomial ResA0,...,An is homogeneous with respect to each group of variables (ai,ω), for i =
0, . . . , n. Moreover, ResA0,...,An (f0, . . . , fn)= 0 if the (n+1)-tuple (f0, . . . , fn) belongs to (1-1).

Example 1.2. Let d0, . . . , dn be positive integers. For i = 0, . . . , n, let

Ai =

{
ω = (ω1, . . . , ωn) ∈ Zn

≥0 :

n∑
j=1

ω j ≤ di

}
.

Then the (A0, . . . ,An)-resultant coincides with the classical (affine) resultant Resd0,...,dn , also called the
dense resultant. Therefore, if Fi ∈ C[x0, x1, . . . , xn] denotes the polynomial obtained by homogenizing
fi ∈ CAi with respect to a new variable x0, then ResA0,...,An (f0, . . . , fn) = 0 if and only if F0, . . . , Fn

have a common nontrivial root.

1B. Sparse unmixed resultant. Keep the notation and assumptions as above. If all the sets Ai coincide
with each other, that is, A0 = · · · = An = A, then the (A0, . . . ,An)-resultant is called the A-resultant
(also known as the sparse (unmixed) resultant). In this case, we have a useful geometric interpretation
that allows us to write down the A-resultant in a compact form. By choosing a numbering ω(0), . . . , ω(k)

Staglianò :::: A package for computations with sparse resultants 63

of the elements of A, we get a map φA : (C∗)n→ Pk defined by φA(x) = (ω(0)(x) : · · · : ω(k)(x)). Let
XA⊂Pk be the closure of the image of φA, which is an irreducible toric variety of dimension n. Then, by
taking pull-backs we get an identification between the space of polynomials in CA with the space of linear
forms on Pk. Moreover, if f0, . . . , fn ∈ CA have a common root in (C∗)n then the corresponding linear
forms l0, . . . , ln on Pk define a linear subspace that intersects XA. From this, the following proposition
follows directly.

Proposition 1.3 [Gelfand et al. 2008, Chapter 8, §2]. The polynomial ResA ∈ Z[a(i)0 , . . . , a(i)k , i =
0, . . . , n] coincides with the X-resultant of XA ⊂ Pk. More precisely, let WA ⊂ G(k − n − 1,Pk) be
the Chow hypersurface of the variety XA, and let

ψ : P(C(n+1)×(k+1)) 99K G(n, k)' G(k− n− 1, k)

be the natural projection from the projectivization of the space of complex matrices which have the shape
(n+ 1)× (k+ 1) to G(n, k). Then we have that ResA is the polynomial defining the pull-back ψ−1(WA).

Remark 1.4. With the notation of the proposition above, in coordinates, the map ψ is defined by the
(n+ 1)× (n+ 1) minors of the generic (n+ 1)× (k+ 1) matrix of variablesa(0)0 a(0)1 · · · a(0)k

...
...

. . .
...

a(n)0 a(n)1 · · · a(n)k

. (1-2)

Notably, ResA can be expressed as a homogeneous polynomial of degree deg(XA) in the (n+1)×(n+1)
minors of the matrix (1-2).

Example 1.5. Let A = {(ω1, ω2) ∈ Z2
: ω1 + ω2 ≤ 2}, so that XA ⊂ P5 is the Veronese surface. The

A-resultant is a polynomial of degree 12 in 18 variables with 21894 terms. It can be expressed as a
polynomial of degree 4 in the Plücker coordinates of G(2, 5) with 74 terms.

1C. Sparse discriminant. We continue by letting A⊂ Zn be a finite set of k+ 1 elements that generate
Zn as a Z-module, and let φA : (C∗)n → Pk and XA ⊂ Pk be defined as above. Let ∇A ⊂ CA be the
Zariski closure of the set{

f ∈ CA
: there exists x ∈ (C∗)n such that f (x)=

∂ f
∂x1

(x)= · · · =
∂ f
∂xn

(x)= 0
}
. (1-3)

Proposition-Definition 1.6 [Gelfand et al. 2008, Chapter 9, §1]. The projectivization P(∇A)⊂Pk of the
variety ∇A coincides with the dual variety X∨A of XA. In the case where X∨A is a hypersurface, an integral
irreducible polynomial DiscA defining it (which is unique up to sign) is called the A-discriminant (also
known as the sparse discriminant).

Thus the A-discriminant (when it exists) is a homogeneous polynomial DiscA ∈ Z[aω, ω ∈ A], and
DiscA(f)= 0 for each polynomial f belonging to (1-3).

64 Staglianò :::: A package for computations with sparse resultants

Example 1.7. Let d ≥ 1 and let A =
{
(ω1, . . . , ωn) ∈ Zn

≥0 :
∑n

j=1 ω j ≤ d
}
. Then the A-discriminant

coincides with the classical (affine) discriminant Discd , also called the dense discriminant. Therefore, if
F ∈ C[x0, x1, . . . , xn] denotes the polynomial obtained by homogenizing f ∈ CA with respect to a new
variable x0, then DiscA(f)= 0 if and only if the hypersurface {F = 0} ⊂ Pn is not smooth.

Remark 1.8 (“Cayley trick”, [Gelfand et al. 2008, Chapter 9, Proposition 1.7]). Let A0, . . . ,An ⊂ Zn

be finite subsets satisfying the assumptions in Section 1A. Let A⊂ Zn
×Zn be defined by

A= (A0×{0})∪ (A1×{e1})∪ · · · ∪ (An ×{en}),

where the ei are the standard basis vectors of Zn . Thus a polynomial f ∈ CA has the form

f0(x)+
n∑

i=1

yi fi (x) ∈ C[x1, . . . , xn, y1, . . . , yn],

where fi ∈ CAi . We have the following relation (up to sign), known as the “Cayley trick”:

ResA0,...,An (f0, . . . , fn)= DiscA

(
f0(x)+

n∑
i=1

yi fi (x)
)
. (1-4)

1D. Hyperdeterminant. An important special type of sparse discriminant is the determinant (or hyper-
determinant) of multidimensional matrices, which was introduced by Cayley [1845] (see also [Gelfand
et al. 2008, Chapter 14] and [Ottaviani 2013]). Let f be a multilinear form in r groups of variables
x (1)0 , . . . , x (1)k1

; . . . ; x (r)0 , . . . , x (r)kr
, that is

f =
∑

0≤iι≤kι

ai1,...,ir x (1)i1
· · · x (r)ir

.

Let A⊂ Z(k1+1)+···+(kr+1) denote the set of exponent vectors that can occur in such a form f . Notice that
to give f is equivalent to giving an r -dimensional matrix

M f = (ai1,...,ir)0≤iι≤kι

of shape (k1+ 1)×· · ·× (kr + 1). The determinant of shape (k1+ 1)×· · ·× (kr + 1) is defined to be the
A-discriminant, that is, for a form f as above, we have

det(M f)= DiscA(f).

One sees that the variety XA is the image of the Segre embedding of Pk1 × · · · ×Pkr . Therefore, the
hypersurface in P(C(k1+1)×···×(kr+1)) defined by the determinant of shape (k1+ 1)× · · ·× (kr + 1) is the
dual variety of Pk1 × · · ·×Pkr . Notice also that we have det(M f)= 0 if and only if the hypersurface

{ f = 0} ⊂ Pk1 × · · ·×Pkr

is not smooth.
The next two basic results have been proved in [Gelfand et al. 2008, Chapter 14, Theorems 1.3 and 2.4].

Staglianò :::: A package for computations with sparse resultants 65

Theorem 1.9 [Gelfand et al. 2008]. The determinant of shape (k1+ 1)× · · ·× (kr + 1) exists (that is the
dual variety of Pk1 × · · ·×Pkr is a hypersurface) if and only if

2 max
1≤ j≤r

(k j)≤

r∑
j=1

k j . (1-5)

Theorem 1.10 [Gelfand et al. 2008]. Denote by N (k1, . . . , kr) the degree of the determinant of shape
(k1+ 1)× · · ·× (kr + 1) when (1-5) is satisfied, and let N (k1, . . . , kr)= 0 otherwise. We have∑

k1,...,kr≥0

N (k1, . . . , kr)z
k1
1 · · · z

kr
r =

1(
1−

∑r
i=2(i − 2)ei (z1, . . . , zr)

)2 ,

where ei (z1, . . . , zr) is the i-th elementary symmetric polynomial.

Remark 1.11 [Gelfand et al. 2008, Chapter 4, Propositions 1.4 and 1.8]. The determinant of shape
(k1+ 1)× · · ·× (kr + 1) is invariant under the action of SL(k1+ 1)× · · ·× SL(kr + 1) on the space of
matrices of shape (k1+ 1)× · · · × (kr + 1). It is also invariant under permutations of the dimensions,
that is, if M = (ai1,...,ir) is a matrix of shape (k1+ 1)× · · ·× (kr + 1) and σ is a permutation of indices
1, . . . , r , denoting by σ(M) the matrix of shape (kσ−1(1)+ 1)× · · ·× (kσ−1(r)+ 1), whose (i1, . . . , ir)-th
entry is equal to aiσ(1),...,iσ(r) , we have det(σ (M))= det(M).

There are at least two important cases where determinants can be computed without resorting to
elimination. We briefly recall them in 1D1 and 1D2.

1D1. Schläfli’s method. Let M be an r -dimensional matrix of shape (k1+1)×· · ·×(kr+1) corresponding
to a multilinear form f ∈ C[x (1)0 , . . . , x (1)k1

; . . . ; x (r)0 , . . . , x (r)kr
]. Assume that there exist both the determi-

nants of shapes (k1+1)×· · ·×(kr+1) and (k1+1)×· · ·×(kr−1+1). We can interpret the r -dimensional
matrix M as an (r−1)-dimensional matrix M̃(x (r)0 , . . . , x (r)kr

) of shape (k1+ 1)× · · ·× (kr−1+ 1) whose
entries are linear forms in the variables x (r)0 , . . . , x (r)kr

; in other words, we can see f as a polynomial
f̃ ∈ (C[x (r)0 , . . . , x (r)kr

])[x (1)0 , . . . , x (1)k1
; . . . ; x (r−1)

0 , . . . , x (r−1)
kr−1
]. Let

FM = FM(x
(r)
0 , . . . , x (r)kr

)= det(M̃(x (r)0 , . . . , x (r)kr
)),

which is a homogeneous polynomial in x (r)0 , . . . , x (r)kr
, and let Disc(FM) be the (classical) discriminant

of FM . Then we have the following:

Theorem 1.12 [Gelfand et al. 2008; Schläfli 1852]. The polynomial Disc(FM) is divisible by the deter-
minant det(M). Moreover if the shape of M is one of

m×m× 2, m×m× 3, 2× 2× 2× 2, with m ≥ 2, (1-6)

then we have Disc(FM)= det(M).

The method above turns out to be very effective; however it was conjectured in [Gelfand et al. 2008,
p. 479], and later proved in [Weyman and Zelevinsky 1996], that the shapes in (1-6) are the only ones
for which the method gives the determinant exactly.

66 Staglianò :::: A package for computations with sparse resultants

1D2. Determinants of boundary shape. For an (r+1)-dimensional matrix M of shape (k0+1)×(k1+1)×
· · · × (kr + 1), we say that it is of boundary shape if the inequality (1-5) is an equality. Without
loss of generality, we can assume that k0 = max0≤ j≤r (k j), so that k0 = k1 + · · · + kr . Let f ∈
C[x (0)0 , . . . , x (0)k0

; . . . ; x (r)0 , . . . , x (r)kr
] be the corresponding multilinear form of such a matrix M. Thinking

of f as a linear polynomial in

(C[x (1)0 , . . . , x (1)k1
; . . . ; x (r)0 , . . . , x (r)kr

])[x (0)0 , . . . , x (0)k0
],

we can interpret M as a list of k0+ 1 multilinear forms f0, . . . , fk0 in the r groups of variables

x (1)0 , . . . , x (1)k1
; . . . ; x (r)0 , . . . , x (r)kr

.

A simple consequence of the “Cayley trick” (see [Gelfand et al. 2008, Chapter 3, Corollary 2.8]) gives
the following:

Proposition 1.13 [Gelfand et al. 2008]. The determinant of an (r+1)-dimensional matrix M of boundary
shape (k0+ 1)× · · ·× (kr + 1) coincides with the resultant of the multilinear forms f0, . . . , fk0 , that is,
det(M)= 0 if and only if the system of multilinear equations f0(x)= · · · = fk0(x)= 0 has a nontrivial
solution on Pk1 × · · ·×Pkr . In other words, the determinant of shape (k0+ 1)× · · ·× (kr + 1) coincides
with the X-resultant of the Segre embedding of Pk1 × · · ·×Pkr .

Remark 1.14. The determinant of a matrix M of boundary shape (k0+1)×· · ·×(kr+1) can be explicitly
expressed as the determinant of an ordinary square matrix of order (k0+ 1)!/(k1! · · · kr !) whose entries
are linear forms in the entries of M ; see [Gelfand et al. 2008, Chapter 14, Theorem 3.3].

2. SPARSE RESULTANTS IN Macaulay2. In this section, we describe some of the functions imple-
mented in the package SparseResultants. For more details and examples, we refer to its documentation.

One of the main functions is sparseResultant, which via elimination techniques calculates sparse
mixed resultants ResA0,...,An (see Section 1A) and sparse unmixed resultants ResA (see Section 1B).
This function can be called in two ways. The first one is to pass a list of n + 1 matrices A0, . . . , An

over Z and with n rows to represent the sets A0, . . . ,An ⊂ Zn (it is enough to pass just one matrix A
in the unmixed case). Then the output will be another function that takes as input n+ 1 polynomials
fi =

∑
ω∈Ai

ai,ωxω, for i = 0, . . . , n, and returns their sparse resultant. An error is thrown if the poly-
nomials fi do not have the correct form. Roughly, this returned function is a container for the general
expression of the sparse resultant (possibly written out in a compact form as in Proposition 1.3) and for
the rule to evaluate it at the n+ 1 polynomials fi . The second way to call sparseResultant is to pass
directly the polynomials fi . This is equivalent to forming the matrices Ai whose columns are given by
{ω ∈ Zn

: the coefficient in fi of xω is 6= 0} (see the function exponentsMatrix) and then proceeding
as described above.

As an example we now calculate a particular type of sparse unmixed resultant, known as the Dixon
resultant (see [Sturmfels 1993, Section 2.4] and [Cox et al. 2005, Chapter 7, §2, Exercise 10]; see also
the classical reference [Dixon 1909]).

Staglianò :::: A package for computations with sparse resultants 67

Example 2.1. Consider the following system of three bihomogeneous polynomials of bidegree (2, 1) in
the two groups of variables (x0, x1), (y0, y1):

c1,1x2
1 y1+ c1,2x1x2 y1+ c1,3x2

2 y1+ c1,4x2
1 y2+ c1,5x1x2 y2+ c1,6x2

2 y2 = 0,

c2,1x2
1 y1+ c2,2x1x2 y1+ c2,3x2

2 y1+ c2,4x2
1 y2+ c2,5x1x2 y2+ c2,6x2

2 y2 = 0, (2-1)

c3,1x2
1 y1+ c3,2x1x2 y1+ c3,3x2

2 y1+ c3,4x2
1 y2+ c3,5x1x2 y2+ c3,6x2

2 y2 = 0.

Putting x2 = y2 = 1 we get a system of three nonhomogeneous polynomials in two variables (x, y)=
(x1, y1), of which we can calculate the sparse (unmixed) resultant. This polynomial is homogeneous of
degree 12 in the 18 variables c1,1, . . . , c3,6 with 20791 terms, which vanishes if and only if (2-1) has a
nontrivial solution. The time for this computation is less than one second (on a standard laptop).

$ M2 --no-preload
Macaulay2, version 1.17
i1 : needsPackage "SparseResultants";

i2 : R = ZZ[c_(1,1)..c_(3,6)][x,y];

i3 : f = (c_(1,1)*x^2*y+c_(1,2)*x*y+c_(1,3)*y+c_(1,4)*x^2+c_(1,5)*x+c_(1,6),
c_(2,1)*x^2*y+c_(2,2)*x*y+c_(2,3)*y+c_(2,4)*x^2+c_(2,5)*x+c_(2,6),
c_(3,1)*x^2*y+c_(3,2)*x*y+c_(3,3)*y+c_(3,4)*x^2+c_(3,5)*x+c_(3,6));

i4 : A = exponentsMatrix f
o4 = | 0 0 1 1 2 2 |

| 0 1 0 1 0 1 |

2 6
o4 : Matrix ZZ <--- ZZ

i5 : time Res = sparseResultant A;
-- used 0.241391 seconds

o5 : SparseResultant (sparse unmixed resultant associated to | 0 0 1 1 2 2 |)
| 0 1 0 1 0 1 |

i6 : time U = Res f;
-- used 0.574002 seconds

i7 : (first degree U, # terms U)
o7 = (12, 20791)

Another function, sparseDiscriminant, calculates sparse discriminants DiscA (see Section 1C).
This function works similarly to the previous one. In particular, it accepts as input either a matrix
representing the exponent vectors of a (Laurent) polynomial or the polynomial directly.

Example 2.2. Using the Cayley trick (1-4), we express the dense resultant of three generic ternary
forms of degrees 1, 1, 2 (which is a special type of sparse mixed resultant) as a sparse discriminant. The
calculation time is less than one second.

i8 : clearAll;

i9 : K = ZZ[a_0..a_2,b_0..b_2,c_0..c_5], Rx = K[x_1,x_2];

i10 : f = (a_0+a_1*x_1+a_2*x_2,
b_0+b_1*x_1+b_2*x_2,
c_0+c_1*x_1+c_2*x_2+c_3*x_1^2+c_4*x_1*x_2+c_5*x_2^2);

i11 : Rxy = K[x_1,x_2,y_1,y_2], f’ = (sub(f_0,Rxy), sub(f_1,Rxy), sub(f_2,Rxy));

i12 : time sparseResultant(f_0,f_1,f_2) ==
-sparseDiscriminant(f’_0 + y_1*f’_1 + y_2*f’_2)

-- used 0.746274 seconds
o12 = true

68 Staglianò :::: A package for computations with sparse resultants

A derived function of sparseDiscriminant is determinant (or simply det), which calculates
determinants of multidimensional matrices (see Section 1D). However for this last one, more specialized
algorithms are also available and automatically applied.

Example 2.3. We calculate the determinant of a generic four-dimensional matrix of shape 2× 2× 2× 2
(see also [Huggins et al. 2008]). This polynomial is homogeneous of degree 24 in the 16 variable entries
of the matrix and it has 2894276 terms. The approach for this calculation is to apply (1-6) recursively.
The calculation time is about 10 minutes, but it takes much less time if we specialize the entries of the
matrix to be random numbers.

i13 : M = genericMultidimensionalMatrix {2,2,2,2}
o13 = {{{{a , a }, {a , a }}, {{a , a }, ...

0,0,0,0 0,0,0,1 0,0,1,0 0,0,1,1 0,1,0,0 0,1,0,1 ...

o13 : 4-dimensional matrix of shape 2 x 2 x 2 x 2 over ZZ[a , a , ...
0,0,0,0 0,0,0,1 ...

i14 : time D = det M;
-- used 634.773 seconds

i15 : (first degree D, # terms D)
o15 = (24, 2894276)

Example 2.4. Here we take A and B to be random matrices of shapes 2× 2× 2× 4 and 4× 2× 5,
respectively. We calculate the convolution A ∗ B (see [Gelfand et al. 2008, p. 449]), which is a matrix
of shape 2 × 2 × 2 × 2 × 5. Then we verify a formula proved in [Dionisi and Ottaviani 2003] for
det(A ∗ B), which generalizes the Cauchy–Binet formula in the multidimensional case. The approach for
the calculation of the determinant of shape 4× 2× 5 is using Proposition 1.13, while the determinants
of shapes 2× 2× 2× 4 and 2× 2× 2× 2× 5 are calculated using Remark 1.14. The calculation time is
less than one second.

i16 : K = ZZ/33331;

i17 : A = randomMultidimensionalMatrix({2,2,2,4},CoefficientRing=>K);
o17 : 4-dimensional matrix of shape 2 x 2 x 2 x 4 over K

i18 : B = randomMultidimensionalMatrix({4,2,5},CoefficientRing=>K);
o18 : 3-dimensional matrix of shape 4 x 2 x 5 over K

i19 : time det(A * B) == (det A)^5 * (det B)^6
-- used 0.535271 seconds

o19 = true

SUPPLEMENT. The online supplement contains version 1.1 of SparseResultants.

REFERENCES.
[Canny and Emiris 2000] J. F. Canny and I. Z. Emiris, “A subdivision-based algorithm for the sparse resultant”, J. ACM 47:3
(2000), 417–451. MR Zbl

[Cattani et al. 1998] E. Cattani, A. Dickenstein, and B. Sturmfels, “Residues and resultants”, J. Math. Sci. Univ. Tokyo 5:1
(1998), 119–148. MR Zbl

[Cayley 1845] A. Cayley, “On the theory of linear transformations”, Cambridge Math. J. 4 (1845), 193–209.

[Cox et al. 2005] D. A. Cox, J. Little, and D. O’Shea, Using algebraic geometry, 2nd ed., Graduate Texts in Mathematics 185,
Springer, 2005. MR Zbl

[D’Andrea 2002] C. D’Andrea, “Macaulay style formulas for sparse resultants”, Trans. Amer. Math. Soc. 354:7 (2002), 2595–
2629. MR Zbl

http://msp.org/jsag/2021/11-1/jsag-v11-n1-x07-SparseResultants.m2
http://dx.doi.org/10.1145/337244.337247
http://msp.org/idx/mr/1768142
http://msp.org/idx/zbl/1094.65508
http://msp.org/idx/mr/1617074
http://msp.org/idx/zbl/0933.14033
http://msp.org/idx/mr/2122859
http://msp.org/idx/zbl/1079.13017
http://dx.doi.org/10.1090/S0002-9947-02-02910-0
http://msp.org/idx/mr/1895195
http://msp.org/idx/zbl/0987.13019

Staglianò :::: A package for computations with sparse resultants 69

[D’Andrea and Sombra 2015] C. D’Andrea and M. Sombra, “A Poisson formula for the sparse resultant”, Proc. Lond. Math.
Soc. (3) 110:4 (2015), 932–964. MR

[Dionisi and Ottaviani 2003] C. Dionisi and G. Ottaviani, “The Binet–Cauchy theorem for the hyperdeterminant of boundary
format multi-dimensional matrices”, J. Algebra 259:1 (2003), 87–94. MR Zbl

[Dixon 1909] A. L. Dixon, “The Eliminant of Three Quantics in two Independent Variables”, Proc. London Math. Soc. (2) 7
(1909), 49–69. MR Zbl

[Emiris and Mourrain 1999] I. Z. Emiris and B. Mourrain, “Matrices in elimination theory”, pp. 3–44 Polynomial elimination—
algorithms and applications 1, 1999. MR Zbl

[Gelfand et al. 1992] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, “Hyperdeterminants”, Adv. Math. 96:2 (1992),
226–263. MR Zbl

[Gelfand et al. 2008] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants and multidimensional
determinants, Birkhäuser, Boston, 2008. MR

[Huggins et al. 2008] P. Huggins, B. Sturmfels, J. Yu, and D. S. Yuster, “The hyperdeterminant and triangulations of the
4-cube”, Math. Comp. 77:263 (2008), 1653–1679. MR Zbl

[Jeronimo et al. 2004] G. Jeronimo, T. Krick, J. Sabia, and M. Sombra, “The computational complexity of the Chow form”,
Found. Comput. Math. 4:1 (2004), 41–117. MR

[Jeronimo et al. 2009] G. Jeronimo, G. Matera, P. Solernó, and A. Waissbein, “Deformation techniques for sparse systems”,
Found. Comput. Math. 9:1 (2009), 1–50. MR Zbl

[MacAulay 1903] F. S. MacAulay, “Some Formulae in Elimination”, Proc. Lond. Math. Soc. 35 (1903), 3–27. MR Zbl

[Macaulay2] D. R. Grayson and M. E. Stillman, “Macaulay2: a software system for research in algebraic geometry”, available
at http://www.math.uiuc.edu/Macaulay2.

[Ottaviani 2013] G. Ottaviani, “Introduction to the hyperdeterminant and to the rank of multidimensional matrices”, pp. 609–
638 in Commutative algebra, edited by I. Peeva, Springer, 2013. MR Zbl

[Schläfli 1852] L. Schläfli, “Über die Resultante eines Systemes mehrerer algebraischer Gleichungen: Ein Beitrag zur Theorie
der Elimination”, Denkschr. der Kaiserlichen Akad. der Wiss, Math-Naturwiss. Classe 4 (1852), 1–74.

[Staglianò 2018] G. Staglianò, “A package for computations with classical resultants”, J. Softw. Algebra Geom. 8 (2018), 21–30.
MR Zbl

[Sturmfels 1993] B. Sturmfels, “Sparse elimination theory”, pp. 264–298 in Computational algebraic geometry and commuta-
tive algebra (Cortona, 1991), edited by D. Eisenbud and L. Robbiano, Sympos. Math. 34, Cambridge Univ. Press„ 1993. MR
Zbl

[Sturmfels 1994] B. Sturmfels, “On the Newton polytope of the resultant”, J. Algebraic Combin. 3:2 (1994), 207–236. MR
Zbl

[Sturmfels 2002] B. Sturmfels, Solving systems of polynomial equations, CBMS Regional Conference Series in Mathematics
97, American Mathematical Society, Providence, RI, 2002. MR Zbl

[Weyman and Zelevinsky 1996] J. Weyman and A. Zelevinsky, “Singularities of hyperdeterminants”, Ann. Inst. Fourier 46:3
(1996), 591–644. MR Zbl

RECEIVED: 23 Jul 2020 REVISED: 25 Jan 2021 ACCEPTED: 5 May 2021

GIOVANNI STAGLIANÒ:

giovannistagliano@gmail.com
Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Catania, Italy

msp

http://dx.doi.org/10.1112/plms/pdu069
http://msp.org/idx/mr/3335291
http://dx.doi.org/10.1016/S0021-8693(02)00537-9
http://dx.doi.org/10.1016/S0021-8693(02)00537-9
http://msp.org/idx/mr/1953709
http://msp.org/idx/zbl/1025.15009
http://dx.doi.org/10.1112/plms/s2-7.1.49
http://msp.org/idx/mr/1575687
http://msp.org/idx/zbl/40.0207.01
http://dx.doi.org/10.1006/jsco.1998.0266
http://msp.org/idx/mr/1709416
http://msp.org/idx/zbl/0943.13005
http://dx.doi.org/10.1016/0001-8708(92)90056-Q
http://msp.org/idx/mr/1196989
http://msp.org/idx/zbl/0774.15002
http://msp.org/idx/mr/2394437
http://dx.doi.org/10.1090/S0025-5718-08-02073-5
http://dx.doi.org/10.1090/S0025-5718-08-02073-5
http://msp.org/idx/mr/2398786
http://msp.org/idx/zbl/1194.52016
http://dx.doi.org/10.1007/s10208-002-0078-2
http://msp.org/idx/mr/2035410
http://dx.doi.org/10.1007/s10208-008-9024-2
http://msp.org/idx/mr/2472286
http://msp.org/idx/zbl/1167.14039
http://dx.doi.org/10.1112/plms/s1-35.1.3
http://msp.org/idx/mr/1577000
http://msp.org/idx/zbl/34.0195.01
http://www.math.uiuc.edu/Macaulay2
http://dx.doi.org/10.1007/978-1-4614-5292-8_20
http://msp.org/idx/mr/3051388
http://msp.org/idx/zbl/1276.14078
https://www.biodiversitylibrary.org/part/219634
https://www.biodiversitylibrary.org/part/219634
http://dx.doi.org/10.2140/jsag.2018.8.21
http://msp.org/idx/mr/3820371
http://msp.org/idx/zbl/1409.13052
http://msp.org/idx/mr/1253995
http://msp.org/idx/zbl/0837.13011
http://dx.doi.org/10.1023/A:1022497624378
http://msp.org/idx/mr/1268576
http://msp.org/idx/zbl/0798.05074
http://dx.doi.org/10.1090/cbms/097
http://msp.org/idx/mr/1925796
http://msp.org/idx/zbl/1101.13040
http://dx.doi.org/10.5802/aif.1526
http://msp.org/idx/mr/1411723
http://msp.org/idx/zbl/0853.14001
mailto:giovannistagliano@gmail.com
http://msp.org

JSAG 11 (2021), 71–81 The Journal of Software for
https://doi.org/10.2140/jsag.2021.11.71 Algebra and Geometry

ExteriorModules: a package for computing monomial modules
over an exterior algebra

LUCA AMATA AND MARILENA CRUPI

ABSTRACT: Let K be a field, E the exterior algebra of a finite-dimensional K -vector space, and F
a finitely generated graded free E-module with homogeneous basis g1, . . . , gr such that deg(g1) ≤

deg(g2) ≤ · · · ≤ deg(gr). We present a Macaulay2 package to manage some classes of monomial
submodules of F . The package is an extension of our ExteriorIdeals package on monomial ideals
(J. of Software for Alg. and Geom. 8:7 (2018), 71–79), and contains some algorithms for computing
stable, strongly stable and lexicograhic E-submodules of F . This package also includes some methods
to check whether a sequence of nonnegative integers is the Hilbert function of a graded E-module of the
form F/M , with M a graded submodule of F . Moreover, if HF/M is the Hilbert function of a graded
E-module F/M , some routines are able to compute the unique lexicograhic submodule L of F such that
HF/M = HF/L .

1. INTRODUCTION. Monomial modules generalize the notion of monomial ideals which are ideals
generated by monomials. Therefore, many tools in monomial ideal theory are available to deal with such
a class of modules. Indeed, many statements on monomial modules can be deduced from the ones on
monomial ideals. Many authors have been interested in the study of such classes of modules in different
contexts and in the computation of certain invariants associated to them (see, for instance [Aramova et al.
1997; Aramova and Herzog 2000; Crupi and Ferrò 2016; Eisenbud 1995; Gasharov 1997; Herzog and
Hibi 2011; Kämpf 2010; Pardue 1996]).

In this paper, we introduce a new Macaulay2 package, ExteriorModules, for manipulating special
classes of monomial modules over an exterior algebra of a finite-dimensional vector space over a field.
This package extends the one on monomial ideals, ExteriorIdeals, and needs it to work. An up-
dated version of such a package is available on the Macaulay2 repository. In more detail, the package
ExteriorModules provides functions to check whether a monomial module is (strongly) stable, or
lexicographic, and to compute the smallest (strongly) stable module containing a given monomial module.
Moreover, given F a finitely generated graded free module over an exterior algebra E , the package allows
us to characterize the Hilbert sequences of the E-modules of the type F/M, with M a graded submodule
of F.

Some service methods are inherited from ExteriorIdeals or overloaded to extend them to modules
in order to optimize the implementation of the main algorithms.

MSC2020: 13A02, 15A75, 68W30.
Keywords: exterior algebra, monomial modules, Hilbert functions, algorithms.
ExteriorModules version 1.0

71

https://doi.org/10.2140/jsag.2021.11-1
http://msp.org/jsag
https://doi.org/10.2140/jsag.2021.11.71
http://msp.org/jsag
https://doi.org/10.2140/jsag.2018.8.71

72 Amata and Crupi :::: ExteriorModules: a package for computing monomial modules over an exterior algebra

2. MATHEMATICAL BACKGROUND. Let K be a field and let E = K 〈e1, . . . , en〉 be the exterior alge-
bra of a K -vector space V with basis e1, . . . , en . For any subset σ = {i1, . . . , id} of {1, . . . , n} with
i1 < i2 < · · ·< id we write eσ = ei1 ∧ · · · ∧ eid = ei1 · · · eid , in order to simplify the notation, and call eσ
a monomial of degree d. We set eσ = 1, if σ =∅. The set of monomials in E forms a K -basis of E of
cardinality 2n.

Let eσ = ei1 · · · eid 6= 1 be a monomial in E . We define

supp(eσ)= σ = {i : ei divides eσ },

and we write
m(eσ)=max{i : i ∈ supp(eσ)}.

Moreover, we set m(eσ)= 0, if eσ = 1.
From now on, we write f g = f ∧ g for any two elements f and g in E . An element f ∈ E is called

homogeneous of degree j if f ∈ E j , where E j =
∧ j V. An ideal I is called graded if I is generated

by homogeneous elements. If I is graded, then I =
⊕

j≥0 I j , where I j is the K -vector space of all
homogeneous elements f ∈ I of degree j. Moreover, we use indeg(I) to denote the initial degree of I,
i.e., the minimum s such that Is 6= 0.

Let M be the category of finitely generated Z-graded left and right E-modules M such that am =
(−1)deg a deg mma for all homogeneous elements a ∈ E , m ∈ M.

If M ∈M, the function HM : Z→ Z given by HM(d)= dimK Md is called the Hilbert function of M
[Bruns and Herzog 1993; Eisenbud 1995].

Let F ∈ M be a free module with homogeneous basis g1, . . . , gr , where deg(gi) = fi for each
i = 1, . . . , r , with f1 ≤ f2 ≤ · · · ≤ fr . We write F =

⊕r
i=1 Egi . The elements eσ gi , with eσ a monomial

of E , are called monomials of F, and deg(eσ gi) = deg(eσ)+ deg(gi). Furthermore, when we write
F ' Er, we mean that F =

⊕r
i=1 Egi is the free E-module with trivial homogeneous basis g1, . . . , gr ,

where gi (i = 1, . . . , r) is the r-tuple having the only nonzero entry equal to 1 in the i-th position and
such that deg(gi)= 0, for all i .

Definition 2.1. A graded submodule M of F is a monomial submodule if M is a submodule generated
by monomials of F, i.e.,

M = I1g1⊕ · · ·⊕ Ir gr ,

where Ii is a monomial ideal of E , for each i .

We observe that, if r = 1 and f1 = 0 then a monomial submodule of F is a monomial ideal of E .

Definition 2.2. A monomial ideal I of E is called stable if for each monomial eσ ∈ I and each j <m(eσ)
one has e j eσ\{m(eσ)} ∈ I. I is called strongly stable if for each monomial eσ ∈ I and each j ∈ σ one has
ei eσ\{ j} ∈ I, for all i < j.

Remark 2.3. One can observe that the defining property of a strongly stable ideal needs to be checked
only for the set of monomial generators of a monomial ideal [Amata and Crupi 2018b, Remark 2.2.].

Amata and Crupi :::: ExteriorModules: a package for computing monomial modules over an exterior algebra 73

Definition 2.4. A monomial submodule M =
⊕r

i=1 Ii gi of F is called almost (strongly) stable if Ii is a
(strongly) stable ideal of E , for each i .

Definition 2.5. A monomial submodule M =
⊕r

i=1 Ii gi of F is called (strongly) stable if Ii is a (strongly)
stable ideal of E , for each i , and (e1, . . . , en)

fi+1− fi Ii+1 ⊆ Ii , for i = 1, . . . , r − 1.

Given a monomial ideal I of E , we denote by G(I) the unique minimal set of monomial generators
of I, and by G(I)d the set of all monomials u ∈ G(I) such that deg(u)= d , d > 0. Similarly, for every
monomial submodule M =

⊕r
i=1 Ii gi of F, we write

G(M)= {ugi : u ∈ G(Ii), i = 1, . . . , r},

G(M)d = {ugi : u ∈ G(Ii)d− fi , i = 1, . . . , r}.

For the classification of the Hilbert functions of graded E-modules, the class of lexicographic modules
plays a crucial role [Amata and Crupi 2020a; 2020b]. Moreover, such a class of monomial modules is
essential if one wants to determine certain upper bounds for the graded Betti numbers of graded E-
modules [Amata and Crupi 2018a; 2019].

Given a nonempty subset S of E (respectively, of F), we denote by Mon(S) the set of all monomials
in S (respectively, in F). Moreover, we denote by Mond(S) the set of all monomials of degree d in S.

We denote by >lex the lexicographic order (lex order, for short) on Mond(E), i.e., if eσ = ei1ei2 · · · eid

and eτ = e j1e j2 · · · e jd are monomials belonging to Mond(E) with 1 ≤ i1 < i2 < · · · < id ≤ n and
1≤ j1 < j2 < · · ·< jd ≤ n, then eσ >lex eτ if i1 = j1, . . . , is−1 = js−1 and is < js for some 1≤ s ≤ d.

Definition 2.6. Let L be a nonempty subset of Mond(E). L is called a lexicographic segment (lex
segment, for short) of degree d if for all v ∈ L and all u ∈Mond(E) such that u >lex v, we have that
u ∈ L .

Definition 2.7. Let I be a monomial ideal of E . I is called a lexicographic ideal (lex ideal, for short)
if for all monomials v ∈ I and all monomials u ∈ E with deg v = deg u and u >lex v, then u ∈ I, i.e.,
Mond(I) is a lex segment, for all d.

Remark 2.8. The trivial ideals of E , i.e., (0) and E itself, are considered monomial lex ideals.

Now, we extend the previous definitions to monomial submodules of F. To do this, we order the set
of monomials Mon(F) by using the ordering >lexF defined as follows: if ugi and vg j are monomials of
F such that deg(ugi)= deg(vg j), then ugi >lexF vg j if i < j or i = j and u >lex v.

Definition 2.9. Let N be a nonempty subset of Mond(F). N is called a lexicographic segment of F
(lexF segment, for short) of degree d if for all v ∈ N and all u ∈ Mond(F) such that u >lexF v, then
u ∈ N.

Definition 2.10. Let L be a monomial submodule of F. L is a lex submodule if for all u, v ∈Mond(F)
with v ∈ L and u >lexF v, one has u ∈ L , for every d, i.e., Mond(L) is a lexF segment of degree d, for
each degree d.

74 Amata and Crupi :::: ExteriorModules: a package for computing monomial modules over an exterior algebra

An equivalent definition of a lex submodule is the following one [Amata and Crupi 2018a, Proposi-
tion 3.12] (see also [Crupi and Ferrò 2016, Proposition 3.8]).

Definition 2.11. Let L be a graded submodule of F. L is a lex submodule of F if L =
⊕r

i=1 Ii gi , with
Ii lex ideals of E (i = 1, . . . , r), and (e1, . . . , en)

ρi+ fi− fi−1 ⊆ Ii−1, for i = 2, . . . , r , with ρi = indegIi .

Remark 2.12. The class of lex submodules of F is obviously contained in the class of strongly stable
submodules, and consequently in the class of the stable ones.

A particular overclass of the class of lex submodules, introduced in [Amata and Crupi 2018a] for
bounding the graded Betti numbers of a graded E-module, is the following one.

Definition 2.13. Let L be a graded submodule of F. L is an almost lexicographic submodule if L =⊕r
i=1 Ii gi , with Ii lex ideals of E (i = 1, . . . , r).

In order to discuss the Hilbert functions of quotients of free E-modules, we need some notation and
remarks. For more details on the subject see [Amata and Crupi 2020a; 2020b].

Firstly, we set (
m
k

)
= 0 if m < k or k < 0.

One can observe that if F =
⊕r

i=1 Egi , deg gi = fi , for i = 1, . . . , r and f1 ≤ · · · ≤ fr , we have that

HF (d)=
r∑

i=1

HEgi (d)=
r∑

i=1

(
n

d − fi

)
.

Hence, if M is a graded submodule of F, one has

HF/M(d)+ HM(d)=
r∑

i=1

(
n

d − fi

)
,

where
(n

d− fi

)
is the number of monomials of degree d − fi in E .

As a consequence, we have that

HF (d)= dimK Fd = 0, for d < f1 and d > fr + n. (1)

If M is a monomial submodule of F, from (1), it follows that

HF/M(t)=
fr+n∑
i= f1

HF/M(i)t i ,

and we can associate to F/M the sequence

(HF/M(f1), HF/M(f1+ 1), . . . , HF/M(fr + n)) ∈ N
fr+n− f1+1
0 . (2)

Such a sequence is called the Hilbert sequence of F/M, and we denote it by HsF/M . The integers
f1, f1+ 1, . . . , fr + n are called the HsF/M -degrees.

Amata and Crupi :::: ExteriorModules: a package for computing monomial modules over an exterior algebra 75

Let us define

indegHsF/M =min{d : HF/M(d) 6= 0}, for d = f1, . . . , fr + n.

We use the notation [p] for the set {1, 2, . . . , p}.
The entries HF/M(fi) (i = 1, . . . , r) are called the critical values of HsF/M . Moreover, the integers

µ fi = |{s ∈ [r] : fs = fi }|, for i = 1, 2, . . . , r

are called the multiplicity of HF/M(fi).
We can observe that some critical values can be zero, and this implies that all the entries of the Hilbert

sequence are zero until the next nonzero critical value. So it makes sense to investigate the minimum
critical value of a Hilbert sequence to get important information about the behavior of a Hilbert function.

Let k be the minimum integer such that HF/M(fk) 6= 0, i.e., indegHsF/M = fk . The integer HF/M(fk)

is called the initial critical value (of F/M) and fk the initial critical degree (of F/M). Moreover, we
have that

HF/M(fk)≤ µ fk ,

and

HF/M(fk + 1)≤ nµ fk +µ fk+1.

Now we have all the necessary ingredients to quote the main result on the classification of Hilbert
functions of quotients of graded free E-modules [Amata and Crupi 2020a, Theorem 4.2]. The pivotal
idea of such a classification is that if M is a graded submodule of F, then there exists a unique lex
submodule of F with the same Hilbert function as M.

Let a and i be two positive integers. Then a has the unique i-th Macaulay expansion [Herzog and
Hibi 2011, Lemma 6.3.4]

a =
(

ai

i

)
+

(
ai−1

i − 1

)
+ · · ·+

(
a j

j

)
with ai > ai−1 > · · ·> a j ≥ j ≥ 1. We define

a(i) =
(

ai

i + 1

)
+

(
ai−1

i

)
+ · · ·+

(
a j

j + 1

)
.

We also set 0(i) = 0 for all i ≥ 1.
For p, q ∈ Z with p < q , let us define the set

[p, q] = { j ∈ Z : p ≤ j ≤ q}.

Theorem 2.14 [Amata and Crupi 2020a, Theorem 4.2]. Let (f1, f2, . . . , fr) ∈ Zr be an r-tuple such that
f1 ≤ f2 ≤ · · · ≤ fr , and let (h f1, h f1+1, . . . , h fr+n) be a sequence of nonnegative integers. Set

s =min{k ∈ [f1, fr + n] : hk 6= 0}

76 Amata and Crupi :::: ExteriorModules: a package for computing monomial modules over an exterior algebra

and

r̃ j = |{p ∈ [r] : f p = s+ j}|, for j = 0, 1.

Then the following conditions are equivalent:

(a)
∑ fr+n

i=s hi t i is the Hilbert series of a graded E-module F/M, with F =
⊕r

i=1 Egi a finitely generated
graded free E-module with the basis elements gi of degrees fi .

(b) hs ≤ r̃0, hs+1 ≤ nr̃0+ r̃1, hi =
∑r

j=N+1
(n

i− fj

)
+ a, where a is a positive integer less than

(n
i− fN

)
,

0< N ≤ r , and hi+1 ≤
∑r

j=N+1
(n

i− f j+1

)
+ a(i− fN), i = s+ 1, . . . , fr + n.

(c) There exists a unique lex submodule L of a finitely generated graded free E-module F =
⊕r

i=1 Egi

with the basis elements gi of degrees fi , and such that
∑ fr+n

i=s hi t i is the Hilbert series of F/L.

From now on, if M is a monomial submodule of the finitely generated graded free E-module F =⊕r
i=1 Egi , we denote by M lex the unique lex submodule of F with the same Hilbert function as M.

M lex is called the lex submodule associated to M.

Remark 2.15. Theorem 2.14 generalizes the well-known Kruskal–Katona’s theorem in [Aramova et al.
1997], and can be also obtained via results on ideals in an exterior algebra [Amata and Crupi 2020b,
Criterion 3.3]. The underlying algorithm is implemented as the lexModuleBySequences method in the
ExteriorModules package.

3. EXAMPLES. In this section, we collect some examples in order to describe the algorithms.
In what follows, let F =

⊕r
i=1 Egi be a finitely generated graded free E-module such that

deg(g1)≤ deg(g2)≤ · · · ≤ deg(gr).

Example 3.1. Let M be a monomial submodule of the graded free module F, we illustrate functions
from the ExteriorModules package (analogous to those for ideals [Amata and Crupi 2018b]) in order
to check whether M is (strongly) stable or (almost) lex, and to produce the smallest (strongly) stable
submodule containing M.

i1 : loadPackage "ExteriorModules";

i2 : E=QQ[e_1..e_5,SkewCommutative=>true];

i3 : F=E^2;

i4 : I_1=ideal {e_1*e_2, e_1*e_3, e_1*e_4*e_5};

i5 : I_2=ideal {e_1*e_2, e_2*e_3*e_4};

i6 : M=createModule({I_1, I_2},F)

o6 = image|e_1e_3 e_1e_2 e_1e_4e_5 0 0 |
|0 0 0 e_1e_2 e_2e_3e_4|

o6 : E-module, submodule of E^2

i7 : isStableModule M

o7 = false

The submodule M is almost stable but not stable. In fact, the monomial e2e3e4 does not belong to I1

Amata and Crupi :::: ExteriorModules: a package for computing monomial modules over an exterior algebra 77

(Definition 2.5). We can compute the smallest stable submodule of F containing M by the function
stableModule(module).

i8 : Ms=stableModule M

o8 = image|e_1e_2 e_1e_3 e_1e_4e_5 e_2e_3e_4 0 0 |
|0 0 0 0 e_1e_2 e_2e_3e_4|

o8 : E-module, submodule of E^2

i9 : isStronglyStableModule Ms

o9 = false

The submodule Ms is stable, and but neither almost strongly stable nor strongly stable. In fact, the ideal
(e1e2, e2e3e4) is not strongly stable. We compute the smallest strongly stable submodule of F containing
Ms by using the function stronglyStableModule(module):

i10 : Mss=stronglyStableModule Ms

o10 = image|e_1e_2 e_1e_3 e_1e_4e_5 e_2e_3e_4 0 0 0 |
|0 0 0 0 e_1e_2 e_1e_3e_4 e_2e_3e_4|

o10 : E-module, submodule of E^2

i11 : isStronglyStableModule Mss

o11 = true

i12 : Mss==stronglyStableModule M

o12 = true

The submodule Mss is not an almost lex submodule of F. Indeed, the ideal (e1e3e4, e2e3e4) is not lex.

i13 : isLexIdeal (getIdeals Mss)_1

o13 = false

i14 : isAlmostLexModule Mss

o14 = false

Remark 3.2. The functions stableModule(module) and stronglyStableModule(module) allow
the construction of (strongly) stable submodules of a finitely generated graded free module F. The
methods to compute the smallest stable and strongly stable submodule containing a given submodule are
useful, although they do not preserve invariants. In fact, the computation by hand of a stable or a strongly
stable submodule implies some tedious calculations overall in the case when the elements of the homoge-
neous basis of F have different degrees. Furthermore, it is worth pointing out that such methods are anal-
ogous to the Macaulay2 function borel that computes the smallest borel ideal containing a given ideal.

Example 3.3. Let h be a sequence of nonnegative integers. We describe how one can check whether h is
a Hilbert sequence of a graded E-module of the type F/M, with M graded submodule of F. The key tools
are the functions lexModuleBySequences(list,F) (Remark 2.15), isHilbertSequence(list,F),
and lexModule(list,F). The first function verifies if a list of nonnegative integers of a given length is
a Hilbert function; the other ones return a lex submodule of F if and only if the list is a Hilbert sequence.
In more detail, if hs is a given Hilbert sequence, the lex submodule of F produced by both the functions
lexModule(hs, F) and lexModuleBySequences(hs, F) is the unique lex submodule L of F with
HF/L = hs. These functions work also in the case when the basis elements of the free module F have

78 Amata and Crupi :::: ExteriorModules: a package for computing monomial modules over an exterior algebra

different degrees.
i1 : loadPackage "ExteriorModules";

i2 : E=QQ[e_1..e_4,SkewCommutative=>true];

i3 : F=E^3;

i4 : hs={3, 12, 16, 6, 0};

i5 : lexModule(hs,F)

o5 = image|e_1e_2 e_1e_3 e_2e_3e_4 0 0 0 |
|0 0 0 e_1e_2e_3 e_1e_2e_4 0 |
|0 0 0 0 0 e_1e_2e_3e_4|

o5 : E-module, submodule of E^3

i6 : F=E^{2,0,-2};

i7 : hs={1, 4, 5, 4, 6, 5, 6, 3, 0};

i8 : lexModuleBySequences(hs,F)

o8 = image {-2}|e_1e_3 e_1e_2 e_2e_3e_4 0 0 0 |
{0} |0 0 0 e_1e_2 e_1e_3e_4 0 |
{2} |0 0 0 0 0 e_1e_2e_3|

o8 : E-module, submodule of E^3

i9 : F=E^{3,1,-2};

i10 : hs={1, 2, 2, 4, 3, 3, 4, 5, 2, 0};

i11 : isHilbertSequence(hs,F)

o11 = false

Example 3.4. Given a graded submodule M of F, we illustrate another way for computing the unique
lex submodule associated to M. Given M, we compute M lex by the function lexModule(module).
The procedure for the computation of the required lex submodule is based on the constructive proof of
Theorem 2.14, (b)⇒ (c).

i1 : loadPackage "ExteriorModules";

i2 : E=QQ[e_1..e_4,SkewCommutative=>true];

i3 : F=E^3;

i4 : I_1=ideal {e_1, e_2*e_3*e_4};

i5 : I_2=ideal {e_1*e_2, e_1*e_3*e_4};

i6 : I_3=ideal {e_1*e_2*e_3};

i7 : M=createModule({I_1, I_2, I_3},F)

o7 = image|e_1 e_2e_3e_4 0 0 0 |
|0 0 e_1e_2 e_1e_3e_4 0 |
|0 0 0 0 e_1e_2e_3|

o7 : E-module, submodule of E^3

i8 : isAlmostLexModule M

o8 = true

i9 : isLexModule M

o9 = false

i10 : L=lexModule M

o10 = image|e_1 e_2e_3 0 0 0 0 0 |
|0 0 e_1e_2e_3 e_1e_2e_4 e_1e_3e_4 e_2e_3e_4 0 |
|0 0 0 0 0 0 e_1e_2e_3e_4|

o10 : E-module, submodule of E^3

Amata and Crupi :::: ExteriorModules: a package for computing monomial modules over an exterior algebra 79

i11 : hilbertSequence M

o11 = {3, 11, 14, 4, 0}

i12 : hilbertSequence M==hilbertSequence L

o12 = true

The function lexModule(module) also works in the case when the basis elements of the free module
F have different degrees.

i1 : loadPackage "ExteriorModules";

i2 : E=QQ[e_1..e_4,SkewCommutative=>true];

i3 : F=E^{2,0,-1};

i4 : I_1=ideal {e_1*e_2, e_3*e_4};

i5 : I_2=ideal {e_1*e_2, e_2*e_3*e_4};

i6 : I_3=ideal {e_2*e_3*e_4};

i7 : M=createModule({I_1, I_2, I_3},F)

o7 = image {-2}|e_1e_2 e_3e_4 0 0 0 |
{0} |0 0 e_1e_2 e_2e_3e_4 0 |
{1} |0 0 0 0 e_2e_3e_4|

o7 : E-module, submodule of E^3

i8 : L=lexModule M

o8 = image {-2}|e_1e_2 e_1e_3 e_2e_3e_4 0 0 0 |
{0} |0 0 0 e_1e_2 e_1e_3e_4 0 |
{1} |0 0 0 0 0 e_1e_2e_3|

o8 : E-module, submodule of E^3

i9 : hilbertSequence M

o9 = {1, 4, 5, 5, 9, 7, 3, 0}

09 : List

i10 : hilbertSequence M==hilbertSequence L

o10 = true

4. CONCLUSIONS AND PERSPECTIVES. The procedures described in this paper are part of the Macaulay2
package ExteriorModules (which uses the ExteriorIdeals package [Amata and Crupi 2018b]), and
tested with Macaulay 1.14 as well as all the examples in this paper.

As far as we know, specific packages for manipulating classes of monomial modules over an exterior
algebra have not been implemented yet. Many characterizations and algorithmic methods presented in
the package are due to the authors of this paper. We believe that these packages may reveal useful further
applications. Indeed, it would be nice to create functions for the computation of the generic initial module
of a graded E-module M in the category M, which is a strongly stable module with the same Hilbert
function as M.

Moreover, it would be interesting to manage the dual module of a graded E-module M ∈M in
a general case, i.e., when M is a submodule of a finitely generated graded free module whose basis
elements have different degrees. The case when the basis elements have the same degree was faced and
solved in [Amata and Crupi 2019].

These problems are currently under investigation by the authors.

80 Amata and Crupi :::: ExteriorModules: a package for computing monomial modules over an exterior algebra

APPENDIX: LIST OF FUNCTIONS PROVIDED.

createModule(list) Give the monomial module from a list of ideals
getIdeals(M) Get ideals from a monomial module M
hilbertSequence(M) Give the Hilbert function sequence of M
isMonomialModule(M) Check whether a module M is monomial
isAlmostLexModule(M) Check whether a module M is almost lex
almostLexModule(M) Give the almost lex module associated to M
isLexModule(M) Check whether a module M is lex
isHilbertSequence(l,F) Check whether the Kruskal–Katona theorem is satisfied for l
lexModule(hs,F) Give the lex module with the given Hilbert sequence hs
lexModule(M) Give the lex module associated to M
lexModuleBySequences(hs,F) Give the lex module with the given Hilbert function 2.15
isAlmostStronglyStableModule(M) Check whether a module M is almost strongly stable
almostStronglyStableModule(M) Give the minimal almost strongly stable module containing M
isAlmostStableModule(M) Check whether a module M is almost stable
almostStableModule(M) Give the minimal almost stable module containing M
isStronglyStableModule(M) Check whether a module M is strongly stable
stronglyStableModule(M) Give the minimal strongly stable module containing M
isStableModule(M) Check whether a module M is stable
stableModule(M) Give the minimal stable module containing M
minimalBettiNumbers(M) Give the (minimal) Betti numbers of M
initialModule(M) Give the initial module of M

SUPPLEMENT. The online supplement contains version 1.0 of ExteriorModules.

REFERENCES.
[Amata and Crupi 2018a] L. Amata and M. Crupi, “Bounds for the Betti numbers of graded modules with given Hilbert
function in an exterior algebra via lexicographic modules”, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 61(109):3 (2018),
237–253. MR Zbl

[Amata and Crupi 2018b] L. Amata and M. Crupi, “ExteriorIdeals: A package for computing monomial ideals in an exterior
algebra”, J. of Software for Alg. and Geom. 8:7 (2018), 71–79. Zbl

[Amata and Crupi 2019] L. Amata and M. Crupi, “Minimal resolutions of graded modules over an exterior algebra”, Atti Accad.
Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur. 97:1 (2019), art. id. A5. MR Zbl

[Amata and Crupi 2020a] L. Amata and M. Crupi, “A generalization of Kruskal–Katona’s theorem”, An. Ştiinţ. Univ. “Ovidius”
Constanţa Ser. Mat. 28:2 (2020), 35–52. MR

[Amata and Crupi 2020b] L. Amata and M. Crupi, “Hilbert functions of graded modules over an exterior algebra: an algorith-
mic approach”, Int. Electron. J. Algebra 27 (2020), 271–287. MR Zbl

[Aramova and Herzog 2000] A. Aramova and J. Herzog, “Almost regular sequences and Betti numbers”, Amer. J. Math. 122:4
(2000), 689–719. MR Zbl

[Aramova et al. 1997] A. Aramova, J. Herzog, and T. Hibi, “Gotzmann theorems for exterior algebras and combinatorics”, J.
Algebra 191:1 (1997), 174–211. MR Zbl

[Bruns and Herzog 1993] W. Bruns and J. Herzog, Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics 39,
Cambridge University Press, 1993. MR

[Crupi and Ferrò 2016] M. Crupi and C. Ferrò, “Squarefree monomial modules and extremal Betti numbers”, Algebra Colloq.
23:3 (2016), 519–530. MR Zbl

http://msp.org/jsag/2021/11-1/jsag-v11-n1-x08-ExteriorModules.zip
http://msp.org/idx/mr/3838937
http://msp.org/idx/zbl/07157324
http://dx.doi.org/10.2140/jsag.2018.8.71
http://dx.doi.org/10.2140/jsag.2018.8.71
http://msp.org/idx/zbl/1409.13001
http://dx.doi.org/10.1478/AAPP.971A5
http://msp.org/idx/mr/3955372
http://msp.org/idx/zbl/1441.13023
http://msp.org/idx/mr/4152428
https://doi.org/10.24330/ieja.663094
https://doi.org/10.24330/ieja.663094
http://msp.org/idx/mr/4056433
http://msp.org/idx/zbl/1430.13002
http://dx.doi.org/10.1353/ajm.2000.0025
http://msp.org/idx/mr/1771569
http://msp.org/idx/zbl/1012.13008
http://dx.doi.org/10.1006/jabr.1996.6903
http://msp.org/idx/mr/1444495
http://msp.org/idx/zbl/0897.13030
http://msp.org/idx/mr/1251956
http://dx.doi.org/10.1142/S100538671600050X
http://msp.org/idx/mr/3514541
http://msp.org/idx/zbl/1345.05116

Amata and Crupi :::: ExteriorModules: a package for computing monomial modules over an exterior algebra 81

[Eisenbud 1995] D. Eisenbud, Commutative algebra: with a view toward algebraic geometry, Graduate Texts in Mathematics
150, Springer, 1995. MR Zbl

[Gasharov 1997] V. Gasharov, “Extremal properties of Hilbert functions”, Illinois J. Math. 41:4 (1997), 612–629. MR Zbl

[Herzog and Hibi 2011] J. Herzog and T. Hibi, Monomial ideals, Graduate Texts in Mathematics 260, Springer, 2011. MR
Zbl

[Kämpf 2010] G. Kämpf, Module theory over the exterior algebra with applications to combinatorics, Ph.D. thesis, Osnabrück,
2010.

[Macaulay2] D. R. Grayson and M. E. Stillman, “Macaulay2: a software system for research in algebraic geometry”, available
at http://www.math.uiuc.edu/Macaulay2.

[Pardue 1996] K. Pardue, “Deformation classes of graded modules and maximal Betti numbers”, Illinois J. Math. 40:4 (1996),
564–585. MR Zbl

RECEIVED: 16 Jun 2020 REVISED: 5 May 2021 ACCEPTED: 3 Jun 2021

LUCA AMATA:

lamata@unime.it
Department of Mathematics and Computer Sciences, Physical and Earth Sciences, University of Messina, Messina, Italy

MARILENA CRUPI:

mcrupi@unime.it
Department of Mathematics and Computer Sciences, Physical and Earth Sciences, University of Messina, Messina, Italy

msp

http://dx.doi.org/10.1007/978-1-4612-5350-1
http://msp.org/idx/mr/1322960
http://msp.org/idx/zbl/0819.13001
http://projecteuclid.org/euclid.ijm/1256068984
http://msp.org/idx/mr/1468870
http://msp.org/idx/zbl/0908.13009
http://dx.doi.org/10.1007/978-0-85729-106-6
http://msp.org/idx/mr/2724673
http://msp.org/idx/zbl/1206.13001
http://www.math.uiuc.edu/Macaulay2
http://projecteuclid.org/euclid.ijm/1255985937
http://msp.org/idx/mr/1415019
http://msp.org/idx/zbl/0903.13004
mailto:lamata@unime.it
mailto:mcrupi@unime.it
http://msp.org

JSAG 11 (2021), 83–87 The Journal of Software for
https://doi.org/10.2140/jsag.2021.11.83 Algebra and Geometry

The Schur–Veronese package in Macaulay2

JULIETTE BRUCE, DANIEL ERMAN, STEVE GOLDSTEIN AND JAY YANG

ABSTRACT: This note introduces the Macaulay2 package SchurVeronese, which gathers together data
about Veronese syzygies and makes it readily accessible in Macaulay2. In addition to standard Betti ta-
bles, the package includes information about the Schur decompositions of the various spaces of syzygies.
The package also includes a number of functions useful for manipulating and studying this data.

In [Bruce et al. 2020] the authors used a combination of high-throughput and high-performance compu-
tation and numerical techniques to compute the Betti tables of P2 under the d-fold Veronese embedding,
as well as the Betti tables of the pushforwards of line bundles OP2(b) under that embedding, for a number
of values of b and d. These computations resulted in new data, such as Betti tables, multigraded Betti
numbers, and Schur Betti numbers. (For b= 0, most the cases had been previously computed in [Castryck
et al.].) This note introduces the SchurVeronese package for Macaulay2, which makes this data readily
accessible via Macaulay2 for further experimentation and study.

1. VERONESE SYZYGIES. Throughout this section we fix n ∈ N and let S = C[x0, x1, . . . , xn] be the
polynomial ring with the standard grading. The d-th Veronese module of S twisted by b is

S(b; d) :=
⊕
i∈Z

Sdi+b.

If b = 0, then S(0; d) is the Veronese subring of S, and if b 6= 0 then S(b; d) is an S(0; d)-module.
Moreover, if we set R = Sym(Sd) to be the symmetric algebra on Sd , then we may consider S(b; d) as
a graded R-module. Geometrically, if b = 0 this corresponds to the homogenous coordinate ring of Pn

under the d-fold embedding Pn
→ P(

n+d
d)−1, and for other b it corresponds to the pushforward of OPn (b)

under the d-fold embedding.
Our interest is in studying the syzygies of S(b; d). See the introduction of [Bruce et al. 2020] for

background on Veronese syzygies including a summary of known results. Throughout this paper, we set
K p,q(P

n, b; d) :=TorR
p (S(b; d),C)p+q , which is isomorphic to the vector space of degree p+q syzygies

of S(b; d) of homological degree p. Using the standard conventions for graded Betti numbers, the rank

Bruce received support from the NSF GRFP under grant DGE-1256259, NSF grant DMS-1502553, NSF MSPRF DMS-
2002239, and from the Graduate School and the Office of the Vice Chancellor for Research and Graduate Education at the
University of Wisconsin–Madison with funding from the Wisconsin Alumni Research Foundation. She is grateful for the
support of the Mathematical Sciences Research Institute in Berkeley, California, where she was in residence for the Fall 2020
semester. Erman received support from NSF grant DMS-1601619. Yang received support from NSF grant DMS-1502553.
MSC2010: 13D02.
Keywords: syzygies, free resolutions, Veronese syzygies.
SchurVeronese version 1.1

83

https://doi.org/10.2140/jsag.2021.11-1
http://msp.org/jsag
https://doi.org/10.2140/jsag.2021.11.83
http://msp.org/jsag

84 Bruce, Erman, Goldstein and Yang :::: The Schur–Veronese package in Macaulay2

of the vector space K p,q corresponds to the Betti number βp,p+q , and we write βp,p+q(S(b; d)) :=
dim TorR

p (S(b; d),C)p+q = dim K p,q(P
n, b; d). Following the usual Macaulay2 notation, the Betti table

of S(b; d) will be the table where βp,p+q(S(b; d)) is placed in the (p, q)-spot.
Outside of the case n = 1, the Betti tables of S(b; d) are unknown even for modest values of d . There

is not even a conjecture about what the Betti table of S(b; d) should be for n = 2 and d ≥ 7.
This package provides an array of computed data about S(b; d) in the case n = 2 and for 0≤ b< d ≤ 8

(though the data are incomplete for some of the larger values of d). While computing this data, including
the Schur functor decompositions, took substantial time, the resulting data are concise and easy to work
with in Macaulay2. The bulk of this package thus consists of these output data, which are included as
auxiliary files. The functions provided in this package make this data accessible in a user-friendly way.
Our hope is that this will allow those interested in Veronese syzygies to make headway on formulating
conjectures and proving results in this area. Moreover, as new cases of Veronese syzygies are computed,
these can easily be incorporated into future versions of the package.

2. AN OVERVIEW OF THE DATA. When computing data for S(b; d) we always work under the hypoth-
esis that 0 ≤ b < d, as the Betti table of S(b; d) and S(b + d; d) differ only by a vertical shift. We
have included data for the cases n = 1 and d ≤ 10, although this can also easily be computed using the
Eagon–Northcott complex. The main data are for the cases n = 2 and 0 ≤ b < d ≤ 8. In [Bruce et al.
2020], we obtained full computations for d ≤ 6; moreover since those algorithms worked in parallel
with respect to multidegrees, we obtained incomplete data for some cases where d = 7, 8, and we have
included these partial data in this package as well.

The algorithms in [Bruce et al. 2020] are a mix of symbolic and numeric algebra. Thus some entries
in the data are not provably correct, while others are. One can determine precisely when K p,q 6= 0 by
combining [Ein and Lazarsfeld 2012, Remark 6.5], [Green 1984b, Theorem 2.2], and [Green 1984a,
Theorem 2.c.6]. Our computation of a K p,q -group (and all related data such as the Schur functor decom-
position) will be provably correct if and only if K p+1,q−1 and K p−1,q+1 both vanish; in cases where this
does not occur, the data for K p,q may have been computed numerically, and thus may not be provably
correct. For a longer discussion of potential numerical error issues, see [Bruce et al. 2020, §5.2].

3. TOTAL BETTI TABLES. The Betti table for S(b; d) can be called up using the totalBettiTally
command. For example, the Betti table of S(2; 4) when n = 2 is produced below.

i6 : totalBettiTally(4,2,0)

0 1 2 3 4 5 6 7 8 9 10 11 12
o6 = total: 1 75 536 1947 4488 7095 7920 6237 3344 1089 175 24 3

0: 1
1: . 75 536 1947 4488 7095 7920 6237 3344 1089 120 . .
2: 55 24 3

o6 : BettiTally

Note that this is purely numeric: the package does not produce a minimal free resolution; the function
simply returns the Betti numbers obtained by a previous computation. The command totalBetti is
similar, but expresses the Betti numbers simply as a hash table.

Bruce, Erman, Goldstein and Yang :::: The Schur–Veronese package in Macaulay2 85

There is also a distinction between the indexing conventions. When working with hash tables, we
follow the more concise K p,q indexing conventions, instead of the βp,p+q indexing conventions used for
Betti tallies. Thus, for instance, in the above example, the Betti number β2,3 would correspond to key
(2, {3}, 3) in the Betti tally, but in the hash table totalBetti it corresponds to key (2, 1):

i4 :E = totalBetti(4,2,0);

i5 : E#(2,1)
o5 = 536

If one tries to call a Betti table outside of the acceptable range of n, b, d , we return an error message.
i10 : totalBettiTally(4,3,0)
o10 = Need n = 1 or 2

As noted above, there were instances where we were able to partially compute Betti tables, for instance
in the case of the 7-uple embedding of P2. In those cases, we have recorded the entries that we know,
and we mark the unknown entries with “infinity”. For example:

i14 : B = totalBetti(7,2,0);

i15 : B#(4,1)
o15 = 1031184

i16 : B#(20,1)
o16 = infinity
o16 : InfiniteNumber

Thus, in this case, we see dim K4,1(P
2, 2; 7)= 1031184, but were unable to compute dim K20,1(P

2, 2; 7).

4. SCHUR DECOMPOSITION. When n = 2 and d ≥ 5, the Betti tables of S(b; d) are often unwieldy to
work with, as they and their entries tend to be quite large. For example, the Betti table of S(0; 6) has 26
columns and many of the entries are on the order of 107.

A more concise way of recording the syzygies would be to take into account the symmetries coming
from representation theory. The natural linear action of GLn+1(C) on S induces an action on each vector
space K p,q(P

n, b; d). We can thus decompose this as a direct sum of Schur functors of total weight
d(p+ q)+ b, i.e.,

K p,q(P
n, b; d)=

⊕
|λ|=d(p+q)+b

Sλ(Cn+1)⊕m p,λ(P
n,b;d),

with m p,λ(P
n, b; d) being the Schur Betti numbers and Sλ being the Schur functor corresponding to the

partition λ [Fulton and Harris 1991, p. 76]. The Schur Betti numbers can be accessed via the schurBetti
command, which returns a hash table whose keys correspond to pairs (p, q) for which K p,q(P

n, b; d) 6= 0,
and whose values are lists corresponding to the Schur decomposition of this syzygy module.

For example, let us consider K2,1(P
2, 0; 4), which is a vector space of dimension 536. As a representa-

tion of GL3(C), it turns out to be the sum of 9 distinct Schur functors, each appearing with multiplicity 1:

K2,1(P
2, 0; 4)= S(9,2,1)⊕ S(8,4,0)⊕ S(8,3,1)⊕ S(7,5,0)⊕ S(7,4,1)⊕ S(7,3,2)⊕ S(6,5,1)⊕ S(6,4,2)⊕ S(5,4,1).

i26 : (schurBetti(4,2,0))#(2,1)

o26 = {({9, 2, 1}, 1), ({8, 4, 0}, 1), ({8, 3, 1}, 1), ({7, 5, 0}, 1),

({7, 4, 1}, 1), ({7, 3, 2}, 1), ({6, 5, 1}, 1), ({6, 4, 2}, 1), ({5, 4, 3}, 1)}

o8 : List

86 Bruce, Erman, Goldstein and Yang :::: The Schur–Veronese package in Macaulay2

From this, it is easy to compute statistics such as the number of representations and the number
of distinct representations appearing in the Schur decomposition of K p,q(n, b; d). The SchurVeronese
package provides commands for these. For instance, in our example above we see that:

i11 : (numDistinctRepsBetti(4,2,0))#(2,1)
o11 = 9

We can also display the number of representations appearing in each entry of the Betti table. In the
following example, the first table counts distinct Schur functors and the second counts the number of
Schur functors with multiplicity:

i29 : makeBettiTally numDistinctRepsBetti(4,2,0)

0 1 2 3 4 5 6 7 8 9 10 11 12
o29 = total: 1 2 9 17 23 23 26 25 21 13 3 1 1

0: 1
1: . 2 9 17 23 23 26 25 21 13 1 . .
2: 2 1 1

i30 : makeBettiTally numRepsBetti(4,2,0)

0 1 2 3 4 5 6 7 8 9 10 11 12
o30 = total: 1 2 9 28 55 79 86 69 38 14 3 1 1

0: 1
1: . 2 9 28 55 79 86 69 38 14 1 . .
2: 2 1 1

Thus, K4,1(P
2, 0; 4) is the sum of 55 irreducible representations, 23 of which are distinct.

5. MULTIGRADED BETTI NUMBERS. One can also specialize the action of GLn+1(C) to the torus
action via (C∗)n+1. This gives a decomposition of K p,q(P

n, b; d) into a sum of Zn+1-graded vector
spaces of total weight d(p+ q)+ b. Specifically, writing C(−a) for the vector space C together with the
(C∗)n+1-action given by (λ0, λ1, . . . , λn) ·µ= λ

a0
0 λ

a1
1 · · · λ

an
n µ, we have

K p,q(P
n, b; d)=

⊕
a∈Zn+1

|a|=d(p+q)+b

C(−a)⊕βp,a(P
n,b;d)

as Zn+1-graded vector spaces, or equivalently as (C∗)n+1 representations.
The SchurVeronese package produces these multigraded Betti numbers for a number of examples

via the multiBetti command. As schurBetti does, this command returns a hash table whose keys
correspond to pairs (p, q) for which K p,q(P

n, b; d) 6= 0, and whose values are multigraded Hilbert
polynomials encoding the multigraded decomposition of K p,q(n, b; d). More specifically, the value of
(multiBetti(d,n,b))#(p,q) is the polynomial∑

a∈Zn+1

|a|=d(p+q)+b

βp,a(n, b; d)ta

where ta denotes ta0
0 ta1

1 · · · t
an
n .

For example, K12,2(2, 0; 4) is the 3-dimensional Z3-graded vector space

K12,2(2, 0; 4)∼= C(−(19, 19, 18))⊕C(−(19, 18, 19))⊕C(−(18, 19, 19)).

Bruce, Erman, Goldstein and Yang :::: The Schur–Veronese package in Macaulay2 87

The following code computes this, illustrating that the multigraded Hilbert function for K12,2(2, 0; 4) is
t19
0 t19

1 t18
2 + t19

0 t18
1 t19

2 + t18
0 t19

1 t19
2 .

i4 : (multiBetti(4,2,0))#(12,2)

19 19 18 19 18 19 18 19 19
o4 = t t t + t t t + t t t

0 1 2 0 1 2 0 1 2

o4 : QQ[t , t , t]
0 1 2

SUPPLEMENT. The online supplement contains version 1.1 of SchurVeronese.

ACKNOWLEDGMENTS. We thank Claudiu Raicu and Gregory G. Smith for useful conversations.

REFERENCES.
[Bruce et al. 2020] J. Bruce, D. Erman, S. Goldstein, and J. Yang, “Conjectures and Computations about Veronese Syzygies”,
Experimental Mathematics 29:4 (2020), 398–413.

[Castryck et al.] W. Castryck, F. Cools, J. Demeyer, and A. Lemmens, “Computing graded Betti tables of toric surfaces”. arXiv

[Ein and Lazarsfeld 2012] L. Ein and R. Lazarsfeld, “Asymptotic syzygies of algebraic varieties”, Inventiones Mathematicae
190 (2012), 603–646.

[Fulton and Harris 1991] W. Fulton and J. Harris, Representation theory, vol. 129, Graduate Texts in Mathematics, Springer-
Verlag, New York, 1991. MR

[Green 1984a] M. L. Green, “Koszul cohomology and the geometry of projective varieties, I”, J. Differential Geom. 19:1
(1984), 125–171.

[Green 1984b] M. L. Green, “Koszul cohomology and the geometry of projective varieties, II”, J. Differential Geom. 20:1
(1984), 279–289.

RECEIVED: 28 May 2019 REVISED: 18 Feb 2021 ACCEPTED: 5 May 2021

JULIETTE BRUCE:

juliette.bruce@berkeley.edu
Department of Mathematics, University of California, Berkeley, Berkeley, CA, United States

DANIEL ERMAN:

derman@math.wisc.edu
Department of Mathematics, University of Wisconsin, Van Vleck Hall, Madison, WI, United States

STEVE GOLDSTEIN:

sgoldstein@wisc.edu
Botany Department and Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI,
United States

JAY YANG:

jkyang@umn.edu
School of Mathematics, University of Minnesota, Minneapolis, MN, United States

msp

http://msp.org/jsag/2021/11-1/jsag-v11-n1-x09-SchurVeronese.zip
http://dx.doi.org/10.1080/10586458.2018.1474506
http://msp.org/idx/arx/arXiv:1606.08181
http://dx.doi.org/10.1007/s00222-012-0384-5
http://dx.doi.org/10.1007/978-1-4612-0979-9
http://msp.org/idx/mr/1153249
mailto:juliette.bruce@berkeley.edu
mailto:derman@math.wisc.edu
mailto:sgoldstein@wisc.edu
mailto:jkyang@umn.edu
http://msp.org

JSAG 11 (2021), 89–112 The Journal of Software for
https://doi.org/10.2140/jsag.2021.11.89 Algebra and Geometry

admcycles - a Sage package for calculations in the tautological ring of the
moduli space of stable curves

VINCENT DELECROIX, JOHANNES SCHMITT AND JASON VAN ZELM

ABSTRACT: The tautological ring of the moduli space of stable curves has been studied extensively in
the last decades. We present a SageMath implementation of many core features of this ring. This includes
lists of generators and their products, intersection numbers and verification of tautological relations.
Maps between tautological rings induced by functoriality, that is pushforwards and pullbacks under
gluing and forgetful maps, are implemented. Furthermore, many interesting cycle classes, such as the
double ramification cycles, strata of k-differentials and hyperelliptic or bielliptic cycles are available. We
show how to apply the package, including concrete example computations.

1. INTRODUCTION. A crucial tool in the study of the singular cohomology of the moduli space Mg,n

of stable curves is the tautological ring

RH∗(Mg,n)⊂ H∗(Mg,n)= H∗(Mg,n,Q).

It is a Q-subalgebra of the singular cohomology of Mg,n with an explicit, finite set of generators
(indexed by decorated graphs [0, α]) admitting combinatorial descriptions of operations like cup products
and intersection numbers. For a detailed introduction to the tautological ring, see, e.g., [Faber and
Pandharipande 2000; Arbarello et al. 2011; Pandharipande 2018].

Since computations with the generators [0, α] quickly become untractable by hand, it is natural to
implement them in a computer program. With admcycles we present such an implementation using
the open source mathematical software [SageMath]. It is based on an earlier implementation by Aaron
Pixton. It features intersection products and numbers between the classes [0, α] and verification of linear
relations between these generators using the known generalized Faber–Zagier relations [Pixton 2012;
Pandharipande et al. 2015; Janda 2017]. For the gluing and forgetful morphisms between (products
of) the moduli spaces Mg,n it implements pullbacks and pushforwards of the generators [0, α] of the
tautological ring.

Many geometric constructions of cohomology classes on Mg,n (such as the Chern classes λd of the
Hodge bundle E over Mg,n) give classes contained in the tautological ring and can thus be written as
linear combinations of classes [0, α]. For many examples of such classes, the package admcycles

MSC2010: 14H10, 97N80.
Keywords: moduli of curves, tautological ring, intersection theory, double ramification cycle.
admcycles version 1.3.1

89

https://doi.org/10.2140/jsag.2021.11-1
http://msp.org/jsag
https://doi.org/10.2140/jsag.2021.11.89
http://msp.org/jsag

90 Delecroix, Schmitt and van Zelm :::: admcycles Sage package

implements known formulas or algorithms to calculate them and thus allows further computations, such
as intersections or comparisons to other cohomology classes. In particular, admcycles contains

• a formula for double ramification cycles DRg(A) from [Janda et al. 2017] ,

• a conjectural formula for the strata Hk
g(m) of k-differentials from [Farkas and Pandharipande 2018;

Schmitt 2018],

• (generalized) lambda classes, the Chern classes of derived pushforwards R•π∗O(D) of divisors D
on the universal curve π : Cg,n→Mg,n , as discussed in [Pagani et al. 2020],

• admissible cover cycles,1 such as the fundamental classes of loci of hyperelliptic or bielliptic curves
with marked ramification points, as discussed in [Schmitt and van Zelm 2020]

Instead of discussing the details of the algorithms in admcycles, this document serves as a user manual
for the package, with an emphasis on concrete example computations. These computations are also
available in an interactive online format on CoCalc (without need for registration) here.

One way to explore admcycles is to go through these examples and refer back to the text below
for additional explanations and background. While the code in the examples is mostly self-explanatory,
some basic familiarity with SageMath and the Python programming language (e.g., as explained in the
official SageMath tutorial) is helpful.

Applications of admcycles. By now the package admcycles has been used in a variety of contexts.
Its original purpose was computing new examples of admissible cover cycles in [Schmitt and van Zelm
2020], e.g., computing the class of the hyperelliptic locus in M5 and M6 and the locus of bielliptic cycles
in M4. It was also used to verify results about Hodge integrals on bielliptic cycles in [Pandharipande
and Tseng 2019] and on loci of cyclic triple covers of rational curves in [Owens and Somerstep 2019].

Buryak and Rossi [2021] used admcycles to explore formulas for intersection numbers involving
double ramification cycles and lambda classes. The implementation of generalized lambda classes led
to the discovery of previously missing terms in the computations of [Pagani et al. 2020] when doing
comparisons with double ramification cycles. The package was also used in [Chen et al. 2019] to verify
computations of Masur–Veech volumes in terms of intersection numbers on Mg,n . It was used to check
a new recursion for intersection numbers of ψ-classes presented in [Grosse et al. 2019] and formulas for
double Hurwitz numbers in terms of intersection numbers in [Borot et al. 2020] and [Do and Lewański
2020]. In [Castorena and Gendron 2020], which computes a fundamental class of a stratum of meromor-
phic differentials in genus 3, some errors have been found and corrected after comparing the result with
the output of admcycles. More recently, in [Bae and Schmitt 2020] some code based on admcycles was
used to compute ranks of Chow groups of moduli stacks M0,n of prestable curves. Molcho et al. [2021]
applied the package to verify the completeness of the generalized Faber–Zagier relations in two new cases
on M4,1 and M5,1 and used this to show that for g ≥ 7 the class λg is not contained in the subring of the

1Computing these cycles was the original purpose of admcycles, hence the name of the package.

https://share.cocalc.com/share/0a48957b67f375b9e3107216504ca0c4efb678fd/admcycles%20tutorial.ipynb?viewer=share
https://doc.sagemath.org/html/en/tutorial/index.html

Delecroix, Schmitt and van Zelm :::: admcycles Sage package 91

cohomology of Mg generated by classes of cohomological degree at most 4. Very recently, Canning and
Larson [2021] used admcycles for computing the rational Chow rings of the spaces Mg for g = 7, 8, 9.

Other implementations. Apart from admcycles (and the code of Pixton on which it is based) there
have been several other implementations of the tautological ring, starting with Faber’s program [1999] for
computing intersection numbers of divisors and Chern classes of the Hodge bundle. Yang [2008] presents
a program computing intersection pairings of tautological classes on various open subsets of Mg,n . The
package [mgn] by Johnson implements general intersections of the [0, α] and also verification of linear
relations between these generators against the known generalized Faber–Zagier relations.

Based on admcycles there is the new SageMath-package diffstrata (included in admcycles since
version 1.1) by Costantini, Möller and Zachhuber. It implements the tautological ring and intersection
products on the smooth compactification of the strata of differentials presented in [Bainbridge et al.
2019a]. Computations with diffstrata are used in [Costantini et al. 2020a] to evaluate formulas
for Euler characteristics of strata of differentials in examples. Similar to the present paper, a detailed
description of the package diffstrata is given in [Costantini et al. 2020b].

1.1. Conventions. Let Mg,n be the moduli space of stable curves and π : Mg,n+1 → Mg,n be the
forgetful morphism of the marking n + 1, which can be seen as the universal curve over Mg,n . Let
σi :Mg,n→Mg,n+1 be the section of π corresponding to the i-th marked point (i = 1, . . . , n). For ωπ
the relative dualizing line bundle of π on the space Mg,n+1 and i = 1, . . . , n we define the ψ-class

ψi = c1(σ
∗

i ωπ) ∈ H 2(Mg,n).

For a = 0, 1, 2, . . . we define the (Arbarello–Cornalba) κ-class

κa = π∗((ψn+1)
a+1) ∈ H 2a(Mg,n).

Finally, given a stable graph 0 of genus g with n legs, let

ξ0 :M0 =

∏
v∈V (0)

Mg(v),n(v)→Mg,n

be the gluing map associated to 0. For a class α ∈ H∗(M0) given as a product of κ and ψ-classes on
the factors Mg(v),n(v), define

[0, α] = (ξ0)∗α ∈ H∗(Mg,n).

Such decorated boundary strata form a generating set (as a Q-vector space) of the tautological ring
RH∗(Mg,n).

Note: The degree of the gluing map ξ0 to its image is given by the size |Aut(0)| of the automorphism
group of 0. Therefore many authors prefer to define [0, α] as 1/|Aut(0)| · (ξ0)∗α (so that [0, 1] equals
the class of the boundary stratum of Mg,n associated to 0). However, throughout this paper and in the
package admcycles, we take the convention of not dividing by the size |Aut(0)| of the automorphism
group of 0.

92 Delecroix, Schmitt and van Zelm :::: admcycles Sage package

2. GETTING STARTED. The admcycles package works on top of SageMath which is an open source
software for mathematical computations. We describe how to install SageMath and admcycles on a
computer and how to use the available online services.

2.1. admcycles in the cloud. The simplest way to play with admcycles without installing anything
beyond a web browser is to use one of [SageMathCell] or the website [CoCalc]. The former provides a
basic interface to SageMath. The latter requires registration and allows one to create worksheets that can
easily be saved and shared. As mentioned before, it is possible to explore the computations presented
below on share.cocalc.com without the need to register.

2.2. Obtaining SageMath. SageMath is available on most operating systems. Depending on the situa-
tion one can find it in the list of softwares available from the package manager of the operating system.
Alternatively, there are binaries available from the SageMath website . Lastly, one can compile it from
the source code. More information on the installation process can be found here.

2.3. Installation of the admcycles package. The package admcycles is available from the Python
Package Index (PyPI) where detailed installation instructions are available for a range of systems. Note
that the best performance (in particular for functions like DR_cycle) is obtained using version 9.0 of
SageMath or newer.

The package admcycles is being developed on GitLab where one can find the latest development
version and a link to report bugs. This is also the place to look at to suggest features or improvements.

2.4. First step with admcycles. Once successfully installed, to use admcycles one should start a
SageMath-session and type

sage: from admcycles import *

In the sample code, we reproduce the behavior of the SageMath console that provides the sage: prompt
on each input line. When using the online SageMathCell or a Jupyter worksheet, there is no need to write
sage:. In all our examples, this sage: prompt allows one to distinguish between the input (command)
and the output (result). All other examples below assume that the line

from admycles import *

has been executed before.
In addition to this manual, the package has an internal documentation with more information concern-

ing the various functions. To access additional information about some function or object foo, type foo?
during the SageMath session; e.g.,

sage: TautologicalRing?

3. TAUTOLOGICAL RING AND CLASSES. The main objects in admcycles to manipulate tautological
classes are TautologicalRing and TautologicalClass.

https://share.cocalc.com/share/0a48957b67f375b9e3107216504ca0c4efb678fd/admcycles%20tutorial.ipynb?viewer=share
https://www.sagemath.org/
https://doc.sagemath.org/html/en/installation/
https://pypi.org/project/admcycles/
https://pypi.org/project/admcycles/
https://gitlab.com/jo314schmitt/admcycles

Delecroix, Schmitt and van Zelm :::: admcycles Sage package 93

3.1. Creating tautological rings. A convenient way to start a computation in the tautological ring of
Mg,n is to construct the appropriate ring itself by calling the function TautologicalRing(g, n).

sage: R = TautologicalRing(1, 1); R

TautologicalRing(g=1, n=1, moduli=’st’) over Rational Field

As we explain in Section 3.2, the object R above then allows easy access to many of the standard tauto-
logical classes on Mg,n . As an example, we show how to compute the integral∫

M1,1

ψ1 =
1
24

using the ring R we created above (see Section 3.3 for more details):
sage: R.psi(1).evaluate()
1/24

Instead of working with the tautological ring of all of Mg,n , it is also possible to work on open subsets
of the moduli space, such as the locus of compact type curves. This can be specified with the parameter
moduli:

sage: Rct = TautologicalRing(3, 1, moduli=’ct’)

The available moduli types are:

• ’st’: all stable curves (default).

• ’tl’: treelike curves (all cycles in the stable graph have length 1).

• ’ct’: compact type (stable graph is a tree).

• ’rt’: rational tails (there exists a vertex of genus g).

• ’sm’: smooth curves.

As an example of how this affects the behavior of the tautological ring, we can compute the so-called
socle degree, i.e., the highest nonvanishing (complex) degree of the tautological ring of the corresponding
subset of Mg,n .

sage: Rst = TautologicalRing(3, 1, moduli=’st’)

sage: Rst.socle_degree()
7

sage: Rsm = TautologicalRing(3, 1, moduli=’sm’)

sage: Rsm.socle_degree()
2

We will see in more detail in Section 3.4 how specifying the moduli affects computations.

3.2. Creating tautological classes. Each tautological class in admcycles has type TautologicalClass.
We list in this section the different ways to enter tautological classes in the program. Depending on the
example, some are more convenient than others.

As explained in Section 3.1 all computations happen in a given tautological ring (with a fixed base
ring and fixed moduli). Once a tautological ring R for Mg,n has been created as explained in Section 3.1,

94 Delecroix, Schmitt and van Zelm :::: admcycles Sage package

the fundamental class, boundary divisors as well as ψ , κ and λ-classes are predefined methods of the
ring R.

• R.fundamental_class() returns the fundamental class of Mg,n .

• R.separable_boundary_divisor(h,A) gives the pushforward ξ∗[M0] of the boundary gluing
map

ξ :M0 =Mh,A∪{p}×Mg−h,({1,...,n}\A)∪{p′}→Mg,n,

where A can be a list, set or tuple2 of numbers from 1 to n.

• R.irreducible_boundary_divisor() gives the pushforward (ξ ′)∗[Mg−1,n+2] of the boundary
gluing map

ξ ′ :Mg−1,n+2→Mg,n

identifying the last two markings to a node. Note that, since ξ ′ has degree 2 onto its image, this
gives twice the fundamental class of the boundary divisor of irreducible nodal curves.

• R.psi(i) gives the ψ-class ψi of marking i on Mg,n .

• R.kappa(a) gives the (Arbarello–Cornalba) κ-class κa on Mg,n .

• R.lambdaclass(d) gives the class λd on Mg,n , defined as the d-th Chern class λd = cd(E) of the
Hodge bundle E, the vector bundle on Mg,n with fiber H 0(C, ωC) over the point (C, p1, . . . , pn) ∈

Mg,n .

These tautological classes can be combined in the usual way by operations +, -, * and raising to an
integral power ^.

sage: R1 = TautologicalRing(3, 4)

sage: t1 = 3*R1.separable_boundary_divisor(1,(1,2)) - R1.psi(4)^2

sage: R2 = TautologicalRing(2, 1)

sage: t2 = -1/3*R2.irreducible_boundary_divisor() * R2.lambdaclass(1)

For user convenience, alternative functions are available to create the basic tautological classes (over the
rationals and for the full moduli of stable curves), without having to create the tautological ring before.
Each of these functions require extra arguments g and n to specify the genus and the number of marked
points.

• fundclass(g, n)

• sepbdiv(g1, A, g, n)

• irrbdiv(g, n)

• psiclass(i, g, n)

• kappaclass(a, g, n)

• lambdaclass(d, g, n)
2Be careful that tuples of length 1 must be entered as (a,) in Python, instead of (a).

Delecroix, Schmitt and van Zelm :::: admcycles Sage package 95

sage: tt1 = 3 * sepbdiv(1, (1,2), 3, 4) - psiclass(4, 3, 4)^2

sage: t1 == tt1
True

sage: tt2 = -1/3*irrbdiv(2, 1) * lambdaclass(1, 2, 1)

sage: t2 == tt2
True

To enter more complicated classes coming from decorated boundary strata, it is often convenient to
first list all such decorated strata forming the generating set of RH2r (Mg,n) in a specified degree r using
R.list_generators(r) and then select the desired ones from the list (see below for an explanation
of the notation). As a shortcut one can also directly use the function tautgens(g,n,r) to produce this
list without having to create the ring R before.

sage: R = TautologicalRing(2, 0)

sage: R.list_generators(2)
[0] : Graph : [2] [[]] []
Polynomial : (kappa_2)_0
[1] : Graph : [2] [[]] []
Polynomial : (kappa_1^2)_0
[2] : Graph : [1, 1] [[2], [3]] [(2, 3)]
Polynomial : (kappa_1)_0
[3] : Graph : [1, 1] [[2], [3]] [(2, 3)]
Polynomial : psi_2
[4] : Graph : [1] [[2, 3]] [(2, 3)]
Polynomial : (kappa_1)_0
[5] : Graph : [1] [[2, 3]] [(2, 3)]
Polynomial : psi_2
[6] : Graph : [0, 1] [[3, 4, 5], [6]] [(3, 4), (5, 6)]
Polynomial : 1
[7] : Graph : [0] [[3, 4, 5, 6]] [(3, 4), (5, 6)]
Polynomial : 1

The list itself is created by R.generators(r), from which one can then select the classes:

sage: L = R.generators(2)

sage: t3 = 2*L[3]+L[4]

sage: t3
Graph : [1] [[2, 3]] [(2, 3)]
Polynomial : (kappa_1)_0
Graph : [1, 1] [[2], [3]] [(2, 3)]
Polynomial : 2*psi_2

The output above should be interpreted as follows: each TautologicalClass consists of a sum of
decorated boundary strata (represented by data type decstratum), which consist of a graph (datatype
StableGraph) and a polynomial in κ and ψ-classes (datatype KappaPsiPolynomial).

To explain the notation above, let us look at the example of generator L[3].

Graph : [1, 1] [[2], [3]] [(2, 3)]
Polynomial : 1*psi_2^1

Its stable graph is represented by three lists.

(1) The first list [1, 1] are the genera of the vertices, so there are two vertices, both of genus 1. Note
that vertices are numbered by 0, 1, 2, . . . , so in the above case, the vertices are numbers 0 and 1.

96 Delecroix, Schmitt and van Zelm :::: admcycles Sage package

(2) The second list gives the legs (that is markings or half-edges) attached to the vertices, so vertex 0
carries the half-edge 2 and vertex 1 the half-edge 3.

(3) The third list gives the edges, that is half-edge pairs that are connected; in the above case, the two
half-edges 2 and 3 form an edge, connecting the two vertices.

If we wanted to enter this StableGraph manually, we could use its constructor as follows:

sage: G = StableGraph([1,1],[[2],[3]],[(2,3)]); G
[1, 1] [[2], [3]] [(2, 3)]

The polynomial in κ and ψ is 1*psi_2^1 in this case, so the half-edge 2 on the first vertex carries a
ψ-class. For the generator L[4] the polynomial looks like 1*(kappa_1^1)_0, meaning that vertex 0
carries a class κ1

1 = κ1.
Finally, it is possible to manually enter tautological classes by constructing a stable graph gamma and

calling the main constructor R(gamma,kappa,psi) of the tautological ring.

sage: R = TautologicalRing(3,2)

sage: g = StableGraph([2,0], [[1,3],[2,4,5,6]], [(3,4),(5,6)])

sage: R(g, kappa=[[],[1]], psi={1:2})
Graph : [2, 0] [[1, 3], [2, 4, 5, 6]] [(3, 4), (5, 6)]
Polynomial : (kappa_1)_1*psi_1^2

sage: R(g, kappa=[[1,1],[]])
Graph : [2, 0] [[1, 3], [2, 4, 5, 6]] [(3, 4), (5, 6)]
Polynomial : (kappa_1*kappa_2)_0

In the above call, the arguments kappa and psi are both optionals and specify the κ and ψ decorations
on the stable graph gamma. We refer to the documentation of admcycles for more details.

3.3. Basic operations. Apart from the usual arithmetic operations, we can take forgetful pushforwards
and pullbacks of tautological classes and also compute the degree of tautological zero-cycles. In partic-
ular, we can compute intersection numbers. Below, for the forgetful map π :M1,3→M1,2 forgetting
the marking 3 we verify the relations

π∗ψ
2
3 = κ1 and π∗ψ2 = ψ2− D0,{2,3},

where D0,{2,3} is the class of the boundary divisor in M1,3 where generically the curve splits into two
components of genera 0, 1 connected at a node with the component of genus 0 carrying markings 2, 3.

sage: s1 = TautologicalRing(1, 3).psi(3)^2

sage: s1.forgetful_pushforward([3])
Graph : [1] [[1, 2]] []
Polynomial : (kappa_1)_0

sage: s2 = TautologicalRing(1, 2).psi(2)

sage: s2.forgetful_pullback([3])
Graph : [1] [[1, 2, 3]] []
Polynomial : psi_2
Graph : [1, 0] [[1, 4], [2, 3, 5]] [(4, 5)]
Polynomial : -1

Delecroix, Schmitt and van Zelm :::: admcycles Sage package 97

Using the method evaluate of TautologicalClass, we also compute intersection numbers of ψ-
classes on Mg,n , the so-called correlators or descendent integrals. Here, given numbers k1, . . . , kn

summing to 3g− 3+ n one can define these correlators 〈τk1 · · · τkn 〉g,n as

〈τk1 · · · τkn 〉g,n =

∫
Mg,n

ψ
k1
1 · · ·ψ

kn
n . (1)

Below we compute the intersection number

〈τ0τ1τ2〉1,3 =

∫
M1,3

ψ0
1ψ2ψ

2
3 =

1
12

and check that it agrees with the prediction 〈τ0τ1τ2〉1,3 = 〈τ0τ2〉1,2+〈τ
2
1 〉1,2 by the string equation.

sage: R1 = TautologicalRing(1, 3)

sage: s3 = R1.psi(2) * R1.psi(3)^2

sage: s3.evaluate()
1/12

sage: R2 = TautologicalRing(1, 2)

sage: s4 = R2.psi(2)^2 + R2.psi(1) * R2.psi(2)

sage: s4.evaluate()
1/12

Instead of multiplying ψ-classes and evaluating by hand, we can also use the function psi_correlator,
which takes as input the numbers k1, . . . , kn and outputs the correlator (1).

sage: psi_correlator(0,1,2)
1/12

Note that in the current version of admcycles, the list of tautological generators [0i , αi] in a tautological
class is not automatically simplified by combining equivalent terms (since in general this requires testing
graph isomorphisms between the 0i). When performing arithmetic operations with complicated tautolog-
ical classes, this simplification can be manually triggered using the function simplify, as demonstrated
below. For this toy example, we create two different but isomorphic stable graphs, convert them to
tautological classes and form their sum s. After applying the method simplify they are recognized as
equal, so that we obtain a shorter sum.

sage: gamma1 = StableGraph([1,2],[[3],[4]],[(3,4)]).to_tautological_class()

sage: gamma2 = StableGraph([2,1],[[5],[6]],[(5,6)]).to_tautological_class()

sage: s = gamma1 + gamma2; s
Graph : [1, 2] [[3], [4]] [(3, 4)]
Polynomial : 1
Graph : [2, 1] [[5], [6]] [(5, 6)]
Polynomial : 1

sage: s_simple = s.simplify(); s_simple
Graph : [1, 2] [[2], [3]] [(2, 3)]
Polynomial : 2

In a future version of admcycles (after improving our algorithms for graph isomorphisms), we plan to
automate this process.

98 Delecroix, Schmitt and van Zelm :::: admcycles Sage package

3.4. A basis of the tautological ring and tautological relations. One can compute, using the function
generating_indices(g,n,r), the indices (for the list tautgens(g,n,r)) of a basis of RH2r (Mg,n),
assuming that the generalized Faber–Zagier relations (see [Pixton 2012; Pandharipande et al. 2015;
Janda 2017]) between the additive generators [0, α] give a complete set of relations between them. For
many concrete examples of (g, n, r), this conjecture can be checked using admcycles via the function
FZ_conjecture_holds(g,n,r) (see [Molcho et al. 2021, Appendix B] and the documentation of the
function for more details). For the computation we show below, let us verify that the generalized Faber–
Zagier relations for RH2·2(M2,0) are complete:

sage: FZ_conjecture_holds(2,0,2)
True

If the relations are complete as discussed above, Tautvecttobasis converts a vector with respect to the
whole generating set into a vector in this basis. The function TautologicalClass.basis_vector(r)
converts a TautologicalClass into such a vector.

Continuing the example from Section 3.2 we see:
sage: generating_indices(2,0,2)
[0, 1]

sage: t3.basis_vector(2)
(-48, 22)

This means that the generators L[0] and L[1] form a basis of RH4(M2) and the TautologicalClass
t3=2*L[3]+L[4] is equivalent to -48*L[0]+22*L[1].

It is also possible to directly verify tautological relations using the built-in function is_zero of
TautologicalClass. It checks if the tautological class is contained in the ideal generated by the 3-
spin relations [Pandharipande et al. 2015] (what we call the generalized Faber–Zagier relations above).
Below we verify the known relation κ = ψ − δ0 ∈ R1(M1,n) for n = 4. Here ψ is the sum of all ψi

and δ0 is the sum of all separating boundary divisors, i.e., those having a genus 0 component. For this,
we list all stable graphs with one edge via list_strata(g,n,1). We exclude the graph gamma with a
self-loop by requiring that the number of vertices gamma.numvert() is at least 2. Then we can convert
these graphs bd to tautological classes by using to_tautological_class.

sage: R = TautologicalRing(1, 4)

sage: bgraphs = [bd for bd in list_strata(1,4,1) if bd.num_verts() > 1]

sage: del0 = sum(bd.to_tautological_class() for bd in bgraphs)

sage: psisum = sum(R.psi(i) for i in range(1,5))

sage: rel = R.kappa(1) - psisum + del0

sage: rel.is_zero()
True

As a shorthand for is_zero one can also simply compare to the integer 0 as follows:
sage: rel == 0
True

It is also possible to express tautological classes in a basis of the tautological ring of suitable open subsets
of Mg,n , e.g., to verify that some relation holds on the locus of compact type curves. This works with

Delecroix, Schmitt and van Zelm :::: admcycles Sage package 99

the optional argument moduli of TautologicalRing that was described in Section 3.1. We recall that
moduli can be one of ’st’ (stable), ’tl’ (treelike), ’ct’ (compact type), ’rt’ (rational tails) or ’sm’
(smooth). The functions basis_vector and is_zero depend very much on the underlying moduli. For
instance, we can verify the relation

λ1 =
B2
2 κ1 =

1
12κ1 ∈ H 2(Mg)

following from Mumford’s computation [1983] in the case g = 3:
sage: R = TautologicalRing(3, 0, moduli=’sm’)

sage: R.kappa(1).basis_vector()
(1)

sage: R.lambdaclass(1).basis_vector()
(1/12)

It is also possible to start with a class on a bigger moduli (e.g., the default locus ’st’ of all stable curves)
and check whether it vanishes on a smaller subset using the optional parameter moduli of the functions
is_zero or basis_vector:

sage: R = TautologicalRing(2, 0)

sage: u = R.lambdaclass(2)

sage: u.is_zero()
False

sage: u.is_zero(moduli=’ct’)
True

sage: u.basis_vector()
(-3/2, 1/2)

sage: u.basis_vector(moduli=’ct’)
()

The vanishing here was expected as on Mct
2,0 the tautological ring in degree 2 vanishes:

sage: R = TautologicalRing(2, 0, moduli=’ct’)

sage: R.socle_degree()
1

In practice, much of the time in some computations is spent on calculating generalized Faber–Zagier
relations between tautological cycles on Mg,n . However, once computed, the relations can be saved to
a file and reloaded in a later session using the functions save_FZrels() and load_FZrels(). Careful:
the function save_FZrels() creates (and overwrites previous version of) a file new_geninddb.pkl
which, depending on the previous computations, can be quite large.

3.5. Pulling back tautological classes to the boundary. Recall that for a stable graph 0 we have a gluing
map

ξ0 :M0 =

m∏
i=1

Mg(vi),n(vi)→Mg,n (2)

taking one stable curve for each of the vertices v1, . . . , vm of 0 and gluing them together according to
the edges of 0. By [Graber and Pandharipande 2003, Appendix A], the pullback of a tautological class

100 Delecroix, Schmitt and van Zelm :::: admcycles Sage package

under ξ0 is contained in the tensor product of the tautological rings of the factors Mg(vi),n(vi) above, and
this operation is implemented in admcycles.

Below we pull back a generator of RH4(M4) to the boundary divisor with genus partition 4= 2+ 2.
This produces an element of type prodtautclass, a tautological class on a product of moduli spaces,
in this case M2,1×M2,1. Two elements on the same product of spaces can be added and multiplied and
further operations like pushforwards under (partial) gluing maps are supported. More details are given
in the documentation of the class prodtautclass.

Below, we want to express the pullback to M2,1 ×M2,1 in terms of a basis of H 2(M2,1 ×M2,1)

obtained from the preferred bases of the factors H∗(M2,1) given by generating_indices. We can
either represent the result as a list of matrices (giving the coefficients in the tensor product bases) or as
a combined vector (using the option vecout=true).

sage: bdry=StableGraph([2,2],[[1],[2]],[(1,2)])

sage: generator=tautgens(4,0,2)[3]; generator
Graph : [1, 3] [[2], [3]] [(2, 3)]
Polynomial : psi_3

sage: pullback=bdry.boundary_pullback(generator)

sage: pullback.totensorTautbasis(2)
[

[-3]
[1]

[0 0 0] [-3]
[0 0 0] [7]

[-3 1 -3 7 1], [0 0 0], [1]
]

sage: pullback.totensorTautbasis(2,vecout=true)
(-3, 1, -3, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 1, -3, 7, 1)

3.6. Pushing forward classes from the boundary. The pushforward under the map ξ0 in (2) sends a
product of tautological classes on the factors Mg(vi),n(vi) to a tautological class of Mg,n . This operation
is implemented by the function boundary_pushforward of StableGraph.

That is to say, if Gamma is a StableGraph and if [c1, ..., cm] is a list whose i-th element ci is
a TautologicalClass on the i-th factor Mg(vi),n(vi) of M0, then

Gamma.boundary_pushforward([c1, ..., cm])

is the pushforward of the product of the ci. Here, the markings for the class ci are supposed to go from
1 to n(vi), where the j-th marking corresponds to leg number j on the i-th vertex of Gamma.

As an illustration, we verify that the package correctly computes the excess intersection formula
proved in [Graber and Pandharipande 2003] for the self-intersection of a boundary divisor in M3,3.

sage: B=StableGraph([2,1],[[4,1,2],[3,5]],[(4,5)])

sage: Bclass = B.boundary_pushforward() # class of undecorated boundary divisor

sage: si1 = B.boundary_pushforward([fundclass(2,3),-psiclass(2,1,2)])

sage: si1
Graph : [2, 1] [[4, 1, 2], [3, 5]] [(4, 5)]
Polynomial : -psi_5

sage: si2 = B.boundary_pushforward([-psiclass(1,2,3),fundclass(1,2)])

Delecroix, Schmitt and van Zelm :::: admcycles Sage package 101

sage: si2
Graph : [2, 1] [[4, 1, 2], [3, 5]] [(4, 5)]
Polynomial : -psi_4

sage: (Bclass*Bclass-si1-si2).is_zero()
True

Note that, e.g., for the term si2 we needed to hand the function the term -psiclass(1,2,3) in the
first vertex, since in the graph B the half-edge 4 is leg number 1 in the list of legs at the first vertex (and
we have (g(v1), n(v1))= (2, 3) for this vertex).

4. SPECIAL CYCLE CLASSES. Beyond the already mentioned standard tautological classes ψi , κa and
λd and boundaries from Section 3.2, admcycles provides more advanced constructions that we describe
now. The corresponding functions are summarized here:

TautologicalRing method standalone function manual section
double_ramification_cycle DR_cycle Section 4.1
theta_class ThetaClass Section 4.1
differential_stratum Strataclass Section 4.2
generalized_lambda generalized_lambda Section 4.3
hyperelliptic_cycle Hyperell Section 4.4
bielliptic_cycle Biell Section 4.4

A convenient way to find out about tautological class constructions is to use the tab completion feature
of SageMath. When you enter a part of a name and press the tab key (denoted <TAB> below) the program
will show you all available completions. It can be used to discover the names in the admcycles module.

sage: import admcycles

sage: admcycles.<TAB>
admcycles.Biell admcycles.DR_phi ...
admcycles.DR admcycles.DRpoly ...
admcycles.DR_cycle admcycles.FZ_conjecture_holds ...
admcycles.DR_cycle_old admcycles.GRRcomp ...

Similarly one can discover the methods of TautologicalRing starting with the letter d:
sage: R = TautologicalRing(2, 2)

sage: R.d<TAB>
R.differential_stratum R.dump
R.dimension R.dumps
R.double_ramification_cycle

4.1. Double ramification cycles. A particularly interesting family of cycles on Mg,n is given by the
double ramification cycles. Fixing g, n they are indexed by nonnegative integers k, d ≥ 0 and a tuple
A = (a1, a2, . . . , an) of integers summing to k(2g− 2+ n).

The classical double ramification cycle (for k = 0, d = g)

DRg(A) ∈ H 2g(Mg,n)

has been defined as the pushforward of the virtual fundamental class of a space of maps to rubber P1

102 Delecroix, Schmitt and van Zelm :::: admcycles Sage package

relative to 0,∞ with tangency conditions at 0,∞ specified by the vector A (see [Li and Ruan 2001; Li
2002; 2001; Graber and Vakil 2005]). In [Janda et al. 2017] it is shown that this cycle is tautological and
an explicit formula in terms of tautological generators is provided.

More precisely, for g, n, k, d and A with A a partition of k(2g−2+n), the paper constructs an explicit
tautological class

Pd,r,k
g (A) ∈Q[r]⊗Q RH2d(Mg,n)

with coefficients being polynomials in a formal variable r . We obtain a usual tautological class Pd,k
g (A) ∈

RH2d(Mg,n) by setting r = 0 in these polynomial coefficients. Then it is shown ([Janda et al. 2017,
Theorem 1]) that in the special case k = 0, d = g, this gives a formula for the double ramification cycle

DRg(A)= 2−g Pg,k
g (A).

While this demonstrates that the cycle Pd,k
g (A) is useful for k= 0, d= g, it has many interesting properties

for other values of k, d:

• For k arbitrary and d = 1, the restriction of 2−1 P1,k
g (A) to the compact-type locus Mct

g,n gives the
pullback of the theta divisor on the universal Jacobian J over Mct

g,n under the extension of the
Abel–Jacobi section

Mg,n→ J ,

(C, p1, . . . , pn) 7→ (ω
log
C)⊗k

(
−

n∑
i=1

ai pi

)
;

see [Hain 2013; Grushevsky and Zakharov 2014].

• For k arbitrary and d = g, various geometric definitions of a double ramification cycle have been
put forward and an equality with 2−g Pg,k

g (A) was conjectured in [Farkas and Pandharipande 2018;
Schmitt 2018] (see [Holmes and Schmitt 2019, Section 1.6] for an overview of the various defini-
tions). Recently, this conjecture was proven in [Bae et al. 2020] based on earlier results of [Holmes
and Schmitt 2019].

• For k arbitrary and d > g, the class Pd,k
g (A) vanishes by [Clader and Janda 2018].

In admcycles, the formula for Pd,k
g (A) has been implemented. The function DR_cycle(g,A,d,k)

returns the cycle 2−d Pd,k
g (A). The factor 2−d was chosen such that DR_cycle(g,A) indeed gives the

cycle DRg(A). With the option rpoly=True, it is even possible to compute the cycle 2−d Pd,r,k
g (A)

whose coefficients are polynomials in the variable r .
As an application, we can verify the result from [Holmes et al. 2019] that DR cycles satisfy the

multiplicativity property

DRg(A) ·DRg(B)= DRg(A) ·DRg(A+ B) ∈ H 4g(Mtl
g,n)

on the locus Mtl
g,n of treelike curves but not on the locus of all stable curves, in the example given in

[Holmes et al. 2019, Section 8].

Delecroix, Schmitt and van Zelm :::: admcycles Sage package 103

sage: A=vector((2,4,-6)); B=vector((-3,-1,4))

sage: diff = DR_cycle(1,A)*DR_cycle(1,B)-DR_cycle(1,A)*DR_cycle(1,A+B)

sage: diff.is_zero(moduli=’tl’)
True

sage: diff.is_zero(moduli=’st’)
False

In fact, using that the cycle DRg(A) is polynomial in the entries of the vector A (i.e., a tautological class
with polynomial coefficients), we can check multiplicativity for all vectors A, B in the case g = 1, n = 3.
To gain access to the polynomial-valued DR cycle, we define a polynomial ring and call DR_cycle with
a vector A having as coefficients the generators of this ring:

sage: R.<a1,a2,a3,b1,b2,b3> = PolynomialRing(QQ,6)

sage: A = vector((a1,a2,a3)); B = vector((b1,b2,b3))

sage: diff = DR_cycle(1,A)*DR_cycle(1,B)-DR_cycle(1,A)*DR_cycle(1,A+B)

sage: diff.is_zero(moduli=’tl’)
True

As a second application, we can verify the formula from [Buryak and Rossi 2021, Theorem 2.1] for
intersection numbers of two DR cycles with λg on Mg,3 in the case g = 1:

sage: intersect = DR_cycle(1,A)*DR_cycle(1,B)*lambdaclass(1,1,3)

sage: f = intersect.evaluate(); factor(f)
(1/216) * (a2*b1 - a3*b1 - a1*b2 + a3*b2 + a1*b3 - a2*b3)^2

sage: g = f.subs({a3:-a1-a2,b3:-b1-b2}); factor(g)
(1/24) * (a2*b1 - a1*b2)^2

The formula of the cycle Pd,r,k
g (A) in [Janda et al. 2017] is obtained as a simplification (modulo r) of

a cycle

r2d−2g+1ε∗cd(−R∗π∗L) (3)

appearing in [Janda et al. 2017, Corollary 4, Proposition 5] (see there for the notation). The cycle (3) is
often called a Chiodo class and it is relevant for certain computations (see [Borot et al. 2020; Do and
Lewański 2020]). Since the latest version of admcycles, the cycle (3) can be obtained using the optional
parameters chiodo_coeff = True and r_coeff of DR_cycle, which evaluates the expression (3) at
the value r_coeff of r .

sage: g=2; A=(5,-1); d=2; k=1

sage: Chiodo = DR_cycle(g,A,d,k,chiodo_coeff=True,r_coeff=7)

As a special case of this formula, we can obtain the cycle class θg,n ∈ R∗(Mg,n) described in [Norbury
2017], which is accessible via the function ThetaClass.

sage: T = ThetaClass(1,1)

sage: T == 3*psiclass(1,1,1)
True

104 Delecroix, Schmitt and van Zelm :::: admcycles Sage package

codim m = 0 m = k ·m′ for m′ ∈ Zn
≥0 m 6= k ·m′ for m′ ∈ Zn

≥0
k = 0 0 0 g
k = 1 0 g− 1 g
k > 1 0 g− 1 and g g

Table 1. Dimension theory of Hk
g(m). Note that for k > 1 and m= k ·m′ with m′ ∈ Zn

≥0,

the set H1
g(m′)⊂Hk

g(m) is a union of components of codimension g− 1 in Mg,n , with

all other components of Hk
g(m) having pure codimension g.

4.2. Strata of k-differentials. Let g, n, k ≥ 0 with 2g− 2+ n > 0 and let m = (m1, . . . ,mn) ∈ Zn with∑
i mi = k(2g− 2). Consider the subset

Hk
g(m)=

{
(C, p1, . . . , pn) ∈Mg,n : ω

⊗k
C

(n∑
i=1

mi pi

)
∼=OC

}
⊂Mg,n.

Denote by Hk
g(m) the closure of Hk

g(m) inside Mg,n . Since the above equality of line bundles is equiv-
alent to the existence of a meromorphic k-differential η on C with zeros and poles exactly at the points
pi with multiplicities mi , the subsets Hk

g(m) are called strata of k-differentials.
These strata are of interest in algebraic geometry, the theory of flat surfaces and Teichmüller dynamics

and have been studied intensely in the past. Elements appearing in the boundary have been classified
in [Bainbridge et al. 2018; 2019b] and a smooth, modular compactification has been constructed in
[Bainbridge et al. 2019a]. The dimension of Hk

g(m) depends on k,m as in Table 1 (see, e.g., [Farkas and
Pandharipande 2018; Schmitt 2018]).

For k ≥ 1, [Farkas and Pandharipande 2018; Schmitt 2018] present conjectural relations between the
fundamental classes [Hk

g(m)] and the formulas for the double ramification cycles proposed by Pixton (see
Section 4.1). The conjectures were recently proven in [Bae et al. 2020] based on results from [Holmes
and Schmitt 2019]. As explained in the papers, these conjectures can be used to recursively determine
all cycles

• [Hk
g(m)] ∈ RH2g(Mg,n) for k ≥ 1 and m 6= km′ for some m′ ∈ Zn

≥0,

• [H1
g(m)] ∈ RH2g−2(Mg,n) for k = 1 and m ∈ Zn

≥0.

These recursive algorithms have been implemented in the function Strataclass(g,k,m), where as
above m is a tuple of n integers summing to k(2g− 2).

As a small application, we can check that the stratum class [H1
2((3,−1))] vanishes (the stratum is

empty since by the residue theorem there can be no meromorphic differential with a single, simple
pole). Also, the stratum H1

2((2)) exactly equals the class of the locus of genus 2 curves with a marked
Weierstrass point, which can be computed by the function Hyperell (see below for details).

sage: L=Strataclass(2,1,(3,-1)); L.is_zero()
True

sage: L=Strataclass(2,1,(2,)); (L-Hyperell(2,1)).is_zero()
True

Delecroix, Schmitt and van Zelm :::: admcycles Sage package 105

4.3. Generalized lambda classes. Let π : Cg,n→Mg,n be the universal curve and assume n ≥ 1. Every
divisor of Cg,n , up to pullback of divisors on Mg,n , takes the form

D = l K̃ +
n∑

p=1

dpσp +
∑
h≤g,

1∈S⊂[n]

ah,SCh,S

for some integers l, dp, ah,S . Here K̃ = c1(ωπ) is the first Chern class of the relative dualizing sheaf, σp

is the class of the p-th section and

Ch,S = ξ∗[Mh,S∪{•}×Mg−h,[n]\S∪{?,x}] ∈ CH1(Mg,[n]∪{x})= CH1(Cg,n).

The fact that every divisor D on Cg,n can be written in this form up to pullbacks from Mg,n follows from
the identification Cg,n ∼=Mg,n+1 and the computation of the Picard group of the moduli spaces of stable
curves due to Harer [1983] and Arbarello and Cornalba [1987]. In [Pagani et al. 2020] a formula is given
for the Chern character ch(R•π∗O(D)). This Chern character can be computed up to degree dmax using
generalized_chern_hodge(l,d,a,dmax,g,n). It takes as input an integer l, a list d=[d1,...,dn]
of the integers di and a list of triples a=[[h1,S1,ahS1],...,[hn,Sn,ahSn]] where the ahSi are the
integers ah,S above (given in any order). It is enough to just include the triples [h,S,ahS] for which
ah,S is nonzero.

Using generalized_lambda(i,l,d,a,g,n) the Chern class ci (−R•π∗O(D)) can be computed
directly. In particular when l = 1 and the dp and ah,S are zero, this equals the normal λ class.

sage: g=3;n=1

sage: l=1;d=[0];a=[]

sage: s=lambdaclass(2,g,n)

sage: t=generalized_lambda(2,l,d,a,g,n)

sage: (s-t).is_zero()
True

Let d1, ..., dn be integers such that
∑n

i=1 di is divisible by 2g − 2 and let φ ∈ V 0
g,n be an element

of the stability space V 0
g,n defined in [Kass and Pagani 2019, Definition 3.2]. This φ is an assignment

which given a stable curve (C, p1, . . . , pn) ∈Mg,n associates a real number φ(C, p1, . . . , pn)C ′ to every
irreducible component C ′ of C . These numbers must sum to zero as C ′ runs through the components of C ;
they only depend on the stable graph of C and must be compatible with degenerations of curves. Given
this data, Kass and Pagani construct a compactification J g,n(φ) of the universal Jacobian over Mg,n .

Let now l =
∑n

i=1 di/(2g− 2) and let ah,S be integers such that

D(φ)= l K̃ +
∑

diσi +
∑

ah,S(φ)Ch,S

is φ-stable on the locus of stable curves with one node (for definitions, see [Kass and Pagani 2019] or
[Pagani et al. 2020]). For the shifted3 vector A = (d1 + l, . . . , dn + l), [Holmes et al. 2018] proves

3This shift is due to the fact that the literature on double ramification cycles uses the “log-convention”, i.e., the entries of the
input sum to l(2g− 2+ n).

106 Delecroix, Schmitt and van Zelm :::: admcycles Sage package

an equality

DRg(A)|U (φ) = cg(−R•π∗O(D(φ)))|U (φ) (4)

on the largest open locus U (φ)⊂Mg,n where the Abel–Jacobi section

sl,d(φ) :Mg,n 99K J g,n(φ), (C, p1, . . . , pn) 7→ ω⊗l
C

(
−

n∑
i=1

di pi

)

extends to a morphism. In particular, U (φ) always includes Mct
g,n and equals Mg,n if and only if l, d

are trivial or l(2g− 2) = 0 and d = [0, ...,±1, ...,∓1, ..., 0]. See [Pagani et al. 2020, Section 4.3] for
more details.

The function DR_phi(g,d) computes cg(−R•π∗O(D(φ))). We can verify equality (4).

sage: g=2;d=[1,-1]

sage: (DR_cycle(g,d)-DR_phi(g,d)).is_zero()
True

We also see that equality does not always hold over all of Mg,n but it does hold over Mct
g,n .

sage: g=2;d=[2,-2]

sage: (DR_cycle(g,d)-DR_phi(g,d)).basis_vector()
(12, -4, 14, 7, -40, -10, -14, -12, 28, -4, 6, -1, 4, 0)

sage: (DR_cycle(g,d)-DR_phi(g,d)).basis_vector(moduli=’ct’)
(0, 0, 0, 0, 0)

4.4. Admissible cover cycles.

Hyperelliptic and bielliptic cycles. Before we go into details of how to specify general admissible cover
cycles, let us mention the important cases of hyperelliptic and bielliptic cycles.

Recall that a smooth curve C is called hyperelliptic if C admits a double cover C→ P1 and is called
bielliptic if it admits a double cover C→ E of some smooth genus 1 curve E . In both cases we have an
involution C→ C that exchanges the two sheets of the cover. Given g, n,m ≥ 0 with n ≤ 2g+ 2 and
2g− 2+ n+ 2m > 0, we have the locus H g,n,2m ⊂Mg,n+2m which is the closure of the locus of smooth
curves (C, p1, . . . , pn, q1, q ′1, . . . , qm, q ′m) such that C is hyperelliptic with p1, . . . , pn fixed points of the
hyperelliptic involution and the pairs qi , q ′i being exchanged by this involution. An analogous definition
gives the locus Bg,n,2m ⊂Mg,n+2m as the closure of the set of bielliptic curves with n ≤ 2g− 2 fixed
points and m pairs of points forming orbits under the bielliptic involution.

Then the fundamental class of the (reduced) loci H g,n,2m and Bg,n,2m can (in many cases) be computed
by the functions Hyperell(g,n,m) and Biell(g,n,m) of our program.

As an example, we compute the class [H 3] ∈ RH2(M3) and verify that we obtain the known result

[H 3] = 9λ− δ0− 3δ1,

where δ0 is the class of the divisor of irreducible nodal curves and δ1 is the divisor of curves with a
separating node between a genus 1 and a genus 2 component.

Delecroix, Schmitt and van Zelm :::: admcycles Sage package 107

sage: H = Hyperell(3,0,0)

sage: H.basis_vector()
(3/4, -9/4, -1/8)

sage: R = TautologicalRing(3, 0)

sage: H2 = 9*R.lambdaclass(1)-(1/2)*R.irreducible_boundary_divisor()
-3*R.separable_boundary_divisor(1,())

sage: H2.basis_vector()
(3/4, -9/4, -1/8)

Here we need to divide irrbdiv() by two, the degree of the corresponding gluing map.

Creating and identifying general admissible cover cycles. Generalizing the case of hyperelliptic and
bielliptic cycles, we can consider loci of curves C admitting a cover C→ D to a second curve D such
that the cover is Galois with respect to a fixed finite group G. Cycles defined via such covers were
studied in [Schmitt and van Zelm 2020]. In general, such an admissible cover cycle is specified by the
genus g of the curve C , the finite group G, and monodromy data (we refer the reader to [Schmitt and
van Zelm 2020, Section 1.3] for the precise definitions). Currently, intersections are only implemented
for cyclic groups. Below we will study bielliptic curves in genus 2, which are double covers of elliptic
curves branched over two points. As a first step we enter the monodromy data.

sage: G=PermutationGroup([(1,2)])

sage: list(G)
[(), (1,2)]

sage: H=HurData(G,[G[1],G[1]])

The function HurData takes the group G as the first argument and as the second a list of group
elements α ∈ G, each of which corresponds to the G-orbit of some marking p ∈ C . Here α is a generator
of the stabilizer of p under the group action G y C , which gives the monodromy around p. In other
words, the natural action of the stabilizer G p = 〈α〉 on a tangent vector v ∈ TpC is given by

α.v = exp(2π i/ord(h))v.

Thus in the example above, we have two markings, both with stabilizer generated by G[1]=(1,2)
which acts by multiplication by −1 on the tangent space.

To identify the admissible cover cycle (inside the moduli space Mg,n with n the total number of
marked points from the monodromy data) in terms of tautological classes, one can use the function
Hidentify. It pulls back the admissible cover cycle to all boundary divisors and (recursively) identifies
the pullback itself in terms of tautological classes. It compares this pullback to the pullback of a basis
of the tautological ring. Often this pullback map is injective in cohomology so that one can then write
the admissible cover cycle in terms of the basis using linear algebra. Sometimes, it is necessary to
additionally intersect with some monomials in κ and ψ-classes.

To apply Hidentify one gives the genus and the monodromy data as arguments. The standard output
format is an instance of the class TautologicalClass. For users familiar with Pixton’s implementation
of the tautological ring, there is the option vecout=true which returns instead a vector with respect to

108 Delecroix, Schmitt and van Zelm :::: admcycles Sage package

the generating set of the tautological ring provided by this program.
sage: vbeta = Hidentify(2, H, vecout=true)

sage: vector(vbeta)
(517/4, -33, 11/4, 243/4, -125/4, 15/2, 41/4, 125, 99/4, -41, -1137/4, -285/4, 0, 0, 0, 0, 0,
0, -57/8, -3/8, 0,
0, 0,
0, 0,
0, 0,
0, 0)

This output means, specifically, that inside M2,2 the locus of bielliptic curves with the two points fixed by
the involution being the marked points is given (in the generating set gens=all_strata(2,3,(1,2))
produced by Pixton’s program) as 517/4 · gens[0]− 33 · gens[1]+

If we instead wanted to have bielliptic curves with two marked fixed-points of the involution and one
pair of markings that are exchanged by the involution, we would need to use the monodromy data

sage: H2=HurData(G,[G[1],G[1],G[0]])

in which case Hidentify(2,H2) would live inside RH8(M2,4).
If we only want to remember a subset of the markings, we can use the optional parameter marking to

give this subset. For instance, the command Hidentify(2,H,markings=[]) would give the pushfor-
ward of Hidentify(2,H) in M2,2 to the space M2 under the forgetful morphism (see also Section 4.4).

Example: specifying and identifying [B2] by hand. The locus B2 ⊂M2 of bielliptic curves is a divisor. A
bielliptic genus 2 curve is ramified over two points. In the following we use the methods of the previous
section to identify its cycle class.

Now when treating admissible cover cycles in general, our program a priori handles the cycle where all
possible ramification points are marked. In this case, this is the cycle [B2,2,0] ∈ RH6(M2,2) of bielliptic
curves C with the two ramification points p1, p2 marked. By specifying markings=[] when calling
Hidentify, we tell it to remember none of the markings, in other words to push forward under the map
π :M2,2→M2 forgetting the markings.

sage: G = PermutationGroup([(1,2)])

sage: H = HurData(G, [G[1],G[1]])

sage: B22 = Hidentify(2, H, markings=[])

sage: B22.basis_vector(1)
(30, -9)

We compare the result with the known formulas for [B2]. For δ0 the class of the irreducible boundary of
M2 and δ1 the class of the boundary divisor with genus-splitting (1, 1), it is known that [B2] =

3
2δ0+6δ1

(see [Faber 1996]). If we want to enter this combination of δ0 and δ1, we have to be careful about
conventions, though: the corresponding gluing maps ξ :M1,2→M2 and ξ ′ :M1,1×M1,1→M2 both
have degree 2. This corresponds to the fact that the associated stable graphs both have an automorphism
group of order 2. Hence we have to divide by a factor of two and obtain

sage: B22_formula = 3/4*irrbdiv(2,0) + 3*sepbdiv(1,(),2,0)

sage: B22_formula.basis_vector(1)
(15/2, -9/4)

Delecroix, Schmitt and van Zelm :::: admcycles Sage package 109

We see that up to a factor of 4 the two vectors (30, -9) and (15/2, -9/4) agree. Where does this
factor come from?

For this, recall that the cycle B22 above is equal to π∗[B2,2,0]. Since for the generic bielliptic curve C
there are two choices of orderings for marking p1, p2, this explains a factor of 2. On the other hand, the
hyperelliptic involution σ :C→C on C exchanges p1 and p2. Thus σ ∈Aut(C), but σ /∈Aut(C, p1, p2).
This missing automorphism factor explains another factor of 2 in the pushforward under π , so in fact
[B2] =

1
4π∗[B2,2,0].

Note that since the cycles of bielliptic loci are implemented via the function Biell, we could have
taken a shortcut above.

sage: B = Biell(2,0,0)

sage: B.basis_vector()
(15/2, -9/4)

As an application, we can check the Hurwitz–Hodge integral∫
[B2,2,0]

λ2λ0 =

∫
π∗[B2,2,0]

λ2 =
1

48

predicted by [Pandharipande and Tseng 2019].

sage: (B22 * lambdaclass(2,2,0)).evaluate()
1/48

The corresponding integrals for g = 3, 4 have also been verified like this, but the amount of time and
memory needed grows drastically.

We can also check the Hurwitz–Hodge integral∫
[H2,Z/3Z,((1,2,3)2,(1,3,2)2)]

λ1 =
2
9

of λ1 against the locus of genus 2 curves admitting a cyclic triple cover of a genus 0 curve with two
points of ramification (1, 2, 3) ∈ Z/3Z and two points of ramification (1, 3, 2) ∈ Z/3Z, computed in
[Owens and Somerstep 2019, Section 5].

sage: G = PermutationGroup([(1,2,3)]); sorted(list(G))
[(), (1,2,3), (1,3,2)]

sage: H = HurData(G,[G[1],G[1],G[2],G[2]]) #n=2, m=2

sage: t = Hidentify(2,H,markings=[])

sage: (t*lambdaclass(1,2,0)).evaluate()
2/9

Note that while originally the cycle [H2,Z/3Z,((1,2,3)2,(1,3,2)2)] lives in M2,4, since we intersect with λ1

which is a pullback from M2 we can specify markings=[] above to compute the pushforward t of this
cycle to M2 before intersecting. This significantly reduces the necessary computation time.

110 Delecroix, Schmitt and van Zelm :::: admcycles Sage package

ACKNOWLEDGEMENTS. We are indebted to Aaron Pixton for letting us use and modify a previous
implementation of operations in the tautological ring by him as well as pointing out several issues
in admcycles which have now been fixed. We thank Frédéric Chapoton, Samuel Lelièvre and Jonathan
Zachhuber for many valuable contributions. We are very grateful to the anonymous referees for many
helpful comments, greatly improving the clarity of the paper and suggesting many improvements of the
code.

We thank Harald Schilly and the team of CoCalc as well as Andrey Novoseltsev and the team of
SageMathCell for making admcycles available on these platforms.

Delecroix was a guest of the Max Planck Institute and then of the Hausdorff Institut for Mathematics
during the development of the project.

Schmitt was supported by the grant SNF-200020162928 and has received funding from the European
Research Council (ERC) under the European Union Horizon 2020 research and innovation programme
(grant agreement No 786580). During the last phase of the project, he profited from the SNF Early
Postdoc Mobility grant 184245 and also wants to thank the Max Planck Institute for Mathematics in
Bonn for its hospitality.

Van Zelm was supported by the Einstein Foundation Berlin during the course of this work.

SUPPLEMENT. The online supplement contains version 1.3.1 of admcycles.

REFERENCES.
[Arbarello and Cornalba 1987] E. Arbarello and M. Cornalba, “The Picard groups of the moduli spaces of curves”, Topology
26:2 (1987), 153–171. MR Zbl

[Arbarello et al. 2011] E. Arbarello, M. Cornalba, and P. A. Griffiths, Geometry of algebraic curves, II, Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 268, Springer, 2011. MR Zbl

[Bae and Schmitt 2020] Y. Bae and J. Schmitt, “Chow rings of stacks of prestable curves II”, 2020. arXiv

[Bae et al. 2020] Y. Bae, D. Holmes, R. Pandharipande, J. Schmitt, and R. Schwarz, “Pixton’s formula and Abel–Jacobi theory
on the Picard stack”, 2020. arXiv

[Bainbridge et al. 2018] M. Bainbridge, D. Chen, Q. Gendron, S. Grushevsky, and M. Möller, “Compactification of strata of
Abelian differentials”, Duke Math. J. 167:12 (2018), 2347–2416. MR Zbl

[Bainbridge et al. 2019a] M. Bainbridge, D. Chen, Q. Gendron, S. Grushevsky, and M. Möller, “The moduli space of multi-
scale differentials”, 2019. arXiv

[Bainbridge et al. 2019b] M. Bainbridge, D. Chen, Q. Gendron, S. Grushevsky, and M. Möller, “Strata of k-differentials”,
Algebr. Geom. 6:2 (2019), 196–233. MR

[Borot et al. 2020] G. Borot, N. Do, M. Karev, D. Lewański, and E. Moskovsky, “Double Hurwitz numbers: polynomiality,
topological recursion and intersection theory”, 2020. arXiv

[Buryak and Rossi 2021] A. Buryak and P. Rossi, “Quadratic double ramification integrals and the noncommutative KdV
hierarchy”, Bull. Lond. Math. Soc. 53:3 (2021), 843–854. MR Zbl

[Canning and Larson 2021] S. Canning and H. Larson, “The Chow rings of the moduli spaces of curves of genus 7, 8, and 9”,
2021. arXiv

[Castorena and Gendron 2020] A. Castorena and Q. Gendron, “On the locus of genus 3 curves that admit meromorphic differ-
entials with a zero of order 6 and a pole of order 2”, 2020. arXiv

[Chen et al. 2019] D. Chen, M. Möller, and A. Sauvaget, “Masur–Veech volumes and intersection theory: the principal strata
of quadratic differentials”, 2019. With an appendix by G. Borot, A. Giacchetto, and D. Lewanski. arXiv

https://cocalc.com/
https://sagecell.sagemath.org/
http://msp.org/jsag/2021/11-1/jsag-v11-n1-x10-admcycles-1.3.1.zip
http://dx.doi.org/10.1016/0040-9383(87)90056-5
http://msp.org/idx/mr/895568
http://msp.org/idx/zbl/0625.14014
http://dx.doi.org/10.1007/978-3-540-69392-5
http://msp.org/idx/mr/2807457
http://msp.org/idx/zbl/1235.14002
http://msp.org/idx/arx/2107.09192
http://msp.org/idx/arx/2004.08676
http://dx.doi.org/10.1215/00127094-2018-0012
http://dx.doi.org/10.1215/00127094-2018-0012
http://msp.org/idx/mr/3848392
http://msp.org/idx/zbl/1403.14058
http://msp.org/idx/arx/1910.13492
http://msp.org/idx/mr/3914751
http://msp.org/idx/arx/2002.00900
http://dx.doi.org/10.1112/blms.12464
http://dx.doi.org/10.1112/blms.12464
http://msp.org/idx/mr/4275093
http://msp.org/idx/zbl/07381913
http://msp.org/idx/arx/2104.05820
http://msp.org/idx/arx/2003.12001
http://msp.org/idx/arx/1912.02267

Delecroix, Schmitt and van Zelm :::: admcycles Sage package 111

[Clader and Janda 2018] E. Clader and F. Janda, “Pixton’s double ramification cycle relations”, Geom. Topol. 22:2 (2018),
1069–1108. MR Zbl

[CoCalc] SageMath, “CoCalc Collaborative Computation Online”, available at https://cocalc.com/.

[Costantini et al. 2020a] M. Costantini, M. Möller, and J. Zachhuber, “The Chern classes and the Euler characteristic of the
moduli spaces of abelian differentials”, 2020. arXiv

[Costantini et al. 2020b] M. Costantini, M. Möller, and J. Zachhuber, “diffstrata – a Sage package for calculations in the
tautological ring of the moduli space of Abelian differentials”, 2020. arXiv

[Do and Lewański 2020] N. Do and D. Lewański, “On the Goulden–Jackson–Vakil conjecture for double Hurwitz numbers”,
2020. arXiv

[Faber 1996] C. Faber, “Intersection-theoretical computations on Mg”, pp. 71–81 in Parameter spaces ((Warsaw, 1994)),
edited by P. Pragacz, Banach Center Publ. 36, Polish Acad. Sci. Inst. Math., Warsaw, 1996. MR Zbl

[Faber 1999] C. Faber, “Algorithms for computing intersection numbers on moduli spaces of curves, with an application to the
class of the locus of Jacobians”, pp. 93–109 in New trends in algebraic geometry (Warwick, 1996), edited by C. P. Klaus Hulek,
Fabrizio Catanese and M. Reid, London Math. Soc. Lecture Note Ser. 264, Cambridge Univ. Press, 1999. MR Zbl

[Faber and Pandharipande 2000] C. Faber and R. Pandharipande, “Logarithmic series and Hodge integrals in the tautological
ring”, pp. 215–252 , 2000. MR

[Farkas and Pandharipande 2018] G. Farkas and R. Pandharipande, “The moduli space of twisted canonical divisors”, J. Inst.
Math. Jussieu 17:3 (2018), 615–672. MR

[Graber and Pandharipande 2003] T. Graber and R. Pandharipande, “Constructions of nontautological classes on moduli spaces
of curves”, Michigan Math. J. 51:1 (2003), 93–109. MR

[Graber and Vakil 2005] T. Graber and R. Vakil, “Relative virtual localization and vanishing of tautological classes on moduli
spaces of curves”, Duke Math. J. 130:1 (2005), 1–37. MR

[Grosse et al. 2019] H. Grosse, A. Hock, and R. Wulkenhaar, “A Laplacian to compute intersection numbers on Mg,n and
correlation functions in NCQFT”, 2019. arXiv

[Grushevsky and Zakharov 2014] S. Grushevsky and D. Zakharov, “The zero section of the universal semiabelian variety, and
the double ramification cycle”, Duke Math J. 163:5 (2014), 889–1070. arXiv

[Hain 2013] R. Hain, “Normal functions and the geometry of moduli spaces of curves”, pp. 527–578 in Handbook of moduli,
I, edited by G. Farkas and I. Morrison, Adv. Lect. Math. (ALM) 24, International Press, Somerville, MA, 2013. MR Zbl

[Harer 1983] J. Harer, “The second homology group of the mapping class group of an orientable surface”, Invent. Math. 72:2
(1983), 221–239. MR Zbl

[Holmes and Schmitt 2019] D. Holmes and J. Schmitt, “Infinitesimal structure of the pluricanonical double ramification locus”,
2019. arXiv

[Holmes et al. 2018] D. Holmes, J. L. Kass, and N. Pagani, “Extending the double ramification cycle using Jacobians”, Eur. J.
Math. 4:3 (2018), 1087–1099. MR Zbl

[Holmes et al. 2019] D. Holmes, A. Pixton, and J. Schmitt, “Multiplicativity of the double ramification cycle”, Doc. Math. 24
(2019), 545–562. MR Zbl

[Janda 2017] F. Janda, “Relations on Mg,n via equivariant Gromov–Witten theory of P1”, Algebr. Geom. 4:3 (2017), 311–336.
MR

[Janda et al. 2017] F. Janda, R. Pandharipande, A. Pixton, and D. Zvonkine, “Double ramification cycles on the moduli spaces
of curves”, Publ. Math. Inst. Hautes Études Sci. 125 (2017), 221–266. MR

[Kass and Pagani 2019] J. L. Kass and N. Pagani, “The stability space of compactified universal Jacobians”, Trans. Amer. Math.
Soc. 372:7 (2019), 4851–4887. MR Zbl

[Li 2001] J. Li, “Stable morphisms to singular schemes and relative stable morphisms”, J. Differential Geom. 57:3 (2001),
509–578. MR

[Li 2002] J. Li, “A degeneration formula of GW-invariants”, J. Differential Geom. 60:2 (2002), 199–293.

[Li and Ruan 2001] A.-M. Li and Y. Ruan, “Symplectic surgery and Gromov–Witten invariants of Calabi–Yau 3-folds”, Invent.
Math. 145:1 (2001), 151–218. MR Zbl

http://dx.doi.org/10.2140/gt.2018.22.1069
http://msp.org/idx/mr/3748684
http://msp.org/idx/zbl/1387.14079
https://cocalc.com/
http://msp.org/idx/arx/2006.12803
http://msp.org/idx/arx/2006.12815
http://msp.org/idx/arx/2003.08043
http://msp.org/idx/mr/1481481
http://msp.org/idx/zbl/0870.14018
http://dx.doi.org/10.1017/CBO9780511721540.006
http://dx.doi.org/10.1017/CBO9780511721540.006
http://msp.org/idx/mr/1714822
http://msp.org/idx/zbl/0952.14042
http://dx.doi.org/10.1307/mmj/1030132716
http://dx.doi.org/10.1307/mmj/1030132716
http://msp.org/idx/mr/1786488
http://dx.doi.org/10.1017/S1474748016000128
http://msp.org/idx/mr/3789183
http://dx.doi.org/10.1307/mmj/1049832895
http://dx.doi.org/10.1307/mmj/1049832895
http://msp.org/idx/mr/1960923
http://dx.doi.org/10.1215/S0012-7094-05-13011-3
http://dx.doi.org/10.1215/S0012-7094-05-13011-3
http://msp.org/idx/mr/2176546
http://msp.org/idx/arx/1903.12526
http://msp.org/idx/arx/1206.3534
http://msp.org/idx/mr/3184171
http://msp.org/idx/zbl/1322.14049
http://dx.doi.org/10.1007/BF01389321
http://msp.org/idx/mr/700769
http://msp.org/idx/zbl/0533.57003
http://msp.org/idx/arx/1909.11981
http://dx.doi.org/10.1007/s40879-018-0256-7
http://msp.org/idx/mr/3851130
http://msp.org/idx/zbl/1420.14061
http://msp.org/idx/mr/3960120
http://msp.org/idx/zbl/1419.14036
https://doi.org/10.14231/AG-2017-018
http://msp.org/idx/mr/3652083
http://dx.doi.org/10.1007/s10240-017-0088-x
http://dx.doi.org/10.1007/s10240-017-0088-x
http://msp.org/idx/mr/3668650
http://dx.doi.org/10.1090/tran/7724
http://msp.org/idx/mr/4009442
http://msp.org/idx/zbl/1423.14187
http://projecteuclid.org/euclid.jdg/1090348132
http://msp.org/idx/mr/1882667
http://dx.doi.org/10.1007/s002220100146
http://msp.org/idx/mr/1839289
http://msp.org/idx/zbl/1062.53073

112 Delecroix, Schmitt and van Zelm :::: admcycles Sage package

[mgn] D. Johnson, “mgn – a Sage program for computing products, Faber-Zagier relations, and top intersections on the moduli
space of stable curves”, available at https://pypi.org/project/mgn/.

[Molcho et al. 2021] S. Molcho, R. Pandharipande, and J. Schmitt, “The Hodge bundle, the universal 0-section, and the log
Chow ring of the moduli space of curves”, 2021. arXiv

[Mumford 1983] D. Mumford, “Towards an enumerative geometry of the moduli space of curves”, pp. 271–328 in Arithmetic
and geometry, II, edited by M. Artin and J. Tate, Progr. Math. 36, Birkhäuser, Boston, 1983. MR Zbl

[Norbury 2017] P. Norbury, “A new cohomology class on the moduli space of curves”, 2017. arXiv

[Owens and Somerstep 2019] B. Owens and S. Somerstep, “Boundary Expression for Chern Classes of the Hodge Bundle on
Spaces of Cyclic Covers”, 2019. arXiv

[Pagani et al. 2020] N. Pagani, A. T. Ricolfi, and J. van Zelm, “Pullbacks of universal Brill–Noether classes via Abel–Jacobi
morphisms”, Math. Nachr. 293:11 (2020), 2187–2207. MR

[Pandharipande 2018] R. Pandharipande, “A calculus for the moduli space of curves”, pp. 459–487 in Algebraic geometry: Salt
Lake City 2015, edited by T. de Fernex et al., Proc. Sympos. Pure Math. 97, Amer. Math. Soc., Providence, RI, 2018. MR

[Pandharipande and Tseng 2019] R. Pandharipande and H.-H. Tseng, “Higher genus Gromov–Witten theory of Hilbn(C2) and
CohFTs associated to local curves”, Forum Math. Pi 7 (2019), e4, 63. MR

[Pandharipande et al. 2015] R. Pandharipande, A. Pixton, and D. Zvonkine, “Relations on Mg,n via 3-spin structures”, J. Amer.
Math. Soc. 28:1 (2015), 279–309. MR

[Pixton 2012] A. Pixton, “Conjectural relations in the tautological ring of Mg,n”, 2012. arXiv

[SageMath] The Sage Developers, “Sage Mathematics Software (version 9.0)”, available at http://www.sagemath.org.

[SageMathCell] The Sage Developers, “SageMathCell, embeddable web interface for the Sage Mathematics Software System”,
available at https://sagecell.sagemath.org. (2020).

[Schmitt 2018] J. Schmitt, “Dimension theory of the moduli space of twisted k-differentials”, Doc. Math. 23 (2018), 871–894.
MR Zbl

[Schmitt and van Zelm 2020] J. Schmitt and J. van Zelm, “Intersections of loci of admissible covers with tautological classes”,
Selecta Math. (N.S.) 26:5 (2020), Paper No. 79, 69. MR Zbl

[Yang 2008] S. Yang, “Calculating intersection numbers on moduli spaces of pointed curves”, 2008. arXiv

RECEIVED: 16 Mar 2020 REVISED: 30 Jun 2021 ACCEPTED: 15 Jul 2021

VINCENT DELECROIX:

vincent.delecroix@u-bordeaux.fr
Laboratoire Bordelais de Recherche en Informatique, CNRS - Université de Bordeaux, Talence, France

JOHANNES SCHMITT:

schmitt@math.uni-bonn.de
Mathematical Institute, University of Bonn, Bonn, Germany

JASON VAN ZELM:

jasonvanzelm@outlook.com
Humboldt Universität zu Berlin, Berlin, Germany

msp

https://pypi.org/project/mgn/
https://pypi.org/project/mgn/
http://msp.org/idx/arx/2101.08824
http://msp.org/idx/mr/717614
http://msp.org/idx/zbl/0554.14008
http://msp.org/idx/arx/1712.03662
http://msp.org/idx/arx/1912.07720
http://dx.doi.org/10.1002/mana.201800422
http://dx.doi.org/10.1002/mana.201800422
http://msp.org/idx/mr/4188687
http://dx.doi.org/10.4310/pamq.2015.v11.n4.a3
http://msp.org/idx/mr/3821159
http://dx.doi.org/10.1017/fmp.2019.4
http://dx.doi.org/10.1017/fmp.2019.4
http://msp.org/idx/mr/3987304
http://dx.doi.org/10.1090/S0894-0347-2014-00808-0
http://msp.org/idx/mr/3264769
http://msp.org/idx/arx/1207.1918
http://www.sagemath.org
https://sagecell.sagemath.org
http://msp.org/idx/mr/3861042
http://msp.org/idx/zbl/1395.14021
http://dx.doi.org/10.1007/s00029-020-00603-4
http://msp.org/idx/mr/4177576
http://msp.org/idx/zbl/1461.14037
http://msp.org/idx/arx/0808.1974
mailto:vincent.delecroix@u-bordeaux.fr
mailto:schmitt@math.uni-bonn.de
mailto:jasonvanzelm@outlook.com
http://msp.org

JSAG 11 (2021), 113–122 The Journal of Software for
https://doi.org/10.2140/jsag.2021.11.113 Algebra and Geometry

Coding theory package for Macaulay2

TAYLOR BALL, EDUARDO CAMPS, HENRY CHIMAL-DZUL,
DELIO JARAMILLO-VELEZ, HIRAM LÓPEZ, NATHAN NICHOLS, MATTHEW PERKINS,

IVAN SOPRUNOV, GERMAN VERA-MARTÍNEZ AND GWYN WHIELDON

ABSTRACT: In this Macaulay2 package we implement a type of object called a LinearCode. We
implement functions that compute basic parameters and objects associated with a linear code, such as
generator and parity check matrices, the dual code, length, dimension, and minimum distance, among
others. We implement a type of object called an EvaluationCode, a construction which allows users to
study linear codes using tools of algebraic geometry and commutative algebra. We implement functions
to generate important families of linear codes, such as Hamming codes, cyclic codes, Reed–Solomon
codes, Reed–Muller codes, Cartesian codes, monomial–Cartesian codes, and toric codes. In addition,
we implement functions for the syndrome decoding algorithm and locally recoverable code construction,
which are important tools in applications of linear codes.

1. INTRODUCTION. Coding theory has been extensively studied since 1948, when Claude Shannon
[1948] proved in his seminal paper that linear codes can be used to reliably transmit information from
a single source to a single receiver through a noisy channel. Since then, coding theory has found many
important engineering applications. For example, coding theory has been used in designing reliable
data storage systems, radio communication protocols, and in the emerging field of quantum computers.
Coding theory has close ties with many areas in mathematics including linear algebra, commutative
algebra, algebraic geometry, and combinatorics.

In this note we introduce the new [Macaulay2] package called CodingTheory. The goal of this pack-
age is to provide a range of functions for constructing linear and evaluation codes over finite fields, and for
computing some of their main properties. To this aim, we implement two types of objects, LinearCode
and EvaluationCode. The package also includes implementations of functions for generating important
families of linear codes like Hamming codes, cyclic codes, Reed–Solomon codes, Reed–Muller codes,
Cartesian codes, monomial-Cartesian codes and toric codes. It also has functions for the syndrome
decoding algorithm and locally recoverable codes.

The organization of this note is as follows. In Section 2 we describe various ways to construct a linear
code over a finite field using the CodingTheory package. In Section 3 we show how to compute the
main parameters of a linear code: length, dimension, and minimum distance. We also illustrate how to

MSC2020: primary 13P25, 94B05; secondary 11T71, 14G50.
Keywords: linear codes, locally recoverable codes, Cartesian codes, evaluation codes, Hamming codes.
CodingTheory version 1.0

113

https://doi.org/10.2140/jsag.2021.11-1
http://msp.org/jsag
https://doi.org/10.2140/jsag.2021.11.113
http://msp.org/jsag

114 Ball, Camps, Chimal-Dzul, Jaramillo-Velez, López, Nichols, Perkins, Soprunov, Vera-Martínez and Whieldon

compute some of the main algebraic objects associated with linear codes, such as generator and parity
check matrices, dual codes, etc. In Section 4 we give a brief introduction to evaluation codes and describe
some functions implemented to study these objects. In Section 5 we explain how to create some of the
most studied families of linear codes, including Hamming codes, cyclic codes, Reed–Solomon codes,
and Reed–Muller codes. Finally, we give instructions on how to create locally recoverable codes.

In this paper we do not attempt to fully explain every function distributed in this package. For a
detailed explanation of all functions in the package, we refer to the Macaulay2 help page which can be
accessed by running

i1: viewHelp CodingTheory

More information about basics of coding theory can be found in [Huffman and Pless 2003; MacWilliams
and Sloane 1977; van Lint 1999]. Constructions of codes using commutative algebra as evaluation codes
can be seen in [Carvalho et al. 2017; Gold et al. 2005; Hansen 2000; Little and Schenck 2006; Martínez-
Bernal et al. 2017; 2018; Rentería-Márquez et al. 2011; Rentería and Tapia-Recillas 1997; Ruano 2007;
Soprunov and Soprunova 2009; Soprunov 2013]. Excellent references for the theory of vanishing ideals
and their properties are [Cox et al. 1992; Villarreal 2015].

2. CONSTRUCTING LINEAR CODES. Let Fq be a finite field with q elements. Mathematically, a linear
code is defined as a vector subspace C ⊆ Fn

q and it is often specified by a generator matrix, which is a k×n
matrix G with entries in Fq whose k rows form a basis for C . In Macaulay2, a linear code is defined
as an Fq-submodule of Fn

q using the constructor linearCode. This constructor is an instance of the
LinearCode type. There are various ways to use the command linearCode. For example, one can use
this command to construct a linear code C ⊆ Fn

q by specifying a generator matrix G of C (Example 2.1).
Alternatively, one can use the command linearCode to construct a linear code C ⊆ Fn

q by indicating
the finite field Fq and a list L of elements of Fn

q that span C (Example 2.2). More details and equivalent
ways to use the constructor linearCode are given next.

Inputs: Usage:

• F = GF(q), a finite field with q elements • linearCode(G)

• n, r, p, positive integers with p prime • linearCode(F,L)

• G, a matrix with entries in GF(q) • linearCode(F,n,L)

• L, a list of elements of GF(q)n
• linearCode(p,r,n,L)

In the next examples we construct a simple binary linear code C ⊆ F4
2 with generator matrix G =(

1
0

1
0

0
1

0
1

)
using equivalent versions of the command linearCode.

Example 2.1.
i1 : F = GF(2);

i2 : L = {{1,1,0,0},{0,0,1,1}};

i3 : G = matrix apply(L,codeword->apply(codeword,entry->sub(entry,F)));

Coding theory package for Macaulay2 115

i4 : C = linearCode(G);

i5 : C.GeneratorMatrix
o5 = | 1 1 0 0 |

| 0 0 1 1 |

Note that in Example 2.1 it was necessary to coerce the entries of each vector in the list L into elements
of F = GF(2). An equivalent way to do this is to pass the field GF(q) to the matrix constructor or to
use the constructor linearCode(GF(q),L).

Example 2.2.
i1 : L = {{1,1,0,0},{0,0,1,1}};

i2 : C = linearCode(GF(2),L);

i3 : C.GeneratorMatrix
o3 = | 1 1 0 0 |

| 0 0 1 1 |

The set F∗q of nonzero elements of a finite field Fq is a multiplicative cyclic group ([Huffman and
Pless 2003, Theorem 3.3.1]). A generator of F∗q is called a primitive element of Fq . One way to refer
to a primitive element of a finite field is by specifying a symbol using the Variable option of the
constructor GF. In the next example we illustrate how to define a linear code C ⊆ F10

11 with generator
matrix

G =

1 a1 a2

· · · a9

1 a2 a4
· · · (a2)9

1 a3 (a3)2
· · · (a3)9

1 a4 (a4)2
· · · (a4)9

,

where a is a primitive element of F11. In Macaulay2, a = 2.

Example 2.3.
i1 : F = GF(11,Variable => a);

i2 : G = matrix table({1,2,3,4},
{1,a,a^2,a^3,a^4,a^5,a^6,a^7,a^8,a^9},(i,j)->j^i);

i3 : C = linearCode(G);

i4 : C.GeneratorMatrix
o4 = | 1 2 4 -3 5 -1 -2 -4 3 -5 |

| 1 4 5 -2 3 1 4 5 -2 3 |
| 1 -3 -2 -5 4 -1 3 2 5 -4 |
| 1 5 3 4 -2 1 5 3 4 -2 |

In Fn
q there is a standard inner product defined for all x = (x1, . . . , xn) and y = (y1, . . . , yn) in Fn

q as
x · y = x1 y1+ · · ·+ xn yn . Given a linear code C ⊆ Fn

q , the dual or orthogonal code of C with respect to
this inner product is the linear code C⊥ defined as

C⊥ = {x ∈ Fn
q : x · c = 0 for all c ∈ C}.

A generator matrix of C⊥ is called a parity check matrix for C . Since (C⊥)⊥ = C , another common way
to mathematically define C is by specifying one of its parity check matrices. By using the command
linearCode and the ParityCheck option of this command, we can define a linear code C ⊆ Fn

q by
either specifying a parity check matrix H of C or a list L of elements of Fn

q that span C⊥.

116 Ball, Camps, Chimal-Dzul, Jaramillo-Velez, López, Nichols, Perkins, Soprunov, Vera-Martínez and Whieldon

In the next example, we define a linear code C ⊆ F5
9 whose dual code C⊥ is generated by the set

{(1, 0, a, 0, 0), (0, 1, a+1, 1, 0), (1, 1, 1, a, 0)}⊆ F5
9, where a is a primitive element of F9. In Macaulay2,

a ∈ F9 satisfies a2
= a+ 1.

Example 2.4.
i1 : F = GF(9,Variable => a);

i2 : L = {{1,0,a,0,0},{0,a,a+1,1,0},{1,1,1,a,0}};

i3 : C = linearCode(F,L,ParityCheck => true);

i4 : C.GeneratorMatrix
o4 = | a-1 0 a+1 1 0 |

| 0 0 0 0 1 |

i5 : C.ParityCheckMatrix
o5 = | 1 0 a 0 0 |

| 0 a a+1 1 0 |
| 1 1 1 a 0 |

Although the dual code of a linear code can be constructed using the command dualCode implemented
in the CodingTheory package, the ParityCheck option of the command linearCode also allows us
to construct the dual of a linear code. In the next example we construct the dual of the linear code in
Example 2.3.

Example 2.5.
i1 : F = GF(11,Variable => a);

i2 : G = matrix table({1,2,3,4},
{1,a,a^2,a^3,a^4,a^5,a^6,a^7,a^8,a^9},(i,j)->j^i);

i3 : D = linearCode(G,ParityCheck => true);

i4 : D.GeneratorMatrix
o4 = | 1 -3 5 3 1 0 0 0 0 0 |

| -3 -1 4 -4 0 1 0 0 0 0 |
| 4 -4 -3 5 0 0 1 0 0 0 |
| -5 -3 4 4 0 0 0 1 0 0 |
| -4 -4 -1 3 0 0 0 0 1 0 |
| -3 5 3 1 0 0 0 0 0 1 |

3. BASIC PARAMETERS OF LINEAR CODES. The dimension k and length n are basic parameters of a
linear code C ⊆ Fn

q . The information rate of a linear code is defined as k/n. Another parameter of a
linear code C ⊆ Fn

q is the minimum distance, which is defined as

wH (C) :=min{‖c‖ : c ∈ C, c 6= 0},

where ‖c‖ denotes the Hamming weight of c ∈ Fn
q , that is, ‖c‖ is the number of nonzero entries in c.

This parameter is important in determining the error-correcting capability of C ; the higher the minimum
distance, the more errors the code can detect and correct (see [Huffman and Pless 2003]). While the
dimension and the length of linear code are computationally easy to determine, it is known that computing
the minimum distance of an arbitrary linear code is an NP-hard problem [Vardy 1997]. For this task, the
function minimumWeight is provided.

In Macaulay2, the space Fn
q has been called the ambient module or ambient space of C . The field Fq

is called the alphabet or field of C . The elements of C are referred to as codewords. The input in all the

Coding theory package for Macaulay2 117

following commands implemented in the CodingTheory package is always a linear code C:

• dim C • field C • C.AmbientModule

• length C • codewords C • minimumWeight C

• alphabet C • C.Generators • informationRate C

• ambientSpace C • C.GeneratorMatrix • C.ParityCheckMatrix

Example 3.1.

i1 : L = {{1,1,0,0},{0,0,1,1}};

i2 : C = linearCode(GF(4),L);

i3 : dim C
o3 : 2

i4 : length C
o4 = 4

i5 : alphabet C
o5 = {0, a, a + 1, 1}

i6 : ambientSpace C
4

o6 = (GF 4)

i7 : field C
o7 = GF 4

i8 : minimumWeight C
o8 = 2

i9 : codewords C
o9 = {{1, 1, 1, 1}, {1, 1, a, a}, {a, a, 1, 1}, {a, a, a, a},

--
{a + 1, a + 1, a, a}, {a + 1, a + 1, 1, 1}, {1, 1, a + 1, a + 1},

--
{a, a, a + 1, a + 1}, {a + 1, a + 1, a + 1, a + 1}, {1, 1, 0, 0},

--
{0, 0, 1, 1}, {0, 0, a, a}, {a, a, 0, 0}, {a + 1, a + 1, 0, 0},

--
{0, 0, a + 1, a + 1}, {0, 0, 0, 0}}

4. EVALUATION CODES. Let P = {a1, . . . , an} be a subset of Fm
q . Consider a finite-dimensional sub-

space S ⊂ Fq [X1, . . . , Xm] of the ring of polynomials over Fq in m variables. The evaluation map

evS : S→ Fq
|P|, f 7→ (f (a1), . . . , f (an)),

defines a linear map of Fq -vector spaces. The image of evS in Fq
|P|, denoted by CP(S), is the evaluation

code on the set P corresponding to S. The vanishing ideal of P, denoted by I (P), is the ideal in
Fq [X1, . . . , Xn] of all polynomials that vanish on P. A key observation that allows the use of commutative
algebra in studying evaluation codes is that the kernel of the evaluation map evS is precisely S ∩ I (P).

An evaluation code CP(S) is implemented in Macaulay2 as an object of type EvaluationCode.
However, the object C.LinearCode is a linear code in Macaulay2. This has been done in this way
because there are more objects associated with an evaluation code than with a linear code. For instance,
the vanishing ideal associated to the set P plays an important role when finding and estimating parameters
of the code, so it is convenient to be able to access it.

118 Ball, Camps, Chimal-Dzul, Jaramillo-Velez, López, Nichols, Perkins, Soprunov, Vera-Martínez and Whieldon

There are many constructions of evaluation codes for specific choices of the set P and the subspace S.
These include Reed–Muller codes, Cartesian, monomial Cartesian codes, toric codes, and evaluation
codes from graphs. We refer to [Carvalho et al. 2017; Hansen 2000; Little and Schenck 2006; López
et al. 2014; Martínez-Bernal et al. 2017; Rentería-Márquez et al. 2011; Ruano 2007; Soprunov and
Soprunova 2009] for details on how these codes are defined and what properties they have from coding
theory, commutative algebra, and algebraic geometry perspectives.

Some functions implemented in the CodingTheory package for various constructions of evaluation
codes and associated algebraic objects are the following:

Inputs:

• I, an ideal • M, an integer matrix

• d,r, positive integers • L, a list of subsets of F

• F=GF(q), a finite field with q elements • v, a list of m positive integers

• P, a list of points in Fm
• MI, an incident matrix of a graph

• S, a list of polynomials in m variables

Usage:

• evaluationCode(F,P,S) • vNumber(I)

• toricCode(F,M) • footPrint(d,r,I)

• cartesianCode(F,L,d) • hYp(d,r,I)

• orderCode(F,P,v,d) • genMinDisIdeal(d,r,I)

• evCodeGraph(F,MI,S) • vasconcelosDegree(d,r,I)

The input S above is a list of polynomials that span the subspace

S ⊂ Fq [X1, . . . , Xm].

The mathematical definitions of the functions in the second column of the previous list can be found in
[Cooper et al. 2020]. The following example shows how to construct an evaluation code in Macaulay2
using the CodingTheory package.

Example 4.1.
i1 : F=GF(4,Variable=>a); R=F[x,y,z];

i3 : P={{0,0,0},{1,0,0},{0,1,0},{0,0,1},{1,1,1},{a,a,a}};

i4 : S={x+y+z,a+y*z^2,z^2,x+y+z+z^2};

i5 : C=evaluationCode(F,P,S);

i6 : (C.LinearCode).GeneratorMatrix
o6 = | 0 1 1 1 1 a |

| a a a a a+1 a+1 |
| 0 0 0 1 1 a+1 |
| 0 1 1 0 0 1 |

Coding theory package for Macaulay2 119

i7 : length C.LinearCode
o7 = 6

i8 : dim C.LinearCode
o8 = 3

i9 : C.Points
o9 = {{0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {1, 1, 1}, {a, a, a}}

i10 : C.VanishingIdeal
2 2 2 2

o10 = ideal (x*z + y*z, y + z + y + z, x*y + y*z, x + z + x + z,
--
3 2

z + (a +1)z + a*z)

5. FAMILIES OF LINEAR CODES. Various important families of linear codes have been defined through
the development of coding theory. These include Hamming codes, cyclic codes, Reed–Solomon codes,
Reed–Muller codes, etc. The mathematical definitions of these and many other families of codes can be
found in [Huffman and Pless 2003; MacWilliams and Sloane 1977; van Lint 1999].

The following functions have been implemented in the CodingTheory package to construct some of
these important families of codes.

Inputs:

• n, k, d, m, s, positive integers • F = GF(q), a finite field with q elements

• g(x), a polynomial in F[x] • E, a list of elements of F

• L, a list of vectors in Fm

Usage:

• hammingCode(q,s) • cyclicCode(F,g(x),n) • zeroCode(F,n)

• reedSolomonCode(F,E,s) • repetitionCode(F,n) • universeCode(F,n)

• reedMullerCode(q,m,d) • randomCode(F,n,k) • zeroSumCode(F,n)

Example 5.1.
i1 : C = hammingCode(2,3);

i2 : C.GeneratorMatrix
o2 = | 1 1 1 1 0 0 0 |

| 1 1 0 0 1 0 0 |
| 0 1 1 0 0 1 0 |
| 1 0 1 0 0 0 1 |

i3 : F = GF(5); R = F[x]; g = x-1; C = cyclicCode(F,g,6);

i7 : C.GeneratorMatrix
o7 = | -1 1 0 0 0 0 |

| 0 -1 1 0 0 0 |
| 0 0 -1 1 0 0 |
| 0 0 0 -1 1 0 |
| 0 0 0 0 -1 1 |

i8 : C = reedSolomonCode(GF(5),{1,2,3},3);

i9 : (C.LinearCode).GeneratorMatrix
o9 = | 1 1 1 |

| 1 2 -2 |
| 1 -1 -1 |

120 Ball, Camps, Chimal-Dzul, Jaramillo-Velez, López, Nichols, Perkins, Soprunov, Vera-Martínez and Whieldon

6. APPLICATIONS OF LINEAR CODES. An important aspect in coding theory is decoding, which is
used when information is transmitted trough a noisy channel. In a few words the idea is the following.
Take a vector c ∈ C . Change the value of some of the entries of c to obtain a new vector v. Decoding
the vector v means to recover the vector c when only v and C are given. Detailed treatment of decoding
algorithms can be found in [Huffman and Pless 2003]. Another, more recent application of coding theory
is found in distributed and cloud storage systems. The idea is to use locally recoverable codes, which
are linear codes with the property that every entry can be recovered from a few other entries. For more
information on locally recoverable codes, see [Tamo and Barg 2014].

Some of the most important functions implemented in the CodingTheory package that can be used for
applications of coding theory are the following:

Inputs:

• C, a linear code over GF(q)

• v, a vector in the ambient space of C

• {q,n,k,r}, where q is a prime power, and n, k, and r are positive integers

• L, a list of pairwise disjoint subsets of GF(q)

Usage:

• syndromeDecode(C,v,minimumWeight(C))

• LocallyRecoverableCode({q,n,k,r},L,a polynomial)

Example 6.1.

i1 : C = hammingCode(2,3);

i2 : msg = matrix {{1,0,1,0}};

i3 : v = msg*(C.GeneratorMatrix)
o3 = | 0 1 0 1 0 1 0 |

i4 : err = matrix take(random entries basis source v, 1)
o4 = | 0 0 0 0 1 0 0 |

i5 : received = transpose(transpose (v+err))
o5 = | 0 1 0 1 1 1 0 |

i6 : transpose syndromeDecode(C, transpose recieved, 3)
o6 = | 0 1 0 1 0 1 0 |

ACKNOWLEDGMENTS. We thank Federico Galetto, Courtney Gibbons, Hiram López, and Branden
Stone for organizing the Macualay2 workshop at Cleveland State University, where this collaboration
started. We want to give special thanks to Branden Stone for helping us to develop the package during
the workshop. Finally, we are grateful to the anonymous referees for their valuable comments and
suggestions. This work was partially supported by the NSF grant DMS-2003883.

SUPPLEMENT. The online supplement contains version 1.0 of CodingTheory.

http://msp.org/jsag/2021/11-1/jsag-v11-n1-x13-CodingTheory.m2

Coding theory package for Macaulay2 121

REFERENCES.
[Carvalho et al. 2017] C. Carvalho, V. G. L. Neumann, and H. H. López, “Projective nested cartesian codes”, Bull. Braz. Math.
Soc. (N.S.) 48:2 (2017), 283–302. MR Zbl

[Cooper et al. 2020] S. M. Cooper, A. Seceleanu, c. O. Tohăneanu, M. V. Pinto, and R. H. Villarreal, “Generalized minimum
distance functions and algebraic invariants of Geramita ideals”, Adv. in Appl. Math. 112 (2020), art. id. 101940. MR

[Cox et al. 1992] D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms, Springer, 1992. MR Zbl

[Gold et al. 2005] L. Gold, J. Little, and H. Schenck, “Cayley–Bacharach and evaluation codes on complete intersections”, J.
Pure Appl. Algebra 196:1 (2005), 91–99. MR Zbl

[Hansen 2000] J. P. Hansen, “Toric surfaces and error-correcting codes”, pp. 132–142 in Coding theory, cryptography and
related areas (Guanajuato (1998)), edited by J. Buchmann et al., Springer, 2000. MR Zbl

[Huffman and Pless 2003] W. C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cambridge University Press,
2003. MR Zbl

[van Lint 1999] J. H. van Lint, Introduction to coding theory, 3rd ed., Graduate Texts in Mathematics 86, Springer, 1999. MR
Zbl

[Little and Schenck 2006] J. Little and H. Schenck, “Toric surface codes and Minkowski sums”, SIAM J. Discrete Math. 20:4
(2006), 999–1014. MR Zbl

[López et al. 2014] H. H. López, C. Rentería-Márquez, and R. H. Villarreal, “Affine Cartesian codes”, Des. Codes Cryptogr.
71:1 (2014), 5–19. MR Zbl

[Macaulay2] D. R. Grayson and M. E. Stillman, “Macaulay2, a software system for research in algebraic geometry”, available
at https://math.uiuc.edu/Macaulay2/.

[MacWilliams and Sloane 1977] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes, I, vol. 16, North-
Holland Mathematical Library, North-Holland Publishing Co., Amsterdam, 1977. MR

[Martínez-Bernal et al. 2017] J. Martínez-Bernal, Y. Pitones, and R. H. Villarreal, “Minimum distance functions of graded
ideals and Reed–Muller-type codes”, J. Pure Appl. Algebra 221:2 (2017), 251–275. MR Zbl

[Martínez-Bernal et al. 2018] J. Martínez-Bernal, Y. Pitones, and R. H. Villarreal, “Minimum distance functions of complete
intersections”, J. Algebra Appl. 17:11 (2018), art. id. 1850204. MR Zbl

[Rentería and Tapia-Recillas 1997] C. Rentería and H. Tapia-Recillas, “Reed–Muller codes: an ideal theory approach”, Comm.
Algebra 25:2 (1997), 401–413. MR Zbl

[Rentería-Márquez et al. 2011] C. Rentería-Márquez, A. Simis, and R. H. Villarreal, “Algebraic methods for parameterized
codes and invariants of vanishing ideals over finite fields”, Finite Fields Appl. 17:1 (2011), 81–104. MR Zbl

[Ruano 2007] D. Ruano, “On the parameters of r-dimensional toric codes”, Finite Fields Appl. 13:4 (2007), 962–976. MR
Zbl

[Shannon 1948] C. E. Shannon, “A mathematical theory of communication”, Bell System Tech. J. 27 (1948), 379–423. MR
Zbl

[Soprunov 2013] I. Soprunov, “Toric complete intersection codes”, J. Symbolic Comput. 50 (2013), 374–385. MR Zbl

[Soprunov and Soprunova 2009] I. Soprunov and J. Soprunova, “Toric surface codes and Minkowski length of polygons”,
SIAM J. Discrete Math. 23:1 (2009), 384–400. MR Zbl

[Tamo and Barg 2014] I. Tamo and A. Barg, “A family of optimal locally recoverable codes”, IEEE Trans. Inform. Theory 60:8
(2014), 4661–4676. MR

[Vardy 1997] A. Vardy, “The intractability of computing the minimum distance of a code”, IEEE Trans. Inform. Theory 43:6
(1997), 1757–1766. MR Zbl

[Villarreal 2015] R. H. Villarreal, Monomial algebras, 2nd ed., CRC Press, Boca Raton, FL, 2015. MR

RECEIVED: 13 Jul 2020 REVISED: 16 Jul 2021 ACCEPTED: 10 Aug 2021

http://dx.doi.org/10.1007/s00574-016-0010-z
http://msp.org/idx/mr/3654148
http://msp.org/idx/zbl/1386.14099
http://dx.doi.org/10.1016/j.aam.2019.101940
http://dx.doi.org/10.1016/j.aam.2019.101940
http://msp.org/idx/mr/4011111
http://dx.doi.org/10.1007/978-1-4757-2181-2
http://msp.org/idx/mr/1189133
http://msp.org/idx/zbl/0756.13017
http://dx.doi.org/10.1016/j.jpaa.2004.08.015
http://msp.org/idx/mr/2111849
http://msp.org/idx/zbl/1070.14027
http://msp.org/idx/mr/1749454
http://msp.org/idx/zbl/1010.94014
http://dx.doi.org/10.1017/CBO9780511807077
http://msp.org/idx/mr/1996953
http://msp.org/idx/zbl/1099.94030
http://dx.doi.org/10.1007/978-3-642-58575-3
http://msp.org/idx/mr/1664228
http://msp.org/idx/zbl/0936.94014
http://dx.doi.org/10.1137/050637054
http://msp.org/idx/mr/2272243
http://msp.org/idx/zbl/1131.14026
http://dx.doi.org/10.1007/s10623-012-9714-2
http://msp.org/idx/mr/3167045
http://msp.org/idx/zbl/1312.94118
https://math.uiuc.edu/Macaulay2/
http://msp.org/idx/mr/0465509
http://dx.doi.org/10.1016/j.jpaa.2016.06.006
http://dx.doi.org/10.1016/j.jpaa.2016.06.006
http://msp.org/idx/mr/3545260
http://msp.org/idx/zbl/1352.13016
http://dx.doi.org/10.1142/S0219498818502043
http://dx.doi.org/10.1142/S0219498818502043
http://msp.org/idx/mr/3879080
http://msp.org/idx/zbl/1404.13034
http://dx.doi.org/10.1080/00927879708825862
http://msp.org/idx/mr/1428786
http://msp.org/idx/zbl/0868.94045
http://dx.doi.org/10.1016/j.ffa.2010.09.007
http://dx.doi.org/10.1016/j.ffa.2010.09.007
http://msp.org/idx/mr/2747731
http://msp.org/idx/zbl/1209.13037
http://dx.doi.org/10.1016/j.ffa.2007.02.002
http://msp.org/idx/mr/2360532
http://msp.org/idx/zbl/1210.94115
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://msp.org/idx/mr/26286
http://msp.org/idx/zbl/1154.94303
http://dx.doi.org/10.1016/j.jsc.2012.08.006
http://msp.org/idx/mr/2996886
http://msp.org/idx/zbl/1261.14014
http://dx.doi.org/10.1137/080716554
http://msp.org/idx/mr/2476837
http://msp.org/idx/zbl/1195.94088
http://dx.doi.org/10.1109/TIT.2014.2321280
http://msp.org/idx/mr/3245347
http://dx.doi.org/10.1109/18.641542
http://msp.org/idx/mr/1481035
http://msp.org/idx/zbl/1053.94583
http://msp.org/idx/mr/3362802

122 Ball, Camps, Chimal-Dzul, Jaramillo-Velez, López, Nichols, Perkins, Soprunov, Vera-Martínez and Whieldon

TAYLOR BALL:

trball13@gmail.com
University of Notre Dame, Notre Dame, IN, United States

EDUARDO CAMPS:

camps@esfm.ipn.mx
Escuela Superior de Física y Matemáticas, Instituto Politecnico Nacional, Zacatenco, Mexico City, Mexico

HENRY CHIMAL-DZUL:

hc118813@ohio.edu
Department of Mathematics and Center of Ring Theory and its Applications, Ohio University, Athens, OH, United States

DELIO JARAMILLO-VELEZ:

djaramillo@math.cinvestav.mx
Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional,
Mexico City, Mexico

HIRAM LÓPEZ:

h.lopezvaldez@csuohio.edu
Department of Mathematics and Statistics, Cleveland State University, Cleveland, OH, United States

NATHAN NICHOLS:

nathannichols454@gmail.com
School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN, United States

MATTHEW PERKINS:

m.r.perkins73@vikes.csuohio.edu
Department of Mathematics and Statistics, Cleveland State University, Cleveland, OH, United States

IVAN SOPRUNOV:

i.soprunov@csuohio.edu
Department of Mathematics and Statistics, Cleveland State University, Cleveland, OH, United States

GERMAN VERA-MARTÍNEZ:

gveram1100@alumno.ipn.mx
Escuela Superior de Física y Matemáticas, Instituto Politecnico Nacional, Zacatenco, Mexico City, Mexico

GWYN WHIELDON:

gwyn.whieldon@gmail.com
Frederick, MD, United States

msp

mailto:trball13@gmail.com
mailto:camps@esfm.ipn.mx
mailto:hc118813@ohio.edu
mailto:djaramillo@math.cinvestav.mx
mailto:h.lopezvaldez@csuohio.edu
mailto:nathannichols454@gmail.com
mailto:m.r.perkins73@vikes.csuohio.edu
mailto:i.soprunov@csuohio.edu
mailto:gveram1100@alumno.ipn.mx
mailto:gwyn.whieldon@gmail.com
http://msp.org

JSAG 11 (2021), 123–127 The Journal of Software for
https://doi.org/10.2140/jsag.2021.11.123 Algebra and Geometry

Threaded Gröbner bases: a Macaulay2 package

SONJA PETROVIĆ AND SHAHRZAD ZELENBERG

ABSTRACT: The complexity of Gröbner computations has inspired many improvements to Buchberger’s
algorithm over the years. Looking for further insights into the algorithm’s performance, we offer a threaded
implementation of the classical Buchberger algorithm in Macaulay2. The output of the main function of
the package includes information about lineages of nonzero remainders that are added to the basis during
the computation. This information can be used for further algorithm improvements and optimization.

1. INTRODUCTION. The importance in computational algebra of Gröbner bases and therefore of Buch-
berger’s algorithm, as well as its many variants, is indisputable. Yet it is still a challenge to apply brute
force algorithms to larger problems primarily due to considerations in computer science. That is, the
current computing paradigm favors clusters of CPUs, or nodes, rather than one massive CPU. As a
result, there is a need to distribute this algorithm that is automated for the user (in that it does not require
a user to know how it should be distributed).

Past work in this area has focused on synchronized methods as detailed in [Mityunin and Pankrat’ev
2005]. One method spreads a key step in Buchberger’s algorithm — the reduction of S-pairs by division —
across nodes; another sends tasks to individual nodes while a central, coordinating node waits for all
threads to complete. Each of these still requires some central node and synchronization, which leads to
bottlenecks in the computation. A truly distributed algorithm would be decentralized and asynchronous.
Zelenberg [2018] discusses an asynchronous, decentralized distributed version of Buchberger’s algorithm
done generically with the potential of very good speedups. Zelenberg implemented a threaded version
in [Python] to explore this further, and as a result some important discoveries were made. It should be
noted that multithreaded algorithms are not necessarily distributed across distinct nodes; rather, threads
are sharing computation and passing information back and forth.

Of the discoveries made, the most important is this: in order for a distributed process to be both
generically usable and automated for the user, an effective algorithm will need to account for features of
the polynomials (relative to the starting basis) when deciding what tasks to assign to what node. This is
because transferring information between nodes is a very slow process and so needs to be minimized.

Given the need to analyze aspects of these polynomials, [Macaulay2] offers some clear advantages
over Python. Moreover, the Macaulay2 engine is written in C/C++, a language well suited for writing
distributed algorithms. Threads within Macaulay2 work differently than within Python and, as such,

MSC2020: 13P10.
Keywords: Gröbner basis, distributed computation, lineages, S-pairs.
ThreadedGB version 1.1

123

https://doi.org/10.2140/jsag.2021.11-1
http://msp.org/jsag
https://doi.org/10.2140/jsag.2021.11.123
http://msp.org/jsag

124 Petrović and Zelenberg :::: Threaded Gröbner bases: a Macaulay2 package

Lineage Table

key poly
...

...
Lineage(gi) gi
Lineage(g j) g j

...
...

Thread

Compute S(gi , g j)

Compute gk = S(gi , g j)
G

If gk = 1: terminate
Else if gk 6= 0:

Store Lineage(gk), gk

Generate tasks

Task Table

key poly
...

...
(Lineage(gi)−Lineage(g j)) (gi , g j)

...
...

Figure 1. The lineage table is initialized with the starting basis, and the task table is
initialized with a task for each pair of starting generators. Then, all threads perform the
same task: they pull a pair of polynomials from the tasks hash table along with an associated
lineage key. They compute the S-polynomial and reduce it with respect to the current basis.
If the remainder, r , is nonzero, it is stored in the lineage table along with its lineage key,
and, for each g in the current basis, a new task indexed by the pair (g, r) is added to the
task table. If the remainder 1 is found, the process of creating tasks stops. The process is
repeated using n parallel threads, with n specified by the user, until the task table is empty.

some design changes were necessary from the implementation discussed in [Zelenberg 2018]. Queues
are replaced altogether with hash tables — an improvement since threads access the most up-to-date
version of the generating set at the time of reduction. Even so, this cannot eliminate redundancies as
threads may compute the same result (virtually) simultaneously.

One of the goals of our package ThreadedGB is to allow a user to analyze what we refer to as lineages
of polynomials in a Gröbner basis.

Definition 1.1. Let G be a Gröbner basis of I = (f0, . . . , fk). A lineage of a polynomial in G is a natural
number, or an ordered pair of lineages, tracing its history in the given Gröbner basis computation. It is
defined recursively as follows:

• For the starting generating set, Lineage(fi)= i ,

• For any subsequently created S-polynomial S(f, g), the lineage of its remainder r on division is the
pair Lineage(r)= (Lineage(f), Lineage(g)).

To illustrate, suppose I = (x2
− y, x3

− z)⊂Q[x, y, z] with graded reverse lexicographic order. Then
Lineage(x2

− y)= 0 and Lineage(x3
−z)= 1. Two additional elements are added to create a (nonminimal)

Gröbner basis: xy + z and y2
− xz, with lineages (0, 1) and ((0, 1), 0), respectively. According to

Lineage(y2
− xz), this element is constructed from S(xy+ z, x2

− y). Lineages are expressions of the
starting generating set and thus dependent on the choice and order of its elements. More importantly, a
lineage is not necessarily unique, as the same polynomial can be constructed multiple ways. The lineage
tables produced by ThreadedGB (see Figure 1) do not provide all possible lineages — only a particular
choice based on the order in which the generators are provided by the user.

Petrović and Zelenberg :::: Threaded Gröbner bases: a Macaulay2 package 125

2. EFFECT OF ORDERING OF POLYNOMIALS ON LINEAGES: A SIMPLE EXAMPLE. Consider the poly-
nomial ring Q[x1, x3, x0, x4, x2] with lexicographic order and the ideal of the rational normal curve in P4.
The six generators have lineages 0, . . . , 5, and Buchberger’s algorithm adds three new elements to the
Gröbner basis before final reduction. This can be seen by turning on the gbTrace option in Macaulay2,
which tells us three new polynomials are added to the basis. The function tgb lets us know exactly
which ones and their lineages. Specifically, a run of tgb reveals these are x0x4− x2

2 , −x3x0x4+ x3x2
2 ,

−x0x4x2+ x3
2 with lineages (2, 3), (1, 4), (1, 2), respectively.

i1 : needsPackage "ThreadedGB";

i2 : QQ[x_1,x_3,x_0,x_4,x_2,MonomialOrder=>Lex];

i3 : rnc = minors(2, matrix{{x_0..x_3},{x_1..x_4}});
o3 : Ideal of QQ[x , x , x , x , x]

1 3 0 4 2

i4 : allowableThreads = 4;

i5: g = tgb(rnc)
3

o5 = LineageTable{(1, 2) => - x x x + x }
0 4 2 2

2
(1, 4) => - x x x + x x

3 0 4 3 2
2

(2, 3) => x x - x
0 4 2

2
0 => - x + x x

1 0 2
1 => - x x + x x

1 2 3 0
2

2 => x x - x
1 3 2

3 => - x x + x x
1 3 0 4

4 => x x - x x
1 4 3 2

2
5 => - x + x x

3 4 2
o5 : LineageTable

Running the command reduce g will produce a reduced Gröbner basis; in particular, the lineage table
entries with keys (1, 2), (1, 4) and 2 will be replaced by null. This allows the user to see which
nonzero polynomials produced during the computation turn out not to be needed. Of course, to continue
computing with the given basis, one wishes to have it in standard Macaulay2 format, which is a matrix.

i6 : matrix reduce g
o6 = | x_1^2-x_0x_2 x_1x_2-x_3x_0 x_1x_3-x_2^2

x_1x_4-x_3x_2 x_3^2-x_4x_2 x_0x_4-x_2^2 |
1 6

o6 : Matrix (QQ[x , x , x , x , x]) <--- (QQ[x , x , x , x , x])
1 3 0 4 2 1 3 0 4 2

One can use the package to study, for example, how reordering the input basis affects the algorithm. In
Gröbner computations, Macaulay2 creates and processes S-polynomials in lexicographic order of pairs
(first and second, then first and third, and so on). Let S=Q[a, b, c, d] and I = (abc−1, abc, a+bd−c);
clearly I = S. But the order of generators listed affects the complexity of the particular run; namely,
listing the quadratic first makes the algorithm perform more steps. The method tgb can be verbose and

126 Petrović and Zelenberg :::: Threaded Gröbner bases: a Macaulay2 package

can tell us what is going on behind the scenes for each lineage.

i7 : QQ[a, b, c, d];

i8 : I = ideal (a*b*c, a*b*c - 1, a+b*d-c);

i9 : tgb(I,Verbose=>true)
Scheduling a task for lineage (0,1)
Scheduling a task for lineage (0,2)
Scheduling a task for lineage (1,2)
Adding the following remainder to GB: 1 from lineage (0,1)
Found a unit in the Groebner basis; reducing now.
o9 = LineageTable{(0, 1) => 1}

0 => null
1 => null
2 => null

o9 : LineageTable

Compare this to the following run of the threaded Buchberger’s algorithm under a different input order.
i10 : I = ideal (a+b*d-c, a*b*c-1, a*b*c);
o10 : Ideal of QQ[a, b, c, d]

i11 : tgb(I)
o11 = LineageTable{(0, 1) => null}

(0, 2) => null
(1, 2) => 1
0 => null
1 => null
2 => null

o11 : LineageTable

Three new elements are added to the basis, namely (0,1), (0,2), (1,2), if the quadratic generator is listed
first, but if it is listed last, then only the polynomial with lineage (0,1) is added — because it already
equals 1 — and the algorithm stops.

3. NUTS AND BOLTS. Given a list of polynomials L or an ideal I and an integer n, the main method
tgb uses Tasks in Macaulay2 to compute a Gröbner basis of I or (L) using n threads. It returns an
object of type LineageTable, which is an instance of HashTable, whose values are a Gröbner basis
of I or (L). The keys are polynomial lineages.

The starting basis L (meaning, the input list L or L=I∗) populates the entries of a lineage table G with
keys from 0 to one less than the number of elements of L . The method creates all possible S-polynomials
of L and schedules their reduction with respect to G as tasks. Throughout the computation, every nonzero
remainder added to the basis is added to G, with its lineage, as defined above, being the key. Each such
remainder also triggers the creation of S-polynomials using it and every element in G and scheduling
the reduction thereof as additional tasks. The process is done when there are no remaining tasks.

There is a way to track the tasks being created by turning on the option Verbose, or provide the
reduced or a minimal Gröbner basis using the functions reduce or minimalize, respectively. The users
who expect just a Gröbner basis in usual Macaulay2 format, without the lineages, can call matrix on
the LineageTable.

4. IMPROVEMENTS AND SPEED-UPS. As with any Macaulay2 package, improvements are easy to
make via GitHub. Our package’s GitHub repository will be made public shortly, so other users can im-
plement any extensions or add improvements to this threaded implementation of Buchberger’s algorithm.

Petrović and Zelenberg :::: Threaded Gröbner bases: a Macaulay2 package 127

These may include known speed-ups as optional ways to run the algorithm; for example, if one wishes
to study lineages produced by the F4 algorithm [Faugére 1999], then one can build that option into this
threaded computation.

The current goal is to explore algorithm performance and complexity and how input basis features
affect these; the lineages are designed specifically to aid in this goal. Of course, speed-ups should
come “naturally” from a threaded implementation. However, with Macaulay2’s current implementation
of threads, speed-ups aren’t observed with interpreted code, hence to achieve effective speed-ups in
practice, we plan to implement tgb in the engine, using C/C++.

SUPPLEMENT. The online supplement contains version 1.1 of ThreadedGB.

REFERENCES.
[Faugére 1999] J.-C. Faugére, “A new efficient algorithm for computing Gröbner bases (F4)”, pp. 61–88 in Effective methods
in algebraic geometry ((Saint-Malo, 1998)), vol. 139, 1999. MR Zbl

[Macaulay2] D. R. Grayson and M. E. Stillman, “Macaulay2, a software system for research in algebraic geometry”, available
at https://math.uiuc.edu/Macaulay2/.

[Mityunin and Pankrat’ev 2005] V. A. Mityunin and E. V. Pankrat’ev, “Parallel algorithms for the construction of Gröbner
bases”, Sovrem. Mat. Prilozh. 30 (2005), 46–64. Translated in J. of Math. Statistics, 142(4): 2248–2266, 2007. MR

[Python] G. Van Rossum and F. L. Drake, Python 3 Reference Manual, CreateSpace, Scotts Valley, CA.

[Zelenberg 2018] S. J. Zelenberg, Distributed computational systems, Ph.D. thesis, 2018, available at etda.libraries.psu.edu/
catalog/15329sxj937.

RECEIVED: 19 Jul 2020 REVISED: 6 Aug 2021 ACCEPTED: 8 Oct 2021

SONJA PETROVIĆ:

sonja.petrovic@iit.edu
Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL, United States

SHAHRZAD ZELENBERG:

szelenberg@mx.lakeforest.edu
Lake Forest College, Department of Mathematics and Computer Science, Lake Forest, IL, United States

msp

http://msp.org/jsag/2021/11-1/jsag-v11-n1-x11-ThreadedGB.m2
http://dx.doi.org/10.1016/S0022-4049(99)00005-5
http://msp.org/idx/mr/1700538
http://msp.org/idx/zbl/0930.68174
https://math.uiuc.edu/Macaulay2/
http://dx.doi.org/10.1007/s10958-007-0136-z
http://dx.doi.org/10.1007/s10958-007-0136-z
http://msp.org/idx/mr/2464549
mailto:sonja.petrovic@iit.edu
mailto:szelenberg@mx.lakeforest.edu
http://msp.org

JSAG 11 (2021), 129–142 The Journal of Software for
https://doi.org/10.2140/jsag.2021.11.129 Algebra and Geometry

Standard pairs of monomial ideals over
nonnormal affine semigroups in SageMath

BYEONGSU YU

ABSTRACT: We present StdPairs, a SageMath library to compute standard pairs of a monomial ideal
over a pointed (nonnormal) affine semigroup ring. Moreover, StdPairs provides the associated prime
ideals, the corresponding multiplicities, and an irredundant irreducible primary decomposition of a mono-
mial ideal. The library expands on the standardPairs function on Macaulay2 over polynomial rings,
and is based on algorithms from Matusevich and Yu (2020). We also provide methods that allow the
outputs from this library to be compatible with the Normaliz package of Macaulay2 and SageMath.

1. INTRODUCTION.
Affine semigroup rings are the object of many studies in combinatorial commutative algebra. The

goal of this article is to present the SageMath library StdPairs, which systematizes computations for
monomial ideals in affine semigroup rings. The algorithms implemented here are based on the notion
of standard pairs, introduced for monomial ideals in polynomial rings by [Sturmfels et al. 1995], and
generalized to the semigroup ring case in [Matusevich and Yu 2020]. Standard pairs are combinatorial
structures that contain information on primary and irreducible decompositions of monomial ideals, as
well as multiplicities. One of the main contributions of [Matusevich and Yu 2020] is that standard pairs
and the associated algebraic concepts can be effectively computed over affine semigroup rings.

The SageMath library StdPairs implements the algorithms of [Matusevich and Yu 2020] to calculate
standard pairs for monomial ideals in any pointed (nonnormal) affine semigroup ring. This library can
be regarded as a generalization of the standardPairs function in Macaulay2 implemented by [Hoşten
and Smith 2002]. This library is provided as an online supplement to this paper.

Outline. Section 2 provides background on affine semigroup rings, their monomial ideals, and related
combinatorial notions. It also explains their implementation as SageMath classes. Section 3 presents the
implementation of algorithms to find standard pairs, proposed in [Matusevich and Yu 2020, Section 4].
Section 4 shows compatibility with the Normaliz package by introducing methods to translate objects
in SageMath into objects in Macaulay2 using Normaliz.

MSC2020: primary 13F65, 68W30, 90C90; secondary 13P25, 20M25.
Keywords: affine semigroups, standard pairs, monomial ideals, semigroup rings.
StdPairs version 1.0

129

https://doi.org/10.2140/jsag.2021.11-1
http://msp.org/jsag
https://doi.org/10.2140/jsag.2021.11.129
http://msp.org/jsag
http://msp.org/jsag/2021/11-1/jsag-v11-n1-x14-StdPairs.zip

130 Yu :::: Standard pairs of monomial ideals over nonnormal affine semigroups in SageMath

1.1. Notation. We denote a semigroup of nonnegative integers including 0 by N= {0, 1, 2, . . .}. A ring
of integers is Z. All nonnegative real numbers are represented by R≥0. Boldface uppercase letters and
boldface lowercase letters denote matrices and vectors, respectively. This will be used when we call a
cone R≥0 A for some d × n matrix A over Z. Let K be an arbitrary field.

2. AFFINE SEMIGROUP, IDEAL, AND PROPER PAIR AS CLASSES OF SAGEMATH.

2.1. Mathematical background. An affine semigroup is a semigroup of Zd generated by finitely many
vectors a1, . . . , an for some n ∈N. We let A be a d×n matrix whose column vectors are a1, . . . , an ∈ Zd.
The set of all nonnegative integer linear combinations of a1, . . . , an , denoted by NA, is an affine semi-
group. These columns a1, . . . , an are the generators of the affine semigroup NA; the matrix A is called
the generating matrix. Since NA contains 0, an affine semigroup is a commutative monoid. Given
a field K, we are concerned with the affine semigroup ring K[NA]. A natural first example is the
polynomial ring in d-variables; in this case, A is the d × d identity matrix. We refer to [Miller and
Sturmfels 2005, Section 7] for more background on this topic. Throughout this article, we assume that
the affine semigroup NA under consideration is pointed, which means that the cone R≥0 A does not
contain lines.

An ideal of an affine semigroup is a set I ⊂ NA such that I + NA ⊆ I. There is a one-to-one
correspondence between monomial ideals of K[NA] and ideals of NA. Therefore, the definition of
prime, irreducible, and primary ideals of K[NA] can be naturally extended to the ideals of an affine
semigroup. The standard monomials of an ideal I ⊂ NA are all elements of NAr I. Let std(I) be a set
of all standard monomials with respect to I.

A face of an affine semigroup NA is a subsemigroup NF ⊆ NA such that the complement NArNF
is an ideal of NA [Miller and Sturmfels 2005, Definition 7.8]. Equivalently, it is a subsemigroup NF
with the property that a + b ∈ NF if and only if a, b ∈ NF. The faces of an affine semigroup form
a lattice which is isomorphic to the face lattice of a (real) cone over the affine semigroup [Bruns and
Herzog 1993; Miller and Sturmfels 2005]. Thus, we may represent a face NF as a submatrix F of A.

A pair is a tuple (a, F) of an element a in NA and a face F of NA [Matusevich and Yu 2020]. A
proper pair of an ideal I is a pair (a, F) such that a+NF ⊆ std(I). A pair (a, F) divides (b, G) if there
exists c ∈ NA such that a+ c+NF ⊆ b+NG [Matusevich and Yu 2020]. The set of all proper pairs
of an ideal I is partially ordered ≺ by inclusion. In other words, (a, F)≺ (b, G) if a+NF ⊂ b+NG.
The standard pairs of an ideal I are the maximal elements of the set of all proper pairs of I with this
partial order. We denote by Std(I) the set of all standard pairs of an ideal I.

We remark that our notation here differs from existing notation for standard pairs over polynomial
rings. Over the polynomial ring K[x1, x2, . . . , xn], a pair is a tuple (x a, V) where x a is a monomial
xa1

1 xa2
2 · · · x

an
n for some integer vector a = (a1, a2, . . . , an) and V is a set of variables [Hoşten and Smith

2002; Sturmfels et al. 1995]. From the viewpoint of affine semigroup rings, the polynomial ring is a
special case when the underlying affine semigroup is generated by an n× n identity matrix I . Since the

Yu :::: Standard pairs of monomial ideals over nonnormal affine semigroups in SageMath 131

cone R≥0 I is a simplicial cone, i.e., every subset of rays form a face, we may interpret V as a face. The
following example shows the different notations for the standard pairs of a monomial ideal

I =
〈
x

[
1
3
1

]
, x

[
1
2
2

]
, x

[0
3
2

]
, x

[0
2
3

]〉
in the polynomial ring K[x1, x2, x3]:

In Macaulay2,

i1 : R = QQ[x,y,z];

i2 : I = monomialIdeal(x*y^3*z, x*y^2*z^2, y^3*z^2, y^2*z^3)
3 2 2 3 2 2 3

o2 = monomialIdeal (x*y z, x*y z , y z , y z)

o2 : MonomialIdeal of R

i3 : standardPairs I
o3 = {{1, {x, z}}, {y, {x, z}}, {1, {x, y}}, {z, {y}},

2 2 2
{y z, {x}}, {y z , {}}}

o3 : List

whereas in the given library StdPairs in SageMath,

sage: from stdpairs import *

sage: A = matrix(ZZ,[[1,0,0],[0,1,0],[0,0,1]])

sage: Q = AffineMonoid(A)

sage: M = matrix(ZZ,[[1,1,0,0],[3,2,3,2],[1,2,2,3]])

sage: I = MonomialIdeal(M,Q)

sage: I.standard_cover()
{(1,): [([[0], [0], [1]]^T,[[0], [1], [0]])],
(0, 2): [([[0], [1], [0]]^T,[[1, 0], [0, 0], [0, 1]]),
([[0], [0], [0]]^T,[[1, 0], [0, 0], [0, 1]])],

(0, 1): [([[0], [0], [0]]^T,[[1, 0], [0, 1], [0, 0]])],
(): [([[0], [2], [2]]^T,[[], [], []])],
(0,): [([[0], [2], [1]]^T,[[1], [0], [0]])]}

(), (0,), (0, 2), (0, 1), and (1,) in StdPairs of SageMath are indices of columns of A.
These denote {}, {x}, {x, y}, {x, z}, and {y}, respectively, in Macaulay2. Therefore, for ex-
ample, the pair ([[0], [0], [1]]^T,[[0], [1], [0]]) will represent {z, {y}}, while the pair
([[0], [0], [0]]^T,[[1, 0], [0, 0], [0, 1]]) represents {1, {x, z }}, and so on. There-
fore, this example shows that StdPairs is consistent with Macaulay2.

2.2. Classes in StdPairs. We implement three classes related to affine semigroups, semigroup ideals,
and proper pairs respectively. This implementation is based on SageMath 9.1 with Python 3.7.3. and
the 4ti2 package. Detailed usage and examples of each method or object can be found using the com-
mand <method_name>? in SageMath or https://byeongsuyu.github.io/StdPairs/, the documentation of
StdPairs made by the Sphinx package.

Class AffineMonoid. This class is constructed by using an integer matrix A. The name follows the
convention of SageMath which distinguishes monoid from semigroup. In SageMath, A can be expressed

https://byeongsuyu.github.io/StdPairs/

132 Yu :::: Standard pairs of monomial ideals over nonnormal affine semigroups in SageMath

as a 2-dimensional NumPy.ndarray type or an integer matrix of SageMath. For example,

sage: from stdpairs import *

sage: A = matrix(ZZ,[[1,2],[0,2]])

sage: Q = AffineMonoid(A)

generates Q as a type of AffineMonoid. This class has several methods as explained below:

• Q.gens() returns a matrix generating an affine monoid Q as NumPy.ndarray type. This may not
be a minimal generating set of Q.

• Q.mingens() returns a minimal generating matrix of an affine monoid of Q.

• Q.poly() returns a real cone R≥0 Q represented as a type of Polyhedron in SageMath. If one
generates Q with True parameter, i.e.,

sage: from stdpairs import *

sage: A = matrix(ZZ,[[1,2],[0,2]])

sage: Q = AffineMonoid(A,is_normaliz=True)

then Q.poly() is of a class of Normaliz integral polyhedron. This requires the PyNormaliz
package. See [Köppe and Labbé 2019] for more details.

• Q.face_lattice() returns a finite lattice containing all faces of the affine semigroup. A face
in the lattice is saved as a tuple storing column numbers of generators A. This lattice is of type
FiniteLatticePoset in SageMath. For example,

sage: Q.face_lattice()
Finite lattice containing 5 elements

sage: Q.face_lattice().list()
[(-1,), (), (0,), (1,), (0, 1)]

• Q.index_to_face() returns a dictionary type object whose keys are tuples denoting indices
of column vectors consisting of faces, and whose items are corresponding faces of Q.poly(). For
example,

sage: Q.index_to_face()
{(-1,): A -1-dimensional face of a Polyhedron in ZZ^2,
(): A 0-dimensional face of a Polyhedron in ZZ^2
defined as the convex hull of 1 vertex,
(0,): A 1-dimensional face of a Polyhedron in ZZ^2
defined as the convex hull of 1 vertex and 1 ray,
(1,): A 1-dimensional face of a Polyhedron in ZZ^2
defined as the convex hull of 1 vertex and 1 ray,
(0,1): A 2-dimensional face of a Polyhedron in ZZ^2
defined as the convex hull of 1 vertex and 2 rays}

• Q.index_of_face(matrix face) returns a face as a tuple of indices of column vectors of a
generator A corresponding to a given submatrix face of A. For example,

sage: M = matrix(ZZ,[[2],[2]])

sage: Q.index_of_face(M)
(1,)

Here, face should be a submatrix of Q.gens() which form a face.

Yu :::: Standard pairs of monomial ideals over nonnormal affine semigroups in SageMath 133

• Q.face(tuple index) returns a face as a submatrix of a generator A corresponding to a given
tuple index. For example,

sage: Q.face((1,))
array([[2],

[2]])

• Q.integral_support_vectors() return a dictionary type object whose keys are tuples denot-
ing faces and whose items are integral support functions of facets containing F as a vector form. An
integral support function φH of a facet H is a linear function φH : R

d
→ R such that φH(Z

d)= Z,
φH(a) ≥ 0 for all column vectors a of generators A, and φH(a) = 0 if and only if a ∈ H . By
linearity, φH(a) = b · a for some rational vector b. We call b an integral support vector. Each
item of Q.integral_support_vectors() is a matrix as NumPy.ndarray type whose rows are
integral support vectors of facets containing the given face. For example,

sage: Q.integral_support_vectors()
{(): array([[0, 1],

[1, -1]]),
(0,): array([[0, 1]]),
(1,): array([[1, -1]]),
(0, 1): array([], dtype=int64)}

In this code, () denoting 0 has two integral support vectors, since it is an intersection of two facets
(0,) and (1,), while (0,1) has no such integral support vectors since it is not a proper face but
the affine semigroup itself. See [Matusevich and Yu 2020, Definition 2.1] for the precise definition
of a (primitive) integral support function.

• Q.is_empty() returns a boolean value indicating whether Q is a trivial affine semigroup or not. A
trivial affine semigroup is an empty set as an affine semigroup.

• Q.is_pointed() returns a boolean value indicating whether Q is a pointed affine semigroup or not.

• Q.is_element(vector b) returns nonnegative integral inhomogeneous solutions (minimal inte-
ger solutions) of Ax = b using zsolve in [4ti2]. If b is not an element of an affine semigroup Q,
then it returns an empty matrix. The vector b should be a NumPy.ndarray type 2-dimensional
object with one column, or a matrix of SageMath with only one column.

• Q.save_txt() returns a string containing information about Q. This can be loaded again using
txt_to_affinemonoid(string info), which will be explained in Section 2.3.

• Q.save(string path) saves the given object Q as binary file on the given path. This can be loaded
again using load(path), a pre-existing global function of SageMath.

Moreover, one can directly compare affine semigroups using the equality operator == in SageMath.

Class MonomialIdeal. This class is constructed by an affine semigroup Q and generators of an ideal as a
matrix form, say M , which is a 2-dimensional NumPy.ndarray object or an integer matrix of SageMath.

134 Yu :::: Standard pairs of monomial ideals over nonnormal affine semigroups in SageMath

For example,

sage: M = matrix(ZZ,[[4,6],[4,6]])

sage: I = MonomialIdeal(M,Q)

sage: I
An ideal whose generating set is
[[4]
[4]]

As shown in the example above, this class stores only minimal generators of the ideal. The attributes
and methods are explained below:

• I.gens() returns the minimal generators of I as a NumPy.ndarray type object.

• I.ambient_monoid() returns the ambient affine semigroup of I.

• I.standard_cover(verbose = False) returns the standard cover of I, a dictionary object
whose keys are faces and whose items are lists consisting of ProperPair type objects whose face is
equal to the corresponding key. ProperPair objects will be explained in Section 2.2. The definition
of the standard cover will be given in Section 3.1. Users can check the progress of the computation
if verbose=True.

• I.overlap_classes() returns a dictionary object whose keys are tuples denoting faces and
whose items are lists of lists representing overlap classes of I. An overlap class of an ideal I is a
set of standard pairs such that their representing submonoids intersect nontrivially.

• I.maximal_overlap_classes() returns all maximal overlap classes of I with divisibility. An
overlap class is maximal with divisibility if every pair in the overlap class can divide only pairs in
itself. See [Matusevich and Yu 2020, Section 3] for the detail.

• I.irreducible_decomposition() returns a list of components of the irredundant irreducible
primary decomposition of I.

• I.associated_primes() returns all associated prime ideals of I as a dictionary type. In other
words, the function returns a dictionary whose keys are faces of the affine semigroup as a tuple
and whose values are associated prime ideals corresponding to the face in its key.

• I.multiplicity(ideal P or face F) returns a multiplicity of I over the given associated
prime P. Since there is a one-to-one correspondence between monomial prime ideals and faces of
an affine semigroup, this method takes the face F (as a tuple) corresponding to a prime ideal P as
a valid input instead.

• I.is_element(vector b) returns nonnegative integral inhomogeneous solutions (minimal inte-
ger solutions) of Ax = b− a for each generator a of I using zsolve in [4ti2]. If b is an element
of the ideal, then it returns a list [x, a] for some generator a such that a+ AxT

= b. Otherwise, it
returns an empty matrix. The vector b should be a NumPy.ndarray type 2-dimensional object with
one column, or a matrix of SageMath with only one column.

Yu :::: Standard pairs of monomial ideals over nonnormal affine semigroups in SageMath 135

• I.is_standard_monomial(vector b) returns a boolean value indicating whether the given vec-
tor b is a standard monomial or not.

• I.is_principal() returns a boolean value indicating whether I is principal or not. Likewise, the
similar methods I.is_empty(), I.is_irreducible(), I.is_primary(), I.is_prime(), and
I.is_radical() return a boolean value indicating whether I has the properties implied by their
name or not.

• I.radical() returns the radical of I as a MonomialIdeal object.

• I.intersect(J) returns an intersection of two ideals I and J as a MonomialIdeal object. Like-
wise, addition +, multiplication ∗, and comparison == are defined between two objects. The follow-
ing example shows an addition of two monomial ideals in SageMath:

sage: I = MonomialIdeal(matrix(ZZ,[[4,6],[4,6]]),Q)

sage: J = MonomialIdeal(matrix(ZZ,[[5],[0]]),Q)

sage: I.intersect(J)
An ideal whose generating set is
[[9]
[4]]

sage: I+J
An ideal whose generating set is
[[5 4]
[0 4]]

sage: I*J
An ideal whose generating set is
[[9]
[4]]

• I.save_txt() returns a string which can be used to recover the object I and its precalculated prop-
erties without calculation. That is, it contains not only the generators of I, but also its standard cover,
overlap classes, associated primes, and irreducible primary decompositions if they were calculated.
This can be loaded again using txt_to_monomialideal(string info) (see Section 2.3).

• I.save(string path) saves the given object I as a binary file on the given path. This can be
loaded again using load(path), a pre-existing global function of SageMath.

Class ProperPair. A proper pair (a, F) of an ideal I can be declared in SageMath by specifying an
ideal I, a standard monomial a as a matrix form (or NumPy 2D array), and a face F as a tuple. If (a, F)
is not proper, then SageMath calls a ValueError. The following example shows two ways of defining
a proper pair:

sage: import numpy as np

sage: I = MonomialIdeal(matrix(ZZ,[[4,6],[4,6]]),Q)

sage: PP = ProperPair(np.array([2,0])[np.newaxis].T,(0,),I)

sage: PP
([[2], [0]]^T,[[1], [0]])

sage: QQ = ProperPair(np.array([2,0])[np.newaxis].T,(0,),I,
....: properness =True)

sage: QQ
([[2], [0]]^T,[[1], [0]])

136 Yu :::: Standard pairs of monomial ideals over nonnormal affine semigroups in SageMath

The second line tests whether the pair is a proper pair of the given ideal I or not before generating PP.
However, the fourth line with properness=True generates QQ without checking whether QQ is a proper
pair of I or not. Use the third parameter with True only if the generating pair is proper a priori. In any
case, each PP and QQ denotes a proper pair whose initial monomial is

[
2
0

]
and whose face is

[
1
0

]
.

The attributes and methods are explained below. We assume that PP denotes a proper pair (a, F).

• PP.monomial(), PP.face(), and PP.ambient_ideal() return the initial monomial a (as a NumPy
2D array), the face F (as a tuple), and its ambient ideal (as an object of AffineMonoid) respec-
tively.

• PP.is_maximal() returns a boolean value indicating whether the given pair is maximal with re-
spect to the divisibility of proper pairs of the ambient ideal. If PP is generated without testing
whether its monomial is in the given ideal I or not, this method raises a warning instead of returning
a boolean value.

• PP.is_element(vector b) returns nonnegative integral inhomogeneous solutions (minimal in-
teger solutions) of a+ Fx = b using zsolve in [4ti2]. If b is not an element of the submonoid
a+NF, then it returns an empty matrix.

• Like AffineMonoid or MonomialIdeal, one can directly compare proper pairs using the equality
operator == in SageMath.

2.3. Global functions.

• prime_ideal(tuple face, AffineMonoid Q) returns a prime ideal of the given AffineMonoid
object Q corresponding to the tuple object face as an object of MonomialIdeal.

sage: prime_ideal((1,),Q)
An ideal whose generating set is
[[1]
[0]]

• div_pairs(pair PP, pair QQ) will return a matrix whose column u is a minimal solution of
a + u + NF ⊆ b+ NG if P P = (a, F) and Q Q = (b, G). The returned value is a nonempty
matrix if and only if a pair PP divides a pair QQ. For example, suppose two pairs PP and QQ are[

2
0

]
+N

[
1
0

]
and

[
3
0

]
+N

[
1
0

]
respectively. Then,

sage: I = MonomialIdeal(matrix(ZZ,[[4,6],[4,6]]),Q)

sage: PP = ProperPair(matrix(ZZ,[[2],[0]]),(0,),I)

sage: QQ = ProperPair(matrix(ZZ,[[3],[0]]),(0,),I)

sage: div_pairs(PP,QQ)
[1]
[0]

sage: div_pairs(QQ,PP)
[0]
[0]

since
([

2
0

]
+N

[
1
0

])
⊇
([

3
0

]
+N

[
1
0

])
.

Yu :::: Standard pairs of monomial ideals over nonnormal affine semigroups in SageMath 137

• txt_to_affinemonoid(string info) (or txt_to_monomialideal(string info)) loads an
AffineMonoid object (or a MonomialIdeal object) in the string info, which is generated by
the AffineMonoid.save_txt() (or MonomialIdeal.save_txt()) methods. These are useful
for users who want to avoid repeating calculations which were previously done. For example, the
ideal J in

sage: I = MonomialIdeal(matrix(ZZ,[[4,2],[4,0]]),Q)

sage: I.standard_cover()
{(): [([[1], [0]]^T,[[], []]),

([[0], [0]]^T,[[], []]),
([[3], [2]]^T,[[], []]),
([[2], [2]]^T,[[], []])]}

sage: J=txt_to_monomialideal(I.save_txt())

sage: J.standard_cover()
{(): [([[1], [0]]^T,[[], []]),

([[0], [0]]^T,[[], []]),
([[3], [2]]^T,[[], []]),
([[2], [2]]^T,[[], []])]}

is a new MonomialIdeal object; however, it does not need time to calculate its standard cover,
since precalculated information of the standard cover was stored in I.save_txt() and transferred
to J.

• pair_difference(ProperPair PP, ProperPair QQ) is a global function which decomposes
PP \ QQ as a finite union of pairs. See Theorem 1 and subsequent arguments for details.

• from_macaulay2(string var_name) and to_macaulay2(MonomialIdeal I) are global func-
tions used for communicating with Macaulay2 objects. See Section 4 for details.

3. IMPLEMENTATION OF AN ALGORITHM FINDING STANDARD PAIRS.

3.1. Case 1: Principal ideal. A cover of standard monomials of an ideal I is a set of proper pairs of I
such that the union of all subsemigroups a+NF corresponding to an element (a, F) of the cover is equal
to the set of all standard monomials. The standard cover of an ideal I is a cover of I whose elements are
standard pairs. The standard cover of a monomial ideal I is unique by the maximality of standard pairs
among all proper pairs of I. A key idea in [Matusevich and Yu 2020, Section 4] is to construct covers
containing all standard pairs. Once a cover is obtained, we can then produce the standard cover.

The following result helps to compute the standard cover in the special case of a principal ideal.

Theorem 1 [Matusevich and Yu 2020, Theorem 4.1]. Let b, b′ ∈ NA and let G, G′ be faces of A such
that G ∩ G′ = G. There exists an algorithm to compute a finite collection C of pairs over faces of G such
that

(b+G)r (b′+G′)=
⋃

(a,F)∈C

(a+ F).

The pair difference of the pairs (b, G) and (b′, G′) is a finite collection of pairs over faces of G given
by Theorem 1.

138 Yu :::: Standard pairs of monomial ideals over nonnormal affine semigroups in SageMath

Corollary 2. Given a principal ideal I = 〈b〉, the pair difference of pairs (0, A) and (b, A) is the
standard cover of I.

Proof. Theorem 1 implies that the pair difference is a cover of I. To see it is the standard cover, suppose
that the ambient affine semigroup is generated by A= [a1 · · · an]. Let (c, F) be a proper pair in the pair
difference. Without loss of generality, we assume that F = [a1 · · · am] for some m < n by renumbering
indices. By the proof of Theorem 1 in [Matusevich and Yu 2020], c = A · u where xu

∈ K[Nn
] is a

standard monomial such that (xu, {x1, . . . , xm}) is a standard pair of some monomial ideal J in K[Nn
].

Suppose that there exists (d, G) such that F ⊆ G and d + g = c for some g ∈ G. Since d ∈ NA,
d = Aw for some w ∈Nn. Since A is pointed, w is, coordinatewise, less than u. Thus, (xw, {x1, . . . , xm})

contains (xu, {x1, . . . , xm}). Lastly, (xw, {x1, . . . , xm}) is a proper pair of J, otherwise, there exists
xv
∈K[x1, . . . , xm]⊆K[Nn

] such that xw+v
∈ J. Then, x gxw+v

∈ J =⇒ xu+v
∈ J∩(xu, {x1, . . . , xm})=∅

leads to a contradiction.
Thus, by maximality of the standard pair, w= u. This implies d= c. Moreover, G= F, otherwise there

exists j ∈{1, 2, . . . , n}r{1, . . . ,m} such that xux l
j 6∈ J for any l, which implies that (xu, {x1, . . . , xm, x j })

is a proper pair of J strictly containing a standard pair (xu, {x1, . . . , xm}) of J, a contradiction. �

Theorem 1 is implemented as a method pair_difference((b, F), (b′, F′)) within the library
StdPairs. The two input arguments should be of type ProperPair. It returns the pair difference of
pairs (b, F) and (b′, F′) with dictionary type, called Cover. Cover classifies pairs by their faces. For
example, the code below shows the pair difference of pairs (0, A) and ((0, 2), A), which are(

0,
[

2
0

])
,

([
0
1

]
,

[
2
0

])
,

([
1
2

]
,

[
2
0

])
, and

([
1
1

]
,

[
2
0

])
.

sage: from stdpairs import *

sage: Q = AffineMonoid(matrix(ZZ, [[2,0,1],[0,1,1]]))

sage: I = MonomialIdeal(matrix(ZZ,0),Q)

sage: C = ProperPair(np.array([[0,0]]).T, (0,1,2), I)

sage: D = ProperPair(np.array([[0,2]]).T, (0,1,2), I)

sage: print(pair_difference(C,D))
{(0,): [([[1], [2]]^T,[[2], [0]]), ([[1], [1]]^T,[[2], [0]]),
([[0], [1]]^T,[[2], [0]]), ([[0], [0]]^T,[[2], [0]])]}

By Corollary 2, this is the standard cover of the ideal I = 〈(0, 2)〉 in an affine semigroup N
[

2 0 1
0 1 1

]
.

The method pair_difference((b, F), (b′, F′)) uses standardPairs of Macaulay2 internally
to find standard pairs of a polynomial ring, which is implemented by [Hoşten and Smith 2002]. Briefly,
the method pair_difference((b, F), (b′, F′)) calculates minimal solutions of the integer linear
system [

F −F ′
] [u

v

]
= b′− b

using zsolve in 4ti2. The solutions form an ideal J of a polynomial ring in the proof of Theorem 1 on
Macaulay2. Next, standardPairs derives standard pairs of J. Lastly, the method pair_difference

Yu :::: Standard pairs of monomial ideals over nonnormal affine semigroups in SageMath 139

constructs proper pairs based on the standard pairs of J, and classifies the proper pairs based on their
faces and returns the pair difference.

3.2. Case 2: General ideal. [Matusevich and Yu 2020, Proposition 4.4] gives an algorithm to find the
standard cover of nonprincipal monomial ideals.

Proposition 3 [Matusevich and Yu 2020, Proposition 4.4]. Let I be a monomial ideal in K[NA]. There
is an algorithm whose input is a cover of the standard monomials of I, and whose output is the standard
cover of I.

According to the proof of [Matusevich and Yu 2020, Proposition 4.4], this is achieved by repeating the
procedures below.

(1) Input: C0, an initial cover of I.

(2) For each (a, F) ∈ C0, find minimal solutions of (a+RF)∩NA using the primitive integral support
functions. (See [Matusevich and Yu 2020, Lemma 4.2] for the detail.)

If b1, b2, . . . , bm are the minimal solutions of (a+RF)∩NA, then we construct pairs such as
(b1, F), (b2, F), . . . , (bm, F) and store them in the attribute C1.

(3) For each pair (b, F) ∈ C1, construct (b,G) for any face G which is not strictly contained in F. If
(b,G) is a proper pair of I, save (b,G) on the attribute C2.

(4) If C0 is equal to C2, we are done. Otherwise, set C0 := C2 and repeat the above process.

The method _czero_to_cone(C0, I) in the hidden module _stdpairs of StdPairs implements (2)
to return C1. It calls the method _minimal_holes(vector a, face F, affine semigroup A)
internally, which is the implementation of Lemma 4.2 in [Matusevich and Yu 2020]. The method
_cone_to_ctwo(C1, I) implements (3). Since the constructor function of the class ProperPair checks
whether the pair is proper or not, the method _cone_to_ctwo(C1, I) tries to construct proper pairs as
an attribute in SageMath and records them if it is successful.

Now we are ready to find the standard cover of a general ideal I whose minimal generators are
〈b1, . . . , bn〉. One can find standard pairs as in [Matusevich and Yu 2020, Theorem 4.5] as described
below:

(1) Find the standard cover C of 〈b1〉 using pair difference.

(2) For i = 2 to n:

(a) For each pair (b, F) in C , replace it with elements of the pair difference of pairs (b, F) and
(bi , A). After this process, C is a cover of an ideal 〈b1, b2, . . . , bi 〉.

(b) Using the algorithm of Proposition 3, find the standard cover C ′ of 〈b1, b2, . . . , bi 〉.
(c) Replace C with C ′.

(3) Return C .

The returned value C is now the standard cover of I.

140 Yu :::: Standard pairs of monomial ideals over nonnormal affine semigroups in SageMath

The library StdPairs implements [Matusevich and Yu 2020, Theorem 4.5] as a hidden method
_standard_pairs(I). This method has an input I whose type is MonomialIdeal. It returns a cover
whose type is dictionary, classifying standard pairs by its face. For example, the code below shows
that the standard cover of an ideal generated by [

2 2 2
0 1 2
2 2 2

]
in an affine semigroup

NA= N

[
0 1 1 0
0 0 1 1
1 1 1 1

]
is {(

0,
[

0 0
0 1
1 1

])
,

([
1
1
1

]
,

[
0 0
0 1
1 1

])
, and

([
1
0
1

]
,

[
0 0
0 1
1 1

])}
.

sage: from stdpairs import *

sage: Q=AffineMonoid(matrix(ZZ,[[0,1,1,0],[0,0,1,1],[1,1,1,1]]))

sage: I=MonomialIdeal(matrix(ZZ,[[2,2,2],[0,1,2],[2,2,2]]),Q)

sage: I.standard_cover()
{(0, 3): [([[1], [0], [1]]^T,[[0, 0], [0, 1], [1, 1]]),

([[1], [1], [1]]^T,[[0, 0], [0, 1], [1, 1]]),
([[0], [0], [0]]^T,[[0, 0], [0, 1], [1, 1]])]}

4. COMPATIBILITY WITH NORMALIZ PACKAGE IN SAGEMATH AND MACAUALAY2. Normaliz is a
package in SageMath and Macaulay2 for finding Hilbert bases of rational cones and their normal affine
monoid [Bruns and Ichim 2010]. StdPairs has methods translating classes in Section 2 into objects in
the Normaliz package. If an affine semigroup NA is normal, i.e., NA= Zd

∩R≥0 A, then this translation
works well. However, if it is not normal, then this translates NA into its saturation described in Section 2.

For SageMath, one can have a polyhedron over Z with the Normaliz package in SageMath by
adding an argument True on the constructor of AffineMonoid. For example, the code below gives
an AffineMonoid class attribute Q whose attribute Q.poly() is a polyhedron over Z with Normaliz.
Therefore, you can use all methods on Normaliz object. For example,

sage: from stdpairs import *

sage: Q=AffineMonoid(matrix(ZZ, [[0,1,1,0],[0,0,1,1],[1,1,1,1]]),
is_normaliz=True)

sage: Q.poly().hilbert_series([0,0,1])
(t + 1)/(-t^3 + 3*t^2 - 3*t + 1)

The method to_macaulay2(MonomialIdeal I) returns a dictionary storing attributes of Macaulay2
computations. This dictionary contains an affine semigroup ring, a list of generators of an ideal, and a
list of standard pairs in Macaulay2. For example,

sage: from stdpairs import *

sage: Q=AffineMonoid(matrix(ZZ,[[0,1,1,0],[0,0,1,1],[1,1,1,1]]))

sage: I=MonomialIdeal(matrix(ZZ,[[2,2,2],[0,1,2],[2,2,2]]),Q)

Yu :::: Standard pairs of monomial ideals over nonnormal affine semigroups in SageMath 141

sage: S=to_macaulay2(I)

sage: S
{’AffineSemigroupRing’: ZZ[c, a*c, a*b*c, b*c]

monomial subalgebra of PolyRing,
’MonomialIdeal’: 2 2 2 2 2 2 2
{a c , a b*c , a b c }

List,
’StandardCover’: {{1, {c, b*c}}, {a*c, {c, b*c}}, {a*b*c, {c, b*c}}}

List}

Moreover, Macaulay2 objects AffineSemigroupRing, MonomialSubalgebra, and list of a standard
cover can be accessed via macaulay.eval(string) method with strings R, I, and SC. For instance,
the example below shows how to access such Macaulay2 objects:

sage: macaulay2.eval(’R’)
ZZ[c, a*c, a*b*c, b*c]

monomial subalgebra of PolyRing

sage: macaulay2.eval(’I’)
2 2 2 2 2 2 2

{a c , a b*c , a b c }

List

sage: macaulay2.eval(’SC’)
{{1, {c, b*c}}, {a*c, {c, b*c}}, {a*b*c, {c, b*c}}}

List

In Macaulay2, a type MonomialSubalgebra in the Normaliz package may correspond to an affine
semigroup ring. Since Normaliz has no attributes for a monomial ideal of the type MonomialSubalgebra,
the ideal is stored as a list of its generators. The standard cover of I is also sent to Macaulay2 as a nested
list, similar to the output of the method standardPairs in Macaulay2.

In the other direction, from_macaulay(Macaulay2 S) translates monomialSubalgebra object S
of Macaulay2 into an AffineMonoid object in StdPairs. For example,

sage: R = macaulay2.eval(’ZZ[x,y,z]’)

sage: macaulay2.needsPackage(’"Normaliz"’)
Normaliz

sage: macaulay2.eval(’S=createMonomialSubalgebra {x^2*y, x*z, z^3}’)
2 3

ZZ[x y, x*z, z]

monomial subalgebra of ZZ[x..z]

sage: Q=from_macaulay2(’S’)

sage: Q
An affine semigroup whose generating set is
[[2 1 0]
[1 0 0]
[0 1 3]]

ACKNOWLEDGEMENTS. We would like to express our deepest appreciation to Laura Matusevich for
conversations and helpful comments on draft versions of this paper. Also, we are grateful to Matthias
Köppe for advice on using zsolve in 4ti2. Lastly, we are indebted to an anonymous reviewer for
insightful comments on the documentation and distribution of StdPairs.

142 Yu :::: Standard pairs of monomial ideals over nonnormal affine semigroups in SageMath

SUPPLEMENT. The online supplement contains version 1.0 of StdPairs.

REFERENCES.
[4ti2] 4ti2 team, “4ti2—A software package for algebraic, geometric and combinatorial problems on linear spaces”, available
at https://4ti2.github.io.

[Bruns and Herzog 1993] W. Bruns and J. Herzog, Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics 39,
Cambridge University Press, 1993. MR

[Bruns and Ichim 2010] W. Bruns and B. Ichim, “Normaliz: algorithms for affine monoids and rational cones”, J. Algebra
324:5 (2010), 1098–1113. MR Zbl

[Hoşten and Smith 2002] S. Hoşten and G. G. Smith, “Monomial ideals”, pp. 73–100 in Computations in algebraic geometry
with Macaulay 2, edited by D. Eisenbud et al., Algorithms Comput. Math. 8, Springer, 2002. MR Zbl

[Köppe and Labbé 2019] M. Köppe and J.-P. Labbé, “The Normaliz backend for polyhedral computations”, Sage module, 2019,
available at https://doc.sagemath.org/html/en/reference/discrete_geometry/sage/geometry/polyhedron/backend_normaliz.html.

[Matusevich and Yu 2020] L. F. Matusevich and B. Yu, “Standard pairs for monomial ideals in semigroup rings”, 2020. arXiv

[Miller and Sturmfels 2005] E. Miller and B. Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics
227, Springer, 2005. MR Zbl

[Sturmfels et al. 1995] B. Sturmfels, N. V. Trung, and W. Vogel, “Bounds on degrees of projective schemes”, Math. Ann. 302:3
(1995), 417–432. MR Zbl

RECEIVED: 22 Oct 2020 REVISED: 12 Jul 2021 ACCEPTED: 10 Aug 2021

BYEONGSU YU:

byeongsu.yu@tamu.edu
Department of Mathematics, Texas A&M University, College Station, TX, United States

msp

http://msp.org/jsag/2021/11-1/jsag-v11-n1-x14-StdPairs.zip
https://4ti2.github.io
http://msp.org/idx/mr/1251956
http://dx.doi.org/10.1016/j.jalgebra.2010.01.031
http://msp.org/idx/mr/2659215
http://msp.org/idx/zbl/1203.13033
https://doi.org/10.1007/978-3-662-04851-1_5
http://msp.org/idx/mr/1949549
http://msp.org/idx/zbl/0996.13009
https://doc.sagemath.org/html/en/reference/discrete_geometry/sage/geometry/polyhedron/backend_normaliz.html
http://msp.org/idx/arx/2005.10968
http://msp.org/idx/mr/2110098
http://msp.org/idx/zbl/1090.13001
http://dx.doi.org/10.1007/BF01444501
http://msp.org/idx/mr/1339920
http://msp.org/idx/zbl/0828.14040
mailto:byeongsu.yu@tamu.edu
http://msp.org

JSAG 11 (2021), 143–153 The Journal of Software for
https://doi.org/10.2140/jsag.2021.11.143 Algebra and Geometry

Computations with rational maps between multi-projective varieties

GIOVANNI STAGLIANÒ

ABSTRACT: We briefly describe the algorithms behind some of the functions provided by the Macaulay2
package MultiprojectiveVarieties, a package for multi-projective varieties and rational maps between them.

INTRODUCTION. This paper is a natural sequel of [Staglianò 2018], where we presented some of the
algorithms implemented in the Macaulay2 package [Cremona], related to computations with rational and
birational maps between closed subvarieties of projective spaces.

Here we describe methods for working with rational and birational maps between multiprojective
varieties, that is, closed subvarieties of products of projective spaces. For instance, we explain how to
compute the degrees of such maps, their graphs, and the inverses when they exist. All these methods are
implemented in the Macaulay2 package MultiprojectiveVarieties.

From a theoretical point of view, we know that every multiprojective variety is isomorphic, via the
Segre embedding, to a projective variety embedded into a single projective space. Therefore, every ratio-
nal map between multiprojective varieties can be regarded as a rational map between ordinary subvarieties
of projective spaces. This, however, introduces a lot of new variables, making computation more difficult.

Moreover, basic constructions on rational maps naturally lead one to consider rational maps between
multiprojective varieties. For instance, the graph of a rational map is a closed subvariety of the product
of the source and of the target of the map. Using the package Cremona, it is generally easy to verify
that the first projection from the graph is birational, but to calculate, for instance, its inverse we need the
tools provided by the package presented here.

In Section 1, we give a concise overview of the theory of rational maps between multiprojective
varieties, emphasizing the computational aspects and making clear how they can be represented in a
computer. For more details on the theory see, e.g., [Harris 1992; Hartshorne 1977]. In Section 2, with
the help of an example, we show how one can work with such maps using Macaulay2.

1. AN OVERVIEW OF RATIONAL MAPS BETWEEN MULTIPROJECTIVE VARIETIES.

1A. Notation and terminology. Throughout this paper, we keep the following notation. Let K denote
an arbitrary field. Consider the polynomial ring

R = K [x (1)0 , . . . , x (1)n1
; . . . ; x (r)0 , . . . , x (r)nr

]

in r groups of variables, equipped with the Zr -grading, where the degree of each variable is a standard

MSC2020: 14E05, 14Q15.
Keywords: multiprojective variety, rational map, birational map, multidegree.
MultiprojectiveVarieties version 2.3

143

https://doi.org/10.2140/jsag.2021.11-1
http://msp.org/jsag
https://doi.org/10.2140/jsag.2021.11.143
http://msp.org/jsag
https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/MultiprojectiveVarieties/html/index.html
https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/MultiprojectiveVarieties/html/index.html

144 Staglianò :::: Computations with rational maps between multi-projective varieties

basis vector. More precisely, we set deg(x (j)
i)= (0, . . . , 0, 1, 0, . . . , 0)∈Zr , where 1 occurs at position j ;

we call this the standard Zr -grading on R. The polynomial ring R is the homogeneous coordinate ring
of the product of r projective spaces

Pn1,...,nr = Pn1 × · · ·×Pnr .

The closed subsets (of the Zariski topology) of Pn1,...,nr are of the form

V (a)= {p ∈ Pn1,...,nr : F(p)= 0 for all homogeneous F ∈ a},

where a is a homogeneous ideal in R. For any homogeneous ideal a⊆ R, the multisaturation of a is the
homogeneous ideal

sat(a)=
(
· · ·
((
a :
(
x (1)0 , . . . , x (1)n1

)∞)
:
(
x (2)0 , . . . , x (2)n2

)∞)
: · · ·

)
:
(
x (r)0 , . . . , x (r)nr

)∞
.

One says that a is multisaturated if a = sat(a). Two homogeneous ideals a, a′ ⊆ R define the same
subscheme of Pn1,...,nr if and only if sat(a) = sat(a′), and they define the same subset if and only if
√

sat(a)=
√

sat(a′).
We fix a homogeneous absolutely prime ideal I ⊂ R, and we may also assume that I is multisaturated.

The graded domain R/I is the homogeneous coordinate ring of an absolutely irreducible multiprojective
variety

X = V (I)⊆ Pn1,...,nr = Pn1 × · · ·×Pnr .

There is a similar correspondence between homogeneous ideals in R/I and closed subsets of X . The two
most important invariants of X are: the dimension (as a topological space), which is the (Krull) dimen-
sion of the homogeneous coordinate ring R/I minus r , and the multidegree, an integral homogeneous
polynomial of degree codim X = n1+· · ·+ nr − dim X in r variables (see [Harris 1992, Lecture 19] and
[Miller and Sturmfels 2005, p. 165]).

Similarly, let us take another polynomial ring in s groups of variables,

S = K [y(1)0 , . . . , y(1)m1
; . . . ; y(s)0 , . . . , y(s)ms

],

equipped with the standard Zs-grading. Let J ⊂ S be a multisaturated homogeneous absolutely prime
ideal, and let

Y = V (J)⊆ Pm1,...,ms = Pm1 × · · ·×Pms

be the absolutely irreducible multiprojective variety defined by J .

1B. Rational maps to an embedded projective variety. In this subsection we consider the particular case
when s = 1, and we set Pm

= Pm1,...,ms . Then Y ⊆ Pm is an embedded projective variety.

Staglianò :::: Computations with rational maps between multi-projective varieties 145

Definition of rational map. We call multiform (or simply form) a homogeneous element of R/I . To a
vector F = (F0, . . . , Fm) of m + 1 forms in R/I of the same multidegree, which are not all zero, we
associate a continuous map

φF : X \ V (F)−→ Pm, defined by p ∈ X \ V (F)
φF
7−→ (F0(p), . . . , Fm(p)) ∈ Pm .

If G = (G0, . . . ,Gm) is another such vector of forms in R/I of the same multidegree, then we say that
F ∼ G if φF(p) = φG(p) for each p ∈ X \ (V (F)∪ V (G)). We have F ∼ G if and only if φF = φG

on some nonempty open subset U of X \ (V (F) ∪ V (G)); in particular ∼ is an equivalence relation.
A rational map 8 : X 99K Y is defined as an equivalence class of nonzero vectors of m + 1 forms
F = (F0, . . . , Fm) in R/I of the same multidegree, with respect to the relation ∼, such that for some
(and hence every) representative F we have that the image of φF is contained in Y . If p ∈ X \ V (F)
for some representative F, we set 8(p)= φF(p) and we say that 8 is defined at p. The domain of 8,
denoted by Dom(8), is the set of points where 8 is defined, that is, it is the largest open subset of X
such that the map φF is defined for some representative F. The complementary set in X of the domain
of 8 is called base locus. A rational map 8 : X 99K Y is called a morphism if it everywhere defined, that
is, if its base locus is empty.

Establishing the equality of rational maps. Notice that if a vector F = (F0, . . . , Fm) of forms in R/I
represents a rational map 8 : X 99K Y , then also the vector H · F = (H F0, . . . , H Fm) represents 8, for
each nonzero form H in R/I . More generally, two vectors F = (F0, . . . , Fm) and G = (G0, . . . ,Gm),
as the ones considered above, represent the same rational map 8 : X 99K Y if and only if

rk
(

F0 · · · Fm

G0 · · · Gm

)
< 2,

that is, if and only if Fi G j − F j Gi vanishes identically on X , for every i, j = 0, . . . ,m.

Determining the domain of a rational map. Let 8 : X 99K Y be a rational map and let F = (F0, . . . , Fm)

be one of its representatives. A syzygy of F is a vector H = (H0, . . . , Hm) of forms in R/I such that∑m
i=0 Hi Fi = 0. Let MF be a matrix whose columns form a set of generators for the module of syzygies

of F. The following result is proved in [Simis 2004, Proposition 1.1], although stated there only for
r = 1.

Proposition 1.1. The representatives of the rational map 8 correspond bijectively to the homogeneous
vectors in the rank one graded (R/I)-module

ker(M t
F)⊂ (R/I)m+1.

Let F1, . . . , Fp be a set of minimal homogeneous generators of ker(M t
F). The base locus of 8 is the

closed subset of X where all the entries of Fi , for i = 1, . . . , p, vanish. The sequence of multidegrees
(deg F1, . . . , deg Fp), defined up to ordering, is called the degree sequence of 8.

146 Staglianò :::: Computations with rational maps between multi-projective varieties

Example 1.2. In the case when R/I is a unique factorization domain (e.g., X = Pn1 × · · ·×Pnr), then a
rational map 8 : X 99K Y is uniquely represented up to proportionality, that is, the degree sequence of 8
consists of a unique element.

Direct and inverse images via rational maps. Let 8 : X 99K Y be a rational map, and let M be a set of
generators for the (R/I)-module of representatives of 8. For F = (F0, . . . , Fm) ∈M, we consider the
graded K -algebra homomorphism ϕF : S/J → R/I defined by ϕF(yi)= Fi ∈ R/I .

For each homogeneous ideal a⊆R/I (resp. b⊆ S/J), we have a closed subset V(a)⊆ X (resp. V(b)⊆Y).
The direct image of V (a) via 8, denoted by 8(V (a)), and the inverse image of V (b) via 8, denoted by
8−1(V (b)), as sets, are given by the closure

8(V (a))= {8(p) : p ∈ Dom(8)∩ V (a)}, 8−1(V (b))= {p ∈ Dom(8) :8(p) ∈ V (b)}.

The following result follows from elementary commutative algebra, and it tells us how to calculate direct
and inverse images.

Proposition 1.3. The following formulas hold:

8(V (a))=
⋃

F∈M

V (ϕ−1
F (a))= V

(⋂
F∈M

ϕ−1
F (a)

)
;

8−1(V (b))=
⋃

F∈M

V (ϕF(b) : (F)∞)= V
(⋂

F∈M

ϕF(b) : (F)∞
)
.

As a consequence, we obtain that if F is any of the representatives of 8, then

8(X)= V (kerϕF).

The direct image 8(X) is called the (closure of the) image of 8. We say that 8 is dominant if 8(X)= Y .

1C. Rational maps to a multiprojective variety. We now consider the general case when s ≥ 1, and
hence Y ⊆ Pm1,...,ms =Pm1×· · ·×Pms is a multiprojective variety. Let us denote by πi : Pm1,...,ms→Pmi

the i-th projection, and let Yi = πi (Y).

Definition of multirational map. We define a multirational map (or simply rational map)

8 : X 99K Y

as an s-tuple of rational maps8i : X 99KPmi such that the image of8i is contained in Yi , for i = 1, . . . , s.
The domain of a multirational map 8 is the intersection

Dom(8)=
s⋂

i=1

Dom(8i).

In other words, 8 is defined at a point p ∈ X if and only if 8i is defined at p for all i = 1, . . . , s, and
in that case we set 8(p)= (81(p), . . . , 8s(p)) ∈ Pm1,...,ms . Analogously with the case s = 1, we call
the base locus the complementary set in X of the domain of 8, and we say that 8 is a morphism if

Staglianò :::: Computations with rational maps between multi-projective varieties 147

X = Dom(8). We say that 8 is dominant if for some (and hence every) open subset U of the domain
of 8, the set {8(p) : p ∈U } is dense in Y.

Composition of multirational maps. If 9 = (91, . . . , 9t) : Y 99K Z is another multirational map, then
8 and 9 can be composed if 8(Dom(8))∩Dom(9) 6= ∅; in particular, this happens when either 8
is dominant or 9 is a morphism. If F(1), . . . , F(s) are, respectively, representatives of 81, . . . , 8s , and
if G(j) is a representative of 9 j , then the vector G(j)(F(1), . . . , F(s)) is a representative of (9 ◦8) j =

9 j ◦8.
So we can consider the category of (multi)-projective varieties and dominant (multi)-rational maps.

An “isomorphism” in this category is called a birational map, that is, 8 : X 99K Y is a birational map if it
admits an inverse, namely a multirational map 8−1

: Y 99K X such that 8−1
◦8= idX and 8◦8−1

= idY

as (multi)-rational maps. A birational morphism 8 : X 99K Y is called an isomorphism if 8−1 is a
morphism. Also (multi)-projective varieties and morphisms form a category.

Example: the Segre embedding. Let N = (n1 + 1) · · · (nr + 1)− 1, and let us consider PN with the
homogeneous coordinate ring K [z(ι1,...,ιr) : ι j = 0, . . . , n j , j = 1, . . . , r], where the variables are the
entries of the generic r -dimensional matrix of shape (n1+ 1)× · · ·× (nr + 1). The Segre embedding of
Pn1 × · · ·×Pnr into PN is the rational map

Sn1,...,nr : P
n1 × · · ·×Pnr 99K PN ,

represented by the ring map

K [z(ι1,...,ιr) : ι j = 0, . . . , n j , j = 1, . . . , r] → K [x (1)0 , . . . , x (1)n1
, . . . , x (r)0 , . . . , x (r)nr

],

z(ι1,...,ιr) 7→ x (1)ι1 · · · x
(r)
ιr
.

This ring map (or better the forms defining it) represents uniquely up to proportionality the rational map
Sn1,...,nr , and it is also clear that it is an injective morphism. The image of Sn1,...,nr is the projective variety
of all r -dimensional matrices of rank 1. If we consider Sn1,...,nr as a rational map onto its image, then we
have that Sn1,...,nr is an isomorphism. Indeed, for j = 1, . . . , r , the module of representatives of the j-th
component T j of the inverse T=S−1

n1,...,nr
is generated by the (n1+1) · · · (n j−1+1)(n j+1+1) · · · (nr+1)

vectors (z(ι1,...,ιr) : ι j = 0, . . . , n j), as ι1, . . . , ι j−1, ι j+1, . . . , ιr vary. Note, in particular, that T j is not
uniquely represented up to proportionality, provided that n1, . . . , n j−1, n j+1, . . . , nr are not all zero.

Multirational maps as ordinary rational maps. Let 8= (81, . . . , 8s) : X 99K Y be a multirational map.
Then, by composing8 with the restriction to Y of the Segre embedding Sm1,...,ms :P

m1×· · ·×Pms→PM ,
where M = (m1+ 1) · · · (ms + 1)− 1, we get an ordinary rational map 8̃ : X 99KSm1,...,ms (Y) ⊆ PM .
The rational map 8̃ is the unique rational map that makes the following diagram commutative:

X 8̃
//

81

&&
++

8s

--

Sm1,...,ms (P
m1 × · · ·×Pms)

rr �� ,,
Pm1 · · · Pms

148 Staglianò :::: Computations with rational maps between multi-projective varieties

Since Sm1,...,ms is an isomorphism onto its image, we have that 8 is a morphism (resp. birational; resp.
an isomorphism) if and only if 8̃ is a morphism (resp. birational; resp. an isomorphism). Thus, from
a theoretical point of view, it would be enough to consider only “ordinary” rational maps. In practice,
however, this complicates things considerably since the ambient space of the target of Sm1,...,ms is much
larger with respect to the source, and moreover the homogeneous coordinate ring of the image of Sm1,...,ms

is no longer a unique factorization domain (ruling out trivial cases).

Graph of a (multi)-rational map. Let F(1), . . . , F(s) be, respectively, representatives of the components
81, . . . , 8s of a multirational map 8 : X 99K Y . Consider the Zr

×Zs-graded coordinate ring of

Pn1 × · · ·×Pnr ×Pm1 × · · ·×Pms , (1-1)

given by

T = K [x1; . . . ; xr ; y1; . . . ; ys],

where x j = (x
(j)
0 , . . . , x (j)

n j) and yi = (y
(i)
0 , . . . , y(i)mi), for j = 1, . . . , r and i = 1, . . . , s. Moreover, let

t1, . . . , ts be new variables, and consider the extended polynomial ring

T = K [t1, . . . , ts; x1; . . . ; xr ; y1; . . . ; ys].

We define an ideal in T as the following sum of ideals (by abuse of notation we also denote by F(i)

chosen lifts of F(i) to R):

I(F(1),...,F(s)) := I +
s∑

i=1

(yi − ti F(i)). (1-2)

The graph 0(8) of the multirational map 8 is the subvariety of (1-1) defined by the contraction ideal

I(F(1),...,F(s)) ∩ T, (1-3)

which no longer depends on the choice of the representatives F(i). Equivalently, we can consider the
homogeneous ideal in T given by

J(F(1),...,F(s)) := I +
(

2× 2 minors of
(

y(i)0 ··· y(i)mi

F (i)0 ··· F (i)mi

)
, i = 1, . . . , s

)
, (1-4)

and then we can calculate the ideal of 0(8) by the saturation:

(· · · (J(F(1),...,F(s)) : (F(1))∞) : · · ·) : (F(s))∞. (1-5)

We point out that the homogeneous coordinate ring of 0(8) is also known as “Rees algebra”; see [Eisen-
bud 2018]. We have two projections (which are morphisms) that fit in a commutative diagram

0(8)

π1

||

π2

""

X 8
// Y

Staglianò :::: Computations with rational maps between multi-projective varieties 149

The first projection π1 :0(8)→ X is also known as the blowing up of X along B, where B= X \Dom(8)
is the base locus of8. It is a birational morphism, and it is an isomorphism if and only if8 is a morphism.
See, e.g., [Hartshorne 1977, Chapter II, Section 7] for more details. The second projection π2 :0(8)→ Y
is birational if and only if 8 is birational, and in that case the graph of 8−1 is the same as that of 8,
by exchanging the two projections. Moreover, π2 and 8 have always the same image in Y ; in particular,
we can calculate the homogeneous ideal of the image of 8 as the contraction of the ideal of 0(8) to
S = K [y1; . . . ; ys].

Computing the inverse map of a birational map. Keep the notation as above, and assume moreover that
8 : X 99K Y is birational. We want to find the components 9 j : Y 99K Pn j , for j = 1, . . . , r , of the
inverse multirational map 9 : Y 99K X of 8.

Fix a minimal set of multiforms generating the homogeneous ideal of the graph 0(8) in the Zr
×Zs-

graded coordinate ring of (1-1). For each j = 1, . . . , r , we select in this set those of multidegree
(0, . . . , 0, 1, 0, . . . , 0; d1, . . . , ds), where 1 occurs at position j , and d1, . . . , ds are not subject to con-
ditions. Let us denote these multiforms by H1(x j , y1, . . . , ys), . . . , Hq(x j , y1, . . . , ys). Thus, for k =
1, . . . , q , we can write

Hk(x j , y1, . . . , ys)= x (j)
0 G(j,k)

0 (y1, . . . , ys)+ · · ·+ x (j)
n j

G(j,k)
n j

(y1, . . . , ys),

for suitable uniquely determined forms G(j,k)
ι j ∈ S = K [y1, . . . , ys]. We regard the q × (n j+1)-matrix

J(j)
=
(
G(j,k)
ι j

)ι j=0,...,n j

k=1,...,q

as a matrix over the homogeneous coordinate ring S/J of Y .

Proposition 1.4. The (S/J)-module of representatives of 9 j is given by ker(J(j)). More explicitly we
have that the rank of J(j) is n j , and 9 j is represented by the vector of signed n j × n j -minors of any full
rank n j × (n j+1)-submatrix of J(j).

A proof of the previous result can be found in [Simis 2004, Theorem 2.4], in the particular case when
r = s = 1 (see also [Doria et al. 2012] and [Busé et al. 2020, Theorem 4.4] for the case when s = 1 and
the source is a product of projective varieties). The proof in the general case is not so different; its main
ingredients are: the description of the equations of the graph 0(8) given by (1-4) and (1-5), and the fact
that 0(8) can be identified with 0(9). We leave the details to the reader.

Direct and inverse images via multirational maps. If Z ⊆ X is an irreducible subvariety such that
Z ∩ Dom(8) 6= ∅, we can consider the restriction of 8 to Z , 8|Z : Z 99K Y , defined as usual by
the composition of the inclusion Z ↪→ X with 8. Note that the graph (and hence the image) of 8|Z , can
be calculated as above, just by replacing in (1-2) the ideal I with the multisaturated homogeneous ideal
of Z , and by choosing the representatives F(i) such that Z * V (F(i)). This gives us a way to calculate
the direct image 8(Z)=8|Z (Z).

If W ⊆ Y is a subvariety, using Proposition 1.3, we can calculate the inverse image 8−1(W)⊆ X as
8−1(W) = 8̃−1(Sm1,...,ms (W)). Alternatively (and more efficiently), let IW ⊆ S be the defining ideal

150 Staglianò :::: Computations with rational maps between multi-projective varieties

of W , and let ϕ(F(1),...,F(s)) : S→ R/I be the map defined by y(i)ιi 7→ F (i)ιi ∈ R/I , for i = 1, . . . , s and
ιi = 0, . . . ,mi . Then the saturation of the extended ideal (ϕ(F(1),...,F(s))(IW))⊆ R/I with respect to all
the ideals (F(i)), for i = 1, . . . , s, gives us the ideal of the closure of 8−1(W) \ V (F(1), . . . , F(s)).

Multidegree of a multirational map. Let 8 : X 99K Y be a rational map. The projective degrees

d0(8), d1(8), . . . , ddim X (8)

of 8 are defined as the components of the multidegree of the graph, embedded as a subvariety of

Sn1,...,nr (P
n1 × · · ·×Pnr)×Sm1,...,ms (P

m1 × · · ·×Pms)⊂ PN
×PM ,

where N =5r
j=1(n j + 1)− 1 and M =5s

i=1(mi + 1)− 1. It follows that the composition 8̃ : X 99K PM

of 8 with the restriction to Y of the Segre embedding Sm1,...,ms has the same projective degrees as 8. If
L denotes the intersection of Y with dim X − i general hypersurfaces of multidegree (1, . . . , 1), then we
have

di (8)= deg(Sn1,...,nr (8
−1(L))),

if dim(8−1(L)) = i and di (8) = 0 otherwise. See also [Harris 1992, Example 19.4, p. 240]. This
gives us a probabilistic algorithm to compute the projective degrees, as already remarked in [Staglianò
2018]. A nonprobabilistic algorithm can be obtained by calculating the multidegree of the graph of 8
as a subvariety of Pn1,...,nr × Pm1,...,ms and then applying the following remark.

Remark 1.5. Let

P(a1, . . . , ar , b1, . . . , bs) ∈ Z[a1, . . . , ar , b1, . . . , bs]

be the multidegree of a k-dimensional subvariety of Pn1,...,nr × Pm1,...,ms . Then the multidegree of the
same variety embedded as a subvariety of Sn1,...,nr (Pn1,...,nr)×Sm1,...,ms (Pm1,...,ms) ⊂ PN

× PM , is
given by

min(k,N)∑
i=max(0,k−M)

di aN−i bM−k+i
∈ Z[a, b],

where di denotes the coefficient of the monomial an1
1 · · · a

nr
r bm1

1 · · · b
ms
s in the polynomial

(a1+ · · ·+ ar)
i (b1+ · · ·+ bs)

k−i P(a1, . . . , ar , b1, . . . , bs).

In particular, when m1 = · · · = ms = 0, we get the degree of the variety embedded in PN from its
multidegree as a subvariety of Pn1,...,nr .

The last projective degree ddim X (8) is the degree of Sn1,...,nr (X)⊆PN . The first projective degree d0(8)

is the product of the degree of Sm1,...,ms (8(X))⊆ PM with the degree of 8. We have that 8 is birational
onto its image if and only if its degree is 1, that is, if and only if d0(8)= deg(Sm1,...,ms (8(X))). Thus
we can determine whether 8 is birational without computing its inverse.

Staglianò :::: Computations with rational maps between multi-projective varieties 151

2. IMPLEMENTATION IN MACAULAY2. The Macaulay2 package MultiprojectiveVarieties provides sup-
port for multiprojective varieties and multirational maps. It implements, among other things, the methods
described in the previous section. As we previously said, a multirational map can be represented by a
list of rational maps having as target a projective space. Partial support for this particular kind of rational
maps is provided by the package Cremona, on which the first one depends.

Here we give just one simple example to illustrate how one can work with these packages. We refer
to the online documentation of Macaulay2 for more examples and technical details.

It is classically well known that a smooth cubic hypersurface X ⊂ P5 containing two disjoint planes
is birational to P2

×P2, and that the inverse map P2
×P2 99K X is not defined along a K3 surface of

degree 14. We now analyze this example using Macaulay2.
In the following lines of code, we first define the two projections f : P5 99K P2 and g : P5 99K P2

from two disjoint planes in P5, then we define the multirational map (f, g) : P5 99K P2
×P2 and re-

strict it to a smooth cubic hypersurface X containing the two planes. So we get a multirational map
8 : X 99K P2

×P2.
M2 --no-preload

Macaulay2, version 1.18

i1 : needsPackage "MultiprojectiveVarieties"; -- version 2.2

i2 : K = QQ, K[t,u,v,x,y,z];

i3 : f = rationalMap {t,u,v};
o3 : RationalMap (linear rational map from PP^5 to PP^2)

i4 : g = rationalMap {x,y,z};
o4 : RationalMap (linear rational map from PP^5 to PP^2)

i5 : Phi = rationalMap {f,g};
o5 : MultirationalMap (rational map from PP^5 to PP^2 x PP^2)

i6 : X = projectiveVariety ideal(t*u*x-u^2*x+u*v*x-v^2*x+t*x^2-u*x^2+t^2*y-t*u*y-t*v*y-t*x*y
-v*x*y-t*y^2+t*u*z+v^2*z-t*x*z-u*y*z-v*y*z-t*z^2+u*z^2);

o6 : ProjectiveVariety, hypersurface in PP^5

i7 : Phi = Phi|X;
o7 : MultirationalMap (rational map from X to PP^2 x PP^2)

Next, we verify that 8 is dominant and birational, compute the inverse map 8−1, and “describe” the
base locus of 8−1.

i8 : image Phi == target Phi
o8 = true

i9 : degree Phi
o9 = 1

i10 : inverse Phi;
o10 : MultirationalMap (birational map from PP^2 x PP^2 to X)

i11 : describe baseLocus inverse Phi;
o11 = ambient:.............. PP^2 x PP^2

dim:.................. 2
codim:................ 2
degree:............... 14
multidegree:.......... 2 T_0^2 + 5 T_0 T_1 + 2 T_1^2
generators:........... (2,1)^1 (1,2)^1
purity:............... true
dim sing. l.:......... -1

https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/MultiprojectiveVarieties/html/index.html

152 Staglianò :::: Computations with rational maps between multi-projective varieties

Now we take the graph of 8 with the two projections p1 : 0(8)→ X and p2 : 0(8)→ P2
×P2. We

calculate the projective degrees of p1 and p2, the inverse of p2, and verify that p1 ◦ p−1
2 =8

−1 and that
p2 is a morphism but not an isomorphism.

i12 : (p1,p2) = graph Phi;

i13 : (multidegree p1, multidegree p2)
o13 = ({141, 63, 25, 9, 3}, {141, 78, 40, 18, 6})

i14 : inverse p2;
o14 : MultirationalMap (birational map from PP^2 x PP^2 to 4-dimensional

subvariety of PP^5 x PP^2 x PP^2)

i15 : (inverse p2) * p1 == inverse Phi, isMorphism p2, isIsomorphism p2
o15 = (true, true, false)

We now calculate the exceptional locus of the first projection p1; this is the inverse image of the base
locus of p−1

1 .
i16 : baseLocus Phi == baseLocus inverse p1
o16 = true

i17 : E = p1^* (baseLocus Phi);
o17 : ProjectiveVariety, threefold in PP^5 x PP^2 x PP^2

i18 : dim E, degree E
o18 = (3, 48)

Finally, we take the first projection h : 0(p2)→ 0(8) from the graph of p2. This multirational map,
regarded as a rational map between embedded projective varieties, has as source a fourfold of degree 771
in P485 and as target a fourfold of degree 141 in P53.

i19 : h = first graph p2;
o19 : MultirationalMap (birational map from 4-dimensional subvariety of

PP^5 x PP^2 x PP^2 x PP^2 x PP^2 to 4-dimensional
subvariety of PP^5 x PP^2 x PP^2)

i20 : degree source h, degree target h
o20 = (771, 141)

By construction, we know (and Macaulay2 knows) that the map h is birational. We can also verify
this experimentally, by reducing to prime characteristic and calculating the fiber of h at a random point p
on its source.

i21 : h = h ** (ZZ/1000003),;

i22 : p = point source h;
o22 = ProjectiveVariety, a point in PP^5 x PP^2 x PP^2 x PP^2 x PP^2

i23 : p == h^* h p
o23 = true

On a standard laptop, the time to execute the 23 lines of code above is less than 5 seconds.

SUPPLEMENT. The online supplement contains version 2.3 of MultiprojectiveVarieties.

REFERENCES.
[Busé et al. 2020] L. Busé, Y. Cid-Ruiz, and C. D’Andrea, “Degree and birationality of multi-graded rational maps”, Proc.
Lond. Math. Soc. (3) 121:4 (2020), 743–787. MR Zbl

[Cremona] G. Staglianò, “Cremona: a Macaulay2 package for working with rational maps between projective varieties”, avail-
able at https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/Cremona/html/index.html.

http://msp.org/jsag/2021/11-1/jsag-v11-n1-x12-MultiprojectiveVarieties.m2
http://dx.doi.org/10.1112/plms.12336
http://msp.org/idx/mr/4105786
http://msp.org/idx/zbl/1454.13017
https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/Cremona/html/index.html

Staglianò :::: Computations with rational maps between multi-projective varieties 153

[Doria et al. 2012] A. V. Doria, S. H. Hassanzadeh, and A. Simis, “A characteristic-free criterion of birationality”, Adv. Math.
230:1 (2012), 390–413. MR Zbl

[Eisenbud 2018] D. Eisenbud, “The ReesAlgebra package in Macaulay2”, J. Softw. Algebra Geom. 8 (2018), 49–60. MR Zbl

[Harris 1992] J. Harris, Algebraic geometry: a first course, Graduate Texts in Mathematics 133, Springer, 1992. MR Zbl

[Hartshorne 1977] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer, 1977. MR Zbl

[Macaulay2] D. R. Grayson and M. E. Stillman, “Macaulay2: a software system for research in algebraic geometry”, available
at http://www.math.uiuc.edu/Macaulay2.

[Miller and Sturmfels 2005] E. Miller and B. Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics
227, Springer, 2005. MR Zbl

[Simis 2004] A. Simis, “Cremona transformations and some related algebras”, J. Algebra 280:1 (2004), 162–179. MR Zbl

[Staglianò 2018] G. Staglianò, “A Macaulay2 package for computations with rational maps”, J. Softw. Algebra Geom. 8 (2018),
61–70. MR Zbl

RECEIVED: 12 Jan 2021 REVISED: 27 Jul 2021 ACCEPTED: 31 Aug 2021

GIOVANNI STAGLIANÒ:

giovannistagliano@gmail.com
Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Catania, Italy

msp

http://dx.doi.org/10.1016/j.aim.2011.12.005
http://msp.org/idx/mr/2900548
http://msp.org/idx/zbl/1251.14007
http://dx.doi.org/10.2140/jsag.2018.8.49
http://msp.org/idx/mr/3857649
http://msp.org/idx/zbl/06998252
http://dx.doi.org/10.1007/978-1-4757-2189-8
http://msp.org/idx/mr/1182558
http://msp.org/idx/zbl/0779.14001
http://msp.org/idx/mr/0463157
http://msp.org/idx/zbl/0367.14001
http://www.math.uiuc.edu/Macaulay2
http://msp.org/idx/mr/2110098
http://msp.org/idx/zbl/1090.13001
http://dx.doi.org/10.1016/j.jalgebra.2004.03.025
http://msp.org/idx/mr/2081926
http://msp.org/idx/zbl/1067.14014
http://dx.doi.org/10.2140/jsag.2018.8.61
http://msp.org/idx/mr/3857650
http://msp.org/idx/zbl/1408.14050
mailto:giovannistagliano@gmail.com
http://msp.org

1

JOURNAL OF SOFTWARE FOR ALGEBRA AND GEOMETRY vol 11, no 1, 2021

1Phylogenetic trees
Hector Baños, Nathaniel Bushek, Ruth Davidson, Elizabeth Gross, Pamela E.
Harris, Robert Krone, Colby Long, Allen Stewart and Robert Walker

9Software for doing computations in graded Lie algebras
Clas Löfwall and Samuel Lundqvist

15The relative canonical resolution: Macaulay2-package, experiments and conjectures
Christian Bopp and Michael Hoff

25The FrobeniusThresholds package for Macaulay2
Daniel J. Hernández, Karl Schwede, Pedro Teixeira and Emily E. Witt

41Computing theta functions with Julia
Daniele Agostini and Lynn Chua

53Decomposable sparse polynomial systems
Taylor Brysiewicz, Jose Israel Rodriguez, Frank Sottile and Thomas Yahl

61A package for computations with sparse resultants
Giovanni Staglianò

71ExteriorModules: a package for computing monomial modules over an exterior algebra
Luca Amata and Marilena Crupi

83The Schur–Veronese package in Macaulay2
Juliette Bruce, Daniel Erman, Steve Goldstein and Jay Yang

89admcycles - a Sage package for calculations in the tautological ring of the moduli space
of stable curves

Vincent Delecroix, Johannes Schmitt and Jason van Zelm
113Coding theory package for Macaulay2

Taylor Ball, Eduardo Camps, Henry Chimal-Dzul, Delio Jaramillo-Velez, Hiram
López, Nathan Nichols, Matthew Perkins, Ivan Soprunov, German Vera-Martínez
and Gwyn Whieldon

123Threaded Gröbner bases: a Macaulay2 package
Sonja Petrović and Shahrzad Zelenberg

129Standard pairs of monomial ideals over nonnormal affine semigroups in SageMath
Byeongsu Yu

143Computations with rational maps between multi-projective varieties
Giovanni Staglianò

	 vol. 11, no. 1, 2021
	Masthead and Copyright
	Hector Baños and Nathaniel Bushek and Ruth Davidson and Elizabeth Gross and Pamela E. Harris and Robert Krone and Colby Long and Allen Stewart and Robert Walker
	Clas Löfwall and Samuel Lundqvist
	1. Introduction
	2. Representing Lie algebras in Macaulay2
	3. Computing a vector space basis of a graded Lie algebra in a given degree
	4. Using the package

	Christian Bopp and Michael Hoff
	1. Relative canonical resolutions
	2. Macaulay2 package
	3. Experiments and conjectures

	Daniel J. Hernández and Karl Schwede and Pedro Teixeira and Emily E. Witt
	1. Introduction
	1.1. Some background and notation

	2. The frobeniusNu function
	2.1. Options for frobeniusNu

	3. isFPT, compareFPT and isFJumpingExponent
	4. The fpt function
	4.1. The option UseSpecialAlgorithms
	4.2. When no special algorithm applies
	4.3. The function isSimpleNormalCrossing

	5. Possible future directions

	Daniele Agostini and Lynn Chua
	1. Introduction
	2. Theta functions
	3. Numerically approximating theta functions
	3A. Theta functions with characteristics

	4. Computing theta functions in Julia
	4A. Interface
	4B. Algorithms
	Choice of ellipsoid
	Lattice reductions

	4C. Comparisons with other packages

	5. Applications to the Schottky problem in genus 5
	5A. Farkas, Grushevsky and Salvati Manni's solution
	5B. Accola's equations in genus 5
	5C. The Schottky problem for Jacobians with a vanishing theta null

	Taylor Brysiewicz and Jose Israel Rodriguez and Frank Sottile and Thomas Yahl
	1. Introduction
	2. Decomposable sparse polynomial systems
	3. Main method: solveDecomposableSystem
	3.1. Using the main method
	3.2. Options for the main method

	Giovanni Staglianò
	1. An overview of sparse elimination
	1A. Sparse mixed resultant
	1B. Sparse unmixed resultant
	1C. Sparse discriminant
	1D. Hyperdeterminant
	1D1. Schläfli's method
	1D2. Determinants of boundary shape

	2. Sparse resultants in Macaulay2

	Luca Amata and Marilena Crupi
	1. Introduction
	2. Mathematical background
	3. Examples
	4. Conclusions and perspectives

	Juliette Bruce and Daniel Erman and Steve Goldstein and Jay Yang
	1. Veronese syzygies
	2. An overview of the data
	3. Total Betti tables
	4. Schur decomposition
	5. Multigraded Betti numbers

	Vincent Delecroix and Johannes Schmitt and Jason van Zelm
	1. Introduction
	1.1. Conventions

	2. Getting started
	2.1. admcycles in the cloud
	2.2. Obtaining SageMath
	2.3. Installation of the admcycles package
	2.4. First step with admcycles

	3. Tautological ring and classes
	3.1. Creating tautological rings
	3.2. Creating tautological classes
	3.3. Basic operations
	3.4. A basis of the tautological ring and tautological relations
	3.5. Pulling back tautological classes to the boundary
	3.6. Pushing forward classes from the boundary

	4. Special cycle classes
	4.1. Double ramification cycles
	4.2. Strata of k-differentials
	4.3. Generalized lambda classes
	4.4. Admissible cover cycles
	Hyperelliptic and bielliptic cycles
	Creating and identifying general admissible cover cycles
	Example: specifying and identifying [B 2] by hand

	Taylor Ball and Eduardo Camps and Henry Chimal-Dzul and Delio Jaramillo-Velez and Hiram López and Nathan Nichols and Matthew Perkins and Ivan Soprunov and German Vera-Martínez and Gwyn Whieldon
	1. Introduction
	2. Constructing linear codes
	3. Basic parameters of linear codes
	4. Evaluation codes
	5. Families of linear codes
	6. Applications of linear codes

	Sonja Petrovic and Shahrzad Zelenberg
	1. Introduction
	2. Effect of ordering of polynomials on lineages: a simple example
	3. Nuts and bolts
	4. Improvements and speed-ups

	Byeongsu Yu
	1. Introduction
	1.1. Notation

	2. Affine semigroup, ideal, and proper pair as classes of SageMath
	2.1. Mathematical background
	2.2. Classes in StdPairs
	Class AffineMonoid
	Class MonomialIdeal
	Class ProperPair

	2.3. Global functions

	3. Implementation of an algorithm finding standard pairs
	3.1. Case 1: Principal ideal
	3.2. Case 2: General ideal

	4. Compatibility with Normaliz package in SageMath and Macaualay2

	Giovanni Staglianò
	1. An overview of rational maps between multiprojective varieties
	1A. Notation and terminology
	1B. Rational maps to an embedded projective variety
	Definition of rational map
	Establishing the equality of rational maps
	Determining the domain of a rational map
	Direct and inverse images via rational maps

	1C. Rational maps to a multiprojective variety
	Definition of multirational map
	Composition of multirational maps
	Example: the Segre embedding
	Multirational maps as ordinary rational maps
	Graph of a (multi)-rational map
	Computing the inverse map of a birational map
	Direct and inverse images via multirational maps
	Multidegree of a multirational map

	2. Implementation in Macaulay2

	Guidelines for Authors
	Table of Contents

