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Computing maximum likelihood estimates
for Gaussian graphical models with Macaulay2
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ABSTRACT: We introduce the package GraphicalModelsMLE for computing the maximum likelihood
estimates (MLEs) of a Gaussian graphical model in the computer algebra system Macaulay2. This
package allows the computation of MLEs for the class of loopless mixed graphs. Additional functionality
allows the user to explore the underlying algebraic structure of the model, such as its maximum likelihood
degree and the ideal of score equations.

1. INTRODUCTION. The purpose of the package GraphicalModelsMLE is to extend the functionality of
[Macaulay?] related to algebraic statistics, specifically allowing computations of maximum likelihood
estimates of Gaussian graphical models. While GraphicalModels is an existing package that already
provides useful information such as conditional independence ideals and vanishing ideals for such models,
the fundamental statistical inference task of computing maximum likelihood estimates is missing. This
package aims to fill this void and also extend the functionality of GraphicalModels to handle more
general types of graphs, in particular, loopless mixed graphs (LMG). This class of graphs was introduced
in [Sadeghi and Lauritzen 2014] in order to unify the Markov theory of several classical types of graphs
such as undirected graphs, directed acyclic graphs, summary graphs and ancestral graphs [Lauritzen
1996].

The algebraic framework of Macaulay?2 permits us to use both commutative algebra and numerical
algebraic geometry to obtain a guaranteed global optimal solution by computing all critical points of
the log-likelihood function. This is different from the classical statistical approach of the R package
ggm [Marchetti 2006], and more in line with the recent numerical algebraic geometry approach from the
package LinearCovarianceModels.jl in Julia [Sturmfels et al. 2020]. The package GraphicalModelsMLE
is a complement to these two, handling some Gaussian graphical models not covered by them (LinearCo-
varianceModels.jl version 0.2 and ggm version 2.5). The capabilities of our package are limited by the
feasibility of the Grobner basis computations involved.

Given a data sample of n independent and identically distributed random vectors XV, ... xX®
that follow an m-dimensional multivariate Gaussian distribution N (u, ), the maximum likelihood
MSC2020: 62F10, 62H22, 62R01.

Keywords: algebraic statistics, Gaussian graphical models, loopless mixed graphs, MLE.

GraphicalModelsMLE version 1.0 is included in Macaulay? version 1.20 or as an online supplement with this paper.
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Figure 1. An undirected graph (left), a mixed graph with no directed cycles (centre),
and a mixed graph with directed cycles (right).

estimate (MLE) for the covariance matrix X is the matrix that best explains the observed data, in the
sense that it maximizes the likelihood function of the Gaussian model (see Section 3).

2. GRAPHICAL MODELS OF LOOPLESS MIXED GRAPHS. A mixed graph G = (V, E) is a graph with
undirected edges i — j, directed edges i — j and bidirected edges i <> j. A directed cycle is a cycle
formed by directed edges after identifying the vertices that are connected by undirected or bidirected
edges. A loopless mixed graph (LMG) is a mixed graph without loops or directed cycles. We allow
double edges of the types directed-undirected and directed-bidirected. See Figure 1 (left and centre) for
examples and Figure 1 (right) for a nonexample.

Following [Sullivant et al. 2010], we assume the nodes of G are partitioned as V = U U W, such that:

e Ifi—jinGtheni, jeU.
e Ifi < jinGtheni, jeW.
e There is no directed edge i — j in G such thati € W and j € U.

Our definition differs from the one in [Sadeghi and Lauritzen 2014] in that we do not allow multiple
edges of the same type, which is due to the setup of the Graphs package. Also note that the partition of
vertices excludes multiple edges of the undirected-bidirected type. In addition, we prohibit directed cycles,
which ensures there is an ordering on the vertices such that all vertices in U come before vertices in W,
and whenever i — j we have i < j. For simplicity of the algorithm, in our Macaulay?2 implementation
we will require the graph to be provided with such an ordering of the vertices (see more details in the
description of partitionLMG in Section 6).

A Gaussian graphical model imposes constraints on the covariance matrix of a Gaussian distribution.
More precisely, a loopless mixed graph G = (V, E) gives rise to the space of covariance matrices
¥ e RIVIXIVI of the form [Sullivant et al. 2010, Section 2.3]
Ko

— (7 _ mT
E_(IA)[O\IJ

} (I—A)7"1, (2.1)

where
1) A=[Arjle RIVI*IV1 is such that Aij =0 wheneveri — j ¢ E;
(i) K = [k;;] € RIV*IUTis symmetric positive definite such that k;; = 0 whenever i — j ¢ E;

(ii)) ¥ =[] € RIWIXIWI jg symmetric positive definite such that ;; = 0 wheneveri <> j ¢ E.
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Figure 2. Verma graph.

3. MAXIMUM LIKELIHOOD ESTIMATES. Let the data sample consist of # independent identically dis-
tributed random vectors XV, ..., X sampled from an m-dimensional Gaussian distribution N, (i, ).
The parameter space of the corresponding statistical model is ® = R" x &, C R" x P D,,, where ©,
is the space of covariance matrices ¥ and P D,, is the cone of m x m positive-definite matrices. The
maximum likelihood estimates for the covariance matrix are determined by maximizing the log-likelihood
function

Z(E):—glogdetE—gtr(SZ_l) 3.1)

over X € ©; [Sullivant 2018, Proposition 7.1.9], where S is the sample covariance matrix. The function
solverMLE allows us to compute this optimum when ®; is induced by (2.1). It does so by calculating
the critical points of the log-likelihood function and selecting the points corresponding to the maximum
value in the cone of positive definite matrices. The default output is the maximum value of £(X), the list
of maximum likelihood estimates for the covariance matrix and the maximum likelihood degree of the
model.

For undirected graphs, the MLE for the covariance matrix is known to be the unique positive definite
critical point of the likelihood function. In particular, it is a positive definite matrix completion to the
partial sample covariance matrix. See [Uhler 2012, Theorem 2.1] or [Drton et al. 2009, Theorem 2.1.14]
for more details.

Example 3.2. We consider the directed acyclic graph G known as the Verma graph; see Figure 2 and
[Drton et al. 2009, Example 3.3.14]. We take as sample data the columns of a real matrix U generated
with the command random in Macaulay? and compute the MLE for the covariance matrix that best
explains the data within the graphical model given by G.

il: loadPackage "GraphicalModelsMLE";
i2: G=digraph{{1,3},{1,5},{2,3},{2,4},{3,4},{4,5}};

i3: U=matrix {{.0137595, .983763, .963969, .152094, .0453326},
{.527344, .597575, .777622, .97937, .112339},
{.097922, .300712, .333058, .824002, .420228},
{.849322, .594136, .114729,.69734, .98773},
{.764547, .42209, .480193, .246573, .846734}};

i4: solverMLE(G,U)

o4 = (8.77485, | .115729 -6.32685e-18 -.0387187 .00115181 .102733 [, 1)
| 6.10884e-18 .053294 .0392544 -.0356783 .00701454 |
| -.0387187 .0392544 .0807822 -.0278223 -.0289767 |
I .00115181  -.0356783 -.0278223 .105095 -.0196375 I

.102733 .00701454 -.0289767 -.0196375 .148723
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Example 3.3. We compute the MLE for the covariance matrix of the graphical model associated to
the undirected 4-cycle; see Figure 1 (left). We encode the sample data by a matrix U generated as in
Example 3.2 and compute the sample covariance matrix S = %U U'.

i1 : loadPackage "GraphicalModelsMLE";

i2 : G=graph{{1,2},{2,3},{3,4},{4,1}};

i3 : S=matrix {{.105409, -.0745495, -.0186132, .0621907},
{-.0745495, .0783734,-.00844503,-.0872842},
{-.0186132, -.00844503, .128307, .0230245},
{.0621907, -.0872842, .0230245,.109849}};

i4 : solverMLE(G,S,SampleData=>false)

o4 = (6.62005, | .105409 -.0745495 .0124099 .0621907 |, 5)
| -.0745495 .0783734 -.00844503 -.0439427 |
I .0124099 -.00844503 .128307 .0230245 I

.0621907 -.0439427 .0230245 .109849

Note that all entries in the MLE for the covariance matrix coincide with the entries in the sample
covariance matrix except for those corresponding to nonedges of the graph. See [Michatek and Sturmfels
2021, Example 12.16] for more on a positive definite matrix completion problem associated to the 4-cycle.

For more general types of graphs, uniqueness of the positive definite critical points is no longer
guaranteed. In the mixed graph in Example 3.4, the optimization problem has a global maximum, but

there are also local maxima; see Example 4.3.

Example 3.4. We compute the MLE for the covariance matrix of the graphical model associated to the
loopless mixed graph with undirected edge 1 —2, directed edges 1 — 3, 2 — 4 and bidirected edge 3 <> 4;
see Figure 1 (centre). S is a sample covariance matrix computed from sample data encoded in a rational

matrix obtained again with the command random.
i2 : G = mixedGraph(graph{{1,2}},digraph{{1,3},{2,4}},bigraph{{3,4}});

i3 : S=matrix {{34183/50000, 716539/10000000, 204869/250000, 12213/25000},
{716539/10000000, 112191/500000, 309413/1000000, 1803/4000%},
{204869/250000, 309413/1000000, 3849/3125, 15172/15625},
{12213/25000, 1803/4000, 15172/15625, 4487/4000}};

i4 : solverMLE(G,S,SampleData=>false)

o4 = (9.36624, {| .68366 .0716539 1.00282 .234375

[}, 8
| .0716539 .224382 .105105 . 733937 I
|

| 1.00282 .105105 1.76955 -.0700599
| .234375 .733937 -.0700599 2.97432

4. IDEAL OF SCORE EQUATIONS. The critical points of the log-likelihood function £(X) are the solutions
to the system of equations obtained by taking partial derivatives of ¢ with respect to all variables in the

entries of X from our construction in (2.1) and setting them to zero:

0 0
———detX —detx—tr(SEH =0, (4.1)
a(-) a(-)
where % stands for the partial derivatives with respect to the variables A;;, k;;, ;; in the entries of
the covariance matrix ¥ from (2.1). These polynomial equations are called score equations. The com-

mand scoreEquations returns the ideal generated by such polynomials, which lives in the polynomial
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ring Q[A;;, k;;, ¥i;]. From an algebraic perspective, this ideal is already of interest on its own; see
[Sullivant 2018, Chapter 7].

Note that the log-likelihood function depends both on the sample covariance matrix and the graphical
model. Therefore our implementation of scoreEquations requires as input the sample data along with
information about the model. The latter is obtained via the command gaussianRing in the package
GraphicalModels (see [Garcia-Puente et al. 2013] and examples in Section 6), which produces a ring
associated to the graph G that stores all relevant features of the graphical model.

Example 4.2. We compute the ideal of score equations associated to the 4-cycle after creating the graph G
as in Example 3.3. We now consider as input data the sample data encoded in the columns of the integer
matrix U below, obtained via the command random.

i5 : U=matrix{{3,5,9,5},{1,6,1,5},{2,9,6,6},{2,5,0,4}};

i6 : J=scoreEquations(gaussianRing G,U);

06 : Ideal of QQ[k , k , k , k , k , k , k , k]
1,1 2,2 3,3 4,4 1,2 1,4 2,3 3,4

i7 : dim J
o7 =0

The ideal of the score equations J is generated by fourteen nonhomogeneous polynomials within
Qlky1.1, k12, k1.4, k2.2, k2.3, k3.3, k3.4, k4 .4]: 4 linear polynomials and 10 quadratic polynomials such
as 1312002/{%4 — 387081k 2 + 109860k 4 + 1972025k 3 — 898518k3 4 — 291556. Since this ideal is
zero-dimensional, the log-likelihood function £(X) defined in (3.1) has finitely many complex critical
points, as will be discussed in Section 5.

Example 4.3. We want to obtain all local maxima of the log-likelihood function associated to the graphical
model in Example 3.4. We write A as [ and i as p in the code. The score equations generate an ideal in
Qlk1.1, k2.2, k1.2, 11,3, 12,4, P3.3, Pa.4, P3.4] and we display their solutions in the Macaulay?2 session below.
We retrieve the covariance matrix X with rational entries in variables ki 1, k2.2, k1.2, 11,3, [2.4, P3.3, P44,
and p3 4 by requiring the optional output CovarianceMatrix in scoreEquations.

i5 : R = gaussianRing G;

i6 : (J,Sigma)=scoreEquations(R,S,SampleData=>false,CovarianceMatrix=>true);

i7 : dim J, degree J

o7 = (0, 5)

i8 : sols=zeroDimSolve(J) ;netList sols

______________________ —_ —_ —_———

+ PR
08 = |{1.51337, 4.61101, -.483277, 1.46684, 3.27093, .298576, .573665, -.41385} |
+

[{1.51337, 4.61101, -.483277, 1.39884+.440525*ii, 2.45466-.923165%ii, |

| .144129+.120574%1ii, .0696297-.184692*ii,~.19668+.0553853*ii} |
Fom o - +
|

{1.51337, 4.61101, -.483277, 1.39884-.440525*ii, 2.45466+.923165%ii, |
| .144129-.120574*ii, .0696297+.184692*ii, -.19668-.0553853*ii} |

{1.51337, 4.61101, -.483277, .684147, .979681, .430388, .453924, .381688} |

|{1.51337, 4.61101, -.483277, .988484, 1.64649, .279607, .245722, .0952865}|
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Figure 3. LMG with two types of edges between 1 and 2.

How many of the 3 real critical points correspond to positive definite matrices that are local maxima
of the log-likelihood function? We first check that they correspond to positive definite matrices by

substituting the three real solutions in the covariance matrix 3.
i9 : checkPD(apply(sols,i->sub(Sigma,matrix{coordinates(i)})))

09 = |.68366 .0716539 1.00282 .234375 |,| .68366 .0716539 .467724 .070198 |,
| .0716539 .224382 .105105 . 733937 | | .0716539 .224382 .0490218 .219823 |
|1.00282 .105105 1.76955 -.0700599 | | .467724 .0490218 .75038 .429714 |
|.234375 .733937 -.0700599 2.97432 | | .070198 .219823 .429714 .66928 |

| .68366 .0716539 .675787 .117978 |
| .0716539 .224382 .0708287 .369443 |
| .675787 .0708287 .947611 .211905 |
| .117978 .369443 .211905 .854009 |

The MLE for the covariance matrix obtained in Example 3.4 corresponds to the first positive definite
matrix in the list above. The eigenvalues of the Hessian matrix computed below tell us which kind
of critical point we have for each of the 3 real solutions — for a discussion about the properties of
positive-semidefinite matrices; see [Parrilo 2013, Appendix A].

-- compute Jacobian matrix (i.e. score equations)
i10 : scoreEq=-1/det Sigma*jacobianMatrixOfRationalFunction(det Sigma)-
jacobianMatrixOfRationalFunction(trace(S*(inverse Sigma)));

-- compute Hessian matrix
i1l : Hessian=matrix for f in flatten entries scoreEq list
flatten entries jacobianMatrixOfRationalFunction(f);

-- compute eigenvalues of the Hessian matrix evaluated at real points in sols
i12 : apply({sols_0,sols_3,sols_4},i->eigenvalues sub(Hessian,matrix{coordinates(i)}))

012 = {{-.516478 }, {-.516478 }, {-.516478 }}
{-.271913 } {-.271913 } {-.271913 }
{-.0464172 } {-.0464172} {-.0464172}
{-9869730000} {-414.15 } {-59.7135 }
{-128887 } {-28.6352 } {1.52598 }
{-58261.1 } {-6.1936 } {-2.80504 }
{-773.513 } {-1.64689 } {-11.5533 }

The first two points are local maxima and the last point is a saddle point. This shows that the
log-likelihood function of this model is not a concave function, see [Drton 2006].

Example 4.4. Next we compute the ideal of score equations associated to a mixed graph that has two
different types of edges connecting the same two vertices: directed edges 1 - 3,1 —- 2,2 - 4,3 - 4
and the undirected edge 1 — 2; see Figure 3.

i2 : G = mixedGraph(digraph{{1,3},{1,2},{2,4},{3,4}},graph{{1,2}});

i3 : R = gaussianRing G;

i4 : U = random(RR"4,RR"4);

i5 : J=scoreEquations(R,U);
i6 : dim J
o6 =1
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Note that in this case, as opposed to Example 4.2, the log-likelihood function (3.1) has infinitely many
complex critical points. Since our package evaluates the objective function in all critical points, in such a
scenario the MLE cannot be computed.

5. MAXIMUM LIKELIHOOD DEGREE. The maximum likelihood degree (ML degree) of a model is
defined as the number of complex critical points of the log-likelihood function £(X) from (3.1) for generic
sample data; see [Sullivant 2018, Definition 7.1.4]. For a more algebraic flavour of the notion of ML
degree, see [Michatek et al. 2016, Definition 5.4].

Note that the ML degree is only well defined when the ideal of score equations is zero-dimensional. A
typical way where this fails is where the model becomes nonidentifiable. See, for example, [Améndola
et al. 2020], for some sufficient conditions to avoid nonidentifiability and preservation of dimension of
the model in terms of the number of parameters.

It is important to observe that for generic data the solutions to score equations are all distinct; see
[Améndola et al. 2021, Remark 2.1, Lemma 2.2]. Computing the algebraic degree of the zero-dimensional
score equations ideal via the degree function in Macaulay?2 is equivalent to computing the number of
complex solutions - without multiplicity - to the score equations (4.1).

In our implementation of the MLdegree function in Macaulay?2, a random sample matrix is used as
sample data. Therefore, the ML degree of the graphical model we provide is correct with probability 1.

Example 5.1. The ML degree of the 4-cycle can be directly computed as follows:

i2 : G=graph{{1,2},{2,3},{3,4},{4,1}};
i3 : MLdegree(gaussianRing G)
o3 =5

In the case of ideals of score equations with positive dimension, MLdegree will still compute the
degree of the ideal but this no longer matches the number of solutions to the score equations.

Example 5.2. Continuing with Example 4.4, where the ideal of score equations is 1-dimensional,
MLdegree does not provide a meaningful answer.

i2: G=mixedGraph(digraph{{1,3},{1,2},{2,4},{3,4}},graph{{1,2}});

i3: MLdegree(gaussianRing G)

error: the ideal of score equations has dimension 1 > O,
so ML degree is not well defined. The degree of this ideal is 2.

6. UPDATES IN RELATED PACKAGES. GraphicalModelsMLE relies on the new package StatGraphs 0.1
and the updated packages Graphs 0.3.3 and GraphicalModels 2.0 (see [Garcia-Puente et al. 2013] for
version 1.0).

We created a dedicated package StatGraphs for graph theoretic functions relevant to algebraic statistics.
It contains the functions isCyclic, isSimple, isLoopless and partitionLMG to deal with loopless
mixed graphs.
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The function partitionLMG computes the partition V = U U W of vertices of a loopless mixed graph
described in Section 2. Vertices in the input graph need to be ordered such that all vertices in U come
before vertices in W, and if there is a directed edge i — j, theni < j.

Example 6.1. The vertices of the loopless mixed graph in Example 3.4 are partitioned into U = {1, 2}
and W = {3, 4}.
il : loadPackage "StatGraphs";
i2 : G = mixedGraph(digraph {{1,3},{2,4}},bigraph{{3,4}},graph{{1,2}});
i3 : partitionLMG G
= ({1, 2}, {3, 4B

o3 : Sequence

The central object in the implementation of our MLE algorithm is gaussianRing from the package
GraphicalModels.

Example 6.2. We compute the ring associated to the graph in Example 6.1 and display the variables of
the rmg as entries of matrices. We write A as [ and ¥ as p in the code.

i4 : loadPackage "GraphicalModels";

i5 : R=gaussianRing G;

i6 : undirectedEdgesMatrix R

o6 = | k_(1,1) k_(1,2) |
I k_(1,2) k_(2,2) |

i7 : directedEdgesMatrix R

o7=1001.(1,3) 0 |
| 000 1.(2,4) |
| 000 0 |
|l 000 0 |
i8 : bidirectedEdgesMatrix R
o8 = | p_(3,3) p_(3,4) |

| p_(3,4) p_(4,4) |
i9 : covarianceMatrix R

09 = | s_(1,1) s_(1,2) s_(1,3) s_(1,4) |
| s_(1,2) s_(2,2) s_(2,3) s_(2,4) |
| s_(1,3) s_(2,3) s_(3,3) s_(3,4) |
| s_(1,4) s_(2,4) s_(3,4) s_(4,4) |

In version 2.0 of GraphicalModels, we updated the functionality of the method gaussianRing and its
related methods in order to accept loopless mixed graphs with undirected, directed and bidirected edges.

Note that mixed graphs that include undirected edges are required to have an ordering compatible with
partitionLMG. For mixed graphs with only directed and bidirected edges this is no longer necessary, as
in version 1.0 of GraphicalModels.
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