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ABSTRACT: We introduce the package GraphicalModelsMLE for computing the maximum likelihood
estimates (MLEs) of a Gaussian graphical model in the computer algebra system Macaulay2. This
package allows the computation of MLEs for the class of loopless mixed graphs. Additional functionality
allows the user to explore the underlying algebraic structure of the model, such as its maximum likelihood
degree and the ideal of score equations.

1. INTRODUCTION. The purpose of the package GraphicalModelsMLE is to extend the functionality of
[Macaulay2] related to algebraic statistics, specifically allowing computations of maximum likelihood
estimates of Gaussian graphical models. While GraphicalModels is an existing package that already
provides useful information such as conditional independence ideals and vanishing ideals for such models,
the fundamental statistical inference task of computing maximum likelihood estimates is missing. This
package aims to fill this void and also extend the functionality of GraphicalModels to handle more
general types of graphs, in particular, loopless mixed graphs (LMG). This class of graphs was introduced
in [Sadeghi and Lauritzen 2014] in order to unify the Markov theory of several classical types of graphs
such as undirected graphs, directed acyclic graphs, summary graphs and ancestral graphs [Lauritzen
1996].

The algebraic framework of Macaulay2 permits us to use both commutative algebra and numerical
algebraic geometry to obtain a guaranteed global optimal solution by computing all critical points of
the log-likelihood function. This is different from the classical statistical approach of the R package
ggm [Marchetti 2006], and more in line with the recent numerical algebraic geometry approach from the
package LinearCovarianceModels.jl in Julia [Sturmfels et al. 2020]. The package GraphicalModelsMLE
is a complement to these two, handling some Gaussian graphical models not covered by them (LinearCo-
varianceModels.jl version 0.2 and ggm version 2.5). The capabilities of our package are limited by the
feasibility of the Gröbner basis computations involved.

Given a data sample of n independent and identically distributed random vectors X (1), . . . , X (n)

that follow an m-dimensional multivariate Gaussian distribution N (µ,6), the maximum likelihood
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Figure 1. An undirected graph (left), a mixed graph with no directed cycles (centre),
and a mixed graph with directed cycles (right).

estimate (MLE) for the covariance matrix 6 is the matrix that best explains the observed data, in the
sense that it maximizes the likelihood function of the Gaussian model (see Section 3).

2. GRAPHICAL MODELS OF LOOPLESS MIXED GRAPHS. A mixed graph G = (V, E) is a graph with
undirected edges i − j, directed edges i → j and bidirected edges i ↔ j. A directed cycle is a cycle
formed by directed edges after identifying the vertices that are connected by undirected or bidirected
edges. A loopless mixed graph (LMG) is a mixed graph without loops or directed cycles. We allow
double edges of the types directed-undirected and directed-bidirected. See Figure 1 (left and centre) for
examples and Figure 1 (right) for a nonexample.

Following [Sullivant et al. 2010], we assume the nodes of G are partitioned as V = U ∪ W, such that:

• If i − j in G then i, j ∈ U .

• If i ↔ j in G then i, j ∈ W .

• There is no directed edge i → j in G such that i ∈ W and j ∈ U.

Our definition differs from the one in [Sadeghi and Lauritzen 2014] in that we do not allow multiple
edges of the same type, which is due to the setup of the Graphs package. Also note that the partition of
vertices excludes multiple edges of the undirected-bidirected type. In addition, we prohibit directed cycles,
which ensures there is an ordering on the vertices such that all vertices in U come before vertices in W,
and whenever i → j we have i < j. For simplicity of the algorithm, in our Macaulay2 implementation
we will require the graph to be provided with such an ordering of the vertices (see more details in the
description of partitionLMG in Section 6).

A Gaussian graphical model imposes constraints on the covariance matrix of a Gaussian distribution.
More precisely, a loopless mixed graph G = (V, E) gives rise to the space of covariance matrices
6 ∈ R|V |×|V | of the form [Sullivant et al. 2010, Section 2.3]

6 = (I −3)−T
[

K −1 0
0 9

]
(I −3)−1, (2.1)

where

(i) 3= [λi j ] ∈ R|V |×|V | is such that λi j = 0 whenever i → j /∈ E ;

(ii) K = [ki j ] ∈ R|U |×|U | is symmetric positive definite such that ki j = 0 whenever i − j /∈ E ;

(iii) 9 = [ψi j ] ∈ R|W |×|W | is symmetric positive definite such that ψi j = 0 whenever i ↔ j /∈ E .
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Figure 2. Verma graph.

3. MAXIMUM LIKELIHOOD ESTIMATES. Let the data sample consist of n independent identically dis-
tributed random vectors X (1), . . . , X (n) sampled from an m-dimensional Gaussian distribution Nm(µ,6).
The parameter space of the corresponding statistical model is 2 = Rm

×22 ⊆ Rm
× P Dm , where 22

is the space of covariance matrices 6 and P Dm is the cone of m × m positive-definite matrices. The
maximum likelihood estimates for the covariance matrix are determined by maximizing the log-likelihood
function

ℓ(6)= −
n
2

log det6−
n
2

tr(S6−1) (3.1)

over 6 ∈22 [Sullivant 2018, Proposition 7.1.9], where S is the sample covariance matrix. The function
solverMLE allows us to compute this optimum when 22 is induced by (2.1). It does so by calculating
the critical points of the log-likelihood function and selecting the points corresponding to the maximum
value in the cone of positive definite matrices. The default output is the maximum value of ℓ(6), the list
of maximum likelihood estimates for the covariance matrix and the maximum likelihood degree of the
model.

For undirected graphs, the MLE for the covariance matrix is known to be the unique positive definite
critical point of the likelihood function. In particular, it is a positive definite matrix completion to the
partial sample covariance matrix. See [Uhler 2012, Theorem 2.1] or [Drton et al. 2009, Theorem 2.1.14]
for more details.

Example 3.2. We consider the directed acyclic graph G known as the Verma graph; see Figure 2 and
[Drton et al. 2009, Example 3.3.14]. We take as sample data the columns of a real matrix U generated
with the command random in Macaulay2 and compute the MLE for the covariance matrix that best
explains the data within the graphical model given by G.

i1: loadPackage "GraphicalModelsMLE";

i2: G=digraph{{1,3},{1,5},{2,3},{2,4},{3,4},{4,5}};

i3: U=matrix {{.0137595, .983763, .963969, .152094, .0453326},
{.527344, .597575, .777622, .97937, .112339},
{.097922, .300712, .333058, .824002, .420228},
{.849322, .594136, .114729,.69734, .98773},
{.764547, .42209, .480193, .246573, .846734}};

i4: solverMLE(G,U)

o4 = (8.77485, | .115729 -6.32685e-18 -.0387187 .00115181 .102733 |, 1)
| 6.10884e-18 .053294 .0392544 -.0356783 .00701454 |
| -.0387187 .0392544 .0807822 -.0278223 -.0289767 |
| .00115181 -.0356783 -.0278223 .105095 -.0196375 |
| .102733 .00701454 -.0289767 -.0196375 .148723 |
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Example 3.3. We compute the MLE for the covariance matrix of the graphical model associated to
the undirected 4-cycle; see Figure 1 (left). We encode the sample data by a matrix U generated as in
Example 3.2 and compute the sample covariance matrix S =

1
n UU T.

i1 : loadPackage "GraphicalModelsMLE";

i2 : G=graph{{1,2},{2,3},{3,4},{4,1}};

i3 : S=matrix {{.105409, -.0745495, -.0186132, .0621907},
{-.0745495, .0783734,-.00844503,-.0872842},
{-.0186132, -.00844503, .128307, .0230245},
{.0621907, -.0872842, .0230245,.109849}};

i4 : solverMLE(G,S,SampleData=>false)

o4 = (6.62005, | .105409 -.0745495 .0124099 .0621907 |, 5)
| -.0745495 .0783734 -.00844503 -.0439427 |
| .0124099 -.00844503 .128307 .0230245 |
| .0621907 -.0439427 .0230245 .109849 |

Note that all entries in the MLE for the covariance matrix coincide with the entries in the sample
covariance matrix except for those corresponding to nonedges of the graph. See [Michałek and Sturmfels
2021, Example 12.16] for more on a positive definite matrix completion problem associated to the 4-cycle.

For more general types of graphs, uniqueness of the positive definite critical points is no longer
guaranteed. In the mixed graph in Example 3.4, the optimization problem has a global maximum, but
there are also local maxima; see Example 4.3.

Example 3.4. We compute the MLE for the covariance matrix of the graphical model associated to the
loopless mixed graph with undirected edge 1−2, directed edges 1 → 3, 2 → 4 and bidirected edge 3 ↔ 4;
see Figure 1 (centre). S is a sample covariance matrix computed from sample data encoded in a rational
matrix obtained again with the command random.

i2 : G = mixedGraph(graph{{1,2}},digraph{{1,3},{2,4}},bigraph{{3,4}});

i3 : S=matrix {{34183/50000, 716539/10000000, 204869/250000, 12213/25000},
{716539/10000000, 112191/500000, 309413/1000000, 1803/4000},
{204869/250000, 309413/1000000, 3849/3125, 15172/15625},
{12213/25000, 1803/4000, 15172/15625, 4487/4000}};

i4 : solverMLE(G,S,SampleData=>false)

o4 = (9.36624, {| .68366 .0716539 1.00282 .234375 |}, 5)
| .0716539 .224382 .105105 .733937 |
| 1.00282 .105105 1.76955 -.0700599 |
| .234375 .733937 -.0700599 2.97432 |

4. IDEAL OF SCORE EQUATIONS. The critical points of the log-likelihood function ℓ(6) are the solutions
to the system of equations obtained by taking partial derivatives of ℓ with respect to all variables in the
entries of 6 from our construction in (2.1) and setting them to zero:

−
∂

∂(·)
det6− det6

∂

∂(·)
tr(S6-1)= 0, (4.1)

where ∂
∂(·)

stands for the partial derivatives with respect to the variables λi j , ki j , ψi j in the entries of
the covariance matrix 6 from (2.1). These polynomial equations are called score equations. The com-
mand scoreEquations returns the ideal generated by such polynomials, which lives in the polynomial
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ring Q[λi j , ki j , ψi j ]. From an algebraic perspective, this ideal is already of interest on its own; see
[Sullivant 2018, Chapter 7].

Note that the log-likelihood function depends both on the sample covariance matrix and the graphical
model. Therefore our implementation of scoreEquations requires as input the sample data along with
information about the model. The latter is obtained via the command gaussianRing in the package
GraphicalModels (see [García-Puente et al. 2013] and examples in Section 6), which produces a ring
associated to the graph G that stores all relevant features of the graphical model.

Example 4.2. We compute the ideal of score equations associated to the 4-cycle after creating the graph G
as in Example 3.3. We now consider as input data the sample data encoded in the columns of the integer
matrix U below, obtained via the command random.

i5 : U=matrix{{3,5,9,5},{1,6,1,5},{2,9,6,6},{2,5,0,4}};

i6 : J=scoreEquations(gaussianRing G,U);

o6 : Ideal of QQ[k , k , k , k , k , k , k , k ]
1,1 2,2 3,3 4,4 1,2 1,4 2,3 3,4

i7 : dim J

o7 = 0

The ideal of the score equations J is generated by fourteen nonhomogeneous polynomials within
Q[k1,1, k1,2, k1,4, k2,2, k2,3, k3,3, k3,4, k4,4]: 4 linear polynomials and 10 quadratic polynomials such
as 1312002k2

3,4 − 387081k1,2 + 109860k1,4 + 1972025k2,3 − 898518k3,4 − 291556. Since this ideal is
zero-dimensional, the log-likelihood function ℓ(6) defined in (3.1) has finitely many complex critical
points, as will be discussed in Section 5.

Example 4.3. We want to obtain all local maxima of the log-likelihood function associated to the graphical
model in Example 3.4. We write λ as l and ψ as p in the code. The score equations generate an ideal in
Q[k1,1, k2,2, k1,2, l1,3, l2,4, p3,3, p4,4, p3,4] and we display their solutions in the Macaulay2 session below.
We retrieve the covariance matrix 6 with rational entries in variables k1,1, k2,2, k1,2, l1,3, l2,4, p3,3, p4,4,
and p3,4 by requiring the optional output CovarianceMatrix in scoreEquations.

i5 : R = gaussianRing G;

i6 : (J,Sigma)=scoreEquations(R,S,SampleData=>false,CovarianceMatrix=>true);

i7 : dim J, degree J

o7 = (0, 5)

i8 : sols=zeroDimSolve(J);netList sols

+--------------------------------------------------------------------------+
o8 = |{1.51337, 4.61101, -.483277, 1.46684, 3.27093, .298576, .573665, -.41385} |

+--------------------------------------------------------------------------+
|{1.51337, 4.61101, -.483277, 1.39884+.440525*ii, 2.45466-.923165*ii, |
|.144129+.120574*ii,.0696297-.184692*ii,-.19668+.0553853*ii} |
+--------------------------------------------------------------------------+
|{1.51337, 4.61101, -.483277, 1.39884-.440525*ii, 2.45466+.923165*ii, |
|.144129-.120574*ii, .0696297+.184692*ii, -.19668-.0553853*ii} |
+--------------------------------------------------------------------------+
|{1.51337, 4.61101, -.483277, .684147, .979681, .430388, .453924, .381688} |
+--------------------------------------------------------------------------+
|{1.51337, 4.61101, -.483277, .988484, 1.64649, .279607, .245722, .0952865}|
+--------------------------------------------------------------------------+
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Figure 3. LMG with two types of edges between 1 and 2.

How many of the 3 real critical points correspond to positive definite matrices that are local maxima
of the log-likelihood function? We first check that they correspond to positive definite matrices by
substituting the three real solutions in the covariance matrix 6.

i9 : checkPD(apply(sols,i->sub(Sigma,matrix{coordinates(i)})))

o9 = |.68366 .0716539 1.00282 .234375 |,| .68366 .0716539 .467724 .070198 |,
|.0716539 .224382 .105105 .733937 | | .0716539 .224382 .0490218 .219823 |
|1.00282 .105105 1.76955 -.0700599 | | .467724 .0490218 .75038 .429714 |
|.234375 .733937 -.0700599 2.97432 | | .070198 .219823 .429714 .66928 |

| .68366 .0716539 .675787 .117978 |
| .0716539 .224382 .0708287 .369443 |
| .675787 .0708287 .947611 .211905 |
| .117978 .369443 .211905 .854009 |

The MLE for the covariance matrix obtained in Example 3.4 corresponds to the first positive definite
matrix in the list above. The eigenvalues of the Hessian matrix computed below tell us which kind
of critical point we have for each of the 3 real solutions — for a discussion about the properties of
positive-semidefinite matrices; see [Parrilo 2013, Appendix A].

-- compute Jacobian matrix (i.e. score equations)
i10 : scoreEq=-1/det Sigma*jacobianMatrixOfRationalFunction(det Sigma)-
jacobianMatrixOfRationalFunction(trace(S*(inverse Sigma)));

-- compute Hessian matrix
i11 : Hessian=matrix for f in flatten entries scoreEq list
flatten entries jacobianMatrixOfRationalFunction(f);

-- compute eigenvalues of the Hessian matrix evaluated at real points in sols
i12 : apply({sols_0,sols_3,sols_4},i->eigenvalues sub(Hessian,matrix{coordinates(i)}))

o12 = {{-.516478 }, {-.516478 }, {-.516478 }}
{-.271913 } {-.271913 } {-.271913 }
{-.0464172 } {-.0464172} {-.0464172}
{-9869730000} {-414.15 } {-59.7135 }
{-128887 } {-28.6352 } {1.52598 }
{-58261.1 } {-6.1936 } {-2.80504 }
{-773.513 } {-1.64689 } {-11.5533 }

The first two points are local maxima and the last point is a saddle point. This shows that the
log-likelihood function of this model is not a concave function, see [Drton 2006].

Example 4.4. Next we compute the ideal of score equations associated to a mixed graph that has two
different types of edges connecting the same two vertices: directed edges 1 → 3, 1 → 2, 2 → 4, 3 → 4
and the undirected edge 1 − 2; see Figure 3.

i2 : G = mixedGraph(digraph{{1,3},{1,2},{2,4},{3,4}},graph{{1,2}});

i3 : R = gaussianRing G;

i4 : U = random(RR^4,RR^4);

i5 : J=scoreEquations(R,U);

i6 : dim J

o6 = 1
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Note that in this case, as opposed to Example 4.2, the log-likelihood function (3.1) has infinitely many
complex critical points. Since our package evaluates the objective function in all critical points, in such a
scenario the MLE cannot be computed.

5. MAXIMUM LIKELIHOOD DEGREE. The maximum likelihood degree (ML degree) of a model is
defined as the number of complex critical points of the log-likelihood function ℓ(6) from (3.1) for generic
sample data; see [Sullivant 2018, Definition 7.1.4]. For a more algebraic flavour of the notion of ML
degree, see [Michałek et al. 2016, Definition 5.4].

Note that the ML degree is only well defined when the ideal of score equations is zero-dimensional. A
typical way where this fails is where the model becomes nonidentifiable. See, for example, [Améndola
et al. 2020], for some sufficient conditions to avoid nonidentifiability and preservation of dimension of
the model in terms of the number of parameters.

It is important to observe that for generic data the solutions to score equations are all distinct; see
[Améndola et al. 2021, Remark 2.1, Lemma 2.2]. Computing the algebraic degree of the zero-dimensional
score equations ideal via the degree function in Macaulay2 is equivalent to computing the number of
complex solutions - without multiplicity - to the score equations (4.1).

In our implementation of the MLdegree function in Macaulay2, a random sample matrix is used as
sample data. Therefore, the ML degree of the graphical model we provide is correct with probability 1.

Example 5.1. The ML degree of the 4-cycle can be directly computed as follows:

i2 : G=graph{{1,2},{2,3},{3,4},{4,1}};

i3 : MLdegree(gaussianRing G)

o3 = 5

In the case of ideals of score equations with positive dimension, MLdegree will still compute the
degree of the ideal but this no longer matches the number of solutions to the score equations.

Example 5.2. Continuing with Example 4.4, where the ideal of score equations is 1-dimensional,
MLdegree does not provide a meaningful answer.

i2: G=mixedGraph(digraph{{1,3},{1,2},{2,4},{3,4}},graph{{1,2}});

i3: MLdegree(gaussianRing G)

error: the ideal of score equations has dimension 1 > 0,
so ML degree is not well defined. The degree of this ideal is 2.

6. UPDATES IN RELATED PACKAGES. GraphicalModelsMLE relies on the new package StatGraphs 0.1
and the updated packages Graphs 0.3.3 and GraphicalModels 2.0 (see [García-Puente et al. 2013] for
version 1.0).

We created a dedicated package StatGraphs for graph theoretic functions relevant to algebraic statistics.
It contains the functions isCyclic, isSimple, isLoopless and partitionLMG to deal with loopless
mixed graphs.
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The function partitionLMG computes the partition V = U ∪ W of vertices of a loopless mixed graph
described in Section 2. Vertices in the input graph need to be ordered such that all vertices in U come
before vertices in W , and if there is a directed edge i → j, then i < j.

Example 6.1. The vertices of the loopless mixed graph in Example 3.4 are partitioned into U = {1, 2}

and W = {3, 4}.
i1 : loadPackage "StatGraphs";

i2 : G = mixedGraph(digraph {{1,3},{2,4}},bigraph{{3,4}},graph{{1,2}});

i3 : partitionLMG G

o3 = ({1, 2}, {3, 4})

o3 : Sequence

The central object in the implementation of our MLE algorithm is gaussianRing from the package
GraphicalModels.

Example 6.2. We compute the ring associated to the graph in Example 6.1 and display the variables of
the ring as entries of matrices. We write λ as l and ψ as p in the code.

i4 : loadPackage "GraphicalModels";

i5 : R=gaussianRing G;

i6 : undirectedEdgesMatrix R

o6 = | k_(1,1) k_(1,2) |
| k_(1,2) k_(2,2) |

i7 : directedEdgesMatrix R

o7 = | 0 0 l_(1,3) 0 |
| 0 0 0 l_(2,4) |
| 0 0 0 0 |
| 0 0 0 0 |

i8 : bidirectedEdgesMatrix R

o8 = | p_(3,3) p_(3,4) |
| p_(3,4) p_(4,4) |

i9 : covarianceMatrix R

o9 = | s_(1,1) s_(1,2) s_(1,3) s_(1,4) |
| s_(1,2) s_(2,2) s_(2,3) s_(2,4) |
| s_(1,3) s_(2,3) s_(3,3) s_(3,4) |
| s_(1,4) s_(2,4) s_(3,4) s_(4,4) |

In version 2.0 of GraphicalModels, we updated the functionality of the method gaussianRing and its
related methods in order to accept loopless mixed graphs with undirected, directed and bidirected edges.

Note that mixed graphs that include undirected edges are required to have an ordering compatible with
partitionLMG. For mixed graphs with only directed and bidirected edges this is no longer necessary, as
in version 1.0 of GraphicalModels.
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SUPPLEMENT. The online supplement contains version 1.0 of GraphicalModelsMLE.
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Linear truncations package for Macaulay2

LAUREN CRANTON HELLER AND NAVID NEMATI

ABSTRACT: We introduce the Macaulay2 package LinearTruncations for finding and studying the
truncations of a multigraded module over a standard multigraded ring that have linear resolutions.

1. INTRODUCTION AND PRELIMINARIES. Castelnuovo–Mumford regularity is a fundamental invariant
in commutative algebra and algebraic geometry. Roughly speaking, it measures the complexity of a
module or sheaf. Let S be a polynomial ring with the standard grading and let M be a finitely generated
S-module. In this case, Castelnuovo–Mumford regularity is typically defined in terms of either the graded
Betti numbers of M or the vanishing of local cohomology modules H i

m(M), where m is the maximal
homogeneous ideal of S. Eisenbud and Goto [1984] showed that the Castelnuovo–Mumford regularity of
M is the minimum degree where the truncation of M has a linear resolution.

Extensions of Castelnuovo–Mumford regularity were introduced for bigraded modules by Hoffman
and Wang [2004], independently for multigraded modules by Maclagan and Smith [2004], then later in a
more general setting by Botbol and Chardin [2017]. The multigraded regularity of a module is a region in
Zr rather than an integer. For a polynomial ring with a standard Zr -grading, multigraded regularity is
invariant under positive translations and thus can be described by its minimal elements. An affirmative
answer to the following open question would reduce this to a finite computation.

Question 1.1. Can the minimal elements of the regularity of M be bounded in terms of S and the Betti
numbers of M?

In analogy to the singly graded case, one may ask about the relation between multigraded Castelnuovo–
Mumford regularity and the multidegrees where the truncation of a module has a linear resolution, which
we call the linear truncation region. (See Definitions 1.2 and 1.3.) In the multigraded setting these regions
can differ, but a bound on the linear truncations would answer Question 1.1 by [Eisenbud et al. 2015,
Proposition 4.11]. Our goal is to compute the minimal elements of the linear truncation region within a
specified finite region of Zr.

We introduce the LinearTruncations package for [Macaulay2], which provides tools for studying the
resolutions of truncations of modules over rings with standard multigradings. Given a module and a
bounded range of multidegrees, our package can identify all linear truncations in the range. The algorithm

MSC2020: primary 13-04, 13D02; secondary 13P20, 14M25.
Keywords: multigraded regularity, truncation.
LinearTruncations version 1.0
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uses a search function that is also applicable to other properties of modules described by sets of degrees.
The examples here were computed using version 1.18 of Macaulay2 and version 1.0 of LinearTruncations.

In Section 2, we describe the main algorithms of this package, findRegion and linearTruncations.
In Section 3, we discuss the relation between the linear truncation region and the multigraded regularity
and we introduce regularityBound and linearTruncationsBound as faster methods for calculating
subsets of the multigraded regularity and linear truncation regions, respectively.

To set our notation, let k be a field and let

S = k[xi, j | 1≤ i ≤ r, 0≤ j ≤ ni ]

be a Zr -graded polynomial ring with deg xi j = ei , the i-th standard basis vector in Zr, for all j
(so that S is the coordinate ring of a product Pn1 × · · · × Pnr of projective spaces). The function
multigradedPolynomialRing produces such rings:

i1 : needsPackage "LinearTruncations"

o1 = LinearTruncations

o1 : Package

i2 : S = multigradedPolynomialRing {1,2}

o2 = S

o2 : PolynomialRing

i3 : degrees S

o3 = {{1, 0}, {1, 0}, {0, 1}, {0, 1}, {0, 1}}

o3 : List

Let M be a finitely generated Zr -graded S-module. For a multidegree d = (d1, . . . , dr ) ∈ Zr, write d̄ for
the total degree d1+· · ·+dr of d and M≥d for the truncation

⊕
d ′≥d Md ′ of M at d, where d ′ ≥ d if this

inequality is true for each coordinate.

Definition 1.2. A homogeneous chain complex

0← G0← G1← · · · ← Gk← 0

of free S-modules is linear if G0 ≃
⊕

S(−d) for some d ∈ Zr and for each free summand S(−d ′) of Gi

we have d̄ ′ = d̄+ i .

The function isLinearComplex checks this condition. To print the degrees appearing in the complex,
use supportOfTor:

i4 : B = irrelevantIdeal S

o4 = ideal (x x , x x , x x , x x , x x , x x )
0,1 1,2 0,0 1,2 0,1 1,1 0,0 1,1 0,1 1,0 0,0 1,0

o4 : Ideal of S

i5 : F = res comodule B

1 6 9 5 1
o5 = S <-- S <-- S <-- S <-- S <-- 0

0 1 2 3 4 5

o5 : ChainComplex
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i6 : netList supportOfTor F

+------+------+
o6 = |{0, 0}| |

+------+------+
|{1, 1}| |
+------+------+
|{2, 1}|{1, 2}|
+------+------+
|{2, 2}|{1, 3}|
+------+------+
|{2, 3}| |
+------+------+

i7 : isLinearComplex F

o7 = false

Definition 1.3. The linear truncation region of M is

{d | M≥d has a linear resolution with generators in degree d} ⊂ Zr .

Remark 1.4. Our definitions imply that the nonzero entries in the differential matrices of a linear
resolution will have total degree 1. We also require that the generators have degree d so that a linear
resolution for M≥d implies the existence of a linear resolution for M≥d ′ whenever d ′ ≥ d. We can thus
describe the linear truncation region by giving its minimal elements.

2. FINDING LINEAR TRUNCATIONS. Eisenbud, Erman, and Schreyer [Eisenbud et al. 2015] proved
that the linear truncation region of M is nonempty. In particular it contains the output of the function
coarseMultigradedRegularity from their package [TateOnProducts]. However, in general this degree
is neither a minimal element itself nor greater than all the minimal elements. (See Example 2.1.)

The function linearTruncations searches for multidegrees where the truncation of M has a linear
resolution by calling the function findRegion, which implements Algorithm 1. Since we do not know
of a bound on the total degree of the minimal elements in the linear truncation region given the Betti
numbers of M, linearTruncations is not guaranteed to produce all generators as a module over the
semigroup Nr. By default it searches above the componentwise minimum of the degrees of the generators
of M and below the degree with all coordinates equal to c+ 1, where c is the output of regularity.
Otherwise the range is taken as a separate input.

Example 2.1. Let S = k[x0,0, x0,1, x0,2, x1,0, x1,1, x1,2, x1,3] be the Cox ring of P2
×P3. For each d ≥ 2,

let φd : S(−d,−d)6
→ S(0,−d)2

⊕ S(−d, 0)4 be given by

xd
0,0 xd

0,1 xd
0,2 0 0 0

0 0 0 xd
0,1 xd

0,0 xd
0,2

xd
1,0 0 0 xd

1,0 0 0
0 xd

1,1 0 0 xd
1,1 0

0 0 xd
1,2 0 0 xd

1,2
0 0 0 xd

1,3 0 0


,

and define M (d)
:= coker φd . The coarseMultigradedRegularity of M (3) is {3, 3}, the regularity

of M (3) is 5, and {3, 3} and {8, 2} are minimal elements of the linear truncation region. Since {8, 2} is
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Input :a module M, a Boolean function f that takes M as input, and a range (a, b)

Output :minimal elements between a and b where M satisfies f
A :=∅
K := {a}
while K ̸=∅ do

d := first element of K
K = K \ {d}
if d /∈ A+Nr then

if M satisfies f at d then
A = A∪ {d}

else
for 1≤ i ≤ r do

if d+ ei ≤ b then
K = K ∪ {d+ ei }

return minimal elements of A

Algorithm 1. findRegion

not below {5+ 1, 5+ 1}, it will not be returned by the linearTruncations function with the default
options:

i8 : (S,E) = productOfProjectiveSpaces{2,3};

i9 : d = 3;

i10 : M = coker(map(S^{{0,-d},{0,-d},{-d,0},{-d,0},{-d,0},{-d,0}},
S^{{-d,-d},{-d,-d},{-d,-d},{-d,-d},{-d,-d},{-d,-d}},
{{x_(0,0)^d,x_(0,1)^d,x_(0,2)^d,0,0,0}, {0,0,0,x_(0,1)^d,x_(0,0)^d,x_(0,2)^d},
{-x_(1,0)^d,0,0,-x_(1,0)^d,0,0}, {0,-x_(1,1)^d,0,0,-x_(1,1)^d,0},
{0,0, -x_(1,2)^d,0,0, -x_(1,2)^d}, {0,0,0, -x_(1,3)^d,0,0}}));

i11 : linearTruncations M

o11 = {{3, 3}}

o11 : List

i12 : linearTruncations({{0,0},{8,6}},M)

o12 = {{3, 3}, {8, 2}}

o12 : List

Based on the computations from M (d) for 2 ≤ d ≤ 10 we expect that for d ≥ 2 the module M (d) will
have coarseMultigradedRegularity equal to {d, d}, with {d, d} and {3d − 1, d − 1} both minimal
elements of the linear truncation region.

At each step of Algorithm 1 the set A contains degrees satisfying f and the set K contains the minimal
degrees remaining to be checked. There are options to initialize A and K differently — degrees in A
will be assumed to satisfy f , and degrees below those in K will be excluded from the search (and thus
assumed not to satisfy f ). Supplying such prior knowledge can decrease the length of the computation
by limiting the number of times the algorithm calls f .

The pseudocode in Algorithm 1 masks the fact that A and K are stored as monomial ideals in a temporary
singly graded polynomial ring. Similarly, the function findMins will convert a list of multidegrees to a
monomial ideal in order to calculate its minimal elements via a Gröbner basis.
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3. RELATION TO REGULARITY. As discussed above, the minimal element of the linear truncation region
of a singly graded module agrees with its Castelnuovo–Mumford regularity, which can be determined
from its Betti numbers. In the multigraded case these concepts are still linked, but their relationship is
more complicated. For instance, the following inclusion is strict:

Theorem 3.1. If H 0
B(M) = 0, then the linear truncation region of M is a subset of the multigraded

regularity region reg M of M, as defined in [Maclagan and Smith 2004].

Proof. See [Berkesch et al. 2020, Theorem 2.9] or [Eisenbud et al. 2015, Proposition 4.11]. □

Unfortunately the multigraded Betti numbers of M do not determine either its regularity or its linear trun-
cations. However, the functions regularityBound and linearTruncationsBound compute subsets of
these regions using only the twists appearing in the minimal free resolution of M. In many examples they
produce the same outputs as multigradedRegularity (from the package VirtualResolutions [Almousa
et al. 2020]) and linearTruncations, respectively, without computing sheaf cohomology or truncating
the module.

The algorithms for linearTruncationsBound and regularityBound are based on the following
theorem (from [Bruce et al. 2021]):

Theorem 3.2. If H 0
B(M)= 0 and H 1

B(M)= 0 then⋂
Tori (M,k)b ̸=0

⋃
∑

λ j=i

[b− λ1ei − · · ·− λr er +Nr
]

is a subset of the linearTruncations of M, and⋂
Tori (M,k)b ̸=0

⋃
∑

λ j=i−1

[b− 1− λ1ei − · · ·− λr er +Nr
]

is a subset of the multigradedRegularity of M.

The function partialRegularities calculates the Castelnuovo–Mumford regularity in each compo-
nent of a multigrading.

Remark 3.3. In the bigraded case, Theorem 3.2 implies that d is in linearTruncations M if d ≥
partialRegularities M and d̄ ≥ regularity M.

For some modules, linearTruncationsBound gives a proper subset of the linear truncations:
i13 : S = multigradedPolynomialRing 2;

i14 : M = coker(map(S^{{-1,0},{0,-1},{0,-1}},S^{{-1,-1},{-1,-1}},
{{x_(1,0),x_(1,1)},{-x_(0,0),0},{0,-x_(0,1)}}));

i15 : multigraded betti res M

0 1
o15 = 1: a+2b .

2: . 2ab

i16 : linearTruncations M

o16 = {{0, 2}, {1, 1}}

i17 : linearTruncationsBound M

o17 = {{1, 1}}
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RationalMaps, a package for Macaulay2

C. J. BOTT, SEYED HAMID HASSANZADEH, KARL SCHWEDE AND DANIEL SMOLKIN

ABSTRACT: This paper describes the RationalMaps package for Macaulay2. This package provides
functionality for computing several aspects of rational maps.

1. INTRODUCTION. This package aims to compute several things about rational maps between varieties,
including

• the base locus of a rational map,

• whether a rational map is birational,

• the inverse of a birational map,

• whether a map is a closed embedding.

Our functions have numerous options which allow them to run much more quickly in certain examples if
configured correctly. Setting the option Verbosity to a value ≥ 1 will mean that functions will provide
hints as to the best ways to run them. This paper discusses RationalMaps version 1.0.

A rational map F : X ⊆ Pn 99K Y ⊆ Pm between projective varieties is presented by m + 1 forms
f = { f0, . . . fm} of the same degree in the coordinate ring of X, denoted by R. The idea of looking at
the syzygies of the forms f to detect the geometric properties of F goes back at least to [Hulek et al.
1992] in the case where X = Pn, Y = Pm and m = n (see also [Semple and Tyrrell 1969]). Russo and
Simis [2001] developed this method to handle the case X = Pn and m ≥ n. Simis [2004] pushed the
method further to the study of general rational maps between two integral projective schemes in arbitrary
characteristic by an extended ideal-theoretic method emphasizing the role of the Rees algebra associated
to the ideal generated by f . Doria, Hassanzadeh, and Simis [Doria et al. 2012] applied these Rees algebra
techniques to study the birationality of F. Our core functions, particularly those related to computing
inverse maps, rely heavily on this work.

Hassanzadeh was supported by CNPq-bolsa de Produtividade and by the MathAmSud project “ALGEO”. Schwede was supported
in part by the NSF FRG Grant DMS #1265261/1501115, NSF CAREER Grant DMS #1252860/1501102, NSF Grants DMS
#1840190 and #2101800. Smolkin was supported in part by the NSF FRG Grant DMS #1265261/1501115, NSF Career Grant
DMS #1252860/1501102 and NSF Grant DMS #1801849.
MSC2010: 14E05, 14E25.
Keywords: rational map, birational map, inverse map, closed embedding.
RationalMaps version 1.0
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2. BASE LOCI. We begin with the problem of computing the base locus of a map to projective space.
Let X be a projective variety over any field k and let F : X → Pm

k be a rational map from X to projective
space. Then we choose a representative ( f0, . . . , fm) of F, where each fi is the i-th coordinate of F.
A priori, each fi is in K = frac R, where R is the coordinate ring of X. However, we can get another
representative of F by clearing denominators. (Note that this does not enlarge the base locus of F since F

is undefined whenever the denominator of any of the fi vanishes.) Thus we assume that fi ∈ R for all i ,
and that all the fi are homogeneous of the same degree.

In this setting, one might naively think that the map F is undefined exactly when all of the fi vanish,
and thus the base locus is the vanishing set of the ideal ( f0, . . . , fm). However, this yields a base locus that
is too big. Indeed, to find the base locus of a rational map, we must consider all possible representatives
of the map and find where none of them are defined. To do this, we use the following result.

Proposition 2.1 [Simis 2004, Proposition 1.1]. Let F : X 99K Pm be a rational map and let f =

{ f0, . . . , fm} be a representative of F with fi ∈ R homogeneous of degree d for all i . Set I = ( f0, . . . , fm).
Then the set of such representatives of F corresponds bijectively to the homogeneous vectors in the rank 1
graded R-module HomR(I, R)∼= (R :K I ).

The bijection comes from multiplying our fixed representative f of F by h ∈ (R :K I ). Now, in the
setting of Proposition 2.1, let⊕

s

R(−ds)
ϕ

−→ R(−d)m+1 [ f0,..., fm ]
−−−−−→ I → 0

be a free resolution of I. Then we get

0 → HomR(I, R)→ (R(−d)m+1)∨
ϕt

−→

(⊕
s

R(ds)

)∨

where ϕt is the transpose of ϕ and R∨ is the dual module of R. Thus, we get that HomR(I, R)∼=kerϕt, and
so each representative of F corresponds to a vector in kerϕt. The correspondence takes a representative
(h f0, . . . , h fm) to the map that multiplies vectors in Rm+1 by [h f0, . . . , h fm] on the left.

The base locus of F is the intersection of the sets V ( f i
0 , . . . , f i

m) as f i
= ( f i

0 , . . . , f i
m) ranges over

all the representatives of F. The above implies that this is the same as the intersection of the sets
V (wi

0, . . . , w
i
m) as wi

= (wi
0, . . . , w

i
m) ranges over the vectors in kerϕt. Now, given any a, f, g ∈ R, we

have V (a f )⊇ V ( f ) and V ( f +g)⊇ V ( f )∩V (g). Thus, it is enough to take a generating set w1, . . . ,wn

of kerϕt and take the intersection over this generating set.
The base locus of F is then the variety cut out by the ideal generated by all the entries of all of

the wi. Our function baseLocusOfMap returns this ideal. It can be applied either to our new type
RationalMapping or to a RingMap between the homogeneous coordinate rings which represents the
rational map.

i1 : loadPackage "RationalMaps";

i2 : R = QQ[x,y,z];
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i3 : f = rationalMapping(R, R, {x^2*y, x^2*z, x*y*z})

2 2
o3 = Proj R - - - > Proj R {x y, x z, x*y*z}

o3 : RationalMapping

i4 : baseLocusOfMap(f)

o4 = ideal (y*z, x*z, x*y)

o4 : Ideal of R

If the SaturateOutput option is set to false, our function baseLocusOfMap will not saturate the
output.

3. BIRATIONALITY AND INVERSE MAPS. Again, a rational map F : X ⊆ Pn 99K Y ⊆ Pm between
projective spaces is defined by m + 1 forms f = { f0, . . . fm} of the same degree in the coordinate ring
of X, denoted by R. R is a standard graded ring in n + 1 variables. Here we assumed the varieties
are defined over a field k and dim R ≥ 1. Our goal is to find a ring theoretic criterion for birationality
and, on top of that, to find the inverse of a rational map. To do this, we study the Rees algebra of the
ideal I = ( f ) in R. To that end set R ≃ k[x0, . . . , xn] = k[X]/a with k[X] = k[X0, . . . , Xn] and a a
homogeneous ideal. The Rees algebra is defined by the polynomial relations among { f0, . . . fm} in R. To
this end, we consider the polynomial extension R[Y ] = R[Y0, . . . , Ym]. To keep track of the variables by
degrees, we set the standard bigrading deg(X i )= (1, 0) and deg(Y j )= (0, 1). Mapping Y j 7→ f j t yields
a presentation R[Y ]/J ≃ RR(( f )), with J a bihomogeneous presentation ideal. J is a bigraded ideal
that depends only on the rational map defined by f and not on this particular representative.

J =

⊕
(p,q)∈N2

J(p,q),

where J(p,q) denotes the k-vector space of forms of bidegree (p, q). Every piece of this ideal contains
information about the rational map. For example, J0,∗ determines the dimension of the image of the map.
For birationality, the following bihomogeneous piece is important:

J1,∗ :=

⊕
q∈N

J1,q

with J1,q denoting the bigraded piece of J spanned by the forms of bidegree (1, q) for all q ≥ 0. Now, a
form of bidegree (1, ∗) can be written as

∑n
i=0 Qi (Y) xi , for suitable homogeneous Qi (Y) ∈ R[Y ] of the

same degree.
One then goes on to construct a matrix that measures the birationality of the map. The first step is to

lift the polynomials Qi (Y) ∈ R[Y ] into k[X,Y ]. Since the {y0, . . . , ym} are indeterminates over R, each
pair of such representations of the same form gives a syzygy of {x0, . . . , xn} with coefficients in k. This
is where one must take into account whether X ⊆ Pn is minimally embedded or not. To measure this,
one can easily check the vector space dimension of a1, the degree-1 part of a; if it is zero then X ⊆ Pn is
nondegenerated.



20 Bott, Hassanzadeh, Schwede and Smolkin :::: RationalMaps, a package for Macaulay2

Next, one can pick a minimal set of generators of the ideal (J1,∗) consisting of a finite number of forms
of bidegree (1, q), for various q’s. Let us assume X ⊆ Pn is nondegenerated. Let {P1, . . . , Ps} ⊂ k[X,Y ]

denote liftings of these biforms and consider the Jacobian matrix of the polynomials {P1, . . . , Ps} with
respect to {x0, . . . , xn}. This is a matrix with entries in k[Y ]. Write ψ for the corresponding matrix over
S = k[Y ]/b, the coordinate ring of Y. This matrix is called the weak Jacobian dual matrix associated to
the given set of generators of (J1,∗). Note that a weak Jacobian matrix ψ is not uniquely defined due
to the lack of uniqueness in the expression of an individual form and to the choice of bihomogeneous
generators. However, it is shown in [Doria et al. 2012, Lemma 2.13] that if the weak Jacobian matrix
associated to one set of bihomogeneous minimal generators of (J1,∗) has rank over S then the weak
Jacobian matrix associated to any other set of bihomogeneous minimal generators of (J1,∗) has rank
over S and the two ranks coincide.

The following criterion is [Doria et al. 2012, Theorem 2.18]. In the package, we consider only the
cases where X is irreducible, i.e., R is a domain.

Theorem 3.1. Let X ⊆ Pn be nondegenerate. Then F is birational onto Y if and only if rank(ψ) =

edim(R)− 1(= n). Moreover:

(i) We get a representative for the inverse of F by taking the coordinates of any homogeneous vector of
positive degree in the (rank 1) null space of ψ over S for which these coordinates generate an ideal
containing a regular element.

(ii) If , further, R is a domain, the representative of F in (i) can be taken to be the set of the (ordered,
signed) (edim(R)−1)-minors of an arbitrary (edim(R)− 1)× edim(R) submatrix of ψ of rank
edim(R)− 1.

As expected, the most expensive part of applying this theorem is computing the Rees ideal J . In the
package RationalMaps, we use ReesStrategy to compute the Rees equations. The algorithm is the
standard elimination technique. However, we do not use the ReesAlgebra [Eisenbud 2018] package,
since verifying birationality according to Theorem 3.1 only requires computing a small part of the Rees
ideal, namely elements of first-degree 1. This idea is applied in the SimisStrategy. More precisely, if
the given map F is birational, then the Jacobian dual rank will attain its maximum value of edim(R)− 1
after computing the Rees equations up to degree (1, N ) for N sufficiently large. This allows us to compute
the inverse map. The downside of SimisStrategy is that if F is not birational, the desired number N
cannot be found and the process never terminates. To provide a definitive answer for birationality, we
use HybridStrategy, which is a hybrid of ReesStrategy and SimisStrategy. The default strategy
is HybridStrategy.

HybridLimit is an option to switch SimisStrategy to ReesStrategy, if the computations up to
degree (1, HybridLimit) do not lead to rank(ψ)= edim(R)− 1. The default value for HybridLimit
is 15. The change from SimisStrategy to ReesStrategy is done in such a way that the generators
of the Rees ideal computed in the SimisStrategy phase are not lost; the program computes other
generators of the Rees ideal while keeping the generators it found before attaining HybridLimit.

http://www2.macaulay2.com/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/ReesAlgebra/html/_rees__Algebra.html
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There is yet another method for computing the Rees ideal called SaturationStrategy. In this option,
the whole Rees ideal is computed by saturating the defining ideal of the symmetric algebra with respect
to a nonzero element in R (we assume R to be a domain). This strategy appears to be slower in some
examples, though one might be able to improve this option in the future by stopping the computation of
the saturation at a certain step.

Computing inverse maps is the most important function of this package and is done by the function
inverseOfMap (or by running RationalMap∧-1). According to Theorem 3.1, there are two ways to
compute the inverse of a map: (1) by finding any syzygy of the Jacobian dual matrix, and (2) by finding
a submatrix of ψ of rank edim(R)− 1. Each way has its benefits. Method (1) is quite fast in many cases;
however, method (2) is very useful if the rank of the Jacobian dual matrix ψ is relatively small compared
to the degrees of the entries of ψ . Our function inverseOfMap starts by using the second method and
later switches to the first method if the second method does not work. The timing of this transition from
the first method to the second method is controlled by the option MinorsLimit. Setting MinorsLimit
to zero will mean that no minors are checked and the inverse map is computed just by looking at the
syzygies of ψ . If MinorsLimit is left as null (the default value), these functions will determine a value
using a heuristic that depends on the varieties involved.

To improve the speed of the function inverseOfMap, we also have two other options, AssumeDominant
and CheckBirational. If AssumeDominant is set to be true, then inverseOfMap assumes that the
map from X to Y is dominant and does not compute the image of the map; this is time-consuming in
certain cases as it computes the kernel of a ring map. However, this function goes through a call to
idealOfImageOfMap which first checks whether the ring map is injective (at least if the target is a polyno-
mial ring) using the method described in [Simis 2003, Proposition 1.1]. Similarly, if CheckBirational
is set to be false, inverseOfMap will not check birationality although it still computes the Jacobian
dual matrix. The option QuickRank is available to many functions. At various points, the rank of a matrix
is computed, and sometimes it is faster to compute the rank of an interesting-looking submatrix (using the
tools of the package FastMinors [Martinova et al. 2020]). Turning QuickRank off will make showing
that certain maps are birational slower, but will make showing that certain maps are not birational faster.
There is a certain amount of randomness in the functions of FastMinors, and so occasionally rerunning
a slow example will result in a massive speedup.

In general, as long as Verbosity is >= 1, the function will make suggestions as to how to run it more
quickly. For example:

i1 : loadPackage "RationalMaps";

i2 : Q=QQ[x,y,z,t,u];

i3 : f = map(Q,Q,matrix{{x^5,y*x^4,z*x^4+y^5,t*x^4+z^5,u*x^4+t^5}});

o3 : RingMap

i4 : phi=rationalMapping(f)

5 4 5 4 5 4 5 4
o4 = Proj Q - - - > Proj Q {x , x y, y + x z, z + x t, t + x u}

o4 : RationalMapping

https://github.com/kschwede/M2/blob/master/M2/Macaulay2/packages/FastMinors.m2
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i5 : time inverseOfMap(phi, CheckBirational=>false, Verbosity => 1);

inverseOfMapSimis: About to find the image of the map.
If you know the image, you may want to use the AssumeDominant
option if this is slow.

inverseOfMapSimis: About to check rank, if this is very slow,
you may want to try turning QuickRank=>false.

inverseOfMapSimis: About to check rank, if this is very slow,
you may want to try turning QuickRank=>false.

inverseOfMapSimis: About to check rank, if this is very slow,
you may want to try turning QuickRank=>false.

inverseOfMapSimis: About to check rank, if this is very slow,
you may want to try turning QuickRank=>false.

inverseOfMapSimis: About to check rank, if this is very slow,
you may want to try turning QuickRank=>false.

inverseOfMapSimis: We give up. Using the previous computations,
we compute the whole Groebner basis of the Rees ideal.
Increase HybridLimit and rerun to avoid this.

inverseOfMapSimis: Looking for a nonzero minor.
If this fails, you may increase the attempts with MinorsLimit => #

inverseOfMapSimis: We found a nonzero minor.
-- used 0.189563 seconds

o5 : RationalMapping

i6 : ident = rationalMapping map(Q,Q);

o6 : RationalMapping

i7 : o5*phi == ident

o7 = true

Using the RationalMap∧-1 syntax to compute inverses of maps will always suppress such output:
i6 : time phi^-1;

-- used 0.192791 seconds

o6 : RationalMapping

i7 : o4 == o7

o7 = true

4. EMBEDDINGS. Our package also checks whether a rational map F : X → Y is a closed embedding.
The strategy is quite simple:

(a) We first check whether F is regular (by checking if its base locus is empty).

(b) We next invert the map (if possible).

(c) Finally, we check whether the inverse map is also regular.

If all three conditions are met, then the map is a closed embedding and the function returns true.
Otherwise, isEmbedding returns false. In the following example which illustrates this, we take a
plane quartic, choose a point Q on it, and take the map associated with the divisor 12Q. This map is an
embedding by [Hartshorne 1977, Chapter IV, Corollary 3.2], which we now verify:

i1 : needsPackage "Divisor"; --used to quickly define a map

i2 : C = ZZ/101[x,y,z]/(x^4+x^2*y*z+y^4+z^3*x);

i3 : Q = ideal(y,x+z);

o3 : Ideal of C
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i4 : f2 = mapToProjectiveSpace(12*divisor(Q));

ZZ
o4 : RingMap C <--- ---[YY ..YY ]

101 1 10

i5 : needsPackage "RationalMaps";

i6 : time isEmbedding(f2)

isEmbedding: About to find the image of the map. If you know the image,
you may want to use the AssumeDominant option if this is slow.

inverseOfMapSimis: About to check rank, if this is very slow,
you may want to try turning QuickRank=>false

inverseOfMapSimis: rank found, we computed enough of the Groebner basis.
-- used 0.140107 seconds

o6 = true

Notice that MinorsLimit => 0 by default for isEmbedding. This is because the expressions defining
the inverse map obtained from an appropriate minor frequently are more complicated than the expressions
for the inverse map obtained via the syzygies. Complicated expressions can sometimes slow down the
checking of whether the inverse map is regular.

5. FUNCTIONALITY OVERLAP WITH OTHER PACKAGES. We note that our package has some overlaps
in functionality with other packages.

The Parametrization [Böhm 2010] package focuses mostly on curves, but also includes a function
invertBirationalMap that has the same functionality as inverseOfMap. On the other hand, these two
functions were implemented differently so sometimes one function can be substantially faster than the other.

The package Cremona [Staglianò 2018] focuses on fast probabilistic computation in general cases and
fast deterministic computation for special kinds of maps from projective space. In particular, in Cremona,

• isBirational gives a probabilistic answer to the question of whether a map between varieties
is birational. Furthermore, if the source is projective space, then degreeOfRationalMap with
MathMode=>true gives a deterministic answer that can be faster than what our package provides
with isBirationalMap;

• inverseMap gives a very fast computation of the inverse of a birational map if the source is projective
space and the map has maximal linear rank. If this function is passed a map where the domain is not
projective space, then it calls a modified, improved version of invertBirationalMap originally
from Parametrization. Even in some cases with maximal linear rank, our inverseOfMap function
appears to be quite competitive, however.

The package ReesAlgebra [Eisenbud 2018] includes a function jacobianDual which computes the
jacobian dual matrix. We also have a function jacobianDualMatrix which computes a weak form of
this same matrix.

6. COMMENTS AND COMPARISONS ON FUNCTION SPEEDS. We begin with a comparison using exam-
ples with maximal linear rank where Cremona excels. These examples were executed using version 5.1
of Cremona and version 1.0 of RationalMaps running Macaulay2 1.19.1.1 on Ubuntu 20.04.

https://www.mathematik.uni-kl.de/~boehm/Macaulay2/Parametrization/html/index.html
https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/Cremona.m2
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Indeed, in this example (taken from Cremona’s documentation), Cremona is substantially faster.

i1 : loadPackage "Cremona"; loadPackage "RationalMaps";

i3 : ringP20=QQ[t_0..t_20];

i4 : phi=map(ringP20,ringP20,{t_10*t_15-t_9*t_16+t_6*t_20,t_10*t_14-t_8*t_16+t_5*t_20,
t_9*t_14-t_8*t_15+t_4*t_20,t_6*t_14-t_5*t_15+t_4*t_16,
t_11*t_13-t_16*t_17+t_15*t_18-t_14*t_19+t_12*t_20,
t_3*t_13-t_10*t_17+t_9*t_18-t_8*t_19+t_7*t_20,
t_10*t_12-t_2*t_13-t_7*t_16-t_6*t_18+t_5*t_19,
t_9*t_12-t_1*t_13-t_7*t_15-t_6*t_17+t_4*t_19,
t_8*t_12-t_0*t_13-t_7*t_14-t_5*t_17+t_4*t_18,t_10*t_11-t_3*t_16+t_2*t_20,
t_9*t_11-t_3*t_15+t_1*t_20,t_8*t_11-t_3*t_14+t_0*t_20,
t_7*t_11-t_3*t_12+t_2*t_17-t_1*t_18+t_0*t_19,t_6*t_11-t_2*t_15+t_1*t_16,
t_5*t_11-t_2*t_14+t_0*t_16,t_4*t_11-t_1*t_14+t_0*t_15,t_6*t_8-t_5*t_9+t_4*t_10,
t_3*t_6-t_2*t_9+t_1*t_10,t_3*t_5-t_2*t_8+t_0*t_10,
t_3*t_4-t_1*t_8+t_0*t_9,t_2*t_4-t_1*t_5+t_0*t_6});

o4 : RingMap ringP20 <--- ringP20

i5 : time inverseOfMap(phi, Verbosity=>0);-- Function from "RationalMaps"
-- used 0.118508 seconds

o5 : RationalMapping

i6 : time inverseMap phi;
-- used 0.0370978 seconds

o6 : RingMap ringP20 <--- ringP20

i7 : o5 == rationalMapping o6

o7 = true

However, sometimes the RationalMaps function is faster, even in examples with maximal linear
rank (a good source of examples where different behaviors can be seen can be found in the docu-
mentation of Cremona). We now include an example where the map does not have the maximal
linear rank.

i1 : loadPackage "Cremona"; loadPackage "RationalMaps";

i3 : Q=QQ[x,y,z,t,u];

i4 : phi=map(Q,Q,matrix{{x^5,y*x^4,z*x^4+y^5,t*x^4+z^5,u*x^4+t^5}});

o4 : RingMap Q <--- Q

i5 : (time g = inverseOfMap(phi, Verbosity=>0));
-- used 0.233111 seconds

i6 : (time f = inverseOfMap(phi, Verbosity=>0, MinorsLimit=>0));
-- used 60.1969 seconds

i7 : (time h = inverseMap(phi)); -- Function from "Cremona"
-- used 49.2842 seconds

o7 : RingMap Q <--- Q

i8 : f == rationalMapping h

o8 = true

i9 : g == rationalMapping h

o9 = true

In the previous example, setting MinorsLimit=>0 makes inverseOfMap much slower – approxi-
mately the same speed as the corresponding command from Cremona. The takeaway for the user should
be that changing the options Strategy, HybridLimit, MinorSize, and QuickRank, can make a large
difference in performance.
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We conclude with discussions of the limits of this package. A work attributed to O. Gabber [Bass et al.
1982, Theorem 1.5] shows that if f : Pn

→ Pn is defined by forms of degree d, then its inverse can be
defined by forms of degree dn−1. This bound is sharp, as the map

(xd
0 : x1xd−1

0 : x2xd−1
0 − xd

1 : · · · : xnxd−1
0 − xd

n−1)

has inverse given by forms of degree dn−1; see [Hassanzadeh and Simis 2017]. Thus we might expect that
this family of maps would be good to explore to see the limits of RationalMaps. We ran these examples
with the following code:

R = ZZ/101[x_0..x_n];

L = {x_0^d, x_1*x_0^(d-1)} | toList(apply(2..n, i -> (x_i*x_0^(d-1) + x_(i-1)^d)));

psi = map(R, R, L);

time inv = inverseOfMap(psi, AssumeDominant=>true, CheckBirational=>false, Verbosity=>0);

For n = 3 (we are working on P3), we include a table showing the computation time, in seconds, to
find the inverse map for various values of d. The degrees are those we would expect in this example
(when d = 100, the degree of the forms in the inverse is 10000). Note that Cremona has very similar
performance for these examples in P3 (n = 3), but seems substantially slower than RationalMaps as we
increase the dimension:

d 5 10 20 40 60 80 100

seconds 0.0925 0.0958 0.1402 1.0667 7.2652 37.4577 135.915

However, as the size of projective space increases, this becomes much slower. Here is a table for n = 4:

d 5 8 10 11 12 13 14 15

seconds 0.1523 1.3115 7.4682 14.9912 28.8554 57.1229 120.778 217.706

We conclude with a table for n = 5:

d 3 4 5 6

seconds 0.2619 4.8770 134.424 2713.56

Note the d = 6 case took more than 45 minutes.
Finally, Zhuang He and Lei Yang, working under the direction of Ana-Maria Castravet, communicated

to us that they used RationalMaps to help understand and compute the inverse of a rational map from
P3 to P3; see [He and Lei ≥ 2022]. Quoting Zhuang He, this rational map is “induced by a degree 13
linear system with the base locus at 6 very general points in P3 and 9 lines through them”. From a
computational perspective, this map was given by 4 degree 13 forms, with 485, 467, 467, and 467 terms
respectively. Computing the inverse of this map took several hours, but it was successful.
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SUPPLEMENT. The online supplement contains version 1.0 of RationalMaps.
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Primary decomposition of
squarefree pseudomonomial ideals

ALAN VELIZ-CUBA

ABSTRACT: A squarefree pseudomonomial in K [x1, x2, . . . , xn] is a polynomial of the form z1z2 · · · zr

such that z j ∈ {xi j , xi j −1} for some i j ∈ {1, . . . , n} and the i j ’s are distinct. A squarefree pseudomonomial
ideal is an ideal generated by squarefree pseudomonomials. Here we present the package Pseudomonomial-
PrimaryDecomposition for the computation of the primary decomposition of squarefree pseudomonomial
ideals. Internally, the package performs computation using bitwise logical operations on integers.

1. INTRODUCTION. A squarefree pseudomonomial of a ring K [x1, x2, . . . , xn] is a polynomial of
the form z1z2 · · · zr such that z j ∈ {xi j , xi j − 1} for some i j ∈ {1, . . . , n} and the i j ’s are distinct. A
squarefree pseudomonomial ideal is an ideal that is generated by squarefree pseudomonomials. Squarefree
pseudomonomial ideals appear in the study of problems such as reverse engineering of finite dynamical
systems and in the study of neural coding, where the primary decomposition of these ideals contains
important combinatorial information [Jarrah et al. 2007; Veliz-Cuba 2012; Curto et al. 2013].

In this manuscript we present the theory, algorithm, and implementation of the primary decomposition
computation for squarefree pseudomonomial ideals. We use the structure of squarefree pseudomonomial
ideals to design an efficient algorithm to compute their primary decomposition, similar to existing
algorithms for monomial ideals.

2. THEORY. The theory behind the algorithm is based on the work presented in [Curto et al. 2013]
following similar properties of squarefree monomial ideals [Miller and Sturmfels 2005; Sturmfels 2002].
Here we summarize those results. In this section K denotes a field.

Lemma 2.1. Consider a squarefree pseudomonomial ideal J ⊂ K [x1, . . . , xn]. If f is a squarefree
pseudomonomial such that f ∈ ⟨J, z⟩, where z = xt or z = 1 − xt for some t ∈ {1, . . . , n}, then f ∈ ⟨z⟩ or
(1 − z) f ∈ J.

Proof. Adapted from [Curto et al. 2013]. Since f is a squarefree pseudomonomial, we have that up
to a sign f = z1z2 · · · zr such that z j ∈ {xi j , 1 − xi j } and the i j ’s are distinct. Since J is a squarefree
pseudomonomial ideal, we can write

J = ⟨zg1, . . . , zgk, (1 − z) f1, . . . , (1 − z) fl, h1, . . . , hm⟩,

MSC2010: primary 13P05, 14Q99, 68W30; secondary 92B05, 92B20.
Keywords: primary decomposition, minimal primes, monomials, pseudomonomials.
PseudomonomialPrimaryDecomposition version 0.3
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where gj , f j , and h j are squarefree pseudomonomials that contain no factor z or 1 − z. Thus, f is of the
form

f =

k∑
j=1

u j zgj + (1 − z)
l∑

j=1

vj f j +

m∑
j=1

wj h j + yz,

for some u j , vj , wj , y ∈ K [x1, . . . , xn]. Setting z = 0 (i.e., xt = 0 if z = xt and xt = 1 if z = 1 − xt )
and multiplying by 1 − z yields

(1 − z) f |z=0 = (1 − z)
l∑

j=1

vj |z=0 f j + (1 − z)
m∑

j=1

wj |z=0h j ,

where “|z=0” means evaluated at z = 0. Note that since (1 − z) f j , h j ∈ J, we have that (1 − z) f |z=0 ∈ J.
Now we have 3 cases.

If z is a factor of f , then f ∈ ⟨z⟩.
If 1 − z is a factor of f , say f = (1 − z)z2 · · · zr , then f = (1 − z) f |z=0 ∈ J.
If neither z or 1 − z is a factor of f , then (1 − z) f = (1 − z) f |z=0 ∈ J .
In all cases we obtain f ∈ ⟨z⟩ or (1 − z) f ∈ J. □

Proposition 2.2. Consider a squarefree pseudomonomial ideal J ⊆ K [x1, . . . , xn] and let z1 · · · zr be a
squarefree pseudomonomial. Then,

〈
J,

∏r
j=1 zi

〉
=

⋂r
i=1⟨J, zi ⟩.

Proof. Adapted from [Curto et al. 2013]. Note that we can consider z j ∈ {xi j , 1 − xi j }.
It is clear that

〈
J,

∏r
i=1 zi

〉
⊆ ∩

r
i=1⟨J, zi ⟩.

We now consider f ∈ ∩
r
i=1⟨J, zi ⟩. We have three cases.

If f ∈ ⟨zi ⟩ for all i, then f ∈
〈∏r

i=1 zi
〉
⊆

〈
J,

∏r
i=1 zi

〉
.

If f /∈ ⟨zi ⟩ for some i’s, then without loss of generality we consider f /∈ ⟨zi ⟩ for i = 1, . . . , m and
f ∈ ⟨zi ⟩ for i = m + 1, . . . , r . We can write

f = (1 − z1) f + z1(1 − z2) f + · · · + z1 · · · zm−1(1 − zm) f + z1 · · · zm f.

From Lemma 2.1, (1 − z j ) f ∈ J for j = 1, . . . , m, since f ∈ ⟨J, zi ⟩ and f /∈ ⟨zi ⟩. Then, the first m
terms are in J. Also, since f ∈ ⟨zi ⟩ for i = m + 1, . . . , r , it follows that f ∈ ⟨zm+1 · · · zr ⟩ and then
z1 · · · zm f ∈ ⟨z1 · · · zr ⟩. Thus f ∈

〈
J,

∏r
i=1 zi

〉
. □

Proposition 2.2 provides a concrete way to write an ideal as an intersection of simpler ideals. Using this
result recursively, we will obtain at the end an intersection of ideals of the form ⟨xi1 − a1, . . . , xik − ak⟩,
where aj ∈ {0, 1}, which provide the primary decomposition. We remark that Proposition 2.2 is similar to
Lemma 2.1 in [Sturmfels 2002, monomial ideals chapter]. Also, since each ideal in the intersection is
prime, the ideal is radical, and so the primary decomposition is the set of minimal primes of the ideal.
Before describing the algorithm we show two examples.

Example 2.3. Consider I = ⟨x1, x2(1 − x3), (1 − x2)x4⟩. Using Proposition 2.2 we obtain

I = ⟨x1, x2(1 − x3), 1 − x2⟩ ∩ ⟨x1, x2(1 − x3), x4⟩

= ⟨x1, x2, 1 − x2⟩ ∩ ⟨x1, 1 − x3, 1 − x2⟩ ∩ ⟨x1, x2, x4⟩ ∩ ⟨x1, 1 − x3, x4⟩.
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Since the first ideal in the last equality contains 1, it is not proper, thus we obtain

I = ⟨x1, 1 − x3, 1 − x2⟩ ∩ ⟨x1, x2, x4⟩ ∩ ⟨x1, 1 − x3, x4⟩.

Example 2.4. Consider I = ⟨x1(1 − x2), (1 − x1)x2, x1x2⟩. Using Proposition 2.2 we obtain

I = ⟨x1(1 − x2), (1 − x1)x2, x1⟩ ∩ ⟨x1(1 − x2), (1 − x1)x2, x2⟩

= ⟨(1 − x1)x2, x1⟩ ∩ ⟨x1(1 − x2), x2⟩

= ⟨1 − x1, x1⟩ ∩ ⟨x2, x1⟩ ∩ ⟨x1, x2⟩ ∩ ⟨1 − x2, x2⟩ = ⟨x1, x2⟩.

3. ALGORITHM. The algorithm uses Proposition 2.2 recursively as well as some simplifications seen in
Examples 2.3 and 2.4.

Algorithm for the computation of the primary decomposition of squarefree pseudomonomial ideals.
The algorithm is adapted from [Curto et al. 2013].

Input: A squarefree pseudomonomial ideal J ⊆ K [x1, . . . , xn].
Output: Primary decomposition of J, a list P of primary ideals such that J = ∩I∈P I.

Step 1. Set P = ∅ and D = {J }. Remove redundant generators.

Step 2. For each ideal I ∈D define DI ={⟨I, z1⟩, . . . , ⟨I, zm⟩}, where z1z2 · · · zm is one of the generators
of I of degree greater than 1 and z j ∈ {xi j , xi j − 1}.

Step 3. For each ⟨I, z⟩ found in Step 2, remove redundant generators. Also, remove ideals that have 1
as a generator.

Step 4. Define T =
⋃

I∈D DI and set P := P ∪{I ∈ T : I has linear generators only} and D := {I ∈ T :

I has nonlinear generators}.

Step 5. Repeat Steps 2–4 until D = ∅.

Step 6. Remove redundant ideals of P .

The algorithm is guaranteed to give the primary decomposition because:

• Proposition 2.2 guarantees that I =
⋂

K∈DI
K in Step 2.

• At every step we have J =
⋂

I∈P I ∩
⋂

I∈D I.

• Step 2 reduces the number of nonlinear generators, so the algorithm will terminate after a finite
number of iterations.

• Step 6 results in J = ∩I∈P I such that each ideal in P has linear generators only and hence is primary.

4. IMPLEMENTATION AND EXAMPLES. We implemented the algorithm described in Section 3 using
bitwise logical operations on integers in [Macaulay2]. A squarefree pseudomonomial

P = xi1 · · · xir (xk1 − 1) · · · (xkm − 1)

is encoded as a list of two integers BP :=
{∑r

j=1 2i j ,
∑m

j=1 2kj
}
. Note that the integer

∑r
j=1 2i j represents
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the binary string with 1’s at positions i j and 0’s elsewhere, and the integer
∑m

j=1 2kj represents the binary
string with 1’s at positions kj and 0’s elsewhere. A similar approach was used to compute the Gröbner basis
for Boolean polynomials [Hinkelmann and Arnold 2010]. The advantage of using bitwise representation
is that comparison between polynomials can be done quickly. For example, consider a polynomial P with
bitwise representation BP = {a, b} and a polynomial Q with bitwise representation BQ = {c, d}. Then,
to check whether P divides Q it is enough to check whether a&c = a and b&d = b, where “&” is the
bitwise AND operator.

The package PrimaryDecompositionPseudomonomial uses bitwise logical operations on integers.
However, the input and output of the package are in polynomial form, so the user does not need to
manipulate polynomials in bitwise form. To ensure a correct implementation of the package, we computed
the primary decomposition of over 10,000,000 squarefree pseudomonomial ideals and compared our
results with those of the current implementation of primaryDecomposition in Macaulay2. In all cases,
our results were correct. The package PrimaryDecompositionPseudomonomial exports two functions:
primaryDecompositionPseudomonomial and isSquarefreePseudomonomialIdeal; the first com-
putes the primary decomposition and the second determines whether an ideal is a squarefree pseudomono-
mial ideal. Below are some examples in Macaulay2.

Example 4.1.

i1 : needs "PseudomonomialPrimaryDecomposition.m2"
i2 : R = QQ[x1,x2,x3,x4];
i3 : I = ideal(x1,x2*(1-x3),(1-x2)*x4);
o3 : Ideal of R
i4 : primaryDecomposition I
o4 = {ideal (x4, x3 - 1, x1), ideal (x3 - 1, x2 - 1, x1), ideal (x4, x2, x1)}
o4 : List
i5 : primaryDecompositionPseudomonomial I
o5 = {ideal (x1, x4, x2), ideal (x1, x3 - 1, x2 - 1), ideal (x1, x3 - 1, x4)}
o5 : List

Note that the order of ideals and generators used by primaryDecompositionPseudomonomial and
primaryDecomposition may be different.

Example 4.2.

i1 : needs "PseudomonomialPrimaryDecomposition.m2"
i2 : R = ZZ/3[x1,x2];
i3 : I = ideal(x1*(1-x2),(1-x1)*x2, x1*x2);
o3 : Ideal of R
i4 : primaryDecomposition I
o4 = {ideal (x2, x1, x1*x2)}
o4 : List
i5 : primaryDecompositionPseudomonomial I
o5 = {ideal (x2, x1)}
o5 : List



Veliz-Cuba :::: Primary decomposition of squarefree pseudomonomial ideals 31

Note that primaryDecompositionPseudomonomial finds a minimal set of generators for each ideal.

Example 4.3.
i1 : needs "PseudomonomialPrimaryDecomposition.m2"
i2 : R = ZZ/3[x1,x2];
i3 : I = ideal(x1*(1-x2),(1-x1)*x2, x1*x2,(x1-1)*(x2-1));
o3 : Ideal of R
i4 : primaryDecomposition I
o4 = {}
o4 : List
i5 : primaryDecompositionPseudomonomial I
o5 = {}
o5 : List

The ideal is not proper, so both functions return the empty set.

Example 4.4.
i1 : needs "PseudomonomialPrimaryDecomposition.m2"
i2 : R = ZZ/3[x1,x2];
i3 : I = ideal(x1*(1-x1),(1-x1)*x2, x1*x2);
o3 : Ideal of R
i4 : primaryDecompositionPseudomonomial I
stdio:4:1:(3): error: Not a squarefree pseudomonomial ideal.
i5 : isSquarefreePseudomonomialIdeal I
o5 = false

The algorithm works only with squarefree pseudomonomial ideals.

Example 4.5.
i1 : needs "PseudomonomialPrimaryDecomposition.m2"
i2 : R = ZZ/2[x1,x2,x3,x4,x5,x6,x7,x8,x9];
i3 : I = ideal( (x8+1)*(x7+1)*(x4+1)*x3, (x7+1)*(x6+1)*(x4+1)*x3*(x1+1),

(x8+1)*(x4+1)*x2, (x7+1)*x3*(x1+1), x5*(x4+1)*x3*x1, x5*(x2+1)*x1,
x8*(x6+1)*x5*(x4+1)*x3, x8*(x6+1)*x5*(x2+1), x9*(x7+1)*x5,
x9*(x8+1)*x5*(x4+1)*(x3+1)*x2*x1, x6*(x4+1)*(x3+1)*x2*x1, x8*(x7+1)*x6,
(x8+1)*x5*(x4+1), (x7+1)*x5*x3*(x2+1)*(x1+1), x7*x5*(x4+1)*x2*x1,
x8*x5*x3, x1*(x2+1)*(x3+1)*(x4+1)*(x5+1)*(x6+1)*x7*x8*(x9+1),
x7*x5*(x3+1)*x1, x8*x5*x4*(x2+1) );

o3 : Ideal of R
i4 : timing(primaryDecompositionPseudomonomial I;)
o4 = -- .415975 seconds
o4 : Time
i5 : timing(primaryDecomposition I;)
o5 = -- 42.7676 seconds
o5 : Time

In some cases primaryDecompositionPseudomonomial can be orders of magnitude faster than the
standard algorithm.
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Figure 1. Timings of the function primaryDecompositionPseudomonomial (black)
and primaryDecomposition (dark gray). Timings for minimalPrimes (light gray)
are shown as well, since the ideals are known to be radical. The data was generated by
calculating the average time of the computation of the primary decomposition of squarefree
pseudomonomial ideals I = ⟨p1, p2, . . . , pm⟩ of Z2[x1, . . . , xn], where pi is a randomly
generated squarefree pseudomonomial. The curves show the timings as a function of n for
m = 10 (solid), m = 20 (dashed), and m = 30 (dotted). The sample size for each n and m
was 1000. Some computations were done on the Ohio Supercomputer Center.

Figure 1 shows a comparison between primaryDecompositionPseudomonomial and the current
implementation of primaryDecomposition. For a small number of variables the current implementation
is faster on squarefree pseudomonomial ideals than the implementation we describe in this paper. However,
as the number of variables increases, our implementation is faster for that class of ideals.

SUPPLEMENT. The online supplement contains version 0.3 of PseudomonomialPrimaryDecomposition.
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Noetherian operators in Macaulay2

JUSTIN CHEN, YAIRON CID-RUIZ, MARC HÄRKÖNEN,
ROBERT KRONE AND ANTON LEYKIN

ABSTRACT: A primary module over a polynomial ring can be described by an algebraic variety and a
finite set of Noetherian operators, which are vectors of differential operators with polynomial coefficients.
We implement both symbolic and numerical algorithms to produce such a description in various scenarios,
as well as routines for studying affine schemes and coherent sheaves through the prism of Noetherian
operators and Macaulay dual spaces.

1. INTRODUCTION. The idea of describing ideals in polynomial rings via systems of differential
operators has been brewing since the beginning of the twentieth century. Macaulay [1916] brought forth
the notion of an inverse system, a system of differential conditions that describes a modular system (a
system of polynomials, or a polynomial ideal, in the modern language).

It was apparent to the contemporaries of Macaulay that a finite number of differential conditions
should suffice to describe a 0-dimensional affine or projective scheme. Gröbner [1938] derived explicit
characterizations for ideals that are primary to a rational maximal ideal [Gröbner 1970, p. 174–178].
Moreover, he suggested that the same program can be carried out for any primary ideal [Gröbner 1952, §1].

Despite this early algebraic interest, a complete description of primary ideals and modules in terms
of differential operators was first obtained by analysts in the fundamental principle of Ehrenpreis and
Palamodov [Ehrenpreis 1970; Palamodov 1970]. At the core of this fundamental principle, one has the
following theorem by Palamodov:

Theorem 1.1 (Palamodov). Let R be a polynomial ring R = C[x1, . . . , xn] over the complex numbers,
P ⊆ R be a prime ideal, and Q ⊆ Rk be a P-primary R-module. Then there exist vectors of differential
operators A1, . . . , Am ∈ R⟨∂x1, . . . , ∂xn ⟩

k such that Q = { f ∈ Rk
| Ai • f ∈ P for 1≤ i ≤ m}.

Following the terminology of Palamodov, the differential operators A1, . . . , Am are commonly called
Noetherian operators for the P-primary submodule Q ⊆ Rk . Subsequent algebraic and computational
approaches to characterize primary ideals and modules with the use of differential operators have been
given in [Brumfiel 1978; Oberst 1999; Damiano et al. 2007; Cid-Ruiz 2021; Chen et al. 2022; Cid-Ruiz
et al. 2021; Chen and Cid-Ruiz 2022; Ait El Manssour et al. 2021].

The research of Chen, Härkönen, and Leykin was partially supported by NSF DMS-2001267.
MSC2020: primary 14-04; secondary 13N05, 14Q15, 65D05, 65L80.
Keywords: commutative algebra, computational algebraic geometry, differential algebra, Noetherian operators, dual spaces,
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The purpose of this note is to present a Macaulay2 software package that implements the algorithms for
Noetherian operators introduced in [Chen et al. 2022; Cid-Ruiz et al. 2021; Chen and Cid-Ruiz 2022; Ait
El Manssour et al. 2021] as well as the algorithms for (Macaulay) dual spaces addressed in [Krone and
Leykin 2017a; 2017b; Krone 2013]. While some of these algorithms rely on exact symbolic computation,
the others employ numerical approximations using paradigms of numerical algebraic geometry.

2. COMPUTING NOETHERIAN OPERATORS FROM MODULES. The main method within the package
NoetherianOperators is noetherianOperators, which contains implementations of symbolic algo-
rithms. To represent Noetherian operators, this package introduces a new type called DiffOp, representing
elements in R⟨∂x1, . . . , ∂xn ⟩. The type DiffOp is a wrapper around Vector, with the added feature that
instances of DiffOp in R⟨∂x1, . . . , ∂xn ⟩

k operate on elements of Rk.
The symbolic backbone of the default Noetherian operator computation routine rests on [Chen and

Cid-Ruiz 2022, Theorem 3.2], which can be seen as a “representation theorem” that parametrizes primary
modules via three closely related objects (points in the punctual Quot scheme, differentially closed vector
spaces, and bisubmodules of the Weyl–Noether module).

For a prime ideal P of codimension c, let F be the field of fractions of the integral domain R/P. Up to
a linear change of coordinates, we may (and do) assume that {xc+1, . . . , xn} is a maximal independent set
of variables modulo P, to simplify notation.

We now recall the steps of [Chen and Cid-Ruiz 2022, Algorithm 4.1]. The main idea of this algorithm
is to reduce the study of arbitrary P-primary modules over R to a zero-dimensional setting over the
function field F. This reduction is made by parametrizing P-primary modules with the punctual Quot
scheme Hilbm(F[[y1, . . . , yc]]

k). This is a quasiprojective scheme over the function field F. Its classical
points are F[[y1, . . . , yc]]-submodules V ⊆ F[[y1, . . . , yc]]

k of colength m. If k = 1, the punctual Quot
scheme is known as the punctual Hilbert scheme. For more details regarding punctual Hilbert and Quot
schemes the reader is referred to [Iarrobino 1972; Baranovsky 2000]. We define the inclusion map

γ : R ↪→ F[y1, . . . , yc]
xi 7→ yi + xi , for 1≤ i ≤ c,

x j 7→ x j , for c+ 1≤ j ≤ n,

where xi denotes the class of xi in F, 1≤ i ≤n. With this, we can give the explicit bijective correspondence{
P-primary R-submodules of Rk

with multiplicity m over P

}
←→

{
points in Quotm(F[[y1, . . . , yc]]

k)
}
,

Q −→ V = γ (Q)+⟨y1, . . . , yc⟩
mF[[y1, . . . , yc]]

k,

Q = γ−1(V ) ←− V .

After computing the point V ⊆ Quotm(F[[y1, . . . , yc]]
k) corresponding to a P-primary ideal Q of

multiplicity m over P, the inverse system V⊥ of V is computed. Lastly, an F-basis of V⊥ is lifted to a set
of Noetherian operators for the module Q.

While this is the default strategy used to compute Noetherian operators, it can also be explicitly called
by specifying Strategy => "PunctualQuot", as shown below:
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i1 : needsPackage "NoetherianOperators";
i2 : S = QQ[x_1, x_2, x_3];
i3 : Q = image matrix{{x_1, x_2^2, 0}, {x_3, x_3^2, x_2^2-x_1*x_3}}
o3 = image | x_1 x_2^2 0 |

| x_3 x_3^2 x_2^2-x_1x_3 |
2

o3 : S-module, submodule of S
i4 : associatedPrimes comodule Q

2
o4 = {ideal(x - x x )}

2 1 3
o4 : List
i5 : noetherianOperators(Q, Strategy => "PunctualQuot")
o5 = {| -x_3 |}

| x_1 |
o5 : List

Nonprimary modules can be studied via differential primary decompositions [Chen and Cid-Ruiz 2022,
Algorithm 4.9], implemented in differentialPrimaryDecomposition. The output is a list of pairs
whose first entry is an associated prime and the second entry is a list of Noetherian operators corresponding
to that primary component. Our implementation returns the minimal number of Noetherian operators
required to describe a module, namely the arithmetic multiplicity of the module (amult) [Cid-Ruiz and
Sturmfels 2021, Theorem 4.6]:

i6 : Q = image matrix{{x_1^2, x_2*x_1, 0},{x_3^2,0,x_1^2}};
i7 : amult Q
o7 = 8
i8 : netList differentialPrimaryDecomposition Q

+--------------+--------------------------------------------+
o8 = |ideal x |{| 1 |} |

| 1 | | 0 | |
+--------------+--------------------------------------------+
|ideal (x , x )|{| dx_1 |, | x_3^2dx_1^2 |, | x_3^2dx_1^3 |}|
| 2 1 | | 0 | | -2 | | -6dx_1 | |
+--------------+--------------------------------------------+
|ideal (x , x )|{| 0 |, | 0 |, | 0 |, | 0 |} |
| 3 1 | | 1 | | dx_1 | | dx_3 | | dx_1dx_3 | |
+--------------+--------------------------------------------+

One application of Noetherian operators is in solving systems of PDE with constant coefficients.
The fundamental principle of Ehrenpreis and Palamodov asserts that every distributional solution to a
system of PDE can be represented as an integral of exponential-polynomial solutions with respect to
suitable measures supported on algebraic varieties. The exponential-polynomial solutions correspond to
Noetherian operators, and the varieties correspond to the varieties of the associated primes of the module in
question. See [Ait El Manssour et al. 2021] and the function solvePDE for more details on this viewpoint.

3. COMPUTING NOETHERIAN OPERATORS FROM IDEALS. In this section we discuss additional al-
gorithms that can be used to compute a set of Noetherian operators for primary ideals. Specifying a
value for the option Strategy in the method noetherianOperators allows the user to choose which
symbolic algorithm to use. The method numericalNoetherianOperators implements a numerical
algorithm, which can deal with approximate input. In addition to the algorithm described in Section 2,
we implement the following three algorithms:
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(1) Symbolic algorithm via dual spaces: this algorithm computes Noetherian operators as bases of
Macaulay dual spaces.

(2) Numerical algorithm via interpolation: this algorithm interpolates Noetherian operators from their
specializations at several general points sampled on the underlying variety.

(3) Hybrid symbolic/numerical: this approach optimizes the approach in (1) by using information
obtained from applying the numerical algorithm (2) at one general point on the underlying variety.

We now discuss each algorithm and illustrate its use in the package. Throughout the article, let K

denote a field of characteristic zero, R = K[x1, . . . , xn] a polynomial ring over K, and P ⊆ R a prime
ideal in R. We typically use Q to denote a P-primary ideal, and I to denote a general (not necessarily
primary) ideal which has P as a minimal prime.

3.1. Symbolic algorithm via dual spaces. The next algorithm to compute a set of Noetherian operators
is a direct approach which reduces the problem to linear algebra. For convenience, write t for a maximal
set of independent variables modulo P, and x := {x1, . . . , xn} \ t as the dependent variables. Then in the
localization S :=K(t)[x] of R, the extension of I to S is zero-dimensional. If now I is a zero-dimensional
P-primary ideal, then a set of Noetherian operators for I is the same as a basis for the dual space of I at P
(as will be discussed in Section 5). This in turn can be computed as the kernel of a Macaulay matrix, which
is a matrix over R/P with columns indexed by differential monomials and rows indexed by elements
of I, whose entries are the result of applying a differential monomial to an element of I. As the numbers
of rows and columns increase, the kernel eventually stabilizes, at which point the result is returned.

This is the default strategy used to compute Noetherian operators, when the input is a pair of ideals,
the second of which should be a minimal prime of the first. It can also be explicitly called by specifying
Strategy => "MacaulayMatrix":

i9 : needsPackage "K3Carpets";
i10 : I = carpet(2, 2, Characteristic => 0);
o10 : Ideal of QQ[x ..x , y ..y ]

0 2 0 2
i11 : R = ring I;
i12 : noetherianOperators(I, Strategy => "MacaulayMatrix")
o12 = {| 1 |, | 2y_1dy_0+y_2dy_1 |}
o12 : List

Calling noetherianOperators with a minimal prime ideal P of I as the second argument will
compute a set of Noetherian operators for the P-primary component of I. If I is unmixed, then the result
of applying this method to all associated primes is a differential primary decomposition of I.

i13 : (P1, P2) = (radical I, ideal(R_0 + R_1));
i14 : J = intersect(I, P2^2);
o14 : Ideal of R
i15 : noetherianOperators(J, P1)
o15 = {| 1 |, | 2y_1dy_0+y_2dy_1 |}
o15 : List
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i16 : noetherianOperators(J, P2)
o16 = {| 1 |, | dx_0 |}
o16 : List

3.2. Numerical algorithm via interpolation. We also provide algorithms to compute Noetherian operators
purely from numerical data, bypassing the need to compute Gröbner bases. This is based on computing
a set of specialized Noetherian operators, i.e., the result of evaluating (at some point) all polynomial
coefficients in a set of Noetherian operators. The key observation is that one can obtain a set of specialized
Noetherian operators by suitably slicing the variety [Chen et al. 2022, Theorem 4.1]. More precisely, for
a P-primary ideal Q ⊆ C[t, x] and a point p = (t0, x0) ∈ V (P), a minimal set of specialized Noetherian
operators corresponds to a basis of the dual space of the zero-dimensional ideal Q+(t− t0) at the point p.
The function specializedNoetherianOperators can be used to perform this computation.

i17 : p = point{{1,1,1,1,1,1}};
i18 : specializedNoetherianOperators(I, p, DependentSet => {R_1, R_3, R_4})
o18 = {| 1 |, | 2dy_0+dy_1 |}
o18 : List

Once a set of specialized Noetherian operators has been computed at a single general point, subsequent
computations at other points can be sped up as the monomial support of a valid set of Noetherian operators
is known (this fact also underlies the hybrid approach in Section 3.3). After specialized Noetherian
operators are computed at sufficiently many general points on the variety, the original set of Noetherian
operators can be recovered from their specializations via interpolation of rational functions; see [Chen
et al. 2022, Algorithm 5].

This is the preferred strategy when the input is inexact, although it can also be used for exact input, as
shown here. Note that the value of DependentSet must be specified:

i19 : numericalNoetherianOperators(I, DependentSet => {R_1, R_3, R_4})
-- warning: experimental computation over inexact field begun
-- results not reliable (one warning given per session)

1y
1

o19 = {1, ----dy + 1dy }
.5y 0 1

2
o19 : List

By default, Bertini is used to sample points on V
(√

I
)
. The user can specify their own sampling

function with the option Sampler. The sampler should be a function that takes an integer n and the
ideal I as input, and returns a List of n points on the variety.

i20 : needsPackage"NumericalImplicitization";
i21 : numericalNoetherianOperators(I, DependentSet => {R_1, R_3, R_4},
Sampler => (n,I) -> apply(n, i -> point sub(matrix realPoint radical I, CC)))

y
1

o21 = {1, ----dy + 1dy }
.5y 0 1

2
o21 : List
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3.3. Hybrid symbolic/numerical. In Section 3.1, Noetherian operators are found by computing the
kernel of a Macaulay matrix with entries in the function field K(t), but computations in this field can
be expensive. The numerical approach in Section 3.2 instead specializes the independent variables to
random values. This allows computations to be done in K (typically with K = C) which is cheaper but
the result consists of specializations of the Noetherian operators. A hybrid approach can combine the
best of both strategies. In essence, the information revealed from running the numerical algorithm at
a single point (without performing interpolation) can be used to trim the Macaulay matrix down to a
smaller (optimal) size, without changing the kernel. For more details, we refer the interested reader to
[Chen et al. 2022, Section 4.1].

Specifying Strategy => "Hybrid" with the method noetherianOperators calls this strategy. On
larger examples, this strategy can greatly outperform the approach in Section 3.1.

i22 : noetherianOperators(I, Strategy=>"Hybrid")
o22 = {| 1 |, | 2y_1dy_0+y_2dy_1 |}
o22 : List

As in the numerical algorithm, the user may also specify a sampling function to find a general point.

4. COMPUTING MODULES FROM NOETHERIAN OPERATORS. In this section, we discuss a procedure
that can be seen as the inverse of the process of computing a set of Noetherian operators. First, note that
for any R-bisubmodule E ⊆ R⟨∂x1, . . . , ∂xn ⟩

k, the set

{ f ∈ Rk
| A • f ∈ P for all A ∈ E}

is always a P-primary R-submodule of Rk (see [Cid-Ruiz 2021, Proposition 3.5]). We now consider the
following problem:

Problem 4.1. Given an R-bisubmodule E ⊆ R⟨∂x1, . . . , ∂xn ⟩
k, compute (generators for) the P-primary

submodule { f ∈ Rk
| A • f ∈ P for all A ∈ E}.

This is accomplished by [Chen and Cid-Ruiz 2022, Algorithm 4.3]. The idea is to use the explicit maps
provided in [Chen and Cid-Ruiz 2022, Theorem 3.2] in inverse order to how they appear in [Chen and
Cid-Ruiz 2022, Algorithm 4.1] (i.e., as discussed in Section 2). It should be noted that our implementation
solves the following effective version of the problem above:

Problem 4.1′. Given A1, . . . , Am ∈ R⟨∂x1, . . . , ∂xn ⟩
k, compute the P-primary submodule

{ f ∈ Rk
| A • f ∈ P for all A ∈ E},

where E ⊆ R⟨∂x1, . . . , ∂xn ⟩
k is the R-bisubmodule generated by A1, . . . , Am .

The function getIdealFromNoetherianOperators implements [Cid-Ruiz et al. 2021,Algorithm8.2].
Below we show an example for k=1, in which, given a P-primary ideal Q, we compute a set of Noetherian
operators for Q, and then we recover Q from its Noetherian operators along with P. In general, this
process may result in a different set of generators for Q.
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i23 : R = QQ[x_1,x_2,x_3];
i24 : Q = ideal(x_1^2, x_2^2, x_3^2, x_1*x_2 + x_1*x_3 +x_2*x_3);
o24 : Ideal of R
i25 : L = noetherianOperators Q
o25 = {| 1 |, | dx_1 |, | dx_2 |, | dx_3 |, | dx_1dx_2-dx_1dx_3 |, | dx_1...
o25 : List
i26 : Q’ = getIdealFromNoetherianOperators(L, radical Q)

2 2 2
o26 = ideal (x , x , x x + x x + x x , x )

3 2 1 2 1 3 2 3 1
o26 : Ideal of R
i27 : Q == Q’
o27 = true

5. DUAL SPACES AND LOCAL HILBERT FUNCTIONS. In Section 3, dual spaces were used in service
of computing Noetherian operators. However, dual spaces can also directly provide information about
polynomial ideals. Suppose P is the maximal ideal corresponding to a K-rational point p ∈ Kn, and
I ⊆ R is an ideal with p ∈ V (I ). The dual space of I at P is

DP [I ] := {A ∈ K[∂x1, . . . , ∂xn ] | (A • f )(p)= 0 for all f ∈ I }.

The dual space is a subspace of the space of differential operators on R with constant coefficients and
finite support which uniquely determines IRP , where RP denotes the localization of R at P.

The following dual space algorithms work with numerical data, for example if K = C and the point
associated to P is known only approximately. This is in contrast to symbolic algorithms relying on Gröbner
bases. The methods described in this section were previously part of a package titled NumericalHilbert
which has now been incorporated into NoetherianOperators due to an overlap in functionality.

If P is a minimal prime of I, then the dual space is finite-dimensional, and a basis of the dual
space is a set of Noetherian operators for the P-primary component of I. Otherwise the dual space
is infinite-dimensional, and only a truncation up to a specified degree can be computed. The methods
zeroDimensionalDual and truncatedDual compute a basis for the dual space in these two cases. As
in Section 3.1, these dual spaces are computed as kernels of Macaulay matrices. From a basis of the
dual space truncated to degree d , it is straightforward to compute the local Hilbert function of R/I up to
degree d, and this is implemented as applying hilbertFunction to the generators of a dual space.

i28 : R = CC[x_1,x_2];
i29 : I = ideal{x_1^2 + x_2^2 - 4, (x_1 - 1)^2};
o29 : Ideal of R
i30 : p = point{{1.0, 1.7320508}};
i31 : D = zeroDimensionalDual(p, I)
o31 = | 1 -1.73205x_1+x_2 |
o31 : DualSpace
i32 : apply(3, i -> hilbertFunction(i, D))
o32 = {1, 1, 0}
o32 : List

Another way of truncating the dual space of a positive-dimensional ideal is with respect to a local
elimination order instead of a degree order. In [Krone and Leykin 2017a], this is referred to as an



40 Chen, Cid-Ruiz, Härkönen, Krone and Leykin :::: Noetherian operators in Macaulay2

eliminating dual space. Assume {xc+1, . . . , xn} is a maximal set of independent variables for R/I, and
choose an order that eliminates V = {x1, . . . , xc}. An eliminating dual for I with respect to V truncated
to degree d, denoted Ed

P [I, V ], is defined as the set of dual operators whose lead terms with respect
to the monomial order have degree at most d in the variables V, and is computed with the method
eliminatingDual. When V = {x1}, such a truncated dual space allows one to find the dual space
of the colon ideal I : x1 directly (without requiring the potentially expensive symbolic computation of
finding I : x1):

Ed
P [I : x1, {x1}] = x1 · Ed+1

0 [I, {x1}]

where x1 · A represents the right action of x1 ∈ R on A ∈ K[∂x1, . . . , ∂xn ] (for example x1 · ∂
2
x1
= 2∂x1).

Representations of these colon ideals are needed in [Krone and Leykin 2017a, Algorithm 5.1] for
identifying embedded primes on a curve.

Using [Krone 2013, Algorithm 23], computing truncated dual spaces up to a certain degree provides a
numerical algorithm for finding a full set of generators for the initial ideal of I with respect to a local
degree order, and this is implemented by gCorners. In the process, a standard basis can be computed by
specifying StandardBasis => true.

i33 : gCorners(point p, I)
o33 = | x_2 x_1^2 |

1 2
o33 : Matrix R <--- R

Finding the initial ideal via approximate numerical methods is an essential part of isPointEmbedded,
which implements a numerical algorithm for the detection of an embedded component developed in
[Krone and Leykin 2017b, Algorithm 4.2].

SUPPLEMENT. The online supplement contains version 2.2.1 of NoetherianOperators.
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Computing with jets
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ABSTRACT: We introduce a Macaulay2 package for working with jet schemes. The main method
constructs jets of ideals, polynomial rings and their quotients, ring homomorphisms, affine varieties,
and (hyper)graphs. The package also includes additional methods to compute principal components and
radicals of jets of monomial ideals.

1. INTRODUCTION.
Roughly speaking, the scheme of s-jets of a scheme X is the collection of order s Taylor approximations

at points of X . More formally, let X be a scheme over a field k. Following [Ein and Mustaţă 2009, §2],
we call a scheme Js(X) over k the scheme of s-jets of X , if for every k-algebra A there is a functorial
bijection

Hom(Spec(A),Js(X)) ∼= Hom(Spec(A[t]/⟨t s+1
⟩), X).

This means that the A-points of Js(X) are in bijection with the A[t]/⟨t s+1
⟩-points of X . It follows that

J0(X) ∼= X , and J1(X) is the total tangent scheme of X , in line with the definition of tangent space using
dual numbers [Hartshorne 1977, II, Exercise 2.8]. Jet schemes play an important role in the study of
singularities, as initially suggested by J. Nash [1995], and in connection with other related topics, such
as motivic integration and birational geometry [Denef and Loeser 2001; Mustaţă 2001; 2002; Ein and
Mustaţă 2009].

The existence of jet schemes is proved in detail in [Ein and Mustaţă 2009, §2]. We recall an essential step,
which is the construction of jets of an affine variety. Let X be an affine variety over k. Consider a closed
embedding of X into an affine space An over k. Let I = ⟨ f1, . . . , fr ⟩ be the ideal of R = k[x1, . . . , xn]

corresponding to this embedding. For s ∈ N, define the polynomial ring

Js(R) = k[xi, j | i = 1, . . . , n, j = 0, . . . , s].

For each k = 1, . . . , n, perform the substitution

xk 7→ xk,0 + xk,1t + xk,2t2
+ · · · + xk,s t s

=

s∑
j=0

xk, j t j
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taking elements of R to elements of Js(R)[t]. This substitution is the “universal s-jet” corresponding to
the identity map on Js(X) in the functorial bijection above. Applying this substitution to a generator fi

of I gives the decomposition

fi

( s∑
j=0

x1, j t j , . . . ,

s∑
j=0

xn, j t j
)

=

∑
j⩾0

fi, j t j ,

where the coefficients fi, j are polynomials in Js(R). The ideal of s-jets of I = ⟨ f1, . . . , fr ⟩ is the ideal
of Js(R) defined by

Js(I ) = ⟨ fi, j | i = 1, . . . , r, j = 0, . . . , s⟩.

The scheme of s-jets of X is Spec(Js(R)/Js(I )).
This paper introduces the Jets package1 for [Macaulay2], streamlining the process of constructing

ideals of jets as indicated above. We adopt the following notation: the variables in the polynomial rings
containing the equations of jets have the names of the variables of the original equations with the order of
the jets appended to them, and the same subscripts. Moreover, the rings containing the equations of jets
are constructed incrementally as towers.

Ideals of jets are computed via the jets method applied to objects of type Ideal. In addition, the
jets method can also be applied to objects of type QuotientRing, RingMap, and AffineVariety,
with the effects one would expect from applying jet functors. For more information, including grading
options, we invite the reader to consult the documentation of the package. Each of the following sections
consists of the package being demonstrated in different contexts.

2. JETS OF MONOMIAL IDEALS. As observed in [Goward and Smith 2006], the ideal of jets of a
monomial ideal is typically not a monomial ideal.

i1 : needsPackage "Jets";

i2 : R=QQ[x,y,z];

i3 : I=ideal(x*y*z);

o3 : Ideal of R

i4 : J2I=jets(2,I);

o4 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2]

i5 : netList J2I_*

+---------------------------------------------------------------+
o5 = |y0*z0*x2 + x0*z0*y2 + x0*y0*z2 + z0*x1*y1 + y0*x1*z1 + x0*y1*z1|

+---------------------------------------------------------------+
|y0*z0*x1 + x0*z0*y1 + x0*y0*z1 |
+---------------------------------------------------------------+
|x0*y0*z0 |
+---------------------------------------------------------------+

However, by [Goward and Smith 2006, Theorem 3.1], the radical is always a (squarefree) monomial
ideal. In fact, the proof of [Goward and Smith 2006, Theorem 3.2] shows that the radical is generated
by the individual terms of the generators fi, j described in the introduction. This observation provides
an alternative algorithm for computing radicals of jets of monomial ideals, which can be faster than the

1Available as a supplement to this paper or at https://github.com/galettof/Jets.

https://github.com/galettof/Jets


Galetto and Iammarino :::: Computing with jets 45

default radical computation in Macaulay2.
i6 : jetsRadical(2,I);

o6 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2]

i7 : netList pack(5,oo_*)

+--------+--------+--------+--------+--------+
o7 = |y0*z0*x2|x0*z0*y2|x0*y0*z2|z0*x1*y1|y0*x1*z1|

+--------+--------+--------+--------+--------+
|x0*y1*z1|y0*z0*x1|x0*z0*y1|x0*y0*z1|x0*y0*z0|
+--------+--------+--------+--------+--------+

For a monomial hypersurface, [Goward and Smith 2006, Theorem 3.2] describes the minimal primes
of the ideal of jets. Moreover, the main theorem in [Yuen 2006] counts the multiplicity of the jet scheme
of a monomial hypersurface along its minimal primes (see also [Yuen 2007b]). We compute the minimal
primes, then use Sayfrafi et al.’s LocalRings package to compute their multiplicities in the second jet
scheme of the example above.

i8 : P=minimalPrimes J2I;

i9 : --flatten ring to use LocalRings package
(A,f)=flattenRing ring J2I;

i10 : needsPackage "LocalRings";

i11 : --quotient by jets ideal as a module
M=cokernel gens f J2I;

i12 : --compute the multiplicity of the jets along each component
mult=for p in P list (

Rp := localRing(A,f p);
length(M ** Rp)
);

i13 : netList(pack(4,mingle{P,mult}),HorizontalSpace=>1)

+--------------------+---+--------------------+---+
o13 = | ideal (z0, y0, x0) | 6 | ideal (z0, y0, z1) | 3 |

+--------------------+---+--------------------+---+
| ideal (z0, y0, y1) | 3 | ideal (z0, x0, z1) | 3 |
+--------------------+---+--------------------+---+
| ideal (z0, x0, x1) | 3 | ideal (z0, z1, z2) | 1 |
+--------------------+---+--------------------+---+
| ideal (y0, x0, y1) | 3 | ideal (y0, x0, x1) | 3 |
+--------------------+---+--------------------+---+
| ideal (y0, y1, y2) | 1 | ideal (x0, x1, x2) | 1 |
+--------------------+---+--------------------+---+

3. JETS OF GRAPHS. Jets of graphs were introduced in [Galetto et al. 2021]. Starting with a finite,
simple graph G, one may construct a quadratic squarefree monomial ideal I (G) (known as the edge
ideal of the graph) by converting edges to monomials (see for example [Van Tuyl 2013]). One may then
consider the radical of the ideal of s-jets of I (G), which is again a quadratic squarefree monomial ideal.
The graph corresponding to this ideal is the graph of s-jets of G, denoted Js(G).

Jets of graphs and hypergraphs can be obtained by applying the jets method to objects of type
Graph and HyperGraph from the Macaulay2 EdgeIdeals package [Francisco et al. 2009] (which is
automatically loaded by the Jets package). Consider, for example, the graph in Figure 1.

i1 : needsPackage "Jets";

i2 : R=QQ[a..e];

i3 : G=graph({{a,c},{a,d},{a,e},{b,c},{b,d},{b,e},{c,e}});

https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages
https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages
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a

b

cd

e

Figure 1. The graph G.

We compute the first and second order jets, and list their edges.
i4 : J1G=jets(1,G); netList pack(7,edges J1G)

+--------+--------+--------+--------+--------+--------+--------+
o5 = |{c1, a0}|{d1, a0}|{e1, a0}|{c1, b0}|{d1, b0}|{e1, b0}|{a1, c0}|

+--------+--------+--------+--------+--------+--------+--------+
|{b1, c0}|{e1, c0}|{a0, c0}|{b0, c0}|{a1, d0}|{b1, d0}|{a0, d0}|
+--------+--------+--------+--------+--------+--------+--------+
|{b0, d0}|{a1, e0}|{b1, e0}|{c1, e0}|{a0, e0}|{b0, e0}|{c0, e0}|
+--------+--------+--------+--------+--------+--------+--------+

i6 : J2G=jets(2,G); netList pack(7,edges J2G)

+--------+--------+--------+--------+--------+--------+--------+
o7 = |{a1, c1}|{b1, c1}|{a1, d1}|{b1, d1}|{a1, e1}|{b1, e1}|{c1, e1}|

+--------+--------+--------+--------+--------+--------+--------+
|{c2, a0}|{d2, a0}|{e2, a0}|{c1, a0}|{d1, a0}|{e1, a0}|{c2, b0}|
+--------+--------+--------+--------+--------+--------+--------+
|{d2, b0}|{e2, b0}|{c1, b0}|{d1, b0}|{e1, b0}|{a2, c0}|{b2, c0}|
+--------+--------+--------+--------+--------+--------+--------+
|{e2, c0}|{a1, c0}|{b1, c0}|{e1, c0}|{a0, c0}|{b0, c0}|{a2, d0}|
+--------+--------+--------+--------+--------+--------+--------+
|{b2, d0}|{a1, d0}|{b1, d0}|{a0, d0}|{b0, d0}|{a2, e0}|{b2, e0}|
+--------+--------+--------+--------+--------+--------+--------+
|{c2, e0}|{a1, e0}|{b1, e0}|{c1, e0}|{a0, e0}|{b0, e0}|{c0, e0}|
+--------+--------+--------+--------+--------+--------+--------+

As predicted in [Galetto et al. 2021, Theorem 3.1], all jets have the same chromatic number.
i8 : apply({G,J1G,J2G},chromaticNumber)

o8 = {3, 3, 3}

o8 : List

By contrast, jets may not preserve the property of being cochordal.
i9 : apply({G,J1G,J2G},x -> isChordal complementGraph x)

o9 = {true, true, false}

o9 : List

Using Fröberg’s theorem [1990], we deduce that although the edge ideal of a graph may have a linear
free resolution, the edge ideals of its jets may not have linear resolutions.

Finally, we compare minimal vertex covers of the graph and of its second order jets.
i10 : vertexCovers G

o10 = {a*b*c, a*b*e, c*d*e}

o10 : List

i11 : netList pack(2,vertexCovers J2G)

+--------------------------+--------------------------+
o11 = |a2*b2*c2*a1*b1*c1*a0*b0*c0|a2*b2*e2*a1*b1*e1*a0*b0*e0|

+--------------------------+--------------------------+
|a2*b2*a1*b1*c1*a0*b0*c0*e0|a2*b2*a1*b1*e1*a0*b0*c0*e0|
+--------------------------+--------------------------+
|c2*d2*e2*c1*d1*e1*c0*d0*e0|a1*b1*c1*a0*b0*c0*d0*e0 |
+--------------------------+--------------------------+
|a1*b1*e1*a0*b0*c0*d0*e0 |c1*d1*e1*a0*b0*c0*d0*e0 |
+--------------------------+--------------------------+
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With the exception of the second row, many vertex covers arise as indicated in [Galetto et al. 2021,
Propositions 5.2 and 5.3].

4. JETS OF DETERMINANTAL VARIETIES. Determinantal varieties are classical geometric objects whose
jets have been studied with a certain degree of success [Košir and Sethuraman 2005a; 2005b; Yuen 2007a;
Ghorpade et al. 2014; Docampo 2013; Mallory 2021]. For our example, we consider the determinantal
varieties Xr of 3×3 matrices of rank at most r , which are defined by the vanishing of minors of size r +1.
We illustrate computationally some of the known results about jets.

i1 : needsPackage "Jets";

i2 : R=QQ[x_(1,1)..x_(3,3)];

i3 : G=genericMatrix(R,3,3)

o3 = | x_(1,1) x_(2,1) x_(3,1) |
| x_(1,2) x_(2,2) x_(3,2) |
| x_(1,3) x_(2,3) x_(3,3) |

3 3
o3 : Matrix R <--- R

Since X0 is a single point, its first jet scheme consists of a single (smooth) point.
i4 : I1=minors(1,G);

o4 : Ideal of R

i5 : JI1=jets(1,I1);

o5 : Ideal of QQ[x0 ..x0 ][x1 ..x1 ]
1,1 3,3 1,1 3,3

i6 : dim JI1, isPrime JI1

o6 = (0, true)

o6 : Sequence

The jets of X2 (the determinantal hypersurface) are known to be irreducible (see [Košir and Sethuraman
2005a, Theorem 3.1] or [Docampo 2013, Corollary 4.13]). Since X2 is a complete intersection and has
rational singularities [Weyman 2003, Corollary 6.1.5(b)], this also follows from a more general result of
M. Mustaţă [2001, Theorem 3.3].

i7 : I3=minors(3,G);

o7 : Ideal of R

i8 : JI3=jets(1,I3);

o8 : Ideal of QQ[x0 ..x0 ][x1 ..x1 ]
1,1 3,3 1,1 3,3

i9 : isPrime JI3

o9 = true

For the case of 2×2 minors, [Košir and Sethuraman 2005a, Theorem 5.1], [Yuen 2007a, Theorem 5.1],
and [Docampo 2013, Corollary 4.13] all count the number of components; the first two of these references
describe the components further. As expected, the first jet scheme of X1 has two components, one of
them an affine space.

i10 : I2=minors(2,G);

o10 : Ideal of R
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i11 : JI2=jets(1,I2);

o11 : Ideal of QQ[x0 ..x0 ][x1 ..x1 ]
1,1 3,3 1,1 3,3

i12 : P=primaryDecomposition JI2; #P

o13 = 2

i14 : P_1

o14 = ideal (x0 , x0 , x0 , x0 , x0 , x0 , x0 , x0 , x0 )
3,3 3,2 3,1 2,3 2,2 2,1 1,3 1,2 1,1

o14 : Ideal of QQ[x0 ..x0 ][x1 ..x1 ]
1,1 3,3 1,1 3,3

The other component is the so-called principal component of the jet scheme, i.e., the Zariski closure of
the first jets of the smooth locus of X1. To check this, we first establish that the first jet scheme is reduced
(i.e., its ideal is radical), then use the principalComponent method with the option Saturate=>false
to speed up computations. (We invite the reader to consult the package documentation for more details.)

i15 : radical JI2==JI2

o15 = true

i16 : P_0 == principalComponent(1,I2,Saturate=>false)

o16 = true

Finally, as observed in [Ghorpade et al. 2014, Theorem 18], the Hilbert series of the principal component
of the first jet scheme of X1 is the square of the Hilbert series of X1.

i17 : apply({P_0,I2}, X -> hilbertSeries(X,Reduce=>true))

2 3 4 2
1 + 8T + 18T + 8T + T 1 + 4T + T

o17 = {------------------------, -----------}
10 5

(1 - T) (1 - T)

o17 : List

i18 : numerator (first oo) == (numerator last oo)^2

o18 = true

SUPPLEMENT. The online supplement contains version 1.1 of Jets.
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