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ABSTRACT: We introduce the Macaulay2 package LinearTruncations for finding and studying the
truncations of a multigraded module over a standard multigraded ring that have linear resolutions.

1. INTRODUCTION AND PRELIMINARIES. Castelnuovo–Mumford regularity is a fundamental invariant
in commutative algebra and algebraic geometry. Roughly speaking, it measures the complexity of a
module or sheaf. Let S be a polynomial ring with the standard grading and let M be a finitely generated
S-module. In this case, Castelnuovo–Mumford regularity is typically defined in terms of either the graded
Betti numbers of M or the vanishing of local cohomology modules H i

m(M), where m is the maximal
homogeneous ideal of S. Eisenbud and Goto [1984] showed that the Castelnuovo–Mumford regularity of
M is the minimum degree where the truncation of M has a linear resolution.

Extensions of Castelnuovo–Mumford regularity were introduced for bigraded modules by Hoffman
and Wang [2004], independently for multigraded modules by Maclagan and Smith [2004], then later in a
more general setting by Botbol and Chardin [2017]. The multigraded regularity of a module is a region in
Zr rather than an integer. For a polynomial ring with a standard Zr -grading, multigraded regularity is
invariant under positive translations and thus can be described by its minimal elements. An affirmative
answer to the following open question would reduce this to a finite computation.

Question 1.1. Can the minimal elements of the regularity of M be bounded in terms of S and the Betti
numbers of M?

In analogy to the singly graded case, one may ask about the relation between multigraded Castelnuovo–
Mumford regularity and the multidegrees where the truncation of a module has a linear resolution, which
we call the linear truncation region. (See Definitions 1.2 and 1.3.) In the multigraded setting these regions
can differ, but a bound on the linear truncations would answer Question 1.1 by [Eisenbud et al. 2015,
Proposition 4.11]. Our goal is to compute the minimal elements of the linear truncation region within a
specified finite region of Zr.

We introduce the LinearTruncations package for [Macaulay2], which provides tools for studying the
resolutions of truncations of modules over rings with standard multigradings. Given a module and a
bounded range of multidegrees, our package can identify all linear truncations in the range. The algorithm
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uses a search function that is also applicable to other properties of modules described by sets of degrees.
The examples here were computed using version 1.18 of Macaulay2 and version 1.0 of LinearTruncations.

In Section 2, we describe the main algorithms of this package, findRegion and linearTruncations.
In Section 3, we discuss the relation between the linear truncation region and the multigraded regularity
and we introduce regularityBound and linearTruncationsBound as faster methods for calculating
subsets of the multigraded regularity and linear truncation regions, respectively.

To set our notation, let k be a field and let

S = k[xi, j | 1≤ i ≤ r, 0≤ j ≤ ni ]

be a Zr -graded polynomial ring with deg xi j = ei , the i-th standard basis vector in Zr, for all j
(so that S is the coordinate ring of a product Pn1 × · · · × Pnr of projective spaces). The function
multigradedPolynomialRing produces such rings:

i1 : needsPackage "LinearTruncations"

o1 = LinearTruncations

o1 : Package

i2 : S = multigradedPolynomialRing {1,2}

o2 = S

o2 : PolynomialRing

i3 : degrees S

o3 = {{1, 0}, {1, 0}, {0, 1}, {0, 1}, {0, 1}}

o3 : List

Let M be a finitely generated Zr -graded S-module. For a multidegree d = (d1, . . . , dr ) ∈ Zr, write d̄ for
the total degree d1+· · ·+dr of d and M≥d for the truncation

⊕
d ′≥d Md ′ of M at d, where d ′ ≥ d if this

inequality is true for each coordinate.

Definition 1.2. A homogeneous chain complex

0← G0← G1← · · · ← Gk← 0

of free S-modules is linear if G0 ≃
⊕

S(−d) for some d ∈ Zr and for each free summand S(−d ′) of Gi

we have d̄ ′ = d̄+ i .

The function isLinearComplex checks this condition. To print the degrees appearing in the complex,
use supportOfTor:

i4 : B = irrelevantIdeal S

o4 = ideal (x x , x x , x x , x x , x x , x x )
0,1 1,2 0,0 1,2 0,1 1,1 0,0 1,1 0,1 1,0 0,0 1,0

o4 : Ideal of S

i5 : F = res comodule B

1 6 9 5 1
o5 = S <-- S <-- S <-- S <-- S <-- 0

0 1 2 3 4 5

o5 : ChainComplex



Cranton Heller and Nemati :::: Linear truncations package for Macaulay2 13

i6 : netList supportOfTor F

+------+------+
o6 = |{0, 0}| |

+------+------+
|{1, 1}| |
+------+------+
|{2, 1}|{1, 2}|
+------+------+
|{2, 2}|{1, 3}|
+------+------+
|{2, 3}| |
+------+------+

i7 : isLinearComplex F

o7 = false

Definition 1.3. The linear truncation region of M is

{d | M≥d has a linear resolution with generators in degree d} ⊂ Zr .

Remark 1.4. Our definitions imply that the nonzero entries in the differential matrices of a linear
resolution will have total degree 1. We also require that the generators have degree d so that a linear
resolution for M≥d implies the existence of a linear resolution for M≥d ′ whenever d ′ ≥ d. We can thus
describe the linear truncation region by giving its minimal elements.

2. FINDING LINEAR TRUNCATIONS. Eisenbud, Erman, and Schreyer [Eisenbud et al. 2015] proved
that the linear truncation region of M is nonempty. In particular it contains the output of the function
coarseMultigradedRegularity from their package [TateOnProducts]. However, in general this degree
is neither a minimal element itself nor greater than all the minimal elements. (See Example 2.1.)

The function linearTruncations searches for multidegrees where the truncation of M has a linear
resolution by calling the function findRegion, which implements Algorithm 1. Since we do not know
of a bound on the total degree of the minimal elements in the linear truncation region given the Betti
numbers of M, linearTruncations is not guaranteed to produce all generators as a module over the
semigroup Nr. By default it searches above the componentwise minimum of the degrees of the generators
of M and below the degree with all coordinates equal to c+ 1, where c is the output of regularity.
Otherwise the range is taken as a separate input.

Example 2.1. Let S = k[x0,0, x0,1, x0,2, x1,0, x1,1, x1,2, x1,3] be the Cox ring of P2
×P3. For each d ≥ 2,

let φd : S(−d,−d)6
→ S(0,−d)2

⊕ S(−d, 0)4 be given by

xd
0,0 xd

0,1 xd
0,2 0 0 0

0 0 0 xd
0,1 xd

0,0 xd
0,2

xd
1,0 0 0 xd

1,0 0 0
0 xd

1,1 0 0 xd
1,1 0

0 0 xd
1,2 0 0 xd

1,2
0 0 0 xd

1,3 0 0


,

and define M (d)
:= coker φd . The coarseMultigradedRegularity of M (3) is {3, 3}, the regularity

of M (3) is 5, and {3, 3} and {8, 2} are minimal elements of the linear truncation region. Since {8, 2} is
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Input :a module M, a Boolean function f that takes M as input, and a range (a, b)

Output :minimal elements between a and b where M satisfies f
A :=∅
K := {a}
while K ̸=∅ do

d := first element of K
K = K \ {d}
if d /∈ A+Nr then

if M satisfies f at d then
A = A∪ {d}

else
for 1≤ i ≤ r do

if d+ ei ≤ b then
K = K ∪ {d+ ei }

return minimal elements of A

Algorithm 1. findRegion

not below {5+ 1, 5+ 1}, it will not be returned by the linearTruncations function with the default
options:

i8 : (S,E) = productOfProjectiveSpaces{2,3};

i9 : d = 3;

i10 : M = coker(map(S^{{0,-d},{0,-d},{-d,0},{-d,0},{-d,0},{-d,0}},
S^{{-d,-d},{-d,-d},{-d,-d},{-d,-d},{-d,-d},{-d,-d}},
{{x_(0,0)^d,x_(0,1)^d,x_(0,2)^d,0,0,0}, {0,0,0,x_(0,1)^d,x_(0,0)^d,x_(0,2)^d},
{-x_(1,0)^d,0,0,-x_(1,0)^d,0,0}, {0,-x_(1,1)^d,0,0,-x_(1,1)^d,0},
{0,0, -x_(1,2)^d,0,0, -x_(1,2)^d}, {0,0,0, -x_(1,3)^d,0,0}}));

i11 : linearTruncations M

o11 = {{3, 3}}

o11 : List

i12 : linearTruncations({{0,0},{8,6}},M)

o12 = {{3, 3}, {8, 2}}

o12 : List

Based on the computations from M (d) for 2 ≤ d ≤ 10 we expect that for d ≥ 2 the module M (d) will
have coarseMultigradedRegularity equal to {d, d}, with {d, d} and {3d − 1, d − 1} both minimal
elements of the linear truncation region.

At each step of Algorithm 1 the set A contains degrees satisfying f and the set K contains the minimal
degrees remaining to be checked. There are options to initialize A and K differently — degrees in A
will be assumed to satisfy f , and degrees below those in K will be excluded from the search (and thus
assumed not to satisfy f ). Supplying such prior knowledge can decrease the length of the computation
by limiting the number of times the algorithm calls f .

The pseudocode in Algorithm 1 masks the fact that A and K are stored as monomial ideals in a temporary
singly graded polynomial ring. Similarly, the function findMins will convert a list of multidegrees to a
monomial ideal in order to calculate its minimal elements via a Gröbner basis.
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3. RELATION TO REGULARITY. As discussed above, the minimal element of the linear truncation region
of a singly graded module agrees with its Castelnuovo–Mumford regularity, which can be determined
from its Betti numbers. In the multigraded case these concepts are still linked, but their relationship is
more complicated. For instance, the following inclusion is strict:

Theorem 3.1. If H 0
B(M) = 0, then the linear truncation region of M is a subset of the multigraded

regularity region reg M of M, as defined in [Maclagan and Smith 2004].

Proof. See [Berkesch et al. 2020, Theorem 2.9] or [Eisenbud et al. 2015, Proposition 4.11]. □

Unfortunately the multigraded Betti numbers of M do not determine either its regularity or its linear trun-
cations. However, the functions regularityBound and linearTruncationsBound compute subsets of
these regions using only the twists appearing in the minimal free resolution of M. In many examples they
produce the same outputs as multigradedRegularity (from the package VirtualResolutions [Almousa
et al. 2020]) and linearTruncations, respectively, without computing sheaf cohomology or truncating
the module.

The algorithms for linearTruncationsBound and regularityBound are based on the following
theorem (from [Bruce et al. 2021]):

Theorem 3.2. If H 0
B(M)= 0 and H 1

B(M)= 0 then⋂
Tori (M,k)b ̸=0

⋃
∑

λ j=i

[b− λ1ei − · · ·− λr er +Nr
]

is a subset of the linearTruncations of M, and⋂
Tori (M,k)b ̸=0

⋃
∑

λ j=i−1

[b− 1− λ1ei − · · ·− λr er +Nr
]

is a subset of the multigradedRegularity of M.

The function partialRegularities calculates the Castelnuovo–Mumford regularity in each compo-
nent of a multigrading.

Remark 3.3. In the bigraded case, Theorem 3.2 implies that d is in linearTruncations M if d ≥
partialRegularities M and d̄ ≥ regularity M.

For some modules, linearTruncationsBound gives a proper subset of the linear truncations:
i13 : S = multigradedPolynomialRing 2;

i14 : M = coker(map(S^{{-1,0},{0,-1},{0,-1}},S^{{-1,-1},{-1,-1}},
{{x_(1,0),x_(1,1)},{-x_(0,0),0},{0,-x_(0,1)}}));

i15 : multigraded betti res M

0 1
o15 = 1: a+2b .

2: . 2ab

i16 : linearTruncations M

o16 = {{0, 2}, {1, 1}}

i17 : linearTruncationsBound M

o17 = {{1, 1}}
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