
Journal of Software for

Algebra and Geometry

vol 13 2023



1





JSAG 13 (2023), 1–12 The Journal of Software for
https://doi.org/10.2140/jsag.2023.13.1 Algebra and Geometry

Algorithms for computing mixed multiplicities, mixed volumes, and
sectional Milnor numbers

KRITI GOEL, VIVEK MUKUNDAN, SUDESHNA ROY AND JUGAL VERMA

ABSTRACT: We present a package MixedMultiplicity for computing mixed multiplicities of ideals
in a Noetherian ring which is either local or a standard graded algebra over a field. This enables us to
find mixed volumes of convex lattice polytopes and sectional Milnor numbers of hypersurfaces with an
isolated singularity. The algorithms make use of the defining equations of the multi-Rees algebra of ideals,
which are obtained by generalising a result of Cox, Lin and Sosa.

1. INTRODUCTION. This article describes the [Macaulay2] package MixedMultiplicity which com-
putes the mixed multiplicities of ideals having positive grade in a Noetherian ring, the mixed volume of a
collection of convex lattice polytopes, and sectional Milnor numbers of hypersurfaces with an isolated
singularity. One of the main steps of the algorithms is the computation of the defining equations of the
multi-Rees algebra

R(I1, . . . , Is) = R[I1t1, . . . , Is ts] =

⊕
a1,...,as≥0

I a1
1 · · · I as

s ta1
1 · · · tas

s ⊆ R[t1, . . . , ts]

of ideals I1, . . . , Is in a Noetherian ring R. For the case when R is a polynomial ring over any field k
and I1, . . . , Is are monomial ideals in R, an explicit formula for the defining equations of R(I1, . . . , Is)

has been given by D. Cox, K.-N. Lin, and G. Sosa in [Cox et al. 2019]. In Theorem 2.1, we obtain an
analogue of their result for any set of ideals I1, . . . , Is in a Noetherian ring R such that each Ii has positive
grade. The latter condition is always satisfied when R is a domain or for any ideal of positive height in
a reduced ring or in a Cohen–Macaulay ring. Using this result, we write a function multiReesIdeal
to compute the defining ideal of a multi-Rees algebra in Macaulay2. It should be noted that the command
reesIdeal in the Macaulay2 package ReesAlgebra [Eisenbud 2018] is already available to compute the
defining ideal of the Rees algebra of a module [Eisenbud et al. 2003], in particular, the defining ideal of a
multi-Rees algebra. But, the algorithm presented in this article runs faster in many cases. When the ring
is not a domain, the algorithm follows an analogue of the reesIdeal, albeit for the multiple ideal setting.

Several authors (see for instance, [Ribbe 1999; Lin and Polini 2014; Sosa 2014; Jabarnejad 2018]) have
proposed algorithms to determine the defining equations of the multi-Rees algebra for specific classes of
ideals. The algorithm for computing defining equations of R(I1, . . . , Is) helps us to construct algorithms

MSC2020: 13-04, 13A30, 13H15.
Keywords: multi-Rees algebras, mixed multiplicities, sectional Milnor numbers, mixed volume.
MixedMultiplicity version 3.0

© 2023 The Authors, under license to MSP (Mathematical Sciences Publishers).

https://doi.org/10.2140/jsag.2023.13-1
http://msp.org/jsag
https://doi.org/10.2140/jsag.2023.13.1
http://msp.org/jsag


2 Goel, Mukundan, Roy and Verma :::: Algorithms for computing mixed multiplicities

to compute mixed multiplicities (Section 3), mixed volume (Section 4) and sectional Milnor numbers
(Section 5) in the general setting. Observe that to compute mixed multiplicities of ideals one can always
assume each ideal to have positive grade using a standard trick (see Remark 3.3).

For any ideal J in a Noetherian ring R, we denote the common length of the maximal R-sequences in
J by grade(J ). Let I0, I1, . . . , Ir be a set of ideals in a Noetherian ring of dimension d ≥ 1, which is
either local or a standard graded algebra over a field. Further assume that I0 is primary to the maximal
ideal (resp. maximal graded ideal) and grade(I j ) > 0 for all j . Let a = (a0, a1, . . . , ar ) ∈ Nr+1 with
|a| = d − 1. The function mixedMultiplicity computes the mixed multiplicity ea(I0 | I1, . . . , Ir ).
Using the results of N. V. Trung, J. K. Verma and B. Teissier, mixed volumes and sectional Milnor
numbers can be identified with mixed multiplicities of ideals over polynomial rings. Let Q1, . . . , Qn

be a collection of lattice polytopes in Rn . The function mMixedVolume computes the mixed volume of
Q1, . . . , Qn . Let R = k[x1, . . . , xn] be a polynomial ring in n variables, m be the maximal graded ideal
and f ∈ R be any polynomial. The function secMilnorNumbers computes the sectional Milnor numbers
by calculating the mixed multiplicities e(m[n−i], J ( f )[i]), 0 ≤ i ≤ n − 1, where J ( f ) = ( fx1, . . . , fxn ) is
the ideal generated by the partial derivatives of f . Many researchers, including M. Herrmann et al. [1997],
J. K. Verma [1992], and C. D’Cruz [2003], have expressed the multiplicities of Rees algebras, extended
Rees algebras, and certain form rings in terms of mixed multiplicities. The MixedMultiplicity package
is also helpful in this regard. For any unexplained invariants and definitions used in this article, the reader
may refer to [Bruns and Herzog 1993], [Eisenbud et al. 2003], and [Huneke and Swanson 2006].

2. DEFINING IDEAL OF MULTI-REES ALGEBRA OF IDEALS. An explicit formula for the defining ideal
of the multi-Rees algebra of a finite collection of monomial ideals in a polynomial ring was given in [Cox
et al. 2019]. In this section, we generalize their result to find the defining ideal of the multi-Rees algebra
of a collection of ideals with positive grade in a Noetherian ring. We use this result to write a Macaulay2
algorithm to compute the defining ideal when the base ring is a domain. We provide another algorithm
for the nondomain case.

Let R be a Noetherian ring and I1, . . . , Is ⊆ R be ideals. Suppose that Ii = ⟨ fi j | j = 1, . . . , ni ⟩

for all i = 1, . . . , s. Let R(I1, . . . , Is) be the multi-Rees algebra of ideals I1, . . . , Is . Consider the
set of indeterminates Y = {Yi j | i = 1, . . . , s, j = 1, . . . , ni } and T = (T1, . . . , Ts) over R. Define an
R-algebra homomorphism R[Y ]

ϕ
−→ R(I1, . . . , Is) ⊆ R[T ] such that ϕ(Yi j ) = fi j Ti , for all i = 1, . . . , s,

j = 1, . . . , ni and ϕ(r) = r for all r ∈ R. Then R(I1, . . . , Is) ≃ R[Y ]/ ker(ϕ). The ideal ker ϕ is called
the defining ideal of R(I1, . . . , Is). We give an explicit description of ker(ϕ).

Theorem 2.1. Let R be a Noetherian ring and I1, . . . , Is ⊆ R be ideals of positive grade. For each i ,
consider a generating set { fi j | j = 1, . . . , ni } of Ii which contains at least one nonzerodivisor fi ji . We
set h =

∏s
i=1 fi ji and set

0 = ⟨Yi j fi j ′ − Yi j ′ fi j | i = 1, . . . , s and j, j ′
∈ {1, . . . , ni }⟩ : h∞

⊆ R[Y ].

Then 0 ⊆ R[Y ] is the defining ideal of R(I1, . . . , Is).



Goel, Mukundan, Roy and Verma :::: Algorithms for computing mixed multiplicities 3

Proof. Without loss of generality, we may assume that ji = 1 for all i = 1, . . . , s and h =
∏s

i=1 fi1.
Consider the ring homomorphism φ : R → R[ f −1

11 , f −1
21 , . . . , f −1

s1 ] ∼= R[h−1
], which induces a nat-

ural map φ̃ : R[Y ] → R[h−1
][Y ] ∼= R[Y ]h . The defining ideal of R(φ(I1), . . . , φ(Is)) of the ideals

φ(Ii ) = (1, fi2/ fi1, . . . , fini / fi1) for i = 1, . . . , s, is J := J1 + · · · + Js in R[h−1
][Y ] ∼= R[Y ]h , where

Ji := (Yi2 − fi2/ fi1Yi1, . . . , Yini − fini / fi1Yi1). We claim that φ̃−1(J ) = 0. Observe that for all j ̸= j ′,
and for all i ,

fi j Yi j ′ − fi j ′Yi j = fi j

(
Yi j ′ −

fi j ′

fi1
Yi1

)
− fi j ′

(
Yi j −

fi j

fi1
Yi1

)
∈ Ji .

So 0 ⊆ φ̃−1(J ). Now let r ∈ φ̃−1(J ). Then φ̃(r) ∈ J , i.e.,

r
1

=

s∑
i=1

ni∑
j=2

ai j

f mi j
i1

(
Yi j −

fi j

fi1
Yi1

)
for some ai j ∈ R. Thus we have

hmr ∈ ( fi1Yi j − fi j Yi1 | 1 ≤ i ≤ s, 1 ≤ j ≤ ni ) ⊆ ( fi j Yi j ′ − fi j ′Yi j | 1 ≤ i ≤ s, 1 ≤ j, j ′
≤ ni )

for some m ≥ max{mi j | 1 ≤ i ≤ s, 1 ≤ j ≤ ni } + 1. Therefore, r ∈ 0 and hence the claim holds.
From [Atiyah and Macdonald 2016, Proposition 3.11 (iii)], we get that φ̃−1(J ) is the defining ideal of
R(I1, . . . , Is), as ht is a nonzerodivisor on R[Y ]/0 for all t ≥ 1. □

When R is a domain or when a list of nonzerodivisors (one each from the list of ideals with positive
grades) is provided by the user, the function multiReesIdeal computes the defining ideal of the
multi-Rees algebra using Theorem 2.1.

Algorithm (version I: multiReesIdeal, set of ideals with positive grade). Let I1, . . . , Is be ideals of
a Noetherian ring R with grade Ii > 0 for all i and let a1, . . . , as be a set of nonzerodivisors, where ai

belongs to the generating set of Ii for all i . When R is a domain, the function picks ai to be the first
element in the generating set of Ii for each i .

Input: The list W = {{I1, . . . , Is}, {a1, . . . , as}}, or W = {I1, . . . , Is} if R is a domain.

(1) Define a polynomial ring S by attaching m indeterminates to the ring R, where m is the sum of the
number of generators of all the ideals.

(2) For each ideal Ii , construct a matrix M(i) whose first row consists of the generators of the ideal and
the second row consists of the indeterminates.

(3) Add the 2 × 2 minors of these matrices to get an ideal L .

(4) To get the defining ideal, saturate L with the product of ai ’s.

Output: The defining ideal of the Rees algebra R(I1, . . . , Is).

The elements of the defining ideal are assigned Ns+1 degree by the function, where the first Ns

coordinates point to the component of R(I1, . . . , Is) where the element lies and the last coordinate is the



4 Goel, Mukundan, Roy and Verma :::: Algorithms for computing mixed multiplicities

degree of the element. In order to compute the multi-Rees ideal R(I, J ) using the function reesIdeal,
one needs to enter I ⊕ J and this routine is sometimes slower than the multiReesIdeal routine.

Example 2.2.
i1 : R = QQ[x,y,z];

i2 : I = ideal(x^4+y^2*z^2,x*y^2*z);

i3 : J = ideal(y^3+z^3, x^2*y+x*z^2);

i4 : time multiReesIdeal {I,J};
-- used 0.0131127 seconds

i5 : transpose gens oo

o5 = {0,-1,-6} | (x2y+xz2)X_2+(-y3-z3)X_3 |
{-1,0,-8} | xy2zX_0+(-x4-y2z2)X_1 |

i6 : (first entries gens o4)/degree

o6 : {{0, 1, 6}, {1, 0, 8}}

i7 : time multiReesIdeal({I,J},{I_1, J_0});
-- used 0.0629737 seconds

i8 : M = directSum(module I, module J);

i9 : time reesIdeal M;
-- used 0.40043 seconds

In the following example, our algorithm works faster than the function reesIdeal.

Example 2.3.
i1 : ZZ/32003[y_0..y_4];

i2 : C = trim monomialCurveIdeal(R, {3, 5, 7, 12});

i3 : time multiReesIdeal (C, C_0);
-- used 167.118 seconds

i4 : time reesIdeal (C, C_0);
-- used 295.675 seconds

2.1. Routine for the nondomain case. In this section we present an algorithm to find the defining ideal
of the Rees algebra using the definitions of Rees algebra. This method does not have any requirements on
the grade of the ideals or the domain-ness of the ring, but it seems to be slower than the previous method.

We can construct the Rees algebra of Ii as the kernel of the map ϕi : R[Yi1, . . . , Yini ] → R[Ti ]

where ϕi (Yi j ) = fi j Ti for j = 1, . . . , ni . Notice that (ker ϕi )R[Y ] ⊆ ker ϕ. Suppose that φi is the
presentation matrix of Ii . Then the symmetric algebra Sym(Ii ) has a presentation R[Yi1, . . . , Yini ]/Li

where Li = I1([Yi1, . . . , Yini ] · φi ). Clearly, Li ⊆ ker ϕi ⊂ ker ϕ. So the map ϕi factors through the
symmetric algebra Sym(Ii ). Now Sym(I1)⊗ · · · ⊗ Sym(Is) has the presentation R[Y ]/(L1 + · · · + Ls).
Since Li ⊆ ker ϕ, the map ϕ also factors through Sym(I1) ⊗ · · · ⊗ Sym(Is). Thus to find the defining
ideal of the multi Rees algebra R(I1, . . . , Is) it is enough to find the kernel of the surjective map
Sym(I1) ⊗ · · · ⊗ Sym(Is) → R(I1, . . . , Is).

Algorithm (version II: multiReesIdeal, no assumptions). Let I1, . . . , Is be ideals in the Noetherian
ring R.

Input: The list W = {I1, . . . , Is}.



Goel, Mukundan, Roy and Verma :::: Algorithms for computing mixed multiplicities 5

(1) For each ideal Ii , compute the presentation F ′

i
φi
−→ Fi → Ri → 0 where φi is the presentation matrix

of Ii .

(2) Now compute the source symmetric algebra Sym(F ′

1) ⊗ · · · ⊗ Sym(F ′
s) and the target symmetric

algebra Sym(F1) ⊗ · · · ⊗ Sym(Fs) of the map φ1 ⊗ · · · ⊗φs .

(3) Compute the map between the symmetric algebra of the source and target and return the kernel of
the above map.

Output: The defining ideal of the Rees algebra R(I1, . . . , Is).

In the following example, the ring U is not a domain and hence the algorithm uses the above method.
As expected, the computational time in the case where a nonzerodivisor is given as an optional input is
faster than the case where no optional input is given.

Example 2.4.
i1 : T = QQ[a,b,c];

i2 : m = matrix{{a,b,c},{b,c,a}};

i3 : U = T/minors(2,m);

i4 : J = ideal vars U;

i5 : time multiReesIdeal J;
-- used 0.0977545 seconds

i6 : time multiReesIdeal (J, a);
-- used 0.0142101 seconds

3. COMPUTATION OF MIXED MULTIPLICITIES OF IDEALS. Let I1, . . . , Ir be ideals of positive height in
a local ring (A,m) (or a standard graded algebra over a field and m be the maximal graded ideal) and let
I0 be an m-primary ideal. In [Katz and Verma 1989], the authors prove ℓ(I u0

0 I u1
1 · · · I ur

r /I u0+1
0 I u1

1 · · · I ur
r )

is a polynomial P(u), for ui large, where u = (u0, . . . , ur ). Write this polynomial in the form

P(u) =

∑
α∈Nr+1

|α|=t

1
α!

eα(I0 | I1, . . . , Ir )uα
+ lower degree terms,

where t = deg P(u), α = (α0, . . . , αr ) ∈ Nr+1, α! =
∏r

i=0 αi ! and |α| =
∑r

i=0 αi . If |α| = t , then
eα(I0 | I1, . . . , Ir ) are called the mixed multiplicities of the ideals I0, I1, . . . , Ir .

Theorem 3.1 [Trung and Verma 2007, Theorem 1.2]. Set

R = R(I0 | I1, . . . , Ir ) =

⊕
(u0,u1,...,ur )∈Nr+1

I u0
0 I u1

1 · · · I ur
r

I u0+1
0 I u1

1 · · · I ur
r

.

Assume that d = dim A/(0 : I ∞) ≥ 1, where I = I1 · · · Ir . Then deg PR(u) = d − 1, where PR(u) is the
Hilbert polynomial of R.

In [Verma et al. 1994], D. Katz, S. Mandal, and J. K. Verma found a precise formula for the Hilbert
polynomial of the quotient of a bigraded algebra over an Artinian local ring. This result can be generalized



6 Goel, Mukundan, Roy and Verma :::: Algorithms for computing mixed multiplicities

to the case of the quotient of a multigraded algebra over an Artinian local ring and we skip the proof as the
technique is similar. Let S be an Artinian local ring and A = S[X1, . . . , Xr ] be an Nr -graded ring over S,
where for 1 ≤ i ≤ r , X i = {X i (0), . . . , X i (si )} is a set of indeterminates. Set u = (u1, . . . , ur ) ∈ Nr and
|u| = u1 +· · ·+ur . Then A =

⊕
u∈Nr Au , where Au is the S-module generated by monomials of the form

P1 · · · Pr , where Pi is a monomial of degree ui in X i . An element in Au is called multihomogeneous of
degree u. An ideal I ⊆ A generated by multihomogeneous elements is called a multihomogeneous ideal.
Then R = A/I is an Nr -graded algebra with u-graded component Ru = Au/Iu . The Hilbert function of R is
defined as H(u)=λ(Ru), where λ denotes the length as an S-module. Set tu

= tu1
1 · · · tur

r . The Hilbert series
of R is given by H S(R, t)=

∑
u∈Nr λ(Ru)tu . Then there exists a polynomial N (t1, . . . , tr )∈ Z[t1, . . . , tr ]

so that H S(R, t) = N (t1, . . . , tr )/((1 − t1)s1+1
· · · (1 − tr )sr +1).

Theorem 3.2. Write the Hilbert polynomial of R as

P(u, R) =

s∑
α=0

cα

(
u1 + α1

α1

)
· · ·

(
ur + αr

αr

)
. (1)

Then

cα =
(−1)|s−α|

(s1 − α1)! · · · (sr − αr )!
·

∂ |s−α|N

∂t s1−α1
1 · · · ∂t sr −αr

r

∣∣∣∣
(t1,...,tr )=1

.

Note that (
ui + αi

αi

)
=

1
αi !

uαi
i + lower degree terms.

So if we write P(u) as in (1), then cα = eα for all α ∈ Nr+1 with |α| = d − 1. Therefore, Theorem 3.2
gives an expression for eα.

Remark 3.3. Let I ′

0, I ′

1, . . . , I ′
r denote the images of ideals I0, I1, . . . , Ir in the ring A/(0 : I ∞), where

I = I1 · · · Ir . Put R′
= R(I ′

0|I
′

1, . . . , I ′
r ). Then for u large, PR(u) = PR′(u) (see [Trung and Verma 2007,

Theorem 1.2] for details). Therefore, in the case where grade Ii = 0 for some i , the user needs to work in
the quotient ring A/(0 : I ∞) and input the images of the ideals in the quotient ring.

Algorithm. The algorithm for the function mixedMultiplicity uses the above ideas. Let I0, I1, . . . , Ir

be a set of ideals of a Noetherian ring R of dimension d ≥ 1, where I0 is primary to the maximal ideal
and grade(Ii ) > 0 for all i ; a = (a0, a1, . . . , ar ) ∈ Nr+1 with |a| = d − 1.

Input: The sequence W = ((I0, I1, . . . , Ir ), (a0, a1, . . . , ar )).

(1) Compute the defining ideal of the multi-Rees algebra using the function multiReesIdeal and use
it to find the Hilbert series of R(I0 | I1, . . . , Ir ).

(2) Extract the powers of (1 − Ti ) in the denominator of the Hilbert series.

(3) Calculate ea using the formula given in Theorem 3.2.

Output: The mixed multiplicity ea(I0 | I1, . . . , Ir ).



Goel, Mukundan, Roy and Verma :::: Algorithms for computing mixed multiplicities 7

Example 3.4.
i1 : R = QQ[x,y,z,w];

i2 : I = ideal(x*y*w^3,x^2*y*w^2,x*y^3*w,x*y*z^3); m = ideal vars R;

i3 : mixedMultiplicity ((m,I,I,I),(0,1,1,1))

o3 = 6

When some ideal has grade zero, the following example explains how to compute the mixed multiplicity
by using the fact that (0 : I ∞) = (0 : (I t)∞) for all t ≥ 1.

Example 3.5. Let S = Q[x, y, z, w]/(xz, yz), m = (x, y, z, w), and I = (x, y). Notice that grade I = 0,
since I ∈ Ass S.

i1 : S = QQ[x,y,z,w]/ideal(x*z, y*z);

i2 : I = ideal(x,y);

i3 : m = ideal vars S;

i4 : L = saturate(sub(ideal 0, S), I);

i5 : T = S/L;

i6 : J = sub(I,T); n = sub(m,T);

i7 : dim T

o7 = 3

i8 : mixedMultiplicity((n,J,J,J),(1,0,1,0))

o8 = 1

To calculate mixed multiplicities, the function mixedMultiplicity computes the Hilbert polynomial
of the graded ring

⊕
I u0
0 I u1

1 · · · I ur
r /I u0+1

0 I u1
1 · · · I ur

r . In particular, if I1, . . . , Ir are also m-primary
ideals, then e(a0,a1,...,ar )(I0 | I1, . . . , Ir ) = e(I [a0+1]

0 , I [a1]
1 , . . . , I [ar ]

r ) (see [Huneke and Swanson 2006,
Definition 17.4.3]). So to compute the (a0 + 1, a1, . . . , ar )-th mixed multiplicity of I0, I1, . . . , Ir , one
needs to enter the sequence (a0, a1, . . . , ar ) in the function. The same is illustrated in the following
example.

Example 3.6.
i1 : R = QQ[x,y,z];

i2 : m = ideal vars R;

i3 : f = z^5 + x*y^7 + x^15;

i4 : I = ideal(apply(0..2, i -> diff(R_i,f)));

i5 : mixedMultiplicity ((m,I),(2,0))

o5 = 1

i6 : mixedMultiplicity ((m,I),(1,1))

o6 = 4

4. MIXED VOLUME OF LATTICE POLYTOPES. The Minkowski sum of two polytopes P and Q in Rn

is defined as the polytope P + Q = {a + b | a ∈ P, b ∈ Q}. The n-dimensional mixed volume of a
collection of n polytopes Q1, . . . , Qn in Rn , denoted by MVn(Q1, . . . , Qn), is the coefficient of λ1 · · · λn

in voln(λ1 Q1 + · · · + λn Qn). Given a collection of lattice polytopes in Rn , Trung and Verma proved that
MVn(Q1, . . . , Qn) is equal to a mixed multiplicity of a set of homogeneous ideals.



8 Goel, Mukundan, Roy and Verma :::: Algorithms for computing mixed multiplicities

Corollary 4.1 [Trung and Verma 2007, Corollary 2.5]. Let Q1, . . . , Qn be an arbitrary collection of
lattice polytopes in Rn . Let R = k[x0, x1, . . . , xn] and let m be the maximal graded ideal of R. Let Mi be
any set of monomials of the same degree in R such that Qi is the convex hull of the lattice points of their
dehomogenized monomials in k[x1, . . . , xn]. Let I j be the ideal of R generated by the monomials of M j .
Then MVn(Q1, . . . , Qn) = e(0,1,...,1)(m | I1, . . . , In).

We use this result to construct an algorithm which calculates the mixed volume of a collection of lattice
polytopes. We also give an algorithm which outputs the homogeneous ideal corresponding to the vertices
of a lattice polytope.

Let Q be a lattice polytope in Rn with the set of vertices {p1, . . . , pr } ⊆ Nn . We first compute the corre-
sponding homogeneous ideal I in the ring R = k[x1, . . . , xn+1]. We write a function homIdealPolytope
which requires as input the list W = {p1, p2, . . . , pr } and produces as output the homogeneous ideal
corresponding to the lattice points of Q.

We write a function mMixedVolume to calculate the mixed volume of a collection of n lattice polytopes
in Rn . Let Q1, . . . , Qn be an arbitrary collection of lattice polytopes in Rn . Let R = k[x1, . . . , xn+1] and
let Ii be the homogeneous ideal of R such that the polytope Qi is the convex hull of the lattice points of
the dehomogenization of a set of monomials that generates Ii in k[x1, . . . , xn], for all i . Each of these
homogeneous ideals can be obtained by giving the lattice points of each polytope as input in the function
homIdealPolytope. The function mMixedVolume takes the list {I1, . . . , In} as input and produces the
mixed volume of Q1, . . . , Qn as output. The function can also take the list of lists of vertices of the
polytope as input to compute their mixed volume. Since calculating the mixed volume is the same as
calculating a mixed multiplicity, the algorithm of the function mMixedVolume is similar to the algorithm
of the function mixedMultiplicity.

Example 4.2. We calculate the mixed volume of a cross polytope. An n-cross polytope βn is the convex
hull of the points formed by permuting the coordinates of (±1, 0, . . . , 0) ∈ Rn:

βn = {(x1, . . . , xn) ∈ Rn
| |x1| + · · · + |xn| ≤ 1}

= conv{(±1, 0, . . . , 0), (0, ±1, 0, . . . , 0), . . . , (0, 0, . . . , 0, ±1)}.

The volume of an n-cross polytope is 2n/n! [Betke and Henk 1993, Theorem 2.1] and hence the mixed
volume is 2n . We say that a polytope is a (0, 1)-polytope if its vertex set is a subset of {0, 1}

d of the unit cube.
In this example, we calculate the mixed volume of a 2-cross polytope and a 2-dimensional (0, 1)-polytope.

i1 : A = {(0,1),(1,0),(0,-1),(-1,0)};

i2 : mMixedVolume {A,A}

o2 = 4

i3 : I = homIdealPolytope A;

i4 : B = {(0,0),(0,1),(1,0),(1,1)};

i5 : J = homIdealPolytope B;

i6 : mMixedVolume {I, sub(J, vars ring I)}

o6 = 4



Goel, Mukundan, Roy and Verma :::: Algorithms for computing mixed multiplicities 9

The proposed function mMixedVolume takes less time to compute the mixed volume of a 3-cross
polytope than the existing function mixedVolume in the Polyhedra package.

i1 : needsPackage "Polyhedra";

i2 : Q = crossPolytope 3;

i3 : time mixedVolume {Q,Q,Q};
-- used 238.277 seconds

------- n-cross polytope

i4 : CP = n -> ( U = (i,p) -> (1..n)/(j -> if j == i then p else 0);
flatten toList apply(1..n, i -> toList(U(i,1), U(i,-1))) );

i5 : time mMixedVolume {CP(3),CP(3),CP(3)}
-- used 3.71303 seconds

o5 = 8

5. SECTIONAL MILNOR NUMBERS. In this section, we give an algorithm to compute the sectional
Milnor numbers. We use Teissier’s observation of identifying the sectional Milnor numbers with mixed
multiplicities to achieve this task. Teissier [1973] conjectured that invariance of the Milnor number
implies invariance of the sectional Milnor numbers. The conjecture was disproved by Joël Briançon and
Jean-Paul Speder. We verify their example using our algorithm.

Suppose the origin is an isolated singular point of a complex analytic hypersurface H = V ( f ) ⊂ Cn+1.
Let fzi denote the partial derivative of f with respect to zi . Set

µ = dimC

C{z0, z1, . . . , zn}

( fz0, fz1, . . . , fzn )
.

The number µ is called the Milnor number of the hypersurface H at the origin. Teissier, in his Cargèse
paper [1973], refined the notion of Milnor number by replacing it with a sequence of Milnor numbers
of intersections with general linear subspaces. Let (X, x) be a germ of a hypersurface in Cn+1 with an
isolated singularity. The Milnor number of X ∩ E , where E is a general linear subspace of dimension i
passing through x , is called the i th-sectional Milnor number of X . It is denoted by µ(i)(X, x). Let
J ( f ) = ( fz0, . . . , fzn ) be the Jacobian ideal. In 1973, Teissier proved that the i th-mixed multiplicity,
e(m[n−i], J ( f )[i]), is equal to the i th-sectional Milnor number of the singularity. Here m= (z0, z1, . . . , zn).

Let R = C[x1, . . . , xn] be a polynomial ring in n variables, let m be the maximal graded ideal and
let f ∈ R be any polynomial with an isolated singularity at the origin. Using Theorem 3.2, one can
now calculate the mixed multiplicities of m and J ( f ). We use the ideas in the previous section to
write a function secMilnorNumbers for computing the first n − 1 sectional Milnor numbers. With
a polynomial f given as input, the algorithm calculates the Jacobian ideal of f and then using the
function multiReesIdeal, it finds the defining ideal of R(m, J ( f )). This helps to compute the Hilbert
series of the special fiber F(m, J ( f )) = R(m, J ( f )) ⊗R R/m. Using the formula given in Theorem 3.2,
it then calculates the mixed multiplicities. Note that the nth-sectional Milnor number is the Milnor
number of the hypersurface f at the origin. So under the extra assumption that the ideal J ( f ) is
m-primary, we have µ(n)(X, 0) = dimC R/J ( f ). Together, the function secMilnorNumbers outputs
(µ(0)(X, 0), µ(1)(X, 0), . . . , µ(n)(X, 0)).



10 Goel, Mukundan, Roy and Verma :::: Algorithms for computing mixed multiplicities

Example 5.1.
i1 : R = QQ[x,y,z];

i2 : f = x^2*y+y^2*z+z^3;

i3 : secMilnorNumbers(f)

o3 = HashTable{0 => 1}
1 => 2
2 => 4
3 => 8

Joël Briançon and Jean-Paul Speder [1975] considered the family of hypersurfaces Xt ∈ C3 defined by
Ft(x, y, z) = z5

+ t y6z + xy7
+ x15

= 0. They proved that the topological type of Xt is constant whereas
the topological type of the section of Xt by a general plane varies. One can verify the example using the
methods discussed above. For instance, consider the ideals

m = (x, y, z) and J (Ft) = (∂ Ft/∂x, ∂ Ft/∂y, ∂ Ft/∂z)

in the ring C[x, y, z]. In [Goel et al. 2023], an expository version of this article, we show that
e(m[1], J (Ft)

[2]) depends on t although e(J (Ft)) is independent of t . The following Macaulay2 session
verifies the example given by Briançon and Speder.

i1 : QQ[t];

i2 : k = frac oo;

i3 : R = k[x,y,z];

i4 : f = z^5 + t*y^6*z + x*y^7 + x^15;

i5 : secMilnorNumbers (f)

o5 = HashTable{0 => 1 }
1 => 4
2 => 26
3 => 364

i6 : g = z^5 + x*y^7 + x^15;

i7 : secMilnorNumbers (g)

o7 = HashTable{0 => 1 }
1 => 4
2 => 28
3 => 364

ACKNOWLEDGEMENTS. We thank the reviewers for their comments to improve this article. The authors
thank Wolfram Decker and David Eisenbud for their help and encouragement. The first author thanks
D. Grayson and M. Stillman for their comments and suggestions to improve the exposition and fix
the grading scheme in the algorithm. The first author is supported by a Fulbright–Nehru Postdoctoral
Research Fellowship. The third author is grateful to the Infosys Foundation for providing partial financial
support. At the beginning of the project, the first and third author were Ph.D. students at Indian Institute of
Technology Bombay, Mumbai, India and were supported by UGC-SRF fellowship from the Government
of India.

SUPPLEMENT. The online supplement contains version 3.0 of MixedMultiplicity.

http://msp.org/jsag/2023/13-1/jsag-v13-n1-x01-MixedMultiplicity.m2


Goel, Mukundan, Roy and Verma :::: Algorithms for computing mixed multiplicities 11

REFERENCES.
[Atiyah and Macdonald 2016] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Westview Press, Boulder,
CO, 2016. MR Zbl

[Betke and Henk 1993] U. Betke and M. Henk, “Intrinsic volumes and lattice points of crosspolytopes”, Monatsh. Math. 115:1-2
(1993), 27–33. MR Zbl

[Briançon and Speder 1975] J. Briançon and J.-P. Speder, “La trivialité topologique n’implique pas les conditions de Whitney”,
C. R. Acad. Sci. Paris Sér. A-B 280:6 (1975), 365–367. MR Zbl

[Bruns and Herzog 1993] W. Bruns and J. Herzog, Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics 39,
Cambridge University Press, 1993. MR

[Cox et al. 2019] D. A. Cox, K.-N. Lin, and G. Sosa, “Multi-Rees algebras and toric dynamical systems”, Proc. Amer. Math. Soc.
147:11 (2019), 4605–4616. MR Zbl

[D’Cruz 2003] C. D’Cruz, “A formula for the multiplicity of the multi-graded extended Rees algebra”, Comm. Algebra 31:6
(2003), 2573–2585. MR Zbl

[Eisenbud 2018] D. Eisenbud, “The ReesAlgebra package in Macaulay2”, J. Softw. Algebra Geom. 8 (2018), 49–60. MR Zbl

[Eisenbud et al. 2003] D. Eisenbud, C. Huneke, and B. Ulrich, “What is the Rees algebra of a module?”, Proc. Amer. Math. Soc.
131:3 (2003), 701–708. MR Zbl

[Goel et al. 2023] K. Goel, V. Mukundan, S. Roy, and J. K. Verma, “Computing mixed multiplicities, mixed volumes, and
sectional Milnor numbers”, 2023. arXiv 2307.10124

[Herrmann et al. 1997] M. Herrmann, E. Hyry, J. Ribbe, and Z. Tang, “Reduction numbers and multiplicities of multigraded
structures”, J. Algebra 197:2 (1997), 311–341. MR Zbl

[Huneke and Swanson 2006] C. Huneke and I. Swanson, Integral closure of ideals, rings, and modules, London Mathematical
Society Lecture Note Series 336, Cambridge University Press, 2006. MR Zbl

[Jabarnejad 2018] B. Jabarnejad, “Equations defining the multi-Rees algebras of powers of an ideal”, J. Pure Appl. Algebra
222:7 (2018), 1906–1910. MR Zbl

[Katz and Verma 1989] D. Katz and J. K. Verma, “Extended Rees algebras and mixed multiplicities”, Math. Z. 202:1 (1989),
111–128. MR Zbl

[Lin and Polini 2014] K.-N. Lin and C. Polini, “Rees algebras of truncations of complete intersections”, J. Algebra 410 (2014),
36–52. MR Zbl

[Macaulay2] D. R. Grayson and M. E. Stillman, “Macaulay2, a software system for research in algebraic geometry”, software,
available at http://www.math.uiuc.edu/Macaulay2/.

[Ribbe 1999] J. Ribbe, “On the defining equations of multi-graded rings”, Comm. Algebra 27:3 (1999), 1393–1402. MR Zbl

[Sosa 2014] G. Sosa, “On the Koszulness of multi-Rees algebras of certain strongly stable ideals”, 2014. arXiv 1406.2188v1

[Teissier 1973] B. Teissier, “Cycles évanescents, sections planes et conditions de Whitney”, pp. 285–362 in Singularités à
Cargèse (Rencontre Singularités Géom. Anal., Inst. Études Sci.) (Cargèse, 1972), Astérisque 7 et 8, Soc. Math. France, Paris,
1973. MR Zbl

[Trung and Verma 2007] N. V. Trung and J. Verma, “Mixed multiplicities of ideals versus mixed volumes of polytopes”, Trans.
Amer. Math. Soc. 359:10 (2007), 4711–4727. MR Zbl

[Verma 1992] J. K. Verma, “Multigraded Rees algebras and mixed multiplicities”, J. Pure Appl. Algebra 77:2 (1992), 219–228.
MR Zbl

[Verma et al. 1994] J. K. Verma, D. Katz, and S. Mandal, “Hilbert functions of bigraded algebras”, pp. 291–302 in Commutative
algebra (Trieste, 1992), World Sci. Publ., River Edge, NJ, 1994. MR

RECEIVED: 14 Aug 2020 REVISED: 19 May 2023 ACCEPTED: 6 Jun 2023

http://msp.org/idx/mr/3525784
http://msp.org/idx/zbl/1351.13002
http://dx.doi.org/10.1007/BF01311208
http://msp.org/idx/mr/1223242
http://msp.org/idx/zbl/0779.52013
http://msp.org/idx/mr/425165
http://msp.org/idx/zbl/0331.32010
http://msp.org/idx/mr/1251956
http://dx.doi.org/10.1090/proc/14579
http://msp.org/idx/mr/4011498
http://msp.org/idx/zbl/1429.13006
http://dx.doi.org/10.1081/AGB-120021882
http://msp.org/idx/mr/1986206
http://msp.org/idx/zbl/1021.13001
http://dx.doi.org/10.2140/jsag.2018.8.49
http://msp.org/idx/mr/3857649
http://msp.org/idx/zbl/1473.13001
http://dx.doi.org/10.1090/S0002-9939-02-06575-9
http://msp.org/idx/mr/1937406
http://msp.org/idx/zbl/1038.13002
http://msp.org/idx/arx/2307.10124
http://dx.doi.org/10.1006/jabr.1997.7128
http://dx.doi.org/10.1006/jabr.1997.7128
http://msp.org/idx/mr/1483767
http://msp.org/idx/zbl/0931.13002
http://msp.org/idx/mr/2266432
http://msp.org/idx/zbl/1117.13001
http://dx.doi.org/10.1016/j.jpaa.2017.08.013
http://msp.org/idx/mr/3763290
http://msp.org/idx/zbl/1393.13007
http://dx.doi.org/10.1007/BF01180686
http://msp.org/idx/mr/1007742
http://msp.org/idx/zbl/0655.13027
http://dx.doi.org/10.1016/j.jalgebra.2014.03.022
http://msp.org/idx/mr/3201047
http://msp.org/idx/zbl/1304.13006
http://www.math.uiuc.edu/Macaulay2/
http://dx.doi.org/10.1080/00927879908826501
http://msp.org/idx/mr/1669107
http://msp.org/idx/zbl/0957.13002
http://msp.org/idx/arx/1406.2188v1
http://msp.org/idx/mr/374482
http://msp.org/idx/zbl/0295.14003
http://dx.doi.org/10.1090/S0002-9947-07-04054-8
http://msp.org/idx/mr/2320648
http://msp.org/idx/zbl/1121.52027
http://dx.doi.org/10.1016/0022-4049(92)90087-V
http://msp.org/idx/mr/1149023
http://msp.org/idx/zbl/0749.13014
http://msp.org/idx/mr/1421092


12 Goel, Mukundan, Roy and Verma :::: Algorithms for computing mixed multiplicities

KRITI GOEL:

kritigoel.maths@gmail.com
Department of Mathematics, University of Utah, Salt Lake City, UT, United States

VIVEK MUKUNDAN:

vmukunda@iitd.ac.in
Department of Mathematics, Indian Institute of Technology Delhi, Delhi, India

SUDESHNA ROY:

sudeshnaroy.11@gmail.com
Department of Mathematics, Chennai Mathematical Institute, Kelambakkam, India

JUGAL VERMA:

jkv@iitb.ac.in
Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, India

msp

mailto:kritigoel.maths@gmail.com
mailto:vmukunda@iitd.ac.in
mailto:sudeshnaroy.11@gmail.com
mailto:jkv@iitb.ac.in
http://msp.org


JSAG 13 (2023), 13–31 The Journal of Software for
https://doi.org/10.2140/jsag.2023.13.13 Algebra and Geometry

FastMinors package for Macaulay2

BOYANA MARTINOVA, MARCUS ROBINSON, KARL SCHWEDE AND YUHUI YAO

ABSTRACT: In this article, we present FastMinors.m2, a package in Macaulay2 designed to introduce
new methods focused on computations in function field linear algebra. Some key functionality that our
package offers includes: finding a submatrix of a given rank in a provided matrix (when present), verifying
that a ring is regular in codimension n, recursively computing the ideals of minors in a matrix, and finding
an upper bound of the projective dimension of a module.

1. INTRODUCTION. We start with some motivation. Suppose that I = ( f1, . . . , fm) ⊆ k[x1, . . . , xn]

is a prime ideal. The corresponding variety X := V (I ) is nonsingular if and only if I plus the ideal
generated by the minors of size n − dim X of the Jacobian matrix

Jac(X) =

(
∂ fi

∂x j

)
generates the unit ideal. Unfortunately, even for relatively small values of m and n, the number of such
submatrices is prohibitive. Suppose for instance that n = 10, m = 15 and dim X = 5. Then there are(

10
5

)
·

(
15
5

)
= 756756

such submatrices. We cannot reasonably compute all of their determinants. This package attempts to fix
this in several ways.

(1) We try to compute just a portion of the determinants, in a relatively smart way.

(2) We offer some tools for computing determinants that are sometimes faster.

Our techniques have also been applied to the related problem of showing that the singular locus has a
certain codimension (for example, checking that a variety is R1 in order to prove normality). Of course,
computing the singular locus is not the only potential application. We provide a function for giving a
better upper bound on the projective dimension of a non-homogeneous module. Finally, this package has
also been applied in the RationalMaps Macaulay2 package.

Martinova was supported by a University of Utah Mathematics REU fellowship and by the University of Utah ACCESS program.
Robinson was supported by NSF RTG grant #1840190. Schwede was supported by NSF CAREER grant #1501102, NSF grants
#1801849 and #2101800, NSF FRG Grant #1952522 and a fellowship from the Simons Foundation. Yao was supported by a
University of Utah Mathematics REU fellowship.
MSC2020: 13D02, 14B05, 14H05, 15A15.
Keywords: FastMinors, Macaulay2.
FastMinors.m2 version 1.2.6

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

© 2023 The Authors, under license to MSP (Mathematical Sciences Publishers).

https://doi.org/10.2140/jsag.2023.13-1
http://msp.org/jsag
https://doi.org/10.2140/jsag.2023.13.13
http://msp.org/jsag


14 Martinova, Robinson, Schwede and Yao :::: FastMinors package for Macaulay2

We provide the following functions:

• getSubmatrixOfRank, which tries to find a submatrix of a given rank; see Section 4.

• isRankAtLeast, which uses getSubmatrixOfRank to try to find lower bounds for the rank of a
matrix; see Section 5.

• regularInCodimension, which tries to verify if an integral domain is regular in codimension n;
see Section 6.

• projDim, which tries to find upper bounds for the projective dimension of a non-homogeneous
module; see Section 7.

• recursiveMinors, which computes the ideal of minors of a matrix via a recursive cofactor algorithm,
as opposed to the included non-recursive cofactor algorithm; see Section 8.

Version 1.2.6 of this package is available as an online supplement to this paper. Later versions will be
available at https://github.com/kschwede/M2/blob/master/M2/Macaulay2/packages/FastMinors.m2

This paper refers to FastMinors version 1.2.2. Earlier versions are also available in the Macaulay2
build tree.

2. FINDING INTERESTING SUBMATRICES. A lot of the speedups available in the package come down
to finding interesting square submatrices of a given matrix. For example, it is often useful to compute a
square submatrix whose determinant has small degree. The idea is that the determinant of this submatrix
will be less likely to vanish.

2.1. How are the submatrices chosen? Consider the following matrix defined over Q[x, y]: x xy 0
xy2 x6 0
0 x2 y3 xy4

.

Suppose we want to choose a submatrix of size 2 × 2. Consider the monomial order Lex where x < y.
We find, in the matrix, the nonzero element of smallest order. In this case, that is x . We choose this
element to be a part of our submatrix. Hence our submatrix will include the first row and column as well: x xy 0

xy2 x6 0
0 x2 y3 xy4

.

To find the next element, we discard that row and column containing this term. Now, the next smallest
element with respect to our monomial order is xy4:[

x6 0
x2 y3 xy4

] [
x6 0

x2 y3 x y4

]
.

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

http://msp.org/jsag/2023/13-1/jsag-v13-n1-x01-FastMinors.m2
https://github.com/kschwede/M2/blob/master/M2/Macaulay2/packages/FastMinors.m2


Martinova, Robinson, Schwede and Yao :::: FastMinors package for Macaulay2 15

Since we are only looking for a 2 × 2 submatrix, we stop here. We have selected the submatrix with rows
0 and 2 and columns 0 and 2: [

x 0
0 xy4

]
.

The determinant of this submatrix is x2 y4. This happens to be the smallest 2 × 2 minor with respect to
the given monomial order (which frequently happens, although it is certainly not always the case).

If we choose a different monomial order, we get a different submatrix, with a different determinant.
For example,

• Lex, x > y. We obtain the submatrix with rows 0 and 1 and columns 0 and 1, whose determinant is
x7

− xy3.

• GRevLex, x < y. We obtain the submatrix with rows 0 and 2 and columns 0 and 1, whose determinant
is x3 y3.

For any of these strategies, in this package, we randomize the order of the variables before choosing a
submatrix.

2.2. Ways of choosing submatrices. In the end we have the following methods to select submatrices:

GRevLexLargest: Choose entries which are largest with respect to a random GRevLex order.

GRevLexSmallest: Choose nonzero entries which are smallest with respect to a random GRevLex
order.

GRevLexSmallestTerm: Choose nonzero entries which have the smallest terms with respect to a
random GRevLex order.

LexLargest: Choose entries which are largest with respect to a random Lex order.

LexSmallest: Choose nonzero entries which are smallest with respect to a random Lex order.

LexSmallestTerm: Choose nonzero entries which have the smallest terms with respect to a random
GRevLex order.

Points: Choose a submatrix whose determinant does not vanish at a random point found on a given
ideal.

Random: Choose random entries.

RandomNonzero: Choose random nonzero entries.

However, from the end user’s perspective, normally we find multiple minors, and the strategy will
combine several of these methods (one typically does not know which method will work best in a given
situation). For instance, the first minor might be selected by GRevLexSmallest and the second minor by
Random. How to arrange what method is used (and with what probability) is described in Section 3.1.

We now describe each of these methods for selecting a submatrix in more detail. Note we have already
described Lex and given an initial description of GRevLex.

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38



16 Martinova, Robinson, Schwede and Yao :::: FastMinors package for Macaulay2

2.3. LexSmallestTerm and GRevLexSmallestTerm. If we have a matrix whose entries are not mono-
mial, then we could reasonably either pick the submatrix of the smallest entries with respect to our
monomial order: LexSmallest or GRevLexSmallest.

Alternatively, we can pick the submatrix whose entries have the smallest terms via LexSmallestTerm
or GRevLexSmallestTerm.

For example, consider the matrixx2
+ y2 0 xy + 2x

y4
− x 0 3x5

x3 x4 y5
− y8 0

.

In this case, if we are choosing the entries with the smallest terms, we first replace each entry in the matrix
with the smallest term. For example, if we are using LexSmallestTerm with x < y, we would obtain x2 0 2x

−x 0 3x5

x3 x4 y5 0

.

Then we proceed as before. Notice that if there is a tie, it is broken randomly.

Remark. Different strategies work differently on different examples. When working with a non-
homogeneous matrix, with some entries that have constant terms, those entries will always be chosen first
in LexSmallestTerm or GRevLexSmallestTerm, regardless of the monomial order. On the other hand,
for homogeneous matrices, choosing the smallest term is frequently very effective.

2.4. GRevLexLargest and LexLargest. While we can imagine uses for these, in most cases these
strategies appear to be worse than random. Indeed, submatrices picked this way seem likely to already
vanish everywhere of interest.

2.5. Points. Instead of finding interesting submatrices by inspection, we can alternatively find subma-
trices by trying to find rational points. In that case, typically we are trying to find a submatrix with full
rank on a certain subvariety, defined by an ideal J. We use the package RandomRationalPoints [Bisui
et al.] to find a (rational) point Q on V (J ) (or a point over some finite extension of our base field). We
then evaluate our entire matrix at that point. Because we now have a matrix over a field, we use the very
fast built-in commands to find pivot rows and columns, and thus find a submatrix of the desired rank. To
use this functionality, use the strategy Points.

Currently, this functionality only works over a finite field. In characteristic zero, the Points strategy
returns random submatrices.

For example, suppose we are working over F5[x, y, z] with an ideal I = (z2 y − x(x − z)(x + z)), with
the matrix

M =

 x2 xy 3y2

x3
+ y3 x2

+ z2 y2
+ z2

x2
∗ z z2

∗ y y2
∗ x

.

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38



Martinova, Robinson, Schwede and Yao :::: FastMinors package for Macaulay2 17

Suppose we found the point (2, 0, 2) on this elliptic curve. We then evaluate our matrix at that point to
obtain

M =

4 0 0
3 3 4
3 0 0

.

We would then identify a submatrix with nonzero determinant, for instance the top left 2 × 2 submatrix[
4 0
3 3

]
and then return the top determinant of the top 2 × 2 submatrix of the original matrix:

det
[

x2 xy
x3

+ y3 x2
+ z2

]
= x4

+ x2z2
− x4 y − xy4.

Typically, the Points strategy will find much better matrices than any of the heuristic methods
LexSmallest, GRevLexSmallestTerm, etc., allowing it to compute fewer determinants. However, there
is still a substantial amount of work needed to find each submatrix. In our experience, the heuristic
methods above perform better than Points roughly half of the time. If the user is implementing the
Points strategy, we make two recommendations to optimize performance:

(i) Set the option MaxMinors (the maximum number of minors to be computed) to a relatively low
number.

(ii) Set the option CodimCheckFunction to a linear function (such as t -> t). This will force the
dimension of the ideal of minors computed so far to be checked more frequently (in our example,
after adding every new minor to the ideal of minors)

The tutorial RegularInCodimensionTutorial in the package documentation contains further discus-
sion of MaxMinors, CodimCheckFunction and other options.

2.6. Random and RandomNonzero.

Random: With this strategy, a random submatrix is chosen.

RandomNonzero: With this strategy, a random nonzero element is chosen in each step following the
method used by the other strategies. This guarantees a submatrix where no row or column is zero,
which can be very useful when dealing with relatively sparse matrices.

More on GRevLex: modifying the underlying matrix. Finally, when using the GRevLexSmallest and
GRevLexSmallestTerm methods, we periodically change the underlying matrix by replacing terms of
small order with terms of larger order in order to avoid recomputing the same submatrix. For example, in
the matrix x2 0 xy

y4 0 x5

x3 x4 y5 0

,

after several iterations, we might replace the x2 term with

x2
· (a random degree 1 polynomial).

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38



18 Martinova, Robinson, Schwede and Yao :::: FastMinors package for Macaulay2

which might look something like x2(2x − 7y) 0 xy
y4 0 x5

x3 x4 y5 0

 .

This forces the algorithm to make different choices. After several minors are selected, the matrix is reset
again to its original form.

3. chooseGoodMinors AND SUBMATRIX SELECTION CONTROL. The function chooseGoodMinors
tries to choose interesting submatrices of a given matrix. This is done by running the command

i1 : R = QQ[x, y, z];
chooseGoodMinors()

3.1. The Strategy option. The core features included in the package allow the user to choose which
methods from Section 2.2 should be used when selecting submatrices. This is done most easily by
setting a Strategy option to one of the ways of choosing submatrices as above: GRevLexSmallest,
GRevLexSmallestTerm, GRevLexLargest, LexSmallest, LexSmallestTerm, LexLargest, Points,
Random, RandomNonzero. However, most of the time it is best to choose several strategies simultaneously,
as one doesn’t know which strategy will perform the best (in some cases, a combination works best).
Hence instead of choosing a strategy which uses only one method, by default we use several. Thus you
can set the Strategy option to one of the following:

• StrategyDefault: This strategy uses LexSmallest, LexSmallestTerm, GRevLexSmallest,
GRevLexSmallestTerm, Random and RandomNonzero with equal probability.

• StrategyDefaultNonRandom: This uses LexSmallest, LexSmallestTerm, GRevLexSmallest
and GRevLexSmallestTerm with equal probability.

• StrategyDefaultWithPoints: This strategy uses Points one third of the time and LexSmallest,
LexSmallestTerm, GRevLexSmallest and GRevLexSmallestTerm with equal probability the rest
of the time.

• StrategyLexSmallest: This strategy chooses 50% of the submatrices using LexSmallest and
50% using LexSmallestTerm.

• StrategyGRevLexSmallest: This chooses 50% of the submatrices using GRevLexSmallest and
50% using GRevLexLargest.

• StrategyPoints: This chooses submatrices by finding rational points, evaluating the submatrix at
those points, and then doing a computation.

• StrategyRandom: This chooses submatrices by using 50% Random and 50% RandomNonzero.

The user can also create their own custom strategy by setting the Strategy parameter to a HashTable
with the following keys: LexLargest, LexSmallestTerm, LexSmallest, GRevLexSmallestTerm,
GrevLexSmallest, GRevLexLargest, Random, RandomNonzero, each with value an integer (the values

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38



Martinova, Robinson, Schwede and Yao :::: FastMinors package for Macaulay2 19

need not sum to 100). If one value is twice the size of another, that strategy will be employed twice as
often. For example, StrategyDefaultNonRandom was created by the command

StrategyDefaultNonRandom = new HashTable from {
LexLargest => 0,
LexSmallestTerm => 25,
LexSmallest => 25,
GRevLexSmallestTerm => 25,
GRevLexSmallest => 25,
GRevLexLargest => 0,
Random => 0,
RandomNonzero => 0,
Points => 0

};

For a tutorial on strategy choice, see the documentation, particularly FastMinorsStrategyTutorial.

4. FIND A SUBMATRIX OF A GIVEN RANK: getSubmatrixOfRank. This method examines the sub-
matrices of an input matrix and attempts to find one of a given rank. If a submatrix with the specified
rank is found, a list of two lists is returned. The first is the list of row indices and the second is the list of
column indices, which describe the desired submatrix of the desired rank. If no such submatrix is found,
the function will return null.

The option MaxMinors allows the user to control how many minors to consider before giving up.
If left null, the number considered is based on the size of the matrix. This method will choose the
indicated amount of minors using one of the strategy options described above. If one of the chosen
submatrices has the desired rank, the function will terminate and return its rows and columns. This
process continues until a submatrix is found or MaxMinors submatrices have been unsuccessfully checked.
The strategy can be controlled using the Strategy option as described above; the default value is
StrategyDefaultNonRandom.

4.1. Examples of getSubmatrixOfRank. In the following example, we first create a 3 × 4 matrix M
over Q[x, y, z]. We execute two calls to getSubmatrixOfRank; the first has no Strategy parameter
and the second utilizes StrategyGRevLexSmallest. Note that these calls return different indices, but
both find valid rank 3 submatrices.

i1 : loadPackage "FastMinors";

i2 : R = QQ[x,y];

i3 : M = random(R^{2,2,2},R^4)

o3 = {-2} | x2+2/3xy+9/2y2 3/10x2+2/3xy+1/5y2 2x2+5/3xy+7/5y2 4/3x2+1/3xy+10/9y2 |
{-2} | 3/2x2+2/3xy+2y2 1/2x2+3/2xy+3/4y2 6x2+5xy+4y2 9/5x2+1/5xy+7/2y2 |
{-2} | 1/4x2+1/7xy+5/6y2 7/5x2+4xy+4/5y2 10/9x2+3/7xy+5/9y2 5/2x2+xy+7/6y2 |

3 4
o3 : Matrix R <--- R

i4 : getSubmatrixOfRank(3,M)

o4 = {{2, 0, 1}, {0, 1, 3}}

o4 : List

i5 : getSubmatrixOfRank(3, M, Strategy=>StrategyGRevLexSmallest)

o5 = {{0, 2, 1}, {1, 2, 0}}

o5 : List

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38



20 Martinova, Robinson, Schwede and Yao :::: FastMinors package for Macaulay2

In our next example, over a ring with 6 variables, we create a Jacobian matrix out of an ideal generated
by 8 random forms of various degrees. We display the time needed for the rank function to return, followed
by the time elapsed during a call to getSubmatrixOfRank when searching for a rank 6 submatrix. We
find that getSubmatrixOfRank significantly outperformed rank:

i6 : R = ZZ/103[x_1..x_6]

o6 = R

o6 : PolynomialRing

i7 : J = jacobian ideal apply(8, i -> random(2+random(2), R));

6 8
o7 : Matrix R <--- R

i8 : time rank J
-- used 21.8251 seconds

o8 = 6

i9 : time getSubmatrixOfRank(6, J)
-- used 0.00714912 seconds

o9 = {{5, 1, 3, 4, 2, 0}, {5, 2, 6, 0, 4, 7}}

In one of the core examples from the RationalMaps package, before using this package a function
would look at several thousands of submatrices (randomly) typically before finding a submatrix of the
desired rank, whereas this package finds one after looking at fewer than half a dozen (typically only
looking at 1 or 2 submatrices). Using this package sped up the computation of that example by more than
one order of magnitude; see the non-maximal linear rank example from [Bott et al. 2022, page 7].

5. FINDING LOWER BOUNDS FOR MATRIX RANKS: isRankAtLeast. This method is a direct imple-
mentation of getSubmatrixOfRank. This function returns a boolean value indicating whether the rank
of an input matrix, M, is greater than or equal to an input integer, n. In order to do so, the function first
performs some basic checks to ensure a rank of n is possible given M’s dimensions, then executes a call
to getSubmatrixOfRank. If getSubmatrixOfRank returns a matrix, then this function will return true.
However, if getSubmatrixOfRank does not return a matrix, a conclusive answer can not be reached. As
such, the method will then evaluate the rank of M and return the appropriate boolean value.

However, the function isRankAtLeast, which is efficient when getSubmatrixOfRank returns
quickly, may be costly if the results are inconclusive and a rank evaluation is necessary. As such,
the described implementation is not optimized. In order to lead to time improvements, we devel-
oped a multithreaded version of this function that simultaneously evaluates the rank of M and invokes
getSubmatrixOfRank. Once a thread has terminated with a usable answer, the other threads are canceled
and the appropriate value is returned. During the implementation of this functionality, we discovered that
Macaulay2 becomes unstable when canceling threads and thus users are not currently allowed to invoke
the multithreaded version. However, this functionality is included in the package and can be made easily
accessible once the stability issue is resolved.

5.1. Example of isRankAtLeast. The following example first creates a 9 × 9 matrix, N, and calls
isRankAtLeast to determine whether its rank is at least 7. Directly calling rank N on a matrix of this

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38



Martinova, Robinson, Schwede and Yao :::: FastMinors package for Macaulay2 21

size would take multiple seconds, whereas isRankAtLeast returns in a fraction of the time:

i1 : loadPackage "FastMinors";

i2 : N = random(R^{6,6,6,6,6,6,6,7,7},R^9);
9 9

o2 : Matrix R <--- R

i3 : elapsedTime isRankAtLeast(7,N)
-- 0.0654172 seconds elapsed

o3 = true

6. REGULAR IN CODIMENSION n: regularInCodimension. Using the getSubmatrixOfRank rou-
tines, we provide a function for checking whether a variety is regular in codimension n, or Rn . The
default strategy is Strategy=>Default.

The function regularInCodimension(ZZ, Ring) returns true if it verifies that the ring is regular
in codimension n. This only works if the ring is equidimensional, as it is using a Jacobian criterion. If it
cannot make a determination, it returns null. If it ended up computing all minors of the matrix, and it
still doesn’t have the desired codimension, it will return false (note this will likely only occur for small
matrices).

6.1. Example of regularInCodimension. We begin with an example of a 3-dimensional ring that is
regular in codimension 1, but not in codimension 2. It is generated by 12 equations in 7 variables:

i3 : T = ZZ/101[x1,x2,x3,x4,x5,x6,x7];

i4 : I = ideal(x5*x6-x4*x7,x1*x6-x2*x7,x5^2-x1*x7,x4*x5-x2*x7,x4^2-x2*x6,x1*x4-x2*x5,
x2*x3^3*x5+3*x2*x3^2*x7+8*x2^2*x5+3*x3*x4*x7-8*x4*x7+x6*x7,
x1*x3^3*x5+3*x1*x3^2*x7+8*x1*x2*x5+3*x3*x5*x7-8*x5*x7+x7^2,
x2*x3^3*x4+3*x2*x3^2*x6+8*x2^2*x4+3*x3*x4*x6-8*x4*x6+x6^2,
x2^2*x3^3+3*x2*x3^2*x4+8*x2^3+3*x2*x3*x6-8*x2*x6+x4*x6,
x1*x2*x3^3+3*x2*x3^2*x5+8*x1*x2^2+3*x2*x3*x7-8*x2*x7+x4*x7,
x1^2*x3^3+3*x1*x3^2*x5+8*x1^2*x2+3*x1*x3*x7-8*x1*x7+x5*x7);

o4 : Ideal of T

i5 : S = T/I; dim S

o6 = 3

i7 : time regularInCodimension(1, S)
-- used 0.150734 seconds

o7 = true

i8 : time regularInCodimension(2, S)
-- used 2.12777 seconds

i9 : time singularLocus S;
-- used 8.29746 seconds

i10 : time dim o9
-- used 23.2483 seconds

o10 = 1

As seen above, the function regularInCodimension verified that S was regular in codimension 1
in a fraction of a second. When regularInCodimension(2, S) was called, nothing was returned,
indicating that nothing was found (our function could not make a determination). Computing the Jacobian
ideal however took more than 8 seconds and verifying that it had dimension 1 took more than 23 seconds.

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38



22 Martinova, Robinson, Schwede and Yao :::: FastMinors package for Macaulay2

6.2. Options and strategies for regularInCodimension. We consider the same example using some
different strategies. For another look at options in this function, see the tutorial in the document under the
key RegularInCodimensionTutorial.

One might think that it might be just as effective to choose random matrices as to use our strategies,
and sometimes it is, but this is not the typical behavior we have observed.

i11 : time regularInCodimension(1, S, Strategy=>StrategyRandom, Verbose=>true)
regularInCodimension: ring dimension =3, there are 17325 possible minors,

we will compute up to 317.599 of them.
regularInCodimension: About to enter loop
internalChooseMinor: Choosing Random
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 7,

and computed = 7
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 9,

and computed = 9
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 11,

and computed = 11
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 14,

and computed = 14
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 18,

and computed = 18
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 24,

and computed = 24
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 31,

and computed = 31
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 40,

and computed = 40
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 52,

and computed = 52
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 67,

and computed = 67
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 87,

and computed = 87
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 1
regularInCodimension: Loop completed, submatrices considered = 87,

and computed = 87.
singular locus dimension appears to be = 1

-- used 1.04945 seconds

o11 = true

Above, we have deleted 86 of the 87 times the verbose output displays internalChooseMinor:
Choosing Random.

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38



Martinova, Robinson, Schwede and Yao :::: FastMinors package for Macaulay2 23

In this particular example, the StrategyRandom option looked at 87 submatrices of the Jacobian
matrix. Note it does not check to see whether we have obtained the desired codimension after considering
each new random submatrix. Instead, it only computes the codimension periodically, with the space
between checks increasing. The considered values on each line tell how many submatrices have been
considered. The computed value tells how many were not repeats (computed will be nearly the same as
considered with a random strategy).

Running Rn(1, S, Strategy=>StrategyRandom, Verbose=>true) 50 times yielded:

(1) an average of 61.3 submatrices of the Jacobian matrix considered.

(2) a median value of 40 or 52 submatrices of the Jacobian matrix considered.

(3) a minimum value of 7 submatrices of the Jacobian matrix considered (1 time).

(4) a maximum value of 248 submatrices of the Jacobian matrix considered (1 time).

Due to certain settings, we do not check the codimension of the singular locus until 7 submatrices have been
considered. Users can control this behavior via the MinMinorsFunction and CodimCheckFunction
options; see the tutorial in the documentation.

The default strategy Rn(1, S, Strategy=>StrategyDefaultNonRandom, Verbose=>true), on
the other hand, run 50 times yielded

(1) an average of 12.1 submatrices of the Jacobian matrix considered.

(2) a median value of 7 or 9 submatrices of the Jacobian matrix considered.

(3) a minimum value of 7 submatrices of the Jacobian matrix considered (25 times).

(4) a maximum value of 40 submatrices of the Jacobian matrix considered (1 time).

In the above example, Strategy=>StrategyLexSmallest yields even better performance.
Using Strategy=>StrategyPoints (combined with the options MinMinorsFunction=>(t->t)

and CodimCheckFunction=>(t->t)) to check codimension after computing every submatrix, produces:

(1) an average of 4.96 submatrices of the Jacobian matrix considered.

(2) a median value of 5 submatrices of the Jacobian matrix considered.

(3) a minimum value of 4 submatrices of the Jacobian matrix considered (3 times).

(4) a maximum value of 6 submatrices of the Jacobian matrix considered (1 time).

In this case, StrategyPoints considers very few submatrices, but it actually does the computation
substantially slower than StrategyDefaultNonRandom since finding each submatrix can be a lot of
work as rational points must be found. However, StrategyPoints is still faster than StrategyRandom.

Note that larger matrices tend to exhibit even larger disparities between the strategies.

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38



24 Martinova, Robinson, Schwede and Yao :::: FastMinors package for Macaulay2

6.3. Notes on implementation. As mentioned above, this function computes minors (based on the passed
Strategy option) until either it finds that the singular locus has the desired dimension, or until it has
considered too many minors. By default, it considers up to 10 · (minimum number of minors needed) +

8 · log1.3(possible minors). This value was simply chosen by experimentation. If the user is trying to
show a singular locus has a certain codimension, they will need a minimum number of minors. The
multiplication by 10 is due to our default strategy using multiple strategies, but only considering one might
work well on a given matrix. The user can set the option MaxMinors to a function F with two inputs,
x = (minors needed) and y = (possible minors), where F outputs the maximum number of matrices to
compute. More simply, one may simply set MaxMinors to be a number.

These matrices are considered in a loop. We begin with computing a constant number of minors, by
default 2·(minimum number of minors needed)+3, and check whether the output has the right dimension.
The user can also set the option MinMinorsFunction to a function G with one input, x = (minors needed),
which will output how many minors to compute before first checking the codimension. After those initial
minors are found, we compute additional minors, checking periodically (based on an exponential function,
1.3k minors considered before the next reset) whether our minors define a subset of the desired codimension.
New functions can be provided via the option CodimCheckFunction; see the tutorial for more details.
If in this loop, a submatrix is considered again, it is not recomputed, but the counter is still increased.

6.4. Other options. This function also includes other options including the option Modulus which handles
switching the coefficient field for a field of characteristic p > 0 (which is specified with Modulus=>p.)

One can also control how determinants are computed with the DetStrategy option; valid values are
Bareiss, Cofactor and Recursive.

7. PROJECTIVE DIMENSION: projDim. In April of 2019, it was pointed out in a thread on github
(https://github.com/Macaulay2/M2/issues/936) that the command pdim sometimes provides an incorrect
value (an overestimate) for the projective dimension for non-homogeneous modules over polynomial
rings. There, it was also suggested that this could be addressed by looking at appropriate minors of the
matrices in a possibly non-minimal resolution, but that in practice these matrices have too many minors
to compute. We have implemented a function projDim that tries to address this by looking at only some
minors. Our function does not solve the problem as it also gives only an upper bound on the projective
dimension. However, this upper bound is frequently correct.

The idea is as follows. Take a free resolution of a module M over a polynomial ring R,

0 Moo F0oo F1
d1
oo · · ·oo Fn−1

dn−1
oo Fn

dn
oo 0.oo

Each di is given by a matrix. The term Fn is unnecessary (i.e., dn splits) exactly when the rank Fn minors
of dn generate the unit ideal. In that case, we know our projective dimension is at most n − 1. Continuing
in this way, we can compute the (rank Fn−1 − rank Fn)-minors of dn−1, and see whether they generate
the unit ideal. Our algorithm of course only computes a subset of those minors.

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

https://github.com/Macaulay2/M2/issues/936


Martinova, Robinson, Schwede and Yao :::: FastMinors package for Macaulay2 25

7.1. Example of projDim. In the below example, we take a monomial ideal of projective dimension 2,
compute a non-homogeneous change of coordinates, and observe that pdim returns an incorrect answer
that projDim corrects:

i1 : R = QQ[x,y,z,w];

i2 : I = ideal(x^4,x*y,w^3, y^4);

i3 : pdim module I

o3 = 2

i4 : f = map(R, R, {x+x^2+1, x+y+1, z+z^4+x-2, w+w^5+y+1});

i5 : pdim module f I

o5 = 3

i6 : time projDim module f I
-- used 3.43851 seconds

o6 = 2

i7 : time projDim(module f I, MinDimension=>2)
-- used 0.0503165 seconds

o7 = 2

7.2. Options. As seen in the previous example, setting MinDimension can substantially speed up the
computation, as otherwise the function will try to determine whether the projective dimension is actually 1.

The option MaxMinors can be set to be the number of minors computed at each step. Alternatively,
it can be set to be a list of numbers, one for each step in the above algorithm. Finally, it can be set to
be a function of the dimension d of the polynomial ring R and the number t of possible minors. This is
the default option, and the function is 5 ∗ d + 2 ∗ log1.3(t). The option Strategy is also available and it
works as in the above functions with the default value being StrategyDefault.

8. COMPUTING IDEALS OF MINORS: recursiveMinors. Macaulay2 contains a minors method
that returns the ideal of minors of a certain size, n, in a given matrix, a necessary step in locating
singularities. However, the current implementation’s default is to evaluate determinants using the Bareiss
algorithm, which is efficient when the entries in the matrix have a low degree and few variables, but very
slow otherwise. The current minors method also allows users to compute determinants using cofactor
expansion, but this strategy performs some unnecessary calculations, causing it to be quite costly as
well. We improved the current cofactor expansion method to find the determinants of minors by adding
recursion and multithreading throughout. We also eliminated said unnecessary calculations by ensuring
that only the required determinants are being computed at each step of the recursion, rather than all
possible determinants of the given size.

In order to do so, we programmed a method in Macaulay2’s software that recursively finds all n × n
minors by first computing the 2 × 2 minors and storing them in a hash table. Then we use the 2 × 2
minors to compute the necessary 3 × 3 minors, and so on, with the process repeated recursively until the
minors of size n × n are evaluated. At each step, we only compute the determinants that will be needed
when performing a cofactor expansion on the following size minor.

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38



26 Martinova, Robinson, Schwede and Yao :::: FastMinors package for Macaulay2

To allow for further time improvements, we also utilized Macaulay2’s existing parallel programming
methods to multithread our code so different computations at each step of the recursion can occur
simultaneously in separate threads. We divide the list of all determinants to be evaluated into different
available threads and wait for them to finish before consolidating the results in a hash table and proceeding
with the recursion. In order to more effectively utilize Macaulay2’s multithreading methods, we also
created a nanosleep method that waits a given number of nanoseconds, rather than full seconds. This
function has already been incorporated into the software.

8.1. Example of recursiveMinors. Below, we first create a simple matrix, M, of polynomials in a single
variable with rational coefficients and execute the recursiveMinors method to find the ideal of all 3×3
minors. As can be seen, the result is equivalent to the output of the minors method when called with the
same parameters. We then create a new, larger matrix, N, with two dimensional rational coefficients and re-
turn the computation time for recursiveMinors and minors utilizing both the Bareiss and Cofactor strate-
gies. The recursiveMinors method finished executing approximately six times faster than the Bareiss
algorithm and almost seven times faster than the Cofactor expansion, while yielding the same results.

i1 : loadPackage "FastMinors";

i2 : allowableThreads => 8;

i3 : R = QQ[x];

i4 : M = random(R^{2,2,2}, R^4)

o4 = {-2} | x2 3x2 5/8x2 7/10x2 |
{-2} | 3/4x2 2x2 7/4x2 9x2 |
{-2} | x2 2/9x2 1/2x2 4/3x2 |

3 4
o4 : Matrix R <--- R

i5 : recursiveMinors(3,M)

1403 6 449 6 292 6 517 6
o5 = ideal (----x , ---x , - ---x , ---x )

60 240 45 144

o5 : Ideal of R

i6 : recursiveMinors(3,M) == minors(3,M)

o6 = true

i7 : Q = QQ[x,y];

i8 : N = random(Q^{5,5,5,5,5,5}, Q^7);
6 7

o8 : Matrix Q <--- Q

i9 : elapsedTime minors(5,N, Strategy => Bareiss);
-- 1.42867 seconds elapsed

o9 : Ideal of Q

i10 : elapsedTime minors(5,N, Strategy => Cofactor);
-- 1.82251 seconds elapsed

o10 : Ideal of Q

i11 : elapsedTime recursiveMinors(5,N);
-- 0.273007 seconds elapsed;

o11 : Ideal of Q

i12 : recursiveMinors(5,N) == minors(5,N)

o12 = true

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38



Martinova, Robinson, Schwede and Yao :::: FastMinors package for Macaulay2 27

Degree Bareiss Cofactor RecursiveMinors RecursiveMinors, Threads=>4
8 3.465 4.443 0.632 0.408

10 5.771 6.799 0.971 0.560
12 7.405 8.935 1.220 0.699
15 12.187 12.007 1.687 1.007
20 21.007 22.615 2.819 1.854
25 31.915 34.865 4.233 2.635
40 83.583 77.198 10.585 6.296
60 181.179 192.911 23.875 13.062

Table 1. Time to compute the 5 × 5 minors of a 6 × 7 random matrix over Q[x, y].

Degree Bareiss Cofactor RecursiveMinors RecursiveMinors, Threads=>4

2 5.998 3.785 0.588 0.519
3 17.397 8.781 1.730 1.535
4 49.615 22.575 4.582 3.833
5 115.412 45.088 8.364 6.394

Table 2. Time to compute the 5 × 5 minors of a 6 × 7 random matrix over Q[x, y, z].

We briefly show the limits of this package in Tables 1 and 2. All times in the paper are given in seconds.
We consider a random 6 × 7 matrix over Q[x, y] as above, and then also for Q[x, y, z]. We compare the
single-threaded and 4-threaded versions of recursiveMinors in this package with the Bareiss and
Cofactor strategies with recursiveMinors for different degrees of the terms.

Generally speaking, recursiveMinors performs best when the matrix one is looking at has very-
expensive-to-compute minors (such as with the random matrices we consider above). In sparse examples
and examples with easy-to-compute determinants, other strategies tend to perform better.

9. PERFORMANCE AND LIMITS OF THE PACKAGE. We conclude by providing some tables showing
how long various computations take in several different strategies. We limit ourselves to the function
regularInCodimension as other functions such as projDim have roughly similar performance. Note
that we have already discussed some of the performance behavior of taking determinants (including via
a recursive algorithm). Again, we recommend the interested user also see the tutorial in the package
documentation.

The Successful column shows what percentage of the time the function verified that the given equation
was regular in a certain codimension (depending on the strategy, it doesn’t always succeed). All computa-
tions were run in Macaulay2 version 1.18 on a machine running Ubuntu 20.04 with 64 gigabytes of memory.

In Table 3, we verify that the cone over a product of elliptic curves (an Abelian surface) embedded
in P8 is regular in codimension 1. Note that StrategyRandom does not tend to work well on this or
other examples, and so we generally do not consider it further. In Table 4 we verify the same example is
regular in codimension 2. When we make the elliptic curves defined by less sparse equations, Points
tends to perform much better, as can be seen in Table 5.

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38



28 Martinova, Robinson, Schwede and Yao :::: FastMinors package for Macaulay2

Strategy Attempts Average time Successful

StrategyDefault 100 1.7 100%
StrategyDefaultNonRandom 100 0.9 100%

Points 100 4.0 100%
StrategyDefaultWithPoints 100 2.2 100%

StrategyRandom 100 6.1 4%
StrategyRandom, MaxMinors=>2000 20 49.0 15%
StrategyRandom, MaxMinors=>5000 10 238.1 50%

Regular in codimension 1, 9 variables, 28 equations, 31646160 possible 6×6 minors

Table 3. We check R is regular in codimension 1 where R is the cone over a product of
two elliptic curves in positive characteristic given with a Segre embedding. One of the
curves is diagonal, the other is in Weierstrass form. This has a relatively sparse Jacobian
matrix.

Strategy Attempts Average time Successful

StrategyDefault 10 10.9 0%
StrategyDefault, MaxMinors=>5000 10 30.1 100%

StrategyDefaultNonRandom 10 7.7 0%
StrategyDefaultNonRandom, MaxMinors=>5000 10 13.7 100%

Points 10 4.6 100%
StrategyDefaultWithPoints 10 5.8 100%

Regular in codimension 2, 9 variables, 28 equations, 31646160 possible 6×6 minors

Table 4. We check R is regular in codimension 2 where R is the cone over a product
of two elliptic curves in positive characteristic given with a Segre embedding. One of
the curves is diagonal, the other is in Weierstrass form. This has a relatively sparse
Jacobian matrix. Using StrategyDefault and StrategyDefaultNonRandom did not
work with the default number of minors, but increasing MaxMinors led to successful
verification that the ring was regular in codimension 2.

We next consider a relatively sparse higher dimension example in Table 6. Here we are taking a cone
over a product of an elliptic curve with a diagonal equation, an elliptic curve in Weierstrass form and a
copy of P1. This is a cone over a 3-dimensional smooth projective variety embedded in P17.

We now move on to computing dimensions of singular loci of varieties that are not cones. We
constructed several non-normal (non-S2) varieties using the Pullback package. First, in Table 7 we took
3 coordinate axes through the origin in A3 and randomly glued them to a single line. In Table 8 we did
the same with three random lines through the origin (creating a less sparse Jacobian matrix). Finally, in
Table 9, we consider a similar example in A4 (except now it is regular in codimension 2), first verifying it
is regular in codimension 1. Finally, we verify it is regular in codimension 2 in Table 10.

SUPPLEMENT. The online supplement contains version 1.2.6 of FastMinors.m2.

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

http://msp.org/jsag/2023/13-1/jsag-v13-n1-x01-FastMinors.m2


Martinova, Robinson, Schwede and Yao :::: FastMinors package for Macaulay2 29

Strategy Attempts Average time Successful

StrategyDefault 10 ∞? 0%
StrategyDefaultNonRandom 10 ∞? <10%

Points, CodimCheckFunction => t->t+1 10 7.7 100%
StrategyDefaultWithPoints 10 ? about 50%

Regular in codimension 1, 9 variables, 28 equations, 31646160 possible 6×6 minors

Table 5. We check R is regular in codimension 1 where R is the cone over a product
of two elliptic curves in positive characteristic given with a Segre embedding. One of
the curves is in Weierstrass form, the other is given by a random degree 3 equation.
This has a relatively complicated (non-sparse) Jacobian matrix. The other strategies
generally do not work. The one exception is StrategyDefaultWithPoints which
sometimes is very fast (faster than Points), and other times gets stuck trying to
compute a point. Setting CodimCheckFunction => t->t+1 forces the codimension
to be checked at every step, which provides better and more consistent performance.
Without that, sometimes this function will hang trying to find a point after on a 1-
dimensional scheme where it has already verified that R is regular in codimension 1,
but has not computed that codimension yet.

Strategy Attempts Average time Successful

StrategyDefaultNonRandom 10 ∞? 0%
Points 10 58.5 100%

StrategyDefaultWithPoints 10 27.1 100%

Regular in codimension 1, 18 variables, 139 equations, 17927476818965522386560 possible 14×14 minors

Table 6. We check R is regular in codimension 1 where R is the cone over a product
of two elliptic curves plus a P1 in positive characteristic given with a Segre embedding.
One of the curves is in Weierstrass form, the other is given by a random degree 3
equation. This has a relatively sparse Jacobian matrix. The other strategies (not
involving points) generally do not work. Using StrategyDefaultNonRandom took
more than 30 minutes and computed more than 5000 minors, but still did not finish.

Strategy Attempts Average time Successful

StrategyDefault 100 0.8 100%
StrategyDefaultNonRandom 100 0.5 100%

Points 100 3.0 100%
StrategyDefaultWithPoints 100 2.4 100%

Regular in codimension 1, 8 variables, 26 equations, 3683680 possible 5×5 minors

Table 7. We check R is regular in codimension 1 where R is obtained by gluing
three coordinate axis lines through the origin in A3 together to a single line. This is
a 3-dimensional ring that is regular in codimension 1, but not codimension 2. The
Jacobian matrix is fairly sparse, but has some quite complicated sections.

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38



30 Martinova, Robinson, Schwede and Yao :::: FastMinors package for Macaulay2

Strategy Attempts Average time Successful

StrategyDefault 20 2.0 100%
StrategyDefaultNonRandom 20 0.5 100%

Points 10 11.6 100%
StrategyDefaultWithPoints 10 6.9 100%

Regular in codimension 1, 8 variables, 34 equations, 15582336 possible 5×5 minors

Table 8. We check R is regular in codimension 1 where R is obtained by gluing
random lines through the origin in A3 together to a single line. This is a 3-dimensional
ring that is regular in codimension 1, but not codimension 2. The Jacobian matrix is
substantially less sparse than when we glued the three coordinate axes.

Strategy Attempts Average time Successful

StrategyDefault 100 5.2 100%
StrategyDefaultNonRandom 100 1.3 100%

Points 20 7.3 100%
StrategyDefaultWithPoints 20 4.0 100%

Regular in codimension 1, 11 variables, 52 equations, 44148904800 possible 7×7 minors

Table 9. We check R is regular in codimension 1 where R is obtained by gluing
three coordinate axis lines through the origin in A4 together to a single line. This is
a 4-dimensional ring that is regular in codimension 2, but not codimension 3. The
Jacobian matrix is fairly sparse, but has some quite complicated sections.

Strategy Attempts Average time Successful

StrategyDefault 20 14.9 100%
StrategyDefaultNonRandom 20 5.5 100%

Points 10 ∞? 0%
StrategyDefaultWithPoints 10 ∞? 0%

Regular in codimension 2, 11 variables, 52 equations, 44148904800 possible 7×7 minors

Table 10. We check R is regular in codimension 2 where R is obtained by gluing
three coordinate axis lines through the origin in A4 together to a single line. This is
a 4-dimensional ring that is regular in codimension 2, but not codimension 3. The
Jacobian matrix is fairly sparse, but has some quite complicated sections. Strategies
involving Points fail quickly as they use more than 64 gigabytes of RAM.

ACKNOWLEDGEMENTS: The authors thank David Eisenbud, Dan Grayson, Eloísa Grifo and Zhuang
He for valuable conversations and feedback.

REFERENCES.
[Bisui et al.] S. Bisui, Z. Jiang, S. Maitra, T. Nguyen, F.-O. Schreyer, and K. Schwede, “RandomPoints: A Macaulay2 package”,

preprint.

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38



Martinova, Robinson, Schwede and Yao :::: FastMinors package for Macaulay2 31

[Bott et al. 2022] C. J. Bott, S. H. Hassanzadeh, K. Schwede, and D. Smolkin, “RationalMaps, a package for Macaulay2”, J.
Software for Algebra and Geometry 12 (2022), 17–26. arXiv 1908.04337

[Pullback] D. Ellingson and K. Schwede, “Pullback: pullback in the category of rings”, Macaulay2 package, version 1.03,
available at http://www2.macaulay2.com/Macaulay2/doc/Macaulay2-1.18/share/doc/Macaulay2/Pullback/html/index.html.

RECEIVED: 24 Nov 2020 REVISED: 2 Aug 2021 ACCEPTED: 8 May 2023

BOYANA MARTINOVA:

martinova@wisc.edu
Department of Mathematics, University of Wisconsin, Madison, WI, United States

MARCUS ROBINSON:

mrobinso@reed.edu
Department of Mathematics, Reed College, Portland, OR, United States

KARL SCHWEDE:

schwede@math.utah.edu
Department of Mathematics, The University of Utah, Salt Lake City, UT, United States

YUHUI YAO:

weiy@math.uchicago.edu
Department of Mathematics, University of Chicago, Eckhart Hall, Chicago, IL, United States

msp

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

http://dx.doi.org/10.2140/jsag.2022.12.17
http://msp.org/idx/arx/1908.04337
http://www2.macaulay2.com/Macaulay2/doc/Macaulay2-1.18/share/doc/Macaulay2/Pullback/html/index.html
mailto:martinova@wisc.edu
mailto:mrobinso@reed.edu
mailto:schwede@math.utah.edu
mailto:weiy@math.uchicago.edu
http://msp.org


JSAG 13 (2023), 33–43 The Journal of Software for
https://doi.org/10.2140/jsag.2023.13.33 Algebra and Geometry

Finding points on varieties with Macaulay2

SANKHANEEL BISUI, ZHAN JIANG, SARASIJ MAITRA,
THÁI THÀNH NGUYỄN AND KARL SCHWEDE

ABSTRACT: We present RandomPoints, a package in Macaulay2 designed mainly to identify rational
and geometric points in a variety over a finite field. We provide tools to estimate the dimension of a
variety. We also present methods to obtain nonvanishing minors of a given size in a given matrix, by
evaluating the matrix at a point.

1. INTRODUCTION. Let I be an ideal in a polynomial ring k[x1, . . . , xn] over a finite field k. Let
X := V (I ) denote the corresponding set of rational points in affine n-space. Finding one such rational
point or geometric point (geometric meaning a point over some finite field extension), in an algorithmically
efficient manner, is our primary motivation for this package. The authors of the package are Sankhaneel
Bisui, Zhan Jiang, Sarasij Maitra, Thái Thành Nguyễn, Frank-Olaf Schreyer, and Karl Schwede.

There is an existing package [RationalPoints], which we took inspiration from, which aims to find all
the rational points of a variety; our aim here is to find one or more random rational or geometric points on
a variety quickly. We also note that the package [Cremona] can find rational points on projective varieties,
as can the core function randomKRationalPoint in [Macaulay2]. Our methods frequently appear to be
faster and apply in the affine setting as well.

We develop functions that apply various strategies to generate random rational and geometric points
on the given variety. We also provide functions that will expedite the process of determining properties of
the singular locus of X .

We provide the following core functions:

• randomPoints: This tries to find a point in the vanishing set of an ideal. (Section 2)

• dimViaBezout: This tries to compute the dimension of an algebraic set by intersecting with
hyperplanes. (Section 3.1)

• projectionToHypersurface and genericProjection: These functions provide customizable
projection. (Section 4)

Schwede was supported by NSF Grants #1801849, #2101800, FRG #1952522 and a Fellowship from the Simons Foundation.
MSC2020: 13C99, 14G05.
Keywords: RandomPoints, Macaulay2.
RandomPoints version 1.5.3

© 2023 The Authors, under license to MSP (Mathematical Sciences Publishers).

https://doi.org/10.2140/jsag.2023.13-1
http://msp.org/jsag
https://doi.org/10.2140/jsag.2023.13.33
http://msp.org/jsag


34 Bisui, Jiang, Maitra, Nguyễn and Schwede :::: Finding points on varieties with Macaulay2

• findANonZeroMinor and extendIdealByNonZeroMinor: The first of these finds a submatrix of
a given matrix that is nonsingular at a point of a given ideal. The second adds said submatrix to an
ideal, which is useful for computing partial Jacobian ideals. (Section 5.1)

All polynomial rings considered here will be over finite fields. In the subsequent sections, we explain
the core and helper functions and describe the strategies that we have implemented.

2. OUR PRIMARY PURPOSE: randomPoints. We start with the core function randomPoints, which
is a function to find rational or geometric points in a variety. The typical usage is randomPoints(n, I)
where n is a positive integer denoting the number of points desired, and I is an ideal inside a polynomial
ring. If n is omitted, it is assumed to be 1.

2.1. Options. The user may also choose to provide some additional information, which may accelerate
the computation and improve the probability that a point is found.

Strategy: This parameter can have the value BruteForce, LinearIntersection or Default.

• BruteForce simply tries random points and sees if they are on the variety.

• LinearIntersection intersects with a random linear space.

• Default performs the above strategies in sequence, beginning with BruteForce, then moving
to LinearIntersections with particularly simple linear forms, and gradually ramping up the
randomness of the linear forms.

The speed and the probability of success depend on the strategy (see also Section 3).

Example 2.1. Consider the following example.

i2 : R = ZZ/101[x, y, z];
i3 : J = ideal(x^3 + y^2 + 1, z^3 - x^2 - y^2 + 2);
o3 : Ideal of R
i4 : time randomPoints(J,Strategy=>BruteForce, PointCheckAttempts=>10)

-- used 0.00186098 seconds
o4 = {}
o4 : List
i5 : time randomPoints(J)

-- used 0.0205099 seconds
o5 = {{-1, 0, -1}}
o5 : List
i6 : time randomPoints(J, Strategy=>LinearIntersection)

-- used 0.0334881 seconds
o6 = {{0, 10, 48}}

ExtendField: Intersection with a general linear space will naturally find scheme theoretic points that
are not rational over the base field. Setting the boolean parameter ExtendField to be true will tell the
function that such points are valid. Setting it to be false will tell the function to ignore such points. In
fact, setting ExtendField to be true will also tell Macaulay2 to use linear spaces defined over a field
extension, which can improve randomness properties. This sometimes can slow computation, and other



Bisui, Jiang, Maitra, Nguyễn and Schwede :::: Finding points on varieties with Macaulay2 35

times can substantially speed it up when the variety has few rational points. For some applications, points
over extended fields may also have better randomness properties.

DecompositionStrategy: Within the LinearIntersection strategy, one can also specify the option
DecompositionStrategy. Valid values are Decompose and MultiplicationTable, the latter of
which is currently only implemented for homogeneous ideals. The point is, after intersecting the
linear space and obtaining an ideal defining a set of (possibly thickened) points, we need to find the
minimal associated primes. By default we use Macaulay2’s built-in decompose command. We also have
implemented a MultiplicationTable algorithm, as provided by Frank-Olaf Schreyer, which utilizes
the action of a variable on the residue fields of these points computed in more than one way. This method
is frequently faster for rings with smaller numbers of variables.

The Default strategy switches back and forth between Decompose and MultiplicationTable for
homogeneous ideals (starting with one the function thinks will be fastest). Setting this to Decompose
in the default strategy will force only Decompose to be used; setting it to MultiplicationTable will
force only MultiplicationTable to be used (if the ideal is homogeneous).

Homogeneous: Setting this to be true specifies that the origin (corresponding to the irrelevant ideal) is
not a valid point.

Replacement: When intersecting with a random linear space, it is frequently much faster to use a linear
space defined by relatively sparse equations (i.e., equations that do not involve all variables). Specifying
this parameter to have the value Monomial will mean linear forms such as ax + b are used (for constants
a and b), involving only one variable. Binomial means forms like ax + by + c, using two variables.
Trinomial means forms like ax + by + cz + d . Full means all variables will have coefficients.

DimensionFunction: Our current implementation does not need to know the dimension of V (I ).
However, there are places where we try to verify the dimension of an ideal before we decompose the ideal.
You can pass the function dim (the default), or our probabilistic dimViaBezout or any other dimension
function you might prefer.

PointCheckAttempts: When calling randomPoints with a BruteForce strategy, this denotes the
number of trials for brute force point checking. It also controls how many linear spaces to simultaneously
study in the LinearIntersection strategy.

Example 2.2. We re-compute Example 2.1 this time specifying more attempts.
i7 : time randomPoints(J, Strategy => BruteForce, PointCheckAttempts => 10000)
-- used 1.16294 seconds
o7 = {{-43, 25, 29}}

NumThreadsToUse: When calling randomPoints and functions that call it with a BruteForce strategy,
this option allows the user to specify the number of threads to use in brute force point checking.

2.2. Comments on performance and implementation. When working over very small fields, especially
with hypersurfaces, frequently BruteForce is most efficient. This is not surprising as there may not be



36 Bisui, Jiang, Maitra, Nguyễn and Schwede :::: Finding points on varieties with Macaulay2

many points to check. However, if the field size is larger, BruteForce will perform poorly. Even for
some simple examples, it could not provide any rational points if the number of trials is not large enough.
Other strategies work differently on different examples, and the same strategy can sometimes work very
quickly even if it typically works very slowly.

The current version of the LinearIntersection strategy no longer computes the dimension of the
algebraic set. Instead, it first finds a point defined by linear equations. If the point is on the algebraic
set, we are done. If not, we throw away one of the forms and so now have a line and we see if this line
intersects our algebraic set. We continue in this way until we find a point. This appears to avoid a number
of bottlenecks in our previous implementation since Macaulay2 is relatively fast at identifying when a
linear space and a variety do not intersect.

Example 2.3. We begin with an example over a small field.

i2 : R = ZZ/7[x_1..x_10];
i3 : I = ideal(random(2, R), random(3, R));
o3 : Ideal of R
i4 : time randomPoints(I, Strategy => BruteForce, PointCheckAttempts => 20000)

-- used 0.00311884 seconds
o4 = {{-1, -1, 0, 2, 2, -2, -2, -3, -3, -3}}
o4 : List
i5 : time randomPoints(I, Strategy => Default)

-- used 0.081349 seconds
o5 = {{3, 0, 3, 3, 2, -2, 1, -1, 3, 1}}

Example 2.4. Now we work over a larger field.

i6 : S = ZZ/211[x_1..x_10];
i7 : J = ideal(random(2, S), random(3, S));
o7 : Ideal of S
i8 : time randomPoints(J, Strategy => BruteForce, PointCheckAttempts => 2000000)

-- used 17.7988 seconds
o8 = {{15, 67, -27, -103, 56, 66, -23, 28, -50, 13}}
o8 : List
i9 : time randomPoints(J, Strategy => Default)

-- used 0.0864013 seconds
o9 = {{0, 0, 0, 0, 34, 76, 51, 0, 1, 0}}

Example 2.5. Finally, we can allow our functions to extend our field.

i11 : time randomPoints(J, Strategy => Default, ExtendField => true)
-- used 0.144332 seconds

3 2 3 2
o11 = {{0, - a + 62a - 47a - 76, 0, 0, 13a - 18a + 63a - 31, 0, 0,

3 2 3 2
- 20a - 82a + 35a - 19, 55a - 64a - 8a - 50, 1}}

i12 : coefficientRing ring first first o11
o12 = GF 1982119441
i13 : log_211 1982119441
o13 = 4

In this case, we found a degree 4 point.



Bisui, Jiang, Maitra, Nguyễn and Schwede :::: Finding points on varieties with Macaulay2 37

Remark 2.2.1 (comments on the probability of finding a point). In the case of an absolutely irreducible
hypersurface in An

Fq
(defined by f say), there is significant discussion in the literature estimating lower

bounds of number of rational points (see for instance, [Lang and Weil 1954; Ghorpade and Lachaud
2002; Cafure and Matera 2006]) all of which point to the fact that there is “good probability” of finding a
rational point in this case when we intersect with a random line. Heuristically, we can make the following
rough estimation. We expect that each equation f = λ for λ ∈ Fq has approximately the same number
of solutions. Since each point on Fn

q solves exactly one of these equations, we expect that f = 0 has
approximately qn−1 solutions, or in other words, our hypersurface has qn−1 points. Now, a random line L
has q points. We want to find the probability that one of these points is rational for V ( f ). We would
expect that if these points are randomly distributed, then the probability that our line contains one of
those points 1 −

(
1 −

1
q

)q which tends to 1 − e−1
≈ 0.63 for q large. Alternatively, one can use the proof

of [v. Bothmer and Schreyer 2005, Proposition 2.12] for a more precise statement. For each point of L ,
we see that the probability that the chosen point does not lie in the intersection, L ∩ V ( f ), is 1 −

1
q . We

then exhaust this search over all the points on L to get the probability that there is indeed a successful
intersection is 1 −

(
1 −

1
q

)q . As q gets larger, this value tends to 1 − e−1
≈ 0.63.

Of course, there are schemes over Fq with no rational points at all, even for plane curves.

Remark 2.2.2 (projecting to a hypersurface first). Suppose X ⊆ An is an algebraic set. In a number of
existing algorithms, one first does a generic (or even not very generic) projection h : An

→ Am and so that
h(X) is a hypersurface (at least set theoretically). Then one finds a point x ∈ h(X) (say as above), and
computes h−1({x}), which is a linear space in An that typically intersects X in a rational point. For example,
this is done in randomKRationalPoint in core Macaulay2. Note that projecting to a hypersurface still is
intersecting with a linear space, since h−1({x}) is linear, but it tries to choose the linear space intelligently.

However, in our experience, doing this generic projection first yields slower results. First, one has to
compute the dimension. There are also numerous cases where computing this hypersurface h(X) can
be quite slow. This particularly appears in cases when one is computing successive minors to identify
the locus where some variety is nonsingular.

On the other hand, instead of using a truly random linear space to intersect with, in the default strategy
we initially try linear spaces whose defining equations have as few terms as possible. For example, in
a ring with 10 variables, we first try binomial linear forms like

−27x2 + 38x7

instead of a random linear form like

−28x1 − 27x2 + 29x3 + 27x4 − 28x5 + 27x6 + 38x7 − 13x8 + 21x9 − 3x10.

Such simple linear spaces are the ones implicitly considered in randomKRationalPoint, for instance,
since that generic projection is so simple. In practice, our approach seems to perform at least as well as
projecting to a hypersurface, without the chance of the code hanging on the generic projection or dimension
computations. We also do successive intersections in a way that avoids computing the dimension as
described above in Section 2.2.



38 Bisui, Jiang, Maitra, Nguyễn and Schwede :::: Finding points on varieties with Macaulay2

3. USEFUL FUNCTIONS: dimViaBezout AND randomCoordinateChange.

3.1. dimViaBezout: We thank Frank-Olaf Scheyer for pointing out that in most of the computations,
computing the codimension of the given ideal is a significant bottleneck. While we have avoided
most dimension computations in our current implementation, we have also implemented a probabilistic
dimension computation of V (I ). This function takes as input an ideal I in a polynomial ring over a field
and intersects V (I ) with random linear spaces of increasing dimension until there is an intersection. For
example, if the intersection of V (I ) with a random line has a point, then we expect that V (I ) contains a
hypersurface. If there is no intersection, this function tries a 2-dimensional linear space, and so on. This
can speed up a number of computations. The function also takes in optional inputs as described below:

• DimensionIntersectionAttempts: Our function actually estimates dimension several times and
then averages the result (rounding down) since we tend to overestimate the dimension due to the nature
of dimViaBezout as described above. By default it does this three times unless the Homogeneous
flag is set, in which case it is done five times.

• MinimumFieldSize: If the ambient field is smaller than this integer value, it will automatically be
replaced with an extension field. For instance, there are relatively few linear spaces over a field of
characteristic 2, and this can cause incorrect results to be returned to the user. The user may set the
MinimumFieldSize to ensure that the field being worked over is big enough. If this is not set, the
program tries to choose a reasonable minimum field size based on the ambient ring.

• Homogeneous: If the ideal is homogeneous, we can use homogeneous linear spaces to compute
dimension. Sometimes this is faster and other times slower.

Example 3.1. We illustrate the speed difference in this example.

i2 : S = ZZ/101[y_0..y_9];
i3 : I=ideal random(S^1,S^{-2,-2,-2,-3})+(ideal random(2,S))^2;
o3 : Ideal of S
i4 : time dimViaBezout I

-- used 0.837359 seconds
o4 = 5
i5 : time dim I

-- used 36.8496 seconds
o5 = 5
i6 : time dimViaBezout(I, DimensionIntersectionAttempts=>1)

-- used 0.280803 seconds
o6 = 5

As you can see, doing a single intersection attempt is about three times faster, and it usually gives the right
answer (far more than 99% of the time in this particular example, but in others doing the computation in
triplicate avoids returning incorrect answers).

3.2. randomCoordinateChange: This function takes a polynomial ring as an input and outputs a
coordinate change map, i.e., given a polynomial ring, this will produce a linear automorphism of the ring.
This function checks whether the map is an isomorphism by computing the Jacobian.



Bisui, Jiang, Maitra, Nguyễn and Schwede :::: Finding points on varieties with Macaulay2 39

In some applications, a full random change of coordinates is not desired, as it might cause code to
run very slowly. A binomial change of coordinates might be preferred, or we might only replace some
monomials by other monomials. This is controlled with the following options.

• Replacement: This works like the Replacement option for RandomPoints.

• MaxCoordinatesToReplace: The user can specify that only a specified number of coordinates
should be nonmonomial (assuming Homogeneous is set to true).

• Homogeneous: Setting Homogeneous to false will cause degree zero terms to be added to modified
coordinates (including monomial coordinates).

Example 3.2. We demonstrate some of these options.

i3 : R = ZZ/11[x, y, z];
i4 : randomCoordinateChange(R)

ZZ
o4 = map(R,--[x, y, z],{4x + 5y - 5z, 3x - 4y - 3z, 4x})

11
ZZ

o4 : RingMap R <--- --[x, y, z]
11

i5 : matrix randomCoordinateChange(R, MaxCoordinatesToReplace => 1)
o5 = | x -x-4y-5z y |
i6 : matrix randomCoordinateChange(R, MaxCoordinatesToReplace => 1,

Homogeneous => false)
o6 = | x-3 z-5 -x+3y-4z+2 |

4. OTHER FUNCTIONS: genericProjection AND projectionToHypersurface. We include two
functions providing customizable projections. We describe them here.

4.1. genericProjection. This function finds a random (somewhat, depending on options) generic
projection of the ring or ideal. The typical usages are

• genericProjection(n, I)

• genericProjection(n, R)

where I is an ideal in a polynomial ring, R can denote a quotient of a polynomial ring and n ∈ Z is an
integer specifying how many dimensions to drop. Note that this function makes no attempt to verify that
the projection is actually generic with respect to the ideal.

This gives the projection map from AN
7→ AN−n and the defining ideal of the projection of V (I ). If

no integer n is provided then it acts as if n = 1.

Example 4.1. We project a curve in 4-space to one in 2-space.

i1 : R = ZZ/5[x, y, z, w];
i2 : I = ideal(x, y^2, w^3 + x^2);
i3 : genericProjection(2, I)

ZZ 2 2
o3 = (map(R,--[z, w],{- x - 2y - z, - y - 2z}), ideal(z - z*w - w ))

5



40 Bisui, Jiang, Maitra, Nguyễn and Schwede :::: Finding points on varieties with Macaulay2

Alternatively, instead of I , we may pass it a quotient ring. It will then return the inclusion of the generic
projection ring into the given ring, followed by the source of that inclusion.

This method works by calling randomCoordinateChange (Section 3) before dropping variables. It
passes the options Replacement, MaxCoordinatesToReplace, Homogeneous to that function.

4.2. projectionToHypersurface. This function creates a projection to a hypersurface. The typical
usages are

• projectionToHypersurface I

• projectionToHypersurface R

where I is an ideal in a polynomial ring and R is a quotient of a polynomial ring. The output is a list
with two entries: the generic projection map and the ideal (respectively the ring).

It differs from genericProjection(codim I - 1, I) as it only tries to find a hypersurface equation
that vanishes along the projection, instead of finding one that vanishes exactly at the projection. This can
be faster and can be useful for finding points. The same approach was used in the point command in the
package [Cremona]. If we already know the codimension is c, we can set Codimension to be c so the
function does not compute it.

5. AN APPLICATION: findANonZeroMinor AND extendIdealByNonZeroMinor. As mentioned in
the introduction, the two functions in this section will provide further tools for computing singular locus,
in addition to those available in the package FastLinAlg.

5.1. findANonZeroMinor: The typical usage of this function is

• findANonZeroMinor(n, M, I)

where I is an ideal in a polynomial ring over QQ or ZZ/p for p prime, M is a matrix over the polynomial
ring and n ∈ Z denotes the size of the minors of interest.

The function outputs the following:

• A randomly chosen point P in V (I ) which it finds using randomPoints.

• The indexes of the columns of M that stay linearly independent upon plugging P into M .

• The indices of the linearly independent rows of the matrix extracted from M in the above step.

• A random n × n submatrix of M that has full rank at P .

Besides the options from randomPoints which are automatically passed to that function, the user
may also provide the following additional information:

MinorPointAttempts: This controls how many points at which to check the rank.



Bisui, Jiang, Maitra, Nguyễn and Schwede :::: Finding points on varieties with Macaulay2 41

Example 5.1. We demonstrate this findANonZeroMinor function.

i3 : R = ZZ/5[x, y, z];
i4 : I = ideal(random(3, R) - 2, random(2, R))

3 2 2 3 2 2 2 2 3 2
o4 = ideal(2x - 2x y + 2x*y + y + x z - 2x*y*z + y z - 2x*z + 2y*z - z - 2, - 2x*y - x*z - z )
o4 : Ideal of R
i5 : M = jacobian(I)
o5 = {1} | x2+xy+2y2+2xz-2yz-2z2 -2y-z |

{1} | -2x2-xy-2y2-2xz+2yz+2z2 -2x |
{1} | x2-2xy+y2+xz-yz+2z2 -x-2z |

3 2
o5 : Matrix R <--- R
i6 : findANonZeroMinor(2, M, I, Strategy => GenericProjection)
o6 = ({-2, 1, 1}, {0, 1}, {0, 1}, {1} | x2+xy+2y2+2xz-2yz-2z2 -2y-z |)

{1} | -2x2-xy-2y2-2xz+2yz+2z2 -2x |

5.2. extendIdealByNonZeroMinor: The typical usage is

• extendIdealByNonZeroMinor(n, M, I)

where n, M, I are the same as before. This finds a submatrix of size n × n using findANonZeroMinor;
it extracts the last entry of the output, finds its determinant and adds it to the ideal I , thus extending I . It
has the same options as findANonZeroMinor.

One can use this function to show that rings are regular in codimension 1, that is, satisfy Serre’s
condition (R1).

Example 5.2. Consider the following 3-dimensional example which is regular in codimension 1. Note,
in this example, computing the dimension of the singular locus takes around 30 seconds as there are
15500 minors of size 4 × 4 coming from the associated 7 × 12 Jacobian matrix. However, we can use our
function to quickly find interesting minors.

i2 : T = ZZ/101[x1, x2, x3, x4, x5, x6, x7];
i3 : I = ideal(x5*x6-x4*x7,x1*x6-x2*x7,x5^2-x1*x7,x4*x5-x2*x7,x4^2-x2*x6,x1*x4-x2*x5,

x2*x3^3*x5+3*x2*x3^2*x7+8*x2^2*x5+3*x3*x4*x7-8*x4*x7+x6*x7,
x1*x3^3*x5+3*x1*x3^2*x7+8*x1*x2*x5+3*x3*x5*x7-8*x5*x7+x7^2,
x2*x3^3*x4+3*x2*x3^2*x6+8*x2^2*x4+3*x3*x4*x6-8*x4*x6+x6^2,
x2^2*x3^3+3*x2*x3^2*x4+8*x2^3+3*x2*x3*x6-8*x2*x6+x4*x6,
x1*x2*x3^3+3*x2*x3^2*x5+8*x1*x2^2+3*x2*x3*x7-8*x2*x7+x4*x7,
x1^2*x3^3+3*x1*x3^2*x5+8*x1^2*x2+3*x1*x3*x7-8*x1*x7+x5*x7);

o3 : Ideal of T
i4 : M = jacobian I;

7 12
o4 : Matrix T <--- T
i5 : i = 0; J = I;
o6 : Ideal of T
i7 : elapsedTime(while (i < 10) and dim J > 1 do (

i = i + 1;
J = extendIdealByNonZeroMinor(4, M, J)));

-- 0.640164 seconds elapsed
i8 : dim J
o8 = 1
i9 : i
o9 = 5



42 Bisui, Jiang, Maitra, Nguyễn and Schwede :::: Finding points on varieties with Macaulay2

In this particular example, there tend to be about five associated primes when adding the first mi-
nor to J , and so one expects about five steps as each minor will typically eliminate one of those
primes.

There is some similar functionality for computing partial Jacobian ideals obtained via heuristics (as
opposed to actually finding rational or geometric points) in the package [FastLinAlg]. That package now
uses the functionality contained here in RandomPoints in some of its functions.

6. THE LATEST VERSION. The latest version of the package is available here.

SUPPLEMENT. The online supplement contains version 1.5.3 of RandomPoints.

ACKNOWLEDGEMENTS. The authors would like to thank David Eisenbud and Mike Stillman for useful
conversations and comments on the development of this package. The authors began work on this package
at the virtual Cleveland 2020 Macaulay2 workshop. The authors are also grateful to the reviewers for
suggesting and providing preliminary codes to speed up computations, thereby improving the efficacy of
the package substantially.

Frank-Olaf Schreyer is also an author on this package, as he provided some code related to the
MultiplicationTable decomposition strategy and suggested using a probabilistic approach to compute
dimension.

REFERENCES.
[v. Bothmer and Schreyer 2005] H.-C. G. v. Bothmer and F.-O. Schreyer, “A quick and dirty irreducibility test for multivariate
polynomials over Fq ”, Experiment. Math. 14:4 (2005), 415–422. MR Zbl

[Cafure and Matera 2006] A. Cafure and G. Matera, “Improved explicit estimates on the number of solutions of equations over a
finite field”, Finite Fields Appl. 12:2 (2006), 155–185. MR Zbl

[Cremona] G. Staglianò, “Cremona: rational maps between projective varieties”, Macaulay2 package, available at https://
github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages.

[FastLinAlg] B. Martinova, M. Robinson, K. Schwede, and Y. W. Yao, “FastLinAlg: faster linear algebra operations”, Macaulay2
package, available at https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages.

[Ghorpade and Lachaud 2002] S. R. Ghorpade and G. Lachaud, “Number of solutions of equations over finite fields and a
conjecture of Lang and Weil”, pp. 269–291 in Number theory and discrete mathematics (Chandigarh, 2000), Birkhäuser, Basel,
2002. MR Zbl

[Lang and Weil 1954] S. Lang and A. Weil, “Number of points of varieties in finite fields”, Amer. J. Math. 76 (1954), 819–827.
MR Zbl

[Macaulay2] D. R. Grayson and M. E. Stillman, “Macaulay2, a software system for research in algebraic geometry”, software,
available at http://www.math.uiuc.edu/Macaulay2/.

[RationalPoints] N. Stapleton, “RationalPoints”, Macaulay2 package, available at https://github.com/Macaulay2/M2/tree/
master/M2/Macaulay2/packages.

RECEIVED: 8 Feb 2021 REVISED: 18 Aug 2021 ACCEPTED: 8 May 2023

https://github.com/Macaulay2/Workshop-2020-Cleveland/blob/FastLinAlg/FastLinAlg/M2/RandomPoints.m2
http://msp.org/jsag/2023/13-1/jsag-v13-n1-x03-RandomPoints.m2
http://dx.doi.org/10.1080/10586458.2005.10128933
http://dx.doi.org/10.1080/10586458.2005.10128933
http://msp.org/idx/mr/2193804
http://msp.org/idx/zbl/1152.12300
http://dx.doi.org/10.1016/j.ffa.2005.03.003
http://dx.doi.org/10.1016/j.ffa.2005.03.003
http://msp.org/idx/mr/2206396
http://msp.org/idx/zbl/1163.11329
https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages
https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages
http://msp.org/idx/mr/1962145
http://msp.org/idx/zbl/1080.11049
http://dx.doi.org/10.2307/2372655
http://msp.org/idx/mr/65218
http://msp.org/idx/zbl/0058.27202
http://www.math.uiuc.edu/Macaulay2/
https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages


Bisui, Jiang, Maitra, Nguyễn and Schwede :::: Finding points on varieties with Macaulay2 43

SANKHANEEL BISUI:

sankhaneel.bisui@umanitoba.ca
Department of Mathematics, The University of Manitoba, Winnipeg MB, Canada

ZHAN JIANG:

zoeng@umich.edu
Department of Mathematics, The University of Michigan, Ann Arbor MI, United States

SARASIJ MAITRA:

maitra@math.utah.edu
Department of Mathematics, The University of Utah, Salt Lake City UT, United States

THÁI THÀNH NGUYỄN:

nguyt161@mcmaster.ca
Department of Mathematics, McMaster University, Hamilton ON, Canada

KARL SCHWEDE:

schwede@math.utah.edu
Department of Mathematics, The University of Utah, Salt Lake City UT, United States

msp

mailto:sankhaneel.bisui@umanitoba.ca
mailto:zoeng@umich.edu
mailto:maitra@math.utah.edu
mailto:nguyt161@mcmaster.ca
mailto:schwede@math.utah.edu
http://msp.org




JSAG 13 (2023), 45–51 The Journal of Software for
https://doi.org/10.2140/jsag.2023.13.45 Algebra and Geometry

Setting the scene for Betti characters

FEDERICO GALETTO

ABSTRACT: Finite group actions on free resolutions and modules arise naturally in many interesting
examples. Understanding these actions amounts to describing the terms of a free resolution or the
graded components of a module as group representations which, in the nonmodular case, are completely
determined by their characters. With this goal in mind, we introduce a Macaulay2 package for computing
characters of finite groups on free resolutions and graded components of finitely generated graded modules
over polynomial rings.

1. INTRODUCTION. Let R be a polynomial ring over a field k, and M be a finitely generated graded
R-module. Let G be a linearly reductive group acting k-linearly on R and M , and assume these actions
preserve degrees and distribute over R-multiplication. If F• is a minimal graded free resolution of M ,
then the action of G extends to F•. More precisely, if m denotes the irrelevant maximal ideal of R,
then the finite-dimensional vector spaces Fi/mFi carry a natural structure of graded G-representations
(see [Galetto 2016, Proposition 2.4.9 and Remark 2.4.10] for details). This additional structure makes
a resolution more rigid as the differentials must commute with the group action; in some cases, this
makes it possible to construct the differentials explicitly using representation theory (see, for example,
[Sam 2009; Sam and Weyman 2011]). Understanding how G acts on the modules Fi/mFi may also
lead to interesting combinatorial descriptions of the Betti numbers of M , such as in [Galetto 2020,
Corollary 4.12]. Free resolutions equipped with group actions (also known as equivariant resolutions)
have found many important applications, such as the computation of Betti numbers of determinantal
varieties [Lascoux 1978], and a proof of the existence of pure free resolutions [Eisenbud et al. 2011]
(a central aspect of Boij-Söderberg theory).

From a computational perspective, the [Macaulay2] package HighestWeights [Galetto 2015] allows
users to determine the representation theoretic structure of an equivariant resolution with the action of a
semisimple Lie group in characteristic zero. Recent publications [Zamaere et al. 2014; Efremenko et al.
2018; Galetto et al. 2018; Bauer et al. 2019; Galetto 2020; Biermann et al. 2020; Murai 2020; Shibata
and Yanagawa 2023; Raicu 2021; Murai and Raicu 2022] point to an interest in equivariant resolutions
with actions of finite groups, particularly symmetric groups. However, at the time of writing, no software
solution is available to compute such actions. The present article introduces the Macaulay2 package
BettiCharacters to fill this gap. In the nonmodular case (i.e., when the characteristic of the field does

MSC2020: primary 13-04; secondary 13A50, 13D02, 13P20, 20C15.
Keywords: Macaulay2, equivariant resolution, finite group, Betti character.
BettiCharacters version 2.1

© 2023 The Author, under license to MSP (Mathematical Sciences Publishers).

https://doi.org/10.2140/jsag.2023.13-1
http://msp.org/jsag
https://doi.org/10.2140/jsag.2023.13.45
http://msp.org/jsag


46 Galetto :::: Setting the scene for Betti characters

not divide the order of the group), finite-dimensional representations of finite groups are determined, up
to isomorphism, by their characters (see [Serre 1977, Chapter 2] for an introduction to the subject). Thus
understanding the G-action on a minimal free resolution F• amounts to describing the graded characters
of the representations Fi/mFi or, equivalently, the characters of the graded components (Fi/mFi ) j . The
uniqueness of minimal free resolutions implies (Fi/mFi ) j ∼=TorR

i (M, k) j as G-representations. Moreover,
the character of G on TorR

i (M, k) j evaluated at the identity of G is the dimension of TorR
i (M, k) j as a

k-vector space, i.e., the (i, j)-th Betti number of M . Therefore we adopt the following definition, after
which the package is named.

Definition. The (i, j)-th Betti character of G on M, denoted βG
i, j (M), is the character of G on TorR

i (M, k) j .

The package BettiCharacters implements the algorithm described in [Galetto 2022, Algorithm 1],
which in essence propagates the group action from the module M through a (previously computed)
minimal free resolution F•. In addition, BettiCharacters also allows users to compute the characters
of G on the graded components of M . The rest of this article illustrates the main functionalities of the
package.1 The author thanks the anonymous referee for carefully reviewing this work.

2. EXAMPLE: A SYMMETRIC SHIFTED IDEAL. Consider the ideal generated by all quadratic squarefree
monomials in a ring with four variables.

i1 : R = QQ[x_1..x_4];

i2 : I = ideal apply(subsets(gens R,2),product)

o2 = ideal (x x , x x , x x , x x , x x , x x )
1 2 1 3 2 3 1 4 2 4 3 4

o2 : Ideal of R

i3 : RI = res I

1 6 8 3
o3 = R <-- R <-- R <-- R <-- 0

0 1 2 3 4

o3 : ChainComplex

The symmetric group S4 acts by permuting the ring variables and, in doing so, preserves the ideal.
Thus the action passes to the quotient and its minimal free resolution. The equivariant structure of the
resolution is described in [Galetto 2020, Theorem 4.11] and [Efremenko et al. 2018, Theorem 4.1].
The ideal also belongs to the larger class of symmetric shifted ideals, whose equivariant resolutions are
described in [Biermann et al. 2020, Theorem 6.2]. To verify these results computationally, we first define
the group action. Since characters are class functions (i.e., constant on conjugacy classes) it is enough
to define a single group element per conjugacy class. In the case of a symmetric group, the method
symmetricGroupActors returns the desired elements as one-row matrices of substitutions for the ring
variables. Then we set up the action on the resolution as an object of type ActionOnComplex using the
action method.

1All computations performed in Macaulay2 version 1.19.1 on Fedora 36, using BettiCharacters 2.0.



Galetto :::: Setting the scene for Betti characters 47

i4 : needsPackage "BettiCharacters";

i5 : S4 = symmetricGroupActors R

o5 = {| x_2 x_3 x_4 x_1 |, | x_2 x_3 x_1 x_4 |, | x_2 x_1 x_4 x_3 |,
---------------------------------------------------------------
| x_2 x_1 x_3 x_4 |, | x_1 x_2 x_3 x_4 |}

o5 : List

i6 : A = action(RI,S4)

o6 = ChainComplex with 5 actors

o6 : ActionOnComplex

Now we can use the character method to compute Betti characters.

i7 : a = character A

o7 = Character over R

(0, {0}) => | 1 1 1 1 1 |
(1, {2}) => | 0 0 2 2 6 |
(2, {3}) => | 0 -1 0 0 8 |
(3, {4}) => | 1 0 -1 -1 3 |

o7 : Character

The output is of type Character, a new kind of hash table introduced by the package. The keys are
pairs containing the homological degree and internal (multi)degree of the nonzero components of a graded
character. The values are one-row matrices whose entries are the traces of the previously defined group
elements.

Finally, we decompose this character against the character table of the symmetric group, which can be
obtained using the method symmetricGroupTable. The irreducible characters χλ of S4 are in bijection
with the partitions λ of 4 (see [Fulton 1997, §7]), which appear as row labels in the character table. The
column labels are the cardinalities of the conjugacy classes represented by the permutations in o5.

i8 : T = symmetricGroupTable R

o8 = Character table over R

| 6 8 3 6 1
--------+-------------------

(4) | 1 1 1 1 1
(3,1) | -1 0 -1 1 3

2 |
(2 ) | 0 -1 2 0 2

2 |
(2,1 ) | 1 0 -1 -1 3

4 |
(1 ) | -1 1 1 -1 1

o8 : CharacterTable

The decomposition is achieved with the method decomposeCharacter. The output is a table whose
rows are labeled by pairs of homological degree and internal (multi)degree, and whose columns are
labeled by irreducible characters of the group. The entry in a given cell is the coefficient of the irreducible
character labeled by the column in the degree labeled by the row.



48 Galetto :::: Setting the scene for Betti characters

i9 : decomposeCharacter(a,T)

o9 = Decomposition table

| 2 2
| (4) (3,1) (2 ) (2,1 )

----------+--------------------------
(0, {0}) | 1 0 0 0
(1, {2}) | 1 1 1 0
(2, {3}) | 0 1 1 1
(3, {4}) | 0 0 0 1

o9 : CharacterDecomposition

The computation above shows that the Betti character β
S4
1,2 of the quotient by the ideal in the example is

χ (4)
+ χ (3,1)

+ χ (2,2).
The methods in BettiCharacters are completely independent of the group. However, the package

contains methods that simplify working with symmetric groups, as shown in the current example.

3. EXAMPLE: KLEIN POINT CONFIGURATION. We consider the Klein configuration of points in the
projective plane. The defining ideal I is explicitly constructed in [Bauer et al. 2019, Proposition 7.3].
Although I is defined over the rationals, we work over the cyclotomic field obtained by adjoining a
primitive seventh root of unity for the purpose of defining a group action.

i1 : kk=toField(QQ[a]/ideal(sum apply(7,i->a^i)));

i2 : R=kk[x,y,z];

i3 : f4=x^3*y+y^3*z+z^3*x

3 3 3
o3 = x y + y z + x*z

o3 : R

i4 : f6=-1/54*det(jacobian transpose jacobian f4)

5 5 2 2 2 5
o4 = x*y + x z - 5x y z + y*z

o4 : R

i5 : I=minors(2,jacobian matrix{{f4,f6}});

o5 : Ideal of R

The unique simple group G of order 168 acts on the projective plane preserving the Klein configuration.
This induces an action on our polynomial ring preserving the ideal I . The action (which is minimally
defined over our cyclotomic field) is explicitly described in [Bauer et al. 2019, §2.2]. In particular, the
group is generated by elements g of order 7, h of order 3, and i of order 2. Since we are interested in
some characters of G, we need a representative for each conjugacy class; therefore, in addition to g, h,
and i, we also consider the identity element, the inverse of g, and an element j of order 4. We define all
these group elements as matrices.

i6 : g=matrix{{a^4,0,0},{0,a^2,0},{0,0,a}};

3 3
o6 : Matrix kk <--- kk



Galetto :::: Setting the scene for Betti characters 49

i7 : h=matrix{{0,1,0},{0,0,1},{1,0,0}};

3 3
o7 : Matrix ZZ <--- ZZ

i8 : i=(2*a^4+2*a^2+2*a+1)/7 * matrix{{a-a^6,a^2-a^5,a^4-a^3},
{a^2-a^5,a^4-a^3,a-a^6},
{a^4-a^3,a-a^6,a^2-a^5}};

3 3
o8 : Matrix kk <--- kk

i9 : j=-1/(2*a^4+2*a^2+2*a+1) * matrix{{a^5-a^4,1-a^5,1-a^3},
{1-a^5,a^6-a^2,1-a^6},
{1-a^3,1-a^6,a^3-a}};

3 3
o9 : Matrix kk <--- kk

i10 : G={id_(R^3),i,h,j,g,inverse g};

As proved in [Seceleanu 2015, Theorem 4.4] and [Bauer et al. 2019, Proposition 8.1], the symbolic
cube I (3) is not contained in the square I 2. The second proof of [Bauer et al. 2019, Proposition 8.1]
reduces the failure of containment to showing the graded component of degree 21 in the quotient I (2)/I 2

is a trivial G-representation. By local duality, this is equivalent to showing that the last module in a
minimal free resolution of I 2 is generated in degree 24 by a one-dimensional trivial G-module. We
proceed to compute the character of G on the last module of the resolution of I 2.

i11 : I2=I^2;

o11 : Ideal of R

i12 : RI2=res I2

1 6 6 1
o12 = R <-- R <-- R <-- R <-- 0

0 1 2 3 4

o12 : ChainComplex

i13 : needsPackage "BettiCharacters";

i14 : A=action(RI2,G,Sub=>false)

o14 = ChainComplex with 6 actors

o14 : ActionOnComplex

The action is defined with the option Sub=>false, which allows passing group elements as square
matrices rather than one-row matrices of substitutions as in Section 2. Next we compute the character of
the G-action on the resolution of I 2 in homological degree 3.

i15 : character(A,3)

o15 = Character over R

(3, {24}) => | 1 1 1 1 1 1 |

o15 : Character

As expected, we obtain a trivial character concentrated in degree 24.



50 Galetto :::: Setting the scene for Betti characters

The BettiCharacters package can also compute the characters of a finite group on the graded
components of a module. Using the package [SymbolicPowers], we can directly establish that the
character of G on the graded component of degree 21 in I (2)/I 2 is trivial.

i16 : needsPackage "SymbolicPowers";

i17 : Is2 = symbolicPower(I,2);

o17 : Ideal of R

i18 : M = Is2 / I2;

i19 : B = action(M,G,Sub=>false)

o19 = Module with 6 actors

o19 : ActionOnGradedModule

i20 : character(B,21)

o20 = Character over R

(0, {21}) => | 1 1 1 1 1 1 |

o20 : Character

SUPPLEMENT. The online supplement contains version 2.1 of BettiCharacters.

REFERENCES.
[Bauer et al. 2019] T. Bauer, S. Di Rocco, B. Harbourne, J. Huizenga, A. Seceleanu, and T. Szemberg, “Negative curves on
symmetric blowups of the projective plane, resurgences, and Waldschmidt constants”, Int. Math. Res. Not. 2019:24 (2019),
7459–7514. MR

[Biermann et al. 2020] J. Biermann, H. de Alba, F. Galetto, S. Murai, U. Nagel, A. O’Keefe, T. Römer, and A. Seceleanu, “Betti
numbers of symmetric shifted ideals”, J. Algebra 560 (2020), 312–342. MR

[Efremenko et al. 2018] K. Efremenko, J. M. Landsberg, H. Schenck, and J. Weyman, “On minimal free resolutions of
sub-permanents and other ideals arising in complexity theory”, J. Algebra 503 (2018), 8–20. MR

[Eisenbud et al. 2011] D. Eisenbud, G. Flø ystad, and J. Weyman, “The existence of equivariant pure free resolutions”, Ann. Inst.
Fourier (Grenoble) 61:3 (2011), 905–926. MR Zbl

[Fulton 1997] W. Fulton, Young tableaux, London Mathematical Society Student Texts 35, Cambridge University Press, 1997.
MR Zbl

[Galetto 2015] F. Galetto, “Free resolutions and modules with a semisimple Lie group action”, J. Softw. Algebra Geom. 7 (2015),
17–29. MR Zbl

[Galetto 2016] F. Galetto, “Propagating weights of tori along free resolutions”, J. Symbolic Comput. 74 (2016), 1–45. MR Zbl

[Galetto 2020] F. Galetto, “On the ideal generated by all squarefree monomials of a given degree”, J. Commut. Algebra 12:2
(2020), 199–215. MR Zbl

[Galetto 2022] F. Galetto, “Finite group characters on free resolutions”, J. Symbolic Comput. 113 (2022), 29–38. MR Zbl

[Galetto et al. 2018] F. Galetto, A. V. Geramita, and D. L. Wehlau, “Symmetric complete intersections”, Comm. Algebra 46:5
(2018), 2194–2204. MR Zbl

[Lascoux 1978] A. Lascoux, “Syzygies des variétés déterminantales”, Adv. in Math. 30:3 (1978), 202–237. MR Zbl

[Macaulay2] D. R. Grayson and M. E. Stillman, “Macaulay2, a software system for research in algebraic geometry”, software,
available at http://www.math.uiuc.edu/Macaulay2/.

[Murai 2020] S. Murai, “Betti tables of monomial ideals fixed by permutations of the variables”, Trans. Amer. Math. Soc. 373:10
(2020), 7087–7107. MR Zbl

http://msp.org/jsag/2023/13-1/jsag-v13-n1-x04-BettiCharacters.m2
http://dx.doi.org/10.1093/imrn/rnx329
http://dx.doi.org/10.1093/imrn/rnx329
http://msp.org/idx/mr/4043827
http://dx.doi.org/10.1016/j.jalgebra.2020.04.037
http://dx.doi.org/10.1016/j.jalgebra.2020.04.037
http://msp.org/idx/mr/4108337
http://dx.doi.org/10.1016/j.jalgebra.2018.01.021
http://dx.doi.org/10.1016/j.jalgebra.2018.01.021
http://msp.org/idx/mr/3779986
http://dx.doi.org/10.5802/aif.2632
http://msp.org/idx/mr/2918721
http://msp.org/idx/zbl/1239.13023
http://msp.org/idx/mr/1464693
http://msp.org/idx/zbl/0878.14034
http://dx.doi.org/10.2140/jsag.2015.7.9
http://msp.org/idx/mr/3438710
http://msp.org/idx/zbl/1420.22001
http://dx.doi.org/10.1016/j.jsc.2015.05.004
http://msp.org/idx/mr/3424030
http://msp.org/idx/zbl/1331.13011
http://dx.doi.org/10.1216/jca.2020.12.199
http://msp.org/idx/mr/4105544
http://msp.org/idx/zbl/1442.13037
http://dx.doi.org/10.1016/j.jsc.2022.02.001
http://msp.org/idx/mr/4381679
http://msp.org/idx/zbl/1485.13037
http://dx.doi.org/10.1080/00927872.2017.1372453
http://msp.org/idx/mr/3799202
http://msp.org/idx/zbl/1439.13018
http://dx.doi.org/10.1016/0001-8708(78)90037-3
http://msp.org/idx/mr/520233
http://msp.org/idx/zbl/0394.14022
http://www.math.uiuc.edu/Macaulay2/
http://dx.doi.org/10.1090/tran/8159
http://msp.org/idx/mr/4155201
http://msp.org/idx/zbl/1451.13046


Galetto :::: Setting the scene for Betti characters 51

[Murai and Raicu 2022] S. Murai and C. Raicu, “An equivariant Hochster’s formula for Sn-invariant monomial ideals”, J. Lond.
Math. Soc. (2) 105:3 (2022), 1974–2010. MR

[Raicu 2021] C. Raicu, “Regularity of Sn-invariant monomial ideals”, J. Combin. Theory Ser. A 177 (2021), art. id. 105307.
MR Zbl

[Sam 2009] S. V. Sam, “Computing inclusions of Schur modules”, J. Softw. Algebra Geom. 1 (2009), 5–10. MR Zbl

[Sam and Weyman 2011] S. V. Sam and J. Weyman, “Pieri resolutions for classical groups”, J. Algebra 329 (2011), 222–259.
MR Zbl

[Seceleanu 2015] A. Seceleanu, “A homological criterion for the containment between symbolic and ordinary powers of some
ideals of points in P2”, J. Pure Appl. Algebra 219:11 (2015), 4857–4871. MR Zbl

[Serre 1977] J.-P. Serre, Linear representations of finite groups, Graduate Texts in Mathematics 42, Springer, 1977. MR Zbl

[Shibata and Yanagawa 2023] K. Shibata and K. Yanagawa, “Elementary construction of minimal free resolutions of the Specht
ideals of shapes (n − 2, 2) and (d, d, 1)”, J. Algebra Appl. 22:9 (2023), Paper No. 2350199, 26. MR

[SymbolicPowers] E. Grifo, “SymbolicPowers”, Macaulay2 package, available at https://github.com/Macaulay2/M2/tree/
master/M2/Macaulay2/packages.

[Zamaere et al. 2014] C. B. Zamaere, S. Griffeth, and S. V. Sam, “Jack polynomials as fractional quantum Hall states and the
Betti numbers of the (k + 1)-equals ideal”, Comm. Math. Phys. 330:1 (2014), 415–434. MR Zbl

RECEIVED: 30 Jun 2021 REVISED: 26 Feb 2023 ACCEPTED: 30 May 2023

FEDERICO GALETTO:

f.galetto@csuohio.edu
Department of Mathematics and Statistics, Cleveland State University, Cleveland, OH, United States

msp

http://dx.doi.org/10.1112/jlms.12551
http://msp.org/idx/mr/4407114
http://dx.doi.org/10.1016/j.jcta.2020.105307
http://msp.org/idx/mr/4136641
http://msp.org/idx/zbl/1453.13055
http://dx.doi.org/10.2140/jsag.2009.1.5
http://msp.org/idx/mr/2878669
http://msp.org/idx/zbl/1311.13039
http://dx.doi.org/10.1016/j.jalgebra.2010.03.008
http://msp.org/idx/mr/2769324
http://msp.org/idx/zbl/1245.20060
http://dx.doi.org/10.1016/j.jpaa.2015.03.009
http://dx.doi.org/10.1016/j.jpaa.2015.03.009
http://msp.org/idx/mr/3351566
http://msp.org/idx/zbl/1318.13032
http://msp.org/idx/mr/450380
http://msp.org/idx/zbl/0355.20006
http://dx.doi.org/10.1142/S0219498823501992
http://dx.doi.org/10.1142/S0219498823501992
http://msp.org/idx/mr/4614721
https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages
http://dx.doi.org/10.1007/s00220-014-2010-4
http://dx.doi.org/10.1007/s00220-014-2010-4
http://msp.org/idx/mr/3215587
http://msp.org/idx/zbl/1294.81387
mailto:f.galetto@csuohio.edu
http://msp.org




JSAG 13 (2023), 53–59 The Journal of Software for
https://doi.org/10.2140/jsag.2023.13.53 Algebra and Geometry

Simplicial complexes in Macaulay2

BEN HERSEY, GREGORY G. SMITH AND ALEXANDRE ZOTINE

ABSTRACT: We highlight some features of the SimplicialComplexes package in Macaulay2.

This updated version of the SimplicialComplexes package in Macaulay2, originally developed by
Sorin Popescu, Gregory G. Smith, and Mike Stillman, adds constructors for many classic examples,
implements a new data type for simplicial maps, and incorporates many improvements to the methods
and documentation. Emphasizing combinatorial and algebraic applications, the primary data type encodes
an abstract simplicial complex—a family of subsets of a finite set that is closed under taking subsets.
These simplicial complexes are the combinatorial counterpart to their geometric realizations formed from
points, line segments, filled-in triangles, solid tetrahedra, and their higher-dimensional analogues in some
Euclidean space. The subsets in a simplicial complex are called faces. The faces having cardinality 1 are
its vertices and the maximal faces (ordered by inclusion) are its facets. The dimension of a simplicial
complex is one less than the maximum cardinality of its faces. Following the combinatorial conventions,
every nonempty simplicial complex has the empty set as a face.

In this package, a simplicial complex is represented by its Stanley–Reisner ideal. The vertices are
identified with a subset of the variables in a polynomial ring and each face is identified with the product of
the corresponding variables. A nonface is any subset of the vertices that does not belong to the simplicial
complex and each nonface is again identified with a product of variables. The Stanley–Reisner ideal of a
simplicial complex is generated by the monomials corresponding to its nonfaces; see Definition 5.1.2 in
[Bruns and Herzog 1993], Definition 1.6 in [Miller and Sturmfels 2005], or Definition II.1.1 in [Stanley
1996]. Because computations in the associated polynomial ring are typically prohibitive, this package is
not intended for simplicial complexes with a large number of vertices.

CONSTRUCTORS. The basic constructor for a simplicial complex accepts two different kinds of input.
Given a list of monomials, it returns the smallest simplicial complex containing the corresponding faces.
Given a radical monomial ideal I, it returns the simplicial complex whose Stanley–Reisner ideal is I. We
illustrate both methods using the “bowtie” complex in Figure 1.

Macaulay2, version 1.20
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,
Isomorphism, LLLBases, MinimalPrimes, OnlineLookup,
PrimaryDecomposition, ReesAlgebra, Saturation, TangentCone

MSC2020: 05E45, 13F55, 55U10.
Keywords: simplicial complexes, Stanley–Reisner ideals, monomial ideals, resolutions, Cohen–Macaulay complexes.
SimplicialComplexes.m2 version 2.0

© 2023 The Authors, under license to MSP (Mathematical Sciences Publishers).

https://doi.org/10.2140/jsag.2023.13-1
http://msp.org/jsag
https://doi.org/10.2140/jsag.2023.13.53
http://msp.org/jsag


54 Hersey, Smith and Zotine :::: Simplicial complexes in Macaulay2

v

w

x
y

z

w

y

x
z

v

Figure 1. On the left is the bowtie complex ▶◀ and on the right its Alexander dual ▶◀∗

i1 : needsPackage "SimplicialComplexes"; S = QQ[v..z];
i3 : ▶◀ = simplicialComplex {v*w*x, x*y*z}
o3 = simplicialComplex | xyz vwx |
o3 : SimplicialComplex
i4 : I = monomialIdeal ▶◀
o4 = monomialIdeal (v*y, w*y, v*z, w*z)
o4 : MonomialIdeal of S
i5 : ▶◁ = simplicialComplex I
o5 = simplicialComplex | xyz vwx |
o5 : SimplicialComplex
i6 : assert(▶◀ === ▶◁)

The package also has convenient constructors for some archetypal simplicial complexes. For example,
we recognize the real projective plane and the Klein bottle from the reduced homology groups of some
explicit triangulations; see Theorems 6.3–6.4 in [Munkres 1984].

i7 : P = realProjectiveSpaceComplex(2, R = ZZ[a..h])
o7 = simplicialComplex | bef aef cdf adf bcf cde bde ace abd abc |
o7 : SimplicialComplex
i8 : for j from 0 to 2 list prune HH_j P

o8 = {0, cokernel | 2 |, 0}
o8 : List
i9 : for j from 0 to 2 list prune HH_j kleinBottleComplex R
o9 = {0, cokernel | 2 |, 0}

| 0 |
o9 : List

More comprehensively, Frank H. Lutz enumerates simplicial complexes having a small number of
vertices; see [Lutz]. Using this list, the package creates a database of 43138 simplicial 2-manifolds
having at most 10 vertices and 1343 simplicial 3-manifolds having at most 9 vertices. We demonstrate
this feature by exhibiting the distribution of f-vectors among the 3-manifolds having 9 vertices. For all
nonnegative integers j , the j-th entry in the f-vector is the number of faces having j vertices.

i10 : tally for j from 0 to 1296 list fVector smallManifold(3, 9, j, ZZ[vars(1..9)])
o10 = Tally{{1, 9, 26, 34, 17} => 7 }

{1, 9, 27, 36, 18} => 23
{1, 9, 28, 38, 19} => 45
{1, 9, 29, 40, 20} => 84
{1, 9, 30, 42, 21} => 128
{1, 9, 31, 44, 22} => 175
{1, 9, 32, 46, 23} => 223
{1, 9, 33, 48, 24} => 231
{1, 9, 34, 50, 25} => 209
{1, 9, 35, 52, 26} => 121
{1, 9, 36, 54, 27} => 51

o10 : Tally



Hersey, Smith and Zotine :::: Simplicial complexes in Macaulay2 55

Exploiting the same loop, we construct the simplicial maps from a minimal triangulation of a torus to
the induced subcomplex on the first 7 vertices for each of these 3-manifolds.

i11 : T = smallManifold(2, 7, 6, R = ZZ[a..i])
o11 = simplicialComplex | cfg afg beg aeg cdg bdg def bef adf bcf cde ace abd abc |
o11 : SimplicialComplex
i12 : for j from 0 to 2 list prune HH_j T

2 1
o12 = {0, ZZ, ZZ }
o12 : List
i13 : for j from 0 to 1296 list (

phi := map(smallManifold(3, 9, j, R), T, gens R);
if not isWellDefined phi then continue else phi);

o13 : {}
o13 : List

COMBINATORIAL TOPOLOGY. We use the bowtie complex to showcase some of the key operations on
simplicial complexes. Viewing a simplicial complex as a subcomplex of a simplex yields a duality theory.
For any simplicial complex 1 whose vertices belong to a set V, the Alexander dual is the simplicial
complex 1∗

:= {F ⊆ V | V \ F ̸∈ 1}. Since each simplicial complex in this package has an underlying
polynomial ring, the variables in this ring form a canonical superset of the vertices.

i14 : dual ▶◀
o14 = simplicialComplex | wxz vxz wxy vxy |
o14 : SimplicialComplex
i15 : assert(dual dual ▶◀ === ▶◀ and dual monomialIdeal ▶◀ === monomialIdeal dual ▶◀)

Algebraically, Alexander duality switches the roles of the minimal generators and the irreducible
components in the Stanley–Reisner ideal.

i16 : monomialIdeal dual ▶◀
o16 = monomialIdeal (v*w, y*z)
o16 : MonomialIdeal of S
i17 : irreducibleDecomposition monomialIdeal ▶◀
o17 = {monomialIdeal (v, w), monomialIdeal (y, z) }
o17 : List

The topological form of Alexander duality gives an isomorphism between the reduced homology of a
simplicial complex and reduced cohomology of its dual; see Theorem 5.6 in [Miller and Sturmfels 2005]:

i18 : n = numgens ring ▶◀
o18 = 5
i19 : assert all(-1..n-1, j -> prune HH^(n-j-3) dual ▶◀ == prune HH_j ▶◀)

A simplicial complex 1 is Cohen–Macaulay if the associated quotient ring S/I, where I is the
Stanley–Reisner ideal of 1 in the polynomial ring S, is Cohen–Macaulay. To characterize this attribute
topologically, we introduce a family of subcomplexes. For any face F in 1, the link is the subcomplex
link1(F) := {G ∈ 1 | F ∪ G ∈ 1 and F ∩ G = ∅}. The link of the vertex x in ▶◀ has two disjoint facets.

i20 : L = link(▶◀, x)
o20 = simplicialComplex | yz vw |
o20 : SimplicialComplex



56 Hersey, Smith and Zotine :::: Simplicial complexes in Macaulay2

i21 : prune HH_0 L
1

o21 = QQ
o21 : QQ-module, free

As discovered by Gerald Reisner, the simplicial complex 1 is Cohen–Macaulay if and only if, for all
faces F in 1 and all integers j less than the dimension of link1(F), the j-th reduced homology group
of link1(F) vanishes; see Corollary 5.3.9 in [Bruns and Herzog 1993], Theorem 5.53 in [Miller and
Sturmfels 2005], or Corollary II.4.2 in [Stanley 1996]. Using this criterion, the 0-th reduced homology
certifies that ▶◀ is not Cohen–Macaulay.

i22 : assert(HH_0 L != 0)
i23 : assert(dim(S^1/monomialIdeal ▶◀) =!= n - pdim(^1/monomialIdeal ▶◀))

However, the 1-skeleton of ▶◀ is Cohen–Macaulay.
i24 : ▷◁ = skeleton(1, ▶◀)
o24 = simplicialComplex | yz xz xy wx vx vw |
o24 : SimplicialComplex
i25 : faceList = rsort flatten values faces ▷◁

o25 = {v*w, v*x, w*x, x*y, x*z, y*z, v, w, x, y, z, 1}
o25 : List
i26 : assert all(faceList, F -> (L := link(▷◁, F); all(dim L, j -> HH_j L == 0)))
i27 : assert(dim(S^1/monomialIdeal ▷◁) === n - pdim(S^1/monomialIdeal ▷◁))

Alternatively, we verify that ▶◀ is not Cohen–Macaulay by showing that its h-vector has a negative
entry; see Theorem 5.1.10 in [Bruns and Herzog 1993] or Corollary II.2.5 in [Stanley 1996]. By definition,
the h-vector of a simplicial complex 1 is a binomial transform of its f-vector: for all 0 ⩽ j ⩽ d := dim 1,
we have h j =

∑ j
k=0(−1) j−1

(d+1−k
j−k

)
fk−1. The h-vector encodes the numerator of the Hilbert series

for S/I.
i28 : d = dim ▶◀
o28 = 2
i29 : faces ▶◀
o29 = HashTable{-1 => {1} }

0 => {v, w, x, y, z}
1 => {v*w, v*x, w*x, x*y, x*z, y*z}
2 => {v*w*x, x*y*z}

o29 : HashTable
i30 : fVec = fVector ▶◀
o30 = {1, 5, 6, 2}
o30 : List
i31 : hVec = for j from 0 to d list

sum(j+1, k -> (-1)^(j-k) * binomial(d+1-k, j-k) * fVec#k)
o31 = {1, 2, -1}
o31 : List
i32 : hilbertSeries(S^1/monomialIdeal ▶◀, Reduce => true)

2
1 + 2T - T

o32 = –––––––––––
3

(1 - T)
o32 : Expression of class Divide



Hersey, Smith and Zotine :::: Simplicial complexes in Macaulay2 57

x0

x1
x2

x3

y0 y1

y0 y2
y0 y3

y1 y2 y3

Figure 2. On the left is 0 and on the right is the labeling of its vertices.

RESOLUTIONS OF MONOMIAL IDEALS. As David Bayer, Irena Peeva, and Bernd Sturmfels [Bayer
et al. 1998] revealed, minimal free resolutions of monomial ideals are frequently encoded by a simplicial
complex. Consider a monomial ideal J in the polynomial ring R := Q[y1, y2, . . . , ym]. Assume that R
is equipped with the Nm-grading given by deg(yi ) = ei , for each 1 ⩽ i ⩽ m, where e1, e2, . . . , em is the
standard basis. Let 1 be a simplicial complex whose vertices are labeled by the generators of J. We label
each face F of 1 by the least common multiple y aF ∈ R of its vertices; the empty face is labeled by the
monomial 1 = y a∅. The chain complex C(1) supported on the labeled simplicial complex 1 is the chain
complex of free Nm-graded R-modules with basis corresponding to the faces of 1. More precisely, the
chain complex C(1) is determined by the data

Ci (1) :=

⊕
dim(F) = i−1

R(−aF ) and ∂(F) =

∑
dim(G) = dim(F)−1

sign(G, F) y aF −aG G .

The symbols F and G represent both faces in 1 and basis vectors in the underlying free module of C(1).
The sign of the pair (G, F) belongs to {−1, 0, 1} and is part of the data in the boundary map of the chain
complex of 1. For more information, see Subsection 4.1 in [Miller and Sturmfels 2005] or Chapter 55 in
[Peeva 2011].

We illustrate this construction with an explicit example. Consider the simplicial complex 0 in Figure 2
and the monomial ideal J = (y0 y1, y0 y2, y0 y3, y1 y2 y3) in R = Q[y0, y1, y2, y3]. Label the vertices of 0

by the generators of J :

x0 7→ y0 y1, x1 7→ y0 y2, x2 7→ y0 y3 and x3 7→ y1 y2 y3.

i33 : x = getSymbol "x"; S = ZZ[x_0..x_3];
i35 : 1 = simplicialComplex{x_0*x_1*x_2, x_2*x_3}
o35 = simplicialComplex | x_2x_3 x_0x_1x_2 |
o35 : SimplicialComplex
i36 : chainComplex 1

1 4 4 1
o36 = ZZ <– ZZ <– ZZ <– ZZ

-1 0 1 2
o36 : ChainComplex
i37 : y = getSymbol "y"; R = QQ[y_0..y_3, DegreeRank => 4];
i39 : J = ideal(y_0*y_1, y_0*y_2, y_0*y_3, y_1*y_2*y_3)
o39 = ideal (y y , y y , y y , y y y )

0 1 0 2 0 3 1 2 3
o39 : Ideal of R
i40 : C = chainComplex(1, Labels => J_*)

1 4 4 1
o40 = R <– R <– R <– R

0 1 2 3
o40 : ChainComplex



58 Hersey, Smith and Zotine :::: Simplicial complexes in Macaulay2

i41 : C.dd
1 4

o41 = 0 : R <–––––––––––––––––––––––––––––––––- R : 1
| y_0y_1 y_0y_2 y_0y_3 y_1y_2y_3 |

4 4
1 : R <–––––––––––––––––––––––––––––––––––––– R : 2

{1, 1, 0, 0} | -y_2 -y_3 0 0 |
{1, 0, 1, 0} | y_1 0 -y_3 0 |
{1, 0, 0, 1} | 0 y_1 y_2 -y_1y_2 |
{0, 1, 1, 1} | 0 0 0 y_0 |

4 1
2 : R <–––––––––––––––––––––––- R : 3

{1, 1, 1, 0} | y_3 |
{1, 1, 0, 1} | -y_2 |
{1, 0, 1, 1} | y_1 |
{1, 1, 1, 1} | 0 |

o41 : ChainComplexMap
i42 : assert(res(R^1/J) == C)

The chain complex C(1) depends on the labeling and is not always a resolution.

i43 : C’ = chainComplex(1, Labels => reverse J_*)
1 4 4 1

o43 = R <– R <– R <– R
0 1 2 3

o43 : ChainComplex
i44 : prune homology C’
o44 = 0 : cokernel | y_0y_3 y_0y_2 y_0y_1 y_1y_2y_3 |

1 : cokernel {1, 1, 0, 1} | y_2 |
2 : 0
3 : 0

o44 : GradedModule

Given a monomial ideal J, there are several algorithms that return a labeled simplicial complex 1 such
that chain complex C(1) is a free resolution of R/J. We exhibit a few.

i45 : J’ = monomialIdeal(y_1*y_3, y_2^2, y_0*y_2, y_1^2, y_0^2);
o45 : MonomialIdeal of R
i46 : T = taylorResolution J’

1 5 10 10 5 1
o46 = R <– R <– R <– R <– R <– R

0 1 2 3 4 5
o46 : ChainComplex
i47 : gensJ’ = first entries mingens J’

2 2 2
o47 = {y y , y , y y , y , y }

1 3 2 0 2 1 0
o47 : List
i48 : S = ZZ[x_0..x_4];
i49 : assert(T == chainComplex(simplexComplex(4, S), Labels => gensJ’))
i50 : assert(lyubeznikSimplicialComplex(J’, S) === simplexComplex(4, S))
i51 : 0 = buchbergerSimplicialComplex(J’,S)
o52 = simplicialComplex | x_0x_2x_3x_4 x_0x_1x_2x_3 |
o52 : SimplicialComplex



Hersey, Smith and Zotine :::: Simplicial complexes in Macaulay2 59

i53 : B = buchbergerResolution J’
1 5 9 7 2

o53 = R <– R <– R <– R <– R
0 1 2 3 4

o53 : ChainComplex
i54 : assert all(3, i -> HH_(i+1) B == 0)
i55 : assert(betti B == betti res J’)
i56 : assert(B == chainComplex(0, Labels => first entries mingens J’))
i57 : assert(0 === lyubeznikSimplicialComplex(J’, S, MonomialOrder => 2,1,0,3,4))
i59 : assert(0 === scarfSimplicialComplex(J’, S))

For more information about the Taylor resolution, the Lyubeznik resolution, and the Scarf complex,
see [Mermin 2012]. The Buchberger resolution is described in [Olteanu and Welker 2016].

ACKNOWLEDGEMENTS. All three authors were partially supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

SUPPLEMENT. The online supplement contains version 2.0 of SimplicialComplexes.m2.

REFERENCES.
[Bayer et al. 1998] D. Bayer, I. Peeva, and B. Sturmfels, “Monomial resolutions”, Math. Res. Lett. 5:1-2 (1998), 31–46. MR Zbl
[Bruns and Herzog 1993] W. Bruns and J. Herzog, Cohen–Macaulay Rings, Cambridge Studies in Advanced Mathematics 39,
Cambridge University Press, 1993. MR

[Lutz] F. H. Lutz, “The Manifold Page”, website, available at http://page.math.tu-berlin.de/~lutz/stellar/.
[Macaulay2] D. R. Grayson and M. E. Stillman, “Macaulay2, a software system for research in algebraic geometry”, software,
available at http://www.math.uiuc.edu/Macaulay2/.

[Mermin 2012] J. Mermin, “Three simplicial resolutions”, pp. 127–141 in Progress in commutative algebra 1, de Gruyter,
Berlin, 2012. MR Zbl

[Miller and Sturmfels 2005] E. Miller and B. Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics
227, Springer, 2005. MR Zbl

[Munkres 1984] J. R. Munkres, Elements of algebraic topology, Addison-Wesley Publishing Company, Menlo Park, CA, 1984.
MR Zbl

[Olteanu and Welker 2016] A. Olteanu and V. Welker, “The Buchberger resolution”, J. Commut. Algebra 8:4 (2016), 571–587.
MR Zbl

[Peeva 2011] I. Peeva, Graded syzygies, Algebra and Applications 14, Springer, 2011. MR Zbl
[Stanley 1996] R. P. Stanley, Combinatorics and commutative algebra, 2nd ed., Progress in Mathematics 41, Birkhäuser, 1996.
MR Zbl

RECEIVED: 24 May 2022 REVISED: 25 Oct 2022 ACCEPTED: 21 Mar 2023

BEN HERSEY:
benjamin.hersey@concordia.ca
Department of Mathematics and Statistics, Concordia University, Montréal QC, Canada

GREGORY G. SMITH:
ggsmith@mast.queensu.ca
Department of Mathematics and Statistics, Queen’s University, Kingston ON, Canada

ALEXANDRE ZOTINE:
18az45@queensu.ca
Department of Mathematics and Statistics, Queen’s University, Kingston ON, Canada

msp

http://msp.org/jsag/2023/13-1/jsag-v13-n1-x013-SimplicialComplexes.m2
http://dx.doi.org/10.4310/MRL.1998.v5.n1.a3
http://msp.org/idx/mr/1618363
http://msp.org/idx/zbl/0909.13010
http://msp.org/idx/mr/1251956
http://msp.org/idx/mr/1251956
http://page.math.tu-berlin.de/~lutz/stellar/
http://www.math.uiuc.edu/Macaulay2/
http://msp.org/idx/mr/2932583
http://msp.org/idx/zbl/1247.13018
http://msp.org/idx/mr/2110098
http://msp.org/idx/zbl/1090.13001
http://msp.org/idx/mr/755006
http://msp.org/idx/zbl/0673.55001
http://dx.doi.org/10.1216/JCA-2016-8-4-571
http://msp.org/idx/mr/3566531
http://msp.org/idx/zbl/1352.05058
http://dx.doi.org/10.1007/978-0-85729-177-6
http://msp.org/idx/mr/2560561
http://msp.org/idx/zbl/1213.13002
http://msp.org/idx/mr/1453579
http://msp.org/idx/zbl/1157.13302
mailto:benjamin.hersey@concordia.ca
mailto:ggsmith@mast.queensu.ca
mailto:18az45@queensu.ca
http://msp.org




1





JOURNAL OF SOFTWARE FOR ALGEBRA AND GEOMETRY vol 13, no 1, 2023

1FastMinors package for Macaulay2
Boyana Martinova, Marcus Robinson, Karl Schwede and Yuhui Yao

21Simplicial complexes in Macaulay2
Ben Hersey, Gregory G. Smith and Alexandre Zotine


	 vol. 13, no. 1, 2023
	Masthead and Copyright
	01
	1. Introduction
	2. Defining ideal of multi-Rees algebra of ideals
	2.1. Routine for the nondomain case

	3. Computation of mixed multiplicities of ideals
	4. Mixed volume of lattice polytopes
	5. Sectional Milnor numbers

	02
	1. Introduction
	2. Finding interesting submatrices
	2.1. How are the submatrices chosen?
	2.2. Ways of choosing submatrices
	2.3. LexSmallestTerm and GRevLexSmallestTerm
	2.4. GRevLexLargest and LexLargest
	2.5. Points
	2.6. Random and RandomNonzero
	More on GRevLex: modifying the underlying matrix


	3. chooseGoodMinors and submatrix selection control
	3.1. The Strategy option

	4. Find a submatrix of a given rank: getSubmatrixOfRank
	4.1. Examples of getSubmatrixOfRank

	5. Finding lower bounds for matrix ranks: isRankAtLeast
	5.1. Example of isRankAtLeast

	6. Regular in codimension n: regularInCodimension
	6.1. Example of regularInCodimension
	6.2. Options and strategies for regularInCodimension
	6.3. Notes on implementation
	6.4. Other options

	7. Projective dimension: projDim
	7.1. Example of projDim
	7.2. Options

	8. Computing ideals of minors: recursiveMinors
	8.1. Example of recursiveMinors

	9. Performance and limits of the package

	03
	1. Introduction
	2. Our primary purpose: randomPoints
	2.1. Options
	2.2. Comments on performance and implementation

	3. Useful functions: dimViaBezout and randomCoordinateChange
	3.1. dimViaBezout:
	3.2. randomCoordinateChange:

	4. Other functions: genericProjection and projectionToHypersurface
	4.1. genericProjection
	4.2. projectionToHypersurface

	5. An application: findANonZeroMinor and extendIdealByNonZeroMinor
	5.1. findANonZeroMinor:
	5.2. extendIdealByNonZeroMinor:

	6. The latest version

	04
	1. Introduction
	2. Example: a symmetric shifted ideal
	3. Example: Klein point configuration

	05
	Guidelines for Authors
	Table of Contents

