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ABSTRACT: We present a package MixedMultiplicity for computing mixed multiplicities of ideals
in a Noetherian ring which is either local or a standard graded algebra over a field. This enables us to
find mixed volumes of convex lattice polytopes and sectional Milnor numbers of hypersurfaces with an
isolated singularity. The algorithms make use of the defining equations of the multi-Rees algebra of ideals,
which are obtained by generalising a result of Cox, Lin and Sosa.

1. INTRODUCTION. This article describes the [Macaulay2] package MixedMultiplicity which com-
putes the mixed multiplicities of ideals having positive grade in a Noetherian ring, the mixed volume of a
collection of convex lattice polytopes, and sectional Milnor numbers of hypersurfaces with an isolated
singularity. One of the main steps of the algorithms is the computation of the defining equations of the
multi-Rees algebra

R(I1, . . . , Is) = R[I1t1, . . . , Is ts] =

⊕
a1,...,as≥0

I a1
1 · · · I as

s ta1
1 · · · tas

s ⊆ R[t1, . . . , ts]

of ideals I1, . . . , Is in a Noetherian ring R. For the case when R is a polynomial ring over any field k
and I1, . . . , Is are monomial ideals in R, an explicit formula for the defining equations of R(I1, . . . , Is)

has been given by D. Cox, K.-N. Lin, and G. Sosa in [Cox et al. 2019]. In Theorem 2.1, we obtain an
analogue of their result for any set of ideals I1, . . . , Is in a Noetherian ring R such that each Ii has positive
grade. The latter condition is always satisfied when R is a domain or for any ideal of positive height in
a reduced ring or in a Cohen–Macaulay ring. Using this result, we write a function multiReesIdeal
to compute the defining ideal of a multi-Rees algebra in Macaulay2. It should be noted that the command
reesIdeal in the Macaulay2 package ReesAlgebra [Eisenbud 2018] is already available to compute the
defining ideal of the Rees algebra of a module [Eisenbud et al. 2003], in particular, the defining ideal of a
multi-Rees algebra. But, the algorithm presented in this article runs faster in many cases. When the ring
is not a domain, the algorithm follows an analogue of the reesIdeal, albeit for the multiple ideal setting.

Several authors (see for instance, [Ribbe 1999; Lin and Polini 2014; Sosa 2014; Jabarnejad 2018]) have
proposed algorithms to determine the defining equations of the multi-Rees algebra for specific classes of
ideals. The algorithm for computing defining equations of R(I1, . . . , Is) helps us to construct algorithms
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to compute mixed multiplicities (Section 3), mixed volume (Section 4) and sectional Milnor numbers
(Section 5) in the general setting. Observe that to compute mixed multiplicities of ideals one can always
assume each ideal to have positive grade using a standard trick (see Remark 3.3).

For any ideal J in a Noetherian ring R, we denote the common length of the maximal R-sequences in
J by grade(J ). Let I0, I1, . . . , Ir be a set of ideals in a Noetherian ring of dimension d ≥ 1, which is
either local or a standard graded algebra over a field. Further assume that I0 is primary to the maximal
ideal (resp. maximal graded ideal) and grade(I j ) > 0 for all j . Let a = (a0, a1, . . . , ar ) ∈ Nr+1 with
|a| = d − 1. The function mixedMultiplicity computes the mixed multiplicity ea(I0 | I1, . . . , Ir ).
Using the results of N. V. Trung, J. K. Verma and B. Teissier, mixed volumes and sectional Milnor
numbers can be identified with mixed multiplicities of ideals over polynomial rings. Let Q1, . . . , Qn

be a collection of lattice polytopes in Rn . The function mMixedVolume computes the mixed volume of
Q1, . . . , Qn . Let R = k[x1, . . . , xn] be a polynomial ring in n variables, m be the maximal graded ideal
and f ∈ R be any polynomial. The function secMilnorNumbers computes the sectional Milnor numbers
by calculating the mixed multiplicities e(m[n−i], J ( f )[i]), 0 ≤ i ≤ n − 1, where J ( f ) = ( fx1, . . . , fxn ) is
the ideal generated by the partial derivatives of f . Many researchers, including M. Herrmann et al. [1997],
J. K. Verma [1992], and C. D’Cruz [2003], have expressed the multiplicities of Rees algebras, extended
Rees algebras, and certain form rings in terms of mixed multiplicities. The MixedMultiplicity package
is also helpful in this regard. For any unexplained invariants and definitions used in this article, the reader
may refer to [Bruns and Herzog 1993], [Eisenbud et al. 2003], and [Huneke and Swanson 2006].

2. DEFINING IDEAL OF MULTI-REES ALGEBRA OF IDEALS. An explicit formula for the defining ideal
of the multi-Rees algebra of a finite collection of monomial ideals in a polynomial ring was given in [Cox
et al. 2019]. In this section, we generalize their result to find the defining ideal of the multi-Rees algebra
of a collection of ideals with positive grade in a Noetherian ring. We use this result to write a Macaulay2
algorithm to compute the defining ideal when the base ring is a domain. We provide another algorithm
for the nondomain case.

Let R be a Noetherian ring and I1, . . . , Is ⊆ R be ideals. Suppose that Ii = ⟨ fi j | j = 1, . . . , ni ⟩

for all i = 1, . . . , s. Let R(I1, . . . , Is) be the multi-Rees algebra of ideals I1, . . . , Is . Consider the
set of indeterminates Y = {Yi j | i = 1, . . . , s, j = 1, . . . , ni } and T = (T1, . . . , Ts) over R. Define an
R-algebra homomorphism R[Y ]

ϕ
−→ R(I1, . . . , Is) ⊆ R[T ] such that ϕ(Yi j ) = fi j Ti , for all i = 1, . . . , s,

j = 1, . . . , ni and ϕ(r) = r for all r ∈ R. Then R(I1, . . . , Is) ≃ R[Y ]/ ker(ϕ). The ideal ker ϕ is called
the defining ideal of R(I1, . . . , Is). We give an explicit description of ker(ϕ).

Theorem 2.1. Let R be a Noetherian ring and I1, . . . , Is ⊆ R be ideals of positive grade. For each i ,
consider a generating set { fi j | j = 1, . . . , ni } of Ii which contains at least one nonzerodivisor fi ji . We
set h =

∏s
i=1 fi ji and set

0 = ⟨Yi j fi j ′ − Yi j ′ fi j | i = 1, . . . , s and j, j ′
∈ {1, . . . , ni }⟩ : h∞

⊆ R[Y ].

Then 0 ⊆ R[Y ] is the defining ideal of R(I1, . . . , Is).
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Proof. Without loss of generality, we may assume that ji = 1 for all i = 1, . . . , s and h =
∏s

i=1 fi1.
Consider the ring homomorphism φ : R → R[ f −1

11 , f −1
21 , . . . , f −1

s1 ] ∼= R[h−1
], which induces a nat-

ural map φ̃ : R[Y ] → R[h−1
][Y ] ∼= R[Y ]h . The defining ideal of R(φ(I1), . . . , φ(Is)) of the ideals

φ(Ii ) = (1, fi2/ fi1, . . . , fini / fi1) for i = 1, . . . , s, is J := J1 + · · · + Js in R[h−1
][Y ] ∼= R[Y ]h , where

Ji := (Yi2 − fi2/ fi1Yi1, . . . , Yini − fini / fi1Yi1). We claim that φ̃−1(J ) = 0. Observe that for all j ̸= j ′,
and for all i ,

fi j Yi j ′ − fi j ′Yi j = fi j

(
Yi j ′ −

fi j ′

fi1
Yi1

)
− fi j ′

(
Yi j −

fi j

fi1
Yi1

)
∈ Ji .

So 0 ⊆ φ̃−1(J ). Now let r ∈ φ̃−1(J ). Then φ̃(r) ∈ J , i.e.,

r
1

=

s∑
i=1

ni∑
j=2

ai j

f mi j
i1

(
Yi j −

fi j

fi1
Yi1

)
for some ai j ∈ R. Thus we have

hmr ∈ ( fi1Yi j − fi j Yi1 | 1 ≤ i ≤ s, 1 ≤ j ≤ ni ) ⊆ ( fi j Yi j ′ − fi j ′Yi j | 1 ≤ i ≤ s, 1 ≤ j, j ′
≤ ni )

for some m ≥ max{mi j | 1 ≤ i ≤ s, 1 ≤ j ≤ ni } + 1. Therefore, r ∈ 0 and hence the claim holds.
From [Atiyah and Macdonald 2016, Proposition 3.11 (iii)], we get that φ̃−1(J ) is the defining ideal of
R(I1, . . . , Is), as ht is a nonzerodivisor on R[Y ]/0 for all t ≥ 1. □

When R is a domain or when a list of nonzerodivisors (one each from the list of ideals with positive
grades) is provided by the user, the function multiReesIdeal computes the defining ideal of the
multi-Rees algebra using Theorem 2.1.

Algorithm (version I: multiReesIdeal, set of ideals with positive grade). Let I1, . . . , Is be ideals of
a Noetherian ring R with grade Ii > 0 for all i and let a1, . . . , as be a set of nonzerodivisors, where ai

belongs to the generating set of Ii for all i . When R is a domain, the function picks ai to be the first
element in the generating set of Ii for each i .

Input: The list W = {{I1, . . . , Is}, {a1, . . . , as}}, or W = {I1, . . . , Is} if R is a domain.

(1) Define a polynomial ring S by attaching m indeterminates to the ring R, where m is the sum of the
number of generators of all the ideals.

(2) For each ideal Ii , construct a matrix M(i) whose first row consists of the generators of the ideal and
the second row consists of the indeterminates.

(3) Add the 2 × 2 minors of these matrices to get an ideal L .

(4) To get the defining ideal, saturate L with the product of ai ’s.

Output: The defining ideal of the Rees algebra R(I1, . . . , Is).

The elements of the defining ideal are assigned Ns+1 degree by the function, where the first Ns

coordinates point to the component of R(I1, . . . , Is) where the element lies and the last coordinate is the
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degree of the element. In order to compute the multi-Rees ideal R(I, J ) using the function reesIdeal,
one needs to enter I ⊕ J and this routine is sometimes slower than the multiReesIdeal routine.

Example 2.2.
i1 : R = QQ[x,y,z];

i2 : I = ideal(x^4+y^2*z^2,x*y^2*z);

i3 : J = ideal(y^3+z^3, x^2*y+x*z^2);

i4 : time multiReesIdeal {I,J};
-- used 0.0131127 seconds

i5 : transpose gens oo

o5 = {0,-1,-6} | (x2y+xz2)X_2+(-y3-z3)X_3 |
{-1,0,-8} | xy2zX_0+(-x4-y2z2)X_1 |

i6 : (first entries gens o4)/degree

o6 : {{0, 1, 6}, {1, 0, 8}}

i7 : time multiReesIdeal({I,J},{I_1, J_0});
-- used 0.0629737 seconds

i8 : M = directSum(module I, module J);

i9 : time reesIdeal M;
-- used 0.40043 seconds

In the following example, our algorithm works faster than the function reesIdeal.

Example 2.3.
i1 : ZZ/32003[y_0..y_4];

i2 : C = trim monomialCurveIdeal(R, {3, 5, 7, 12});

i3 : time multiReesIdeal (C, C_0);
-- used 167.118 seconds

i4 : time reesIdeal (C, C_0);
-- used 295.675 seconds

2.1. Routine for the nondomain case. In this section we present an algorithm to find the defining ideal
of the Rees algebra using the definitions of Rees algebra. This method does not have any requirements on
the grade of the ideals or the domain-ness of the ring, but it seems to be slower than the previous method.

We can construct the Rees algebra of Ii as the kernel of the map ϕi : R[Yi1, . . . , Yini ] → R[Ti ]

where ϕi (Yi j ) = fi j Ti for j = 1, . . . , ni . Notice that (ker ϕi )R[Y ] ⊆ ker ϕ. Suppose that φi is the
presentation matrix of Ii . Then the symmetric algebra Sym(Ii ) has a presentation R[Yi1, . . . , Yini ]/Li

where Li = I1([Yi1, . . . , Yini ] · φi ). Clearly, Li ⊆ ker ϕi ⊂ ker ϕ. So the map ϕi factors through the
symmetric algebra Sym(Ii ). Now Sym(I1)⊗ · · · ⊗ Sym(Is) has the presentation R[Y ]/(L1 + · · · + Ls).
Since Li ⊆ ker ϕ, the map ϕ also factors through Sym(I1) ⊗ · · · ⊗ Sym(Is). Thus to find the defining
ideal of the multi Rees algebra R(I1, . . . , Is) it is enough to find the kernel of the surjective map
Sym(I1) ⊗ · · · ⊗ Sym(Is) → R(I1, . . . , Is).

Algorithm (version II: multiReesIdeal, no assumptions). Let I1, . . . , Is be ideals in the Noetherian
ring R.

Input: The list W = {I1, . . . , Is}.
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(1) For each ideal Ii , compute the presentation F ′

i
φi
−→ Fi → Ri → 0 where φi is the presentation matrix

of Ii .

(2) Now compute the source symmetric algebra Sym(F ′

1) ⊗ · · · ⊗ Sym(F ′
s) and the target symmetric

algebra Sym(F1) ⊗ · · · ⊗ Sym(Fs) of the map φ1 ⊗ · · · ⊗φs .

(3) Compute the map between the symmetric algebra of the source and target and return the kernel of
the above map.

Output: The defining ideal of the Rees algebra R(I1, . . . , Is).

In the following example, the ring U is not a domain and hence the algorithm uses the above method.
As expected, the computational time in the case where a nonzerodivisor is given as an optional input is
faster than the case where no optional input is given.

Example 2.4.
i1 : T = QQ[a,b,c];

i2 : m = matrix{{a,b,c},{b,c,a}};

i3 : U = T/minors(2,m);

i4 : J = ideal vars U;

i5 : time multiReesIdeal J;
-- used 0.0977545 seconds

i6 : time multiReesIdeal (J, a);
-- used 0.0142101 seconds

3. COMPUTATION OF MIXED MULTIPLICITIES OF IDEALS. Let I1, . . . , Ir be ideals of positive height in
a local ring (A,m) (or a standard graded algebra over a field and m be the maximal graded ideal) and let
I0 be an m-primary ideal. In [Katz and Verma 1989], the authors prove ℓ(I u0

0 I u1
1 · · · I ur

r /I u0+1
0 I u1

1 · · · I ur
r )

is a polynomial P(u), for ui large, where u = (u0, . . . , ur ). Write this polynomial in the form

P(u) =

∑
α∈Nr+1

|α|=t

1
α!

eα(I0 | I1, . . . , Ir )uα
+ lower degree terms,

where t = deg P(u), α = (α0, . . . , αr ) ∈ Nr+1, α! =
∏r

i=0 αi ! and |α| =
∑r

i=0 αi . If |α| = t , then
eα(I0 | I1, . . . , Ir ) are called the mixed multiplicities of the ideals I0, I1, . . . , Ir .

Theorem 3.1 [Trung and Verma 2007, Theorem 1.2]. Set

R = R(I0 | I1, . . . , Ir ) =

⊕
(u0,u1,...,ur )∈Nr+1

I u0
0 I u1

1 · · · I ur
r

I u0+1
0 I u1

1 · · · I ur
r

.

Assume that d = dim A/(0 : I ∞) ≥ 1, where I = I1 · · · Ir . Then deg PR(u) = d − 1, where PR(u) is the
Hilbert polynomial of R.

In [Verma et al. 1994], D. Katz, S. Mandal, and J. K. Verma found a precise formula for the Hilbert
polynomial of the quotient of a bigraded algebra over an Artinian local ring. This result can be generalized
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to the case of the quotient of a multigraded algebra over an Artinian local ring and we skip the proof as the
technique is similar. Let S be an Artinian local ring and A = S[X1, . . . , Xr ] be an Nr -graded ring over S,
where for 1 ≤ i ≤ r , X i = {X i (0), . . . , X i (si )} is a set of indeterminates. Set u = (u1, . . . , ur ) ∈ Nr and
|u| = u1 +· · ·+ur . Then A =

⊕
u∈Nr Au , where Au is the S-module generated by monomials of the form

P1 · · · Pr , where Pi is a monomial of degree ui in X i . An element in Au is called multihomogeneous of
degree u. An ideal I ⊆ A generated by multihomogeneous elements is called a multihomogeneous ideal.
Then R = A/I is an Nr -graded algebra with u-graded component Ru = Au/Iu . The Hilbert function of R is
defined as H(u)=λ(Ru), where λ denotes the length as an S-module. Set tu

= tu1
1 · · · tur

r . The Hilbert series
of R is given by H S(R, t)=

∑
u∈Nr λ(Ru)tu . Then there exists a polynomial N (t1, . . . , tr )∈ Z[t1, . . . , tr ]

so that H S(R, t) = N (t1, . . . , tr )/((1 − t1)s1+1
· · · (1 − tr )sr +1).

Theorem 3.2. Write the Hilbert polynomial of R as

P(u, R) =

s∑
α=0

cα

(
u1 + α1

α1

)
· · ·

(
ur + αr

αr

)
. (1)

Then

cα =
(−1)|s−α|

(s1 − α1)! · · · (sr − αr )!
·

∂ |s−α|N

∂t s1−α1
1 · · · ∂t sr −αr

r

∣∣∣∣
(t1,...,tr )=1

.

Note that (
ui + αi

αi

)
=

1
αi !

uαi
i + lower degree terms.

So if we write P(u) as in (1), then cα = eα for all α ∈ Nr+1 with |α| = d − 1. Therefore, Theorem 3.2
gives an expression for eα.

Remark 3.3. Let I ′

0, I ′

1, . . . , I ′
r denote the images of ideals I0, I1, . . . , Ir in the ring A/(0 : I ∞), where

I = I1 · · · Ir . Put R′
= R(I ′

0|I
′

1, . . . , I ′
r ). Then for u large, PR(u) = PR′(u) (see [Trung and Verma 2007,

Theorem 1.2] for details). Therefore, in the case where grade Ii = 0 for some i , the user needs to work in
the quotient ring A/(0 : I ∞) and input the images of the ideals in the quotient ring.

Algorithm. The algorithm for the function mixedMultiplicity uses the above ideas. Let I0, I1, . . . , Ir

be a set of ideals of a Noetherian ring R of dimension d ≥ 1, where I0 is primary to the maximal ideal
and grade(Ii ) > 0 for all i ; a = (a0, a1, . . . , ar ) ∈ Nr+1 with |a| = d − 1.

Input: The sequence W = ((I0, I1, . . . , Ir ), (a0, a1, . . . , ar )).

(1) Compute the defining ideal of the multi-Rees algebra using the function multiReesIdeal and use
it to find the Hilbert series of R(I0 | I1, . . . , Ir ).

(2) Extract the powers of (1 − Ti ) in the denominator of the Hilbert series.

(3) Calculate ea using the formula given in Theorem 3.2.

Output: The mixed multiplicity ea(I0 | I1, . . . , Ir ).
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Example 3.4.
i1 : R = QQ[x,y,z,w];

i2 : I = ideal(x*y*w^3,x^2*y*w^2,x*y^3*w,x*y*z^3); m = ideal vars R;

i3 : mixedMultiplicity ((m,I,I,I),(0,1,1,1))

o3 = 6

When some ideal has grade zero, the following example explains how to compute the mixed multiplicity
by using the fact that (0 : I ∞) = (0 : (I t)∞) for all t ≥ 1.

Example 3.5. Let S = Q[x, y, z, w]/(xz, yz), m = (x, y, z, w), and I = (x, y). Notice that grade I = 0,
since I ∈ Ass S.

i1 : S = QQ[x,y,z,w]/ideal(x*z, y*z);

i2 : I = ideal(x,y);

i3 : m = ideal vars S;

i4 : L = saturate(sub(ideal 0, S), I);

i5 : T = S/L;

i6 : J = sub(I,T); n = sub(m,T);

i7 : dim T

o7 = 3

i8 : mixedMultiplicity((n,J,J,J),(1,0,1,0))

o8 = 1

To calculate mixed multiplicities, the function mixedMultiplicity computes the Hilbert polynomial
of the graded ring

⊕
I u0
0 I u1

1 · · · I ur
r /I u0+1

0 I u1
1 · · · I ur

r . In particular, if I1, . . . , Ir are also m-primary
ideals, then e(a0,a1,...,ar )(I0 | I1, . . . , Ir ) = e(I [a0+1]

0 , I [a1]
1 , . . . , I [ar ]

r ) (see [Huneke and Swanson 2006,
Definition 17.4.3]). So to compute the (a0 + 1, a1, . . . , ar )-th mixed multiplicity of I0, I1, . . . , Ir , one
needs to enter the sequence (a0, a1, . . . , ar ) in the function. The same is illustrated in the following
example.

Example 3.6.
i1 : R = QQ[x,y,z];

i2 : m = ideal vars R;

i3 : f = z^5 + x*y^7 + x^15;

i4 : I = ideal(apply(0..2, i -> diff(R_i,f)));

i5 : mixedMultiplicity ((m,I),(2,0))

o5 = 1

i6 : mixedMultiplicity ((m,I),(1,1))

o6 = 4

4. MIXED VOLUME OF LATTICE POLYTOPES. The Minkowski sum of two polytopes P and Q in Rn

is defined as the polytope P + Q = {a + b | a ∈ P, b ∈ Q}. The n-dimensional mixed volume of a
collection of n polytopes Q1, . . . , Qn in Rn , denoted by MVn(Q1, . . . , Qn), is the coefficient of λ1 · · · λn

in voln(λ1 Q1 + · · · + λn Qn). Given a collection of lattice polytopes in Rn , Trung and Verma proved that
MVn(Q1, . . . , Qn) is equal to a mixed multiplicity of a set of homogeneous ideals.
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Corollary 4.1 [Trung and Verma 2007, Corollary 2.5]. Let Q1, . . . , Qn be an arbitrary collection of
lattice polytopes in Rn . Let R = k[x0, x1, . . . , xn] and let m be the maximal graded ideal of R. Let Mi be
any set of monomials of the same degree in R such that Qi is the convex hull of the lattice points of their
dehomogenized monomials in k[x1, . . . , xn]. Let I j be the ideal of R generated by the monomials of M j .
Then MVn(Q1, . . . , Qn) = e(0,1,...,1)(m | I1, . . . , In).

We use this result to construct an algorithm which calculates the mixed volume of a collection of lattice
polytopes. We also give an algorithm which outputs the homogeneous ideal corresponding to the vertices
of a lattice polytope.

Let Q be a lattice polytope in Rn with the set of vertices {p1, . . . , pr } ⊆ Nn . We first compute the corre-
sponding homogeneous ideal I in the ring R = k[x1, . . . , xn+1]. We write a function homIdealPolytope
which requires as input the list W = {p1, p2, . . . , pr } and produces as output the homogeneous ideal
corresponding to the lattice points of Q.

We write a function mMixedVolume to calculate the mixed volume of a collection of n lattice polytopes
in Rn . Let Q1, . . . , Qn be an arbitrary collection of lattice polytopes in Rn . Let R = k[x1, . . . , xn+1] and
let Ii be the homogeneous ideal of R such that the polytope Qi is the convex hull of the lattice points of
the dehomogenization of a set of monomials that generates Ii in k[x1, . . . , xn], for all i . Each of these
homogeneous ideals can be obtained by giving the lattice points of each polytope as input in the function
homIdealPolytope. The function mMixedVolume takes the list {I1, . . . , In} as input and produces the
mixed volume of Q1, . . . , Qn as output. The function can also take the list of lists of vertices of the
polytope as input to compute their mixed volume. Since calculating the mixed volume is the same as
calculating a mixed multiplicity, the algorithm of the function mMixedVolume is similar to the algorithm
of the function mixedMultiplicity.

Example 4.2. We calculate the mixed volume of a cross polytope. An n-cross polytope βn is the convex
hull of the points formed by permuting the coordinates of (±1, 0, . . . , 0) ∈ Rn:

βn = {(x1, . . . , xn) ∈ Rn
| |x1| + · · · + |xn| ≤ 1}

= conv{(±1, 0, . . . , 0), (0, ±1, 0, . . . , 0), . . . , (0, 0, . . . , 0, ±1)}.

The volume of an n-cross polytope is 2n/n! [Betke and Henk 1993, Theorem 2.1] and hence the mixed
volume is 2n . We say that a polytope is a (0, 1)-polytope if its vertex set is a subset of {0, 1}

d of the unit cube.
In this example, we calculate the mixed volume of a 2-cross polytope and a 2-dimensional (0, 1)-polytope.

i1 : A = {(0,1),(1,0),(0,-1),(-1,0)};

i2 : mMixedVolume {A,A}

o2 = 4

i3 : I = homIdealPolytope A;

i4 : B = {(0,0),(0,1),(1,0),(1,1)};

i5 : J = homIdealPolytope B;

i6 : mMixedVolume {I, sub(J, vars ring I)}

o6 = 4
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The proposed function mMixedVolume takes less time to compute the mixed volume of a 3-cross
polytope than the existing function mixedVolume in the Polyhedra package.

i1 : needsPackage "Polyhedra";

i2 : Q = crossPolytope 3;

i3 : time mixedVolume {Q,Q,Q};
-- used 238.277 seconds

------- n-cross polytope

i4 : CP = n -> ( U = (i,p) -> (1..n)/(j -> if j == i then p else 0);
flatten toList apply(1..n, i -> toList(U(i,1), U(i,-1))) );

i5 : time mMixedVolume {CP(3),CP(3),CP(3)}
-- used 3.71303 seconds

o5 = 8

5. SECTIONAL MILNOR NUMBERS. In this section, we give an algorithm to compute the sectional
Milnor numbers. We use Teissier’s observation of identifying the sectional Milnor numbers with mixed
multiplicities to achieve this task. Teissier [1973] conjectured that invariance of the Milnor number
implies invariance of the sectional Milnor numbers. The conjecture was disproved by Joël Briançon and
Jean-Paul Speder. We verify their example using our algorithm.

Suppose the origin is an isolated singular point of a complex analytic hypersurface H = V ( f ) ⊂ Cn+1.
Let fzi denote the partial derivative of f with respect to zi . Set

µ = dimC

C{z0, z1, . . . , zn}

( fz0, fz1, . . . , fzn )
.

The number µ is called the Milnor number of the hypersurface H at the origin. Teissier, in his Cargèse
paper [1973], refined the notion of Milnor number by replacing it with a sequence of Milnor numbers
of intersections with general linear subspaces. Let (X, x) be a germ of a hypersurface in Cn+1 with an
isolated singularity. The Milnor number of X ∩ E , where E is a general linear subspace of dimension i
passing through x , is called the i th-sectional Milnor number of X . It is denoted by µ(i)(X, x). Let
J ( f ) = ( fz0, . . . , fzn ) be the Jacobian ideal. In 1973, Teissier proved that the i th-mixed multiplicity,
e(m[n−i], J ( f )[i]), is equal to the i th-sectional Milnor number of the singularity. Here m= (z0, z1, . . . , zn).

Let R = C[x1, . . . , xn] be a polynomial ring in n variables, let m be the maximal graded ideal and
let f ∈ R be any polynomial with an isolated singularity at the origin. Using Theorem 3.2, one can
now calculate the mixed multiplicities of m and J ( f ). We use the ideas in the previous section to
write a function secMilnorNumbers for computing the first n − 1 sectional Milnor numbers. With
a polynomial f given as input, the algorithm calculates the Jacobian ideal of f and then using the
function multiReesIdeal, it finds the defining ideal of R(m, J ( f )). This helps to compute the Hilbert
series of the special fiber F(m, J ( f )) = R(m, J ( f )) ⊗R R/m. Using the formula given in Theorem 3.2,
it then calculates the mixed multiplicities. Note that the nth-sectional Milnor number is the Milnor
number of the hypersurface f at the origin. So under the extra assumption that the ideal J ( f ) is
m-primary, we have µ(n)(X, 0) = dimC R/J ( f ). Together, the function secMilnorNumbers outputs
(µ(0)(X, 0), µ(1)(X, 0), . . . , µ(n)(X, 0)).
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Example 5.1.
i1 : R = QQ[x,y,z];

i2 : f = x^2*y+y^2*z+z^3;

i3 : secMilnorNumbers(f)

o3 = HashTable{0 => 1}
1 => 2
2 => 4
3 => 8

Joël Briançon and Jean-Paul Speder [1975] considered the family of hypersurfaces Xt ∈ C3 defined by
Ft(x, y, z) = z5

+ t y6z + xy7
+ x15

= 0. They proved that the topological type of Xt is constant whereas
the topological type of the section of Xt by a general plane varies. One can verify the example using the
methods discussed above. For instance, consider the ideals

m = (x, y, z) and J (Ft) = (∂ Ft/∂x, ∂ Ft/∂y, ∂ Ft/∂z)

in the ring C[x, y, z]. In [Goel et al. 2023], an expository version of this article, we show that
e(m[1], J (Ft)

[2]) depends on t although e(J (Ft)) is independent of t . The following Macaulay2 session
verifies the example given by Briançon and Speder.

i1 : QQ[t];

i2 : k = frac oo;

i3 : R = k[x,y,z];

i4 : f = z^5 + t*y^6*z + x*y^7 + x^15;

i5 : secMilnorNumbers (f)

o5 = HashTable{0 => 1 }
1 => 4
2 => 26
3 => 364

i6 : g = z^5 + x*y^7 + x^15;

i7 : secMilnorNumbers (g)

o7 = HashTable{0 => 1 }
1 => 4
2 => 28
3 => 364
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