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FastMinors package for Macaulay2

BOYANA MARTINOVA, MARCUS ROBINSON, KARL SCHWEDE AND YUHUI YAO

ABSTRACT: In this article, we present FastMinors.m2, a package in Macaulay2 designed to introduce
new methods focused on computations in function field linear algebra. Some key functionality that our
package offers includes: finding a submatrix of a given rank in a provided matrix (when present), verifying
that a ring is regular in codimension n, recursively computing the ideals of minors in a matrix, and finding
an upper bound of the projective dimension of a module.

1. INTRODUCTION. We start with some motivation. Suppose that I = ( f1, . . . , fm) ⊆ k[x1, . . . , xn]

is a prime ideal. The corresponding variety X := V (I ) is nonsingular if and only if I plus the ideal
generated by the minors of size n − dim X of the Jacobian matrix

Jac(X) =

(
∂ fi

∂x j

)
generates the unit ideal. Unfortunately, even for relatively small values of m and n, the number of such
submatrices is prohibitive. Suppose for instance that n = 10, m = 15 and dim X = 5. Then there are(

10
5

)
·

(
15
5

)
= 756756

such submatrices. We cannot reasonably compute all of their determinants. This package attempts to fix
this in several ways.

(1) We try to compute just a portion of the determinants, in a relatively smart way.

(2) We offer some tools for computing determinants that are sometimes faster.

Our techniques have also been applied to the related problem of showing that the singular locus has a
certain codimension (for example, checking that a variety is R1 in order to prove normality). Of course,
computing the singular locus is not the only potential application. We provide a function for giving a
better upper bound on the projective dimension of a non-homogeneous module. Finally, this package has
also been applied in the RationalMaps Macaulay2 package.
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We provide the following functions:

• getSubmatrixOfRank, which tries to find a submatrix of a given rank; see Section 4.

• isRankAtLeast, which uses getSubmatrixOfRank to try to find lower bounds for the rank of a
matrix; see Section 5.

• regularInCodimension, which tries to verify if an integral domain is regular in codimension n;
see Section 6.

• projDim, which tries to find upper bounds for the projective dimension of a non-homogeneous
module; see Section 7.

• recursiveMinors, which computes the ideal of minors of a matrix via a recursive cofactor algorithm,
as opposed to the included non-recursive cofactor algorithm; see Section 8.

Version 1.2.6 of this package is available as an online supplement to this paper. Later versions will be
available at https://github.com/kschwede/M2/blob/master/M2/Macaulay2/packages/FastMinors.m2

This paper refers to FastMinors version 1.2.2. Earlier versions are also available in the Macaulay2
build tree.

2. FINDING INTERESTING SUBMATRICES. A lot of the speedups available in the package come down
to finding interesting square submatrices of a given matrix. For example, it is often useful to compute a
square submatrix whose determinant has small degree. The idea is that the determinant of this submatrix
will be less likely to vanish.

2.1. How are the submatrices chosen? Consider the following matrix defined over Q[x, y]: x xy 0
xy2 x6 0
0 x2 y3 xy4

.

Suppose we want to choose a submatrix of size 2 × 2. Consider the monomial order Lex where x < y.
We find, in the matrix, the nonzero element of smallest order. In this case, that is x . We choose this
element to be a part of our submatrix. Hence our submatrix will include the first row and column as well: x xy 0

xy2 x6 0
0 x2 y3 xy4

.

To find the next element, we discard that row and column containing this term. Now, the next smallest
element with respect to our monomial order is xy4:[

x6 0
x2 y3 xy4

] [
x6 0

x2 y3 x y4

]
.
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Since we are only looking for a 2 × 2 submatrix, we stop here. We have selected the submatrix with rows
0 and 2 and columns 0 and 2: [

x 0
0 xy4

]
.

The determinant of this submatrix is x2 y4. This happens to be the smallest 2 × 2 minor with respect to
the given monomial order (which frequently happens, although it is certainly not always the case).

If we choose a different monomial order, we get a different submatrix, with a different determinant.
For example,

• Lex, x > y. We obtain the submatrix with rows 0 and 1 and columns 0 and 1, whose determinant is
x7

− xy3.

• GRevLex, x < y. We obtain the submatrix with rows 0 and 2 and columns 0 and 1, whose determinant
is x3 y3.

For any of these strategies, in this package, we randomize the order of the variables before choosing a
submatrix.

2.2. Ways of choosing submatrices. In the end we have the following methods to select submatrices:

GRevLexLargest: Choose entries which are largest with respect to a random GRevLex order.

GRevLexSmallest: Choose nonzero entries which are smallest with respect to a random GRevLex
order.

GRevLexSmallestTerm: Choose nonzero entries which have the smallest terms with respect to a
random GRevLex order.

LexLargest: Choose entries which are largest with respect to a random Lex order.

LexSmallest: Choose nonzero entries which are smallest with respect to a random Lex order.

LexSmallestTerm: Choose nonzero entries which have the smallest terms with respect to a random
GRevLex order.

Points: Choose a submatrix whose determinant does not vanish at a random point found on a given
ideal.

Random: Choose random entries.

RandomNonzero: Choose random nonzero entries.

However, from the end user’s perspective, normally we find multiple minors, and the strategy will
combine several of these methods (one typically does not know which method will work best in a given
situation). For instance, the first minor might be selected by GRevLexSmallest and the second minor by
Random. How to arrange what method is used (and with what probability) is described in Section 3.1.

We now describe each of these methods for selecting a submatrix in more detail. Note we have already
described Lex and given an initial description of GRevLex.
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2.3. LexSmallestTerm and GRevLexSmallestTerm. If we have a matrix whose entries are not mono-
mial, then we could reasonably either pick the submatrix of the smallest entries with respect to our
monomial order: LexSmallest or GRevLexSmallest.

Alternatively, we can pick the submatrix whose entries have the smallest terms via LexSmallestTerm
or GRevLexSmallestTerm.

For example, consider the matrixx2
+ y2 0 xy + 2x

y4
− x 0 3x5

x3 x4 y5
− y8 0

.

In this case, if we are choosing the entries with the smallest terms, we first replace each entry in the matrix
with the smallest term. For example, if we are using LexSmallestTerm with x < y, we would obtain x2 0 2x

−x 0 3x5

x3 x4 y5 0

.

Then we proceed as before. Notice that if there is a tie, it is broken randomly.

Remark. Different strategies work differently on different examples. When working with a non-
homogeneous matrix, with some entries that have constant terms, those entries will always be chosen first
in LexSmallestTerm or GRevLexSmallestTerm, regardless of the monomial order. On the other hand,
for homogeneous matrices, choosing the smallest term is frequently very effective.

2.4. GRevLexLargest and LexLargest. While we can imagine uses for these, in most cases these
strategies appear to be worse than random. Indeed, submatrices picked this way seem likely to already
vanish everywhere of interest.

2.5. Points. Instead of finding interesting submatrices by inspection, we can alternatively find subma-
trices by trying to find rational points. In that case, typically we are trying to find a submatrix with full
rank on a certain subvariety, defined by an ideal J. We use the package RandomRationalPoints [Bisui
et al.] to find a (rational) point Q on V (J ) (or a point over some finite extension of our base field). We
then evaluate our entire matrix at that point. Because we now have a matrix over a field, we use the very
fast built-in commands to find pivot rows and columns, and thus find a submatrix of the desired rank. To
use this functionality, use the strategy Points.

Currently, this functionality only works over a finite field. In characteristic zero, the Points strategy
returns random submatrices.

For example, suppose we are working over F5[x, y, z] with an ideal I = (z2 y − x(x − z)(x + z)), with
the matrix

M =

 x2 xy 3y2

x3
+ y3 x2

+ z2 y2
+ z2

x2
∗ z z2

∗ y y2
∗ x

.
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Suppose we found the point (2, 0, 2) on this elliptic curve. We then evaluate our matrix at that point to
obtain

M =

4 0 0
3 3 4
3 0 0

.

We would then identify a submatrix with nonzero determinant, for instance the top left 2 × 2 submatrix[
4 0
3 3

]
and then return the top determinant of the top 2 × 2 submatrix of the original matrix:

det
[

x2 xy
x3

+ y3 x2
+ z2

]
= x4

+ x2z2
− x4 y − xy4.

Typically, the Points strategy will find much better matrices than any of the heuristic methods
LexSmallest, GRevLexSmallestTerm, etc., allowing it to compute fewer determinants. However, there
is still a substantial amount of work needed to find each submatrix. In our experience, the heuristic
methods above perform better than Points roughly half of the time. If the user is implementing the
Points strategy, we make two recommendations to optimize performance:

(i) Set the option MaxMinors (the maximum number of minors to be computed) to a relatively low
number.

(ii) Set the option CodimCheckFunction to a linear function (such as t -> t). This will force the
dimension of the ideal of minors computed so far to be checked more frequently (in our example,
after adding every new minor to the ideal of minors)

The tutorial RegularInCodimensionTutorial in the package documentation contains further discus-
sion of MaxMinors, CodimCheckFunction and other options.

2.6. Random and RandomNonzero.

Random: With this strategy, a random submatrix is chosen.

RandomNonzero: With this strategy, a random nonzero element is chosen in each step following the
method used by the other strategies. This guarantees a submatrix where no row or column is zero,
which can be very useful when dealing with relatively sparse matrices.

More on GRevLex: modifying the underlying matrix. Finally, when using the GRevLexSmallest and
GRevLexSmallestTerm methods, we periodically change the underlying matrix by replacing terms of
small order with terms of larger order in order to avoid recomputing the same submatrix. For example, in
the matrix x2 0 xy

y4 0 x5

x3 x4 y5 0

,

after several iterations, we might replace the x2 term with

x2
· (a random degree 1 polynomial).
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18 Martinova, Robinson, Schwede and Yao :::: FastMinors package for Macaulay2

which might look something like x2(2x − 7y) 0 xy
y4 0 x5

x3 x4 y5 0

 .

This forces the algorithm to make different choices. After several minors are selected, the matrix is reset
again to its original form.

3. chooseGoodMinors AND SUBMATRIX SELECTION CONTROL. The function chooseGoodMinors
tries to choose interesting submatrices of a given matrix. This is done by running the command

i1 : R = QQ[x, y, z];
chooseGoodMinors()

3.1. The Strategy option. The core features included in the package allow the user to choose which
methods from Section 2.2 should be used when selecting submatrices. This is done most easily by
setting a Strategy option to one of the ways of choosing submatrices as above: GRevLexSmallest,
GRevLexSmallestTerm, GRevLexLargest, LexSmallest, LexSmallestTerm, LexLargest, Points,
Random, RandomNonzero. However, most of the time it is best to choose several strategies simultaneously,
as one doesn’t know which strategy will perform the best (in some cases, a combination works best).
Hence instead of choosing a strategy which uses only one method, by default we use several. Thus you
can set the Strategy option to one of the following:

• StrategyDefault: This strategy uses LexSmallest, LexSmallestTerm, GRevLexSmallest,
GRevLexSmallestTerm, Random and RandomNonzero with equal probability.

• StrategyDefaultNonRandom: This uses LexSmallest, LexSmallestTerm, GRevLexSmallest
and GRevLexSmallestTerm with equal probability.

• StrategyDefaultWithPoints: This strategy uses Points one third of the time and LexSmallest,
LexSmallestTerm, GRevLexSmallest and GRevLexSmallestTerm with equal probability the rest
of the time.

• StrategyLexSmallest: This strategy chooses 50% of the submatrices using LexSmallest and
50% using LexSmallestTerm.

• StrategyGRevLexSmallest: This chooses 50% of the submatrices using GRevLexSmallest and
50% using GRevLexLargest.

• StrategyPoints: This chooses submatrices by finding rational points, evaluating the submatrix at
those points, and then doing a computation.

• StrategyRandom: This chooses submatrices by using 50% Random and 50% RandomNonzero.

The user can also create their own custom strategy by setting the Strategy parameter to a HashTable
with the following keys: LexLargest, LexSmallestTerm, LexSmallest, GRevLexSmallestTerm,
GrevLexSmallest, GRevLexLargest, Random, RandomNonzero, each with value an integer (the values
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need not sum to 100). If one value is twice the size of another, that strategy will be employed twice as
often. For example, StrategyDefaultNonRandom was created by the command

StrategyDefaultNonRandom = new HashTable from {
LexLargest => 0,
LexSmallestTerm => 25,
LexSmallest => 25,
GRevLexSmallestTerm => 25,
GRevLexSmallest => 25,
GRevLexLargest => 0,
Random => 0,
RandomNonzero => 0,
Points => 0

};

For a tutorial on strategy choice, see the documentation, particularly FastMinorsStrategyTutorial.

4. FIND A SUBMATRIX OF A GIVEN RANK: getSubmatrixOfRank. This method examines the sub-
matrices of an input matrix and attempts to find one of a given rank. If a submatrix with the specified
rank is found, a list of two lists is returned. The first is the list of row indices and the second is the list of
column indices, which describe the desired submatrix of the desired rank. If no such submatrix is found,
the function will return null.

The option MaxMinors allows the user to control how many minors to consider before giving up.
If left null, the number considered is based on the size of the matrix. This method will choose the
indicated amount of minors using one of the strategy options described above. If one of the chosen
submatrices has the desired rank, the function will terminate and return its rows and columns. This
process continues until a submatrix is found or MaxMinors submatrices have been unsuccessfully checked.
The strategy can be controlled using the Strategy option as described above; the default value is
StrategyDefaultNonRandom.

4.1. Examples of getSubmatrixOfRank. In the following example, we first create a 3 × 4 matrix M
over Q[x, y, z]. We execute two calls to getSubmatrixOfRank; the first has no Strategy parameter
and the second utilizes StrategyGRevLexSmallest. Note that these calls return different indices, but
both find valid rank 3 submatrices.

i1 : loadPackage "FastMinors";

i2 : R = QQ[x,y];

i3 : M = random(R^{2,2,2},R^4)

o3 = {-2} | x2+2/3xy+9/2y2 3/10x2+2/3xy+1/5y2 2x2+5/3xy+7/5y2 4/3x2+1/3xy+10/9y2 |
{-2} | 3/2x2+2/3xy+2y2 1/2x2+3/2xy+3/4y2 6x2+5xy+4y2 9/5x2+1/5xy+7/2y2 |
{-2} | 1/4x2+1/7xy+5/6y2 7/5x2+4xy+4/5y2 10/9x2+3/7xy+5/9y2 5/2x2+xy+7/6y2 |

3 4
o3 : Matrix R <--- R

i4 : getSubmatrixOfRank(3,M)

o4 = {{2, 0, 1}, {0, 1, 3}}

o4 : List

i5 : getSubmatrixOfRank(3, M, Strategy=>StrategyGRevLexSmallest)

o5 = {{0, 2, 1}, {1, 2, 0}}

o5 : List
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In our next example, over a ring with 6 variables, we create a Jacobian matrix out of an ideal generated
by 8 random forms of various degrees. We display the time needed for the rank function to return, followed
by the time elapsed during a call to getSubmatrixOfRank when searching for a rank 6 submatrix. We
find that getSubmatrixOfRank significantly outperformed rank:

i6 : R = ZZ/103[x_1..x_6]

o6 = R

o6 : PolynomialRing

i7 : J = jacobian ideal apply(8, i -> random(2+random(2), R));

6 8
o7 : Matrix R <--- R

i8 : time rank J
-- used 21.8251 seconds

o8 = 6

i9 : time getSubmatrixOfRank(6, J)
-- used 0.00714912 seconds

o9 = {{5, 1, 3, 4, 2, 0}, {5, 2, 6, 0, 4, 7}}

In one of the core examples from the RationalMaps package, before using this package a function
would look at several thousands of submatrices (randomly) typically before finding a submatrix of the
desired rank, whereas this package finds one after looking at fewer than half a dozen (typically only
looking at 1 or 2 submatrices). Using this package sped up the computation of that example by more than
one order of magnitude; see the non-maximal linear rank example from [Bott et al. 2022, page 7].

5. FINDING LOWER BOUNDS FOR MATRIX RANKS: isRankAtLeast. This method is a direct imple-
mentation of getSubmatrixOfRank. This function returns a boolean value indicating whether the rank
of an input matrix, M, is greater than or equal to an input integer, n. In order to do so, the function first
performs some basic checks to ensure a rank of n is possible given M’s dimensions, then executes a call
to getSubmatrixOfRank. If getSubmatrixOfRank returns a matrix, then this function will return true.
However, if getSubmatrixOfRank does not return a matrix, a conclusive answer can not be reached. As
such, the method will then evaluate the rank of M and return the appropriate boolean value.

However, the function isRankAtLeast, which is efficient when getSubmatrixOfRank returns
quickly, may be costly if the results are inconclusive and a rank evaluation is necessary. As such,
the described implementation is not optimized. In order to lead to time improvements, we devel-
oped a multithreaded version of this function that simultaneously evaluates the rank of M and invokes
getSubmatrixOfRank. Once a thread has terminated with a usable answer, the other threads are canceled
and the appropriate value is returned. During the implementation of this functionality, we discovered that
Macaulay2 becomes unstable when canceling threads and thus users are not currently allowed to invoke
the multithreaded version. However, this functionality is included in the package and can be made easily
accessible once the stability issue is resolved.

5.1. Example of isRankAtLeast. The following example first creates a 9 × 9 matrix, N, and calls
isRankAtLeast to determine whether its rank is at least 7. Directly calling rank N on a matrix of this
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size would take multiple seconds, whereas isRankAtLeast returns in a fraction of the time:

i1 : loadPackage "FastMinors";

i2 : N = random(R^{6,6,6,6,6,6,6,7,7},R^9);
9 9

o2 : Matrix R <--- R

i3 : elapsedTime isRankAtLeast(7,N)
-- 0.0654172 seconds elapsed

o3 = true

6. REGULAR IN CODIMENSION n: regularInCodimension. Using the getSubmatrixOfRank rou-
tines, we provide a function for checking whether a variety is regular in codimension n, or Rn . The
default strategy is Strategy=>Default.

The function regularInCodimension(ZZ, Ring) returns true if it verifies that the ring is regular
in codimension n. This only works if the ring is equidimensional, as it is using a Jacobian criterion. If it
cannot make a determination, it returns null. If it ended up computing all minors of the matrix, and it
still doesn’t have the desired codimension, it will return false (note this will likely only occur for small
matrices).

6.1. Example of regularInCodimension. We begin with an example of a 3-dimensional ring that is
regular in codimension 1, but not in codimension 2. It is generated by 12 equations in 7 variables:

i3 : T = ZZ/101[x1,x2,x3,x4,x5,x6,x7];

i4 : I = ideal(x5*x6-x4*x7,x1*x6-x2*x7,x5^2-x1*x7,x4*x5-x2*x7,x4^2-x2*x6,x1*x4-x2*x5,
x2*x3^3*x5+3*x2*x3^2*x7+8*x2^2*x5+3*x3*x4*x7-8*x4*x7+x6*x7,
x1*x3^3*x5+3*x1*x3^2*x7+8*x1*x2*x5+3*x3*x5*x7-8*x5*x7+x7^2,
x2*x3^3*x4+3*x2*x3^2*x6+8*x2^2*x4+3*x3*x4*x6-8*x4*x6+x6^2,
x2^2*x3^3+3*x2*x3^2*x4+8*x2^3+3*x2*x3*x6-8*x2*x6+x4*x6,
x1*x2*x3^3+3*x2*x3^2*x5+8*x1*x2^2+3*x2*x3*x7-8*x2*x7+x4*x7,
x1^2*x3^3+3*x1*x3^2*x5+8*x1^2*x2+3*x1*x3*x7-8*x1*x7+x5*x7);

o4 : Ideal of T

i5 : S = T/I; dim S

o6 = 3

i7 : time regularInCodimension(1, S)
-- used 0.150734 seconds

o7 = true

i8 : time regularInCodimension(2, S)
-- used 2.12777 seconds

i9 : time singularLocus S;
-- used 8.29746 seconds

i10 : time dim o9
-- used 23.2483 seconds

o10 = 1

As seen above, the function regularInCodimension verified that S was regular in codimension 1
in a fraction of a second. When regularInCodimension(2, S) was called, nothing was returned,
indicating that nothing was found (our function could not make a determination). Computing the Jacobian
ideal however took more than 8 seconds and verifying that it had dimension 1 took more than 23 seconds.
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6.2. Options and strategies for regularInCodimension. We consider the same example using some
different strategies. For another look at options in this function, see the tutorial in the document under the
key RegularInCodimensionTutorial.

One might think that it might be just as effective to choose random matrices as to use our strategies,
and sometimes it is, but this is not the typical behavior we have observed.

i11 : time regularInCodimension(1, S, Strategy=>StrategyRandom, Verbose=>true)
regularInCodimension: ring dimension =3, there are 17325 possible minors,

we will compute up to 317.599 of them.
regularInCodimension: About to enter loop
internalChooseMinor: Choosing Random
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 7,

and computed = 7
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 9,

and computed = 9
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 11,

and computed = 11
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 14,

and computed = 14
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 18,

and computed = 18
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 24,

and computed = 24
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 31,

and computed = 31
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 40,

and computed = 40
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 52,

and computed = 52
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 67,

and computed = 67
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 87,

and computed = 87
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 1
regularInCodimension: Loop completed, submatrices considered = 87,

and computed = 87.
singular locus dimension appears to be = 1

-- used 1.04945 seconds

o11 = true

Above, we have deleted 86 of the 87 times the verbose output displays internalChooseMinor:
Choosing Random.
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In this particular example, the StrategyRandom option looked at 87 submatrices of the Jacobian
matrix. Note it does not check to see whether we have obtained the desired codimension after considering
each new random submatrix. Instead, it only computes the codimension periodically, with the space
between checks increasing. The considered values on each line tell how many submatrices have been
considered. The computed value tells how many were not repeats (computed will be nearly the same as
considered with a random strategy).

Running Rn(1, S, Strategy=>StrategyRandom, Verbose=>true) 50 times yielded:

(1) an average of 61.3 submatrices of the Jacobian matrix considered.

(2) a median value of 40 or 52 submatrices of the Jacobian matrix considered.

(3) a minimum value of 7 submatrices of the Jacobian matrix considered (1 time).

(4) a maximum value of 248 submatrices of the Jacobian matrix considered (1 time).

Due to certain settings, we do not check the codimension of the singular locus until 7 submatrices have been
considered. Users can control this behavior via the MinMinorsFunction and CodimCheckFunction
options; see the tutorial in the documentation.

The default strategy Rn(1, S, Strategy=>StrategyDefaultNonRandom, Verbose=>true), on
the other hand, run 50 times yielded

(1) an average of 12.1 submatrices of the Jacobian matrix considered.

(2) a median value of 7 or 9 submatrices of the Jacobian matrix considered.

(3) a minimum value of 7 submatrices of the Jacobian matrix considered (25 times).

(4) a maximum value of 40 submatrices of the Jacobian matrix considered (1 time).

In the above example, Strategy=>StrategyLexSmallest yields even better performance.
Using Strategy=>StrategyPoints (combined with the options MinMinorsFunction=>(t->t)

and CodimCheckFunction=>(t->t)) to check codimension after computing every submatrix, produces:

(1) an average of 4.96 submatrices of the Jacobian matrix considered.

(2) a median value of 5 submatrices of the Jacobian matrix considered.

(3) a minimum value of 4 submatrices of the Jacobian matrix considered (3 times).

(4) a maximum value of 6 submatrices of the Jacobian matrix considered (1 time).

In this case, StrategyPoints considers very few submatrices, but it actually does the computation
substantially slower than StrategyDefaultNonRandom since finding each submatrix can be a lot of
work as rational points must be found. However, StrategyPoints is still faster than StrategyRandom.

Note that larger matrices tend to exhibit even larger disparities between the strategies.
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6.3. Notes on implementation. As mentioned above, this function computes minors (based on the passed
Strategy option) until either it finds that the singular locus has the desired dimension, or until it has
considered too many minors. By default, it considers up to 10 · (minimum number of minors needed) +

8 · log1.3(possible minors). This value was simply chosen by experimentation. If the user is trying to
show a singular locus has a certain codimension, they will need a minimum number of minors. The
multiplication by 10 is due to our default strategy using multiple strategies, but only considering one might
work well on a given matrix. The user can set the option MaxMinors to a function F with two inputs,
x = (minors needed) and y = (possible minors), where F outputs the maximum number of matrices to
compute. More simply, one may simply set MaxMinors to be a number.

These matrices are considered in a loop. We begin with computing a constant number of minors, by
default 2·(minimum number of minors needed)+3, and check whether the output has the right dimension.
The user can also set the option MinMinorsFunction to a function G with one input, x = (minors needed),
which will output how many minors to compute before first checking the codimension. After those initial
minors are found, we compute additional minors, checking periodically (based on an exponential function,
1.3k minors considered before the next reset) whether our minors define a subset of the desired codimension.
New functions can be provided via the option CodimCheckFunction; see the tutorial for more details.
If in this loop, a submatrix is considered again, it is not recomputed, but the counter is still increased.

6.4. Other options. This function also includes other options including the option Modulus which handles
switching the coefficient field for a field of characteristic p > 0 (which is specified with Modulus=>p.)

One can also control how determinants are computed with the DetStrategy option; valid values are
Bareiss, Cofactor and Recursive.

7. PROJECTIVE DIMENSION: projDim. In April of 2019, it was pointed out in a thread on github
(https://github.com/Macaulay2/M2/issues/936) that the command pdim sometimes provides an incorrect
value (an overestimate) for the projective dimension for non-homogeneous modules over polynomial
rings. There, it was also suggested that this could be addressed by looking at appropriate minors of the
matrices in a possibly non-minimal resolution, but that in practice these matrices have too many minors
to compute. We have implemented a function projDim that tries to address this by looking at only some
minors. Our function does not solve the problem as it also gives only an upper bound on the projective
dimension. However, this upper bound is frequently correct.

The idea is as follows. Take a free resolution of a module M over a polynomial ring R,

0 Moo F0oo F1
d1
oo · · ·oo Fn−1

dn−1
oo Fn

dn
oo 0.oo

Each di is given by a matrix. The term Fn is unnecessary (i.e., dn splits) exactly when the rank Fn minors
of dn generate the unit ideal. In that case, we know our projective dimension is at most n − 1. Continuing
in this way, we can compute the (rank Fn−1 − rank Fn)-minors of dn−1, and see whether they generate
the unit ideal. Our algorithm of course only computes a subset of those minors.
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7.1. Example of projDim. In the below example, we take a monomial ideal of projective dimension 2,
compute a non-homogeneous change of coordinates, and observe that pdim returns an incorrect answer
that projDim corrects:

i1 : R = QQ[x,y,z,w];

i2 : I = ideal(x^4,x*y,w^3, y^4);

i3 : pdim module I

o3 = 2

i4 : f = map(R, R, {x+x^2+1, x+y+1, z+z^4+x-2, w+w^5+y+1});

i5 : pdim module f I

o5 = 3

i6 : time projDim module f I
-- used 3.43851 seconds

o6 = 2

i7 : time projDim(module f I, MinDimension=>2)
-- used 0.0503165 seconds

o7 = 2

7.2. Options. As seen in the previous example, setting MinDimension can substantially speed up the
computation, as otherwise the function will try to determine whether the projective dimension is actually 1.

The option MaxMinors can be set to be the number of minors computed at each step. Alternatively,
it can be set to be a list of numbers, one for each step in the above algorithm. Finally, it can be set to
be a function of the dimension d of the polynomial ring R and the number t of possible minors. This is
the default option, and the function is 5 ∗ d + 2 ∗ log1.3(t). The option Strategy is also available and it
works as in the above functions with the default value being StrategyDefault.

8. COMPUTING IDEALS OF MINORS: recursiveMinors. Macaulay2 contains a minors method
that returns the ideal of minors of a certain size, n, in a given matrix, a necessary step in locating
singularities. However, the current implementation’s default is to evaluate determinants using the Bareiss
algorithm, which is efficient when the entries in the matrix have a low degree and few variables, but very
slow otherwise. The current minors method also allows users to compute determinants using cofactor
expansion, but this strategy performs some unnecessary calculations, causing it to be quite costly as
well. We improved the current cofactor expansion method to find the determinants of minors by adding
recursion and multithreading throughout. We also eliminated said unnecessary calculations by ensuring
that only the required determinants are being computed at each step of the recursion, rather than all
possible determinants of the given size.

In order to do so, we programmed a method in Macaulay2’s software that recursively finds all n × n
minors by first computing the 2 × 2 minors and storing them in a hash table. Then we use the 2 × 2
minors to compute the necessary 3 × 3 minors, and so on, with the process repeated recursively until the
minors of size n × n are evaluated. At each step, we only compute the determinants that will be needed
when performing a cofactor expansion on the following size minor.
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To allow for further time improvements, we also utilized Macaulay2’s existing parallel programming
methods to multithread our code so different computations at each step of the recursion can occur
simultaneously in separate threads. We divide the list of all determinants to be evaluated into different
available threads and wait for them to finish before consolidating the results in a hash table and proceeding
with the recursion. In order to more effectively utilize Macaulay2’s multithreading methods, we also
created a nanosleep method that waits a given number of nanoseconds, rather than full seconds. This
function has already been incorporated into the software.

8.1. Example of recursiveMinors. Below, we first create a simple matrix, M, of polynomials in a single
variable with rational coefficients and execute the recursiveMinors method to find the ideal of all 3×3
minors. As can be seen, the result is equivalent to the output of the minors method when called with the
same parameters. We then create a new, larger matrix, N, with two dimensional rational coefficients and re-
turn the computation time for recursiveMinors and minors utilizing both the Bareiss and Cofactor strate-
gies. The recursiveMinors method finished executing approximately six times faster than the Bareiss
algorithm and almost seven times faster than the Cofactor expansion, while yielding the same results.

i1 : loadPackage "FastMinors";

i2 : allowableThreads => 8;

i3 : R = QQ[x];

i4 : M = random(R^{2,2,2}, R^4)

o4 = {-2} | x2 3x2 5/8x2 7/10x2 |
{-2} | 3/4x2 2x2 7/4x2 9x2 |
{-2} | x2 2/9x2 1/2x2 4/3x2 |

3 4
o4 : Matrix R <--- R

i5 : recursiveMinors(3,M)

1403 6 449 6 292 6 517 6
o5 = ideal (----x , ---x , - ---x , ---x )

60 240 45 144

o5 : Ideal of R

i6 : recursiveMinors(3,M) == minors(3,M)

o6 = true

i7 : Q = QQ[x,y];

i8 : N = random(Q^{5,5,5,5,5,5}, Q^7);
6 7

o8 : Matrix Q <--- Q

i9 : elapsedTime minors(5,N, Strategy => Bareiss);
-- 1.42867 seconds elapsed

o9 : Ideal of Q

i10 : elapsedTime minors(5,N, Strategy => Cofactor);
-- 1.82251 seconds elapsed

o10 : Ideal of Q

i11 : elapsedTime recursiveMinors(5,N);
-- 0.273007 seconds elapsed;

o11 : Ideal of Q

i12 : recursiveMinors(5,N) == minors(5,N)

o12 = true
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Degree Bareiss Cofactor RecursiveMinors RecursiveMinors, Threads=>4
8 3.465 4.443 0.632 0.408

10 5.771 6.799 0.971 0.560
12 7.405 8.935 1.220 0.699
15 12.187 12.007 1.687 1.007
20 21.007 22.615 2.819 1.854
25 31.915 34.865 4.233 2.635
40 83.583 77.198 10.585 6.296
60 181.179 192.911 23.875 13.062

Table 1. Time to compute the 5 × 5 minors of a 6 × 7 random matrix over Q[x, y].

Degree Bareiss Cofactor RecursiveMinors RecursiveMinors, Threads=>4

2 5.998 3.785 0.588 0.519
3 17.397 8.781 1.730 1.535
4 49.615 22.575 4.582 3.833
5 115.412 45.088 8.364 6.394

Table 2. Time to compute the 5 × 5 minors of a 6 × 7 random matrix over Q[x, y, z].

We briefly show the limits of this package in Tables 1 and 2. All times in the paper are given in seconds.
We consider a random 6 × 7 matrix over Q[x, y] as above, and then also for Q[x, y, z]. We compare the
single-threaded and 4-threaded versions of recursiveMinors in this package with the Bareiss and
Cofactor strategies with recursiveMinors for different degrees of the terms.

Generally speaking, recursiveMinors performs best when the matrix one is looking at has very-
expensive-to-compute minors (such as with the random matrices we consider above). In sparse examples
and examples with easy-to-compute determinants, other strategies tend to perform better.

9. PERFORMANCE AND LIMITS OF THE PACKAGE. We conclude by providing some tables showing
how long various computations take in several different strategies. We limit ourselves to the function
regularInCodimension as other functions such as projDim have roughly similar performance. Note
that we have already discussed some of the performance behavior of taking determinants (including via
a recursive algorithm). Again, we recommend the interested user also see the tutorial in the package
documentation.

The Successful column shows what percentage of the time the function verified that the given equation
was regular in a certain codimension (depending on the strategy, it doesn’t always succeed). All computa-
tions were run in Macaulay2 version 1.18 on a machine running Ubuntu 20.04 with 64 gigabytes of memory.

In Table 3, we verify that the cone over a product of elliptic curves (an Abelian surface) embedded
in P8 is regular in codimension 1. Note that StrategyRandom does not tend to work well on this or
other examples, and so we generally do not consider it further. In Table 4 we verify the same example is
regular in codimension 2. When we make the elliptic curves defined by less sparse equations, Points
tends to perform much better, as can be seen in Table 5.
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Strategy Attempts Average time Successful

StrategyDefault 100 1.7 100%
StrategyDefaultNonRandom 100 0.9 100%

Points 100 4.0 100%
StrategyDefaultWithPoints 100 2.2 100%

StrategyRandom 100 6.1 4%
StrategyRandom, MaxMinors=>2000 20 49.0 15%
StrategyRandom, MaxMinors=>5000 10 238.1 50%

Regular in codimension 1, 9 variables, 28 equations, 31646160 possible 6×6 minors

Table 3. We check R is regular in codimension 1 where R is the cone over a product of
two elliptic curves in positive characteristic given with a Segre embedding. One of the
curves is diagonal, the other is in Weierstrass form. This has a relatively sparse Jacobian
matrix.

Strategy Attempts Average time Successful

StrategyDefault 10 10.9 0%
StrategyDefault, MaxMinors=>5000 10 30.1 100%

StrategyDefaultNonRandom 10 7.7 0%
StrategyDefaultNonRandom, MaxMinors=>5000 10 13.7 100%

Points 10 4.6 100%
StrategyDefaultWithPoints 10 5.8 100%

Regular in codimension 2, 9 variables, 28 equations, 31646160 possible 6×6 minors

Table 4. We check R is regular in codimension 2 where R is the cone over a product
of two elliptic curves in positive characteristic given with a Segre embedding. One of
the curves is diagonal, the other is in Weierstrass form. This has a relatively sparse
Jacobian matrix. Using StrategyDefault and StrategyDefaultNonRandom did not
work with the default number of minors, but increasing MaxMinors led to successful
verification that the ring was regular in codimension 2.

We next consider a relatively sparse higher dimension example in Table 6. Here we are taking a cone
over a product of an elliptic curve with a diagonal equation, an elliptic curve in Weierstrass form and a
copy of P1. This is a cone over a 3-dimensional smooth projective variety embedded in P17.

We now move on to computing dimensions of singular loci of varieties that are not cones. We
constructed several non-normal (non-S2) varieties using the Pullback package. First, in Table 7 we took
3 coordinate axes through the origin in A3 and randomly glued them to a single line. In Table 8 we did
the same with three random lines through the origin (creating a less sparse Jacobian matrix). Finally, in
Table 9, we consider a similar example in A4 (except now it is regular in codimension 2), first verifying it
is regular in codimension 1. Finally, we verify it is regular in codimension 2 in Table 10.

SUPPLEMENT. The online supplement contains version 1.2.6 of FastMinors.m2.
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Strategy Attempts Average time Successful

StrategyDefault 10 ∞? 0%
StrategyDefaultNonRandom 10 ∞? <10%

Points, CodimCheckFunction => t->t+1 10 7.7 100%
StrategyDefaultWithPoints 10 ? about 50%

Regular in codimension 1, 9 variables, 28 equations, 31646160 possible 6×6 minors

Table 5. We check R is regular in codimension 1 where R is the cone over a product
of two elliptic curves in positive characteristic given with a Segre embedding. One of
the curves is in Weierstrass form, the other is given by a random degree 3 equation.
This has a relatively complicated (non-sparse) Jacobian matrix. The other strategies
generally do not work. The one exception is StrategyDefaultWithPoints which
sometimes is very fast (faster than Points), and other times gets stuck trying to
compute a point. Setting CodimCheckFunction => t->t+1 forces the codimension
to be checked at every step, which provides better and more consistent performance.
Without that, sometimes this function will hang trying to find a point after on a 1-
dimensional scheme where it has already verified that R is regular in codimension 1,
but has not computed that codimension yet.

Strategy Attempts Average time Successful

StrategyDefaultNonRandom 10 ∞? 0%
Points 10 58.5 100%

StrategyDefaultWithPoints 10 27.1 100%

Regular in codimension 1, 18 variables, 139 equations, 17927476818965522386560 possible 14×14 minors

Table 6. We check R is regular in codimension 1 where R is the cone over a product
of two elliptic curves plus a P1 in positive characteristic given with a Segre embedding.
One of the curves is in Weierstrass form, the other is given by a random degree 3
equation. This has a relatively sparse Jacobian matrix. The other strategies (not
involving points) generally do not work. Using StrategyDefaultNonRandom took
more than 30 minutes and computed more than 5000 minors, but still did not finish.

Strategy Attempts Average time Successful

StrategyDefault 100 0.8 100%
StrategyDefaultNonRandom 100 0.5 100%

Points 100 3.0 100%
StrategyDefaultWithPoints 100 2.4 100%

Regular in codimension 1, 8 variables, 26 equations, 3683680 possible 5×5 minors

Table 7. We check R is regular in codimension 1 where R is obtained by gluing
three coordinate axis lines through the origin in A3 together to a single line. This is
a 3-dimensional ring that is regular in codimension 1, but not codimension 2. The
Jacobian matrix is fairly sparse, but has some quite complicated sections.
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Strategy Attempts Average time Successful

StrategyDefault 20 2.0 100%
StrategyDefaultNonRandom 20 0.5 100%

Points 10 11.6 100%
StrategyDefaultWithPoints 10 6.9 100%

Regular in codimension 1, 8 variables, 34 equations, 15582336 possible 5×5 minors

Table 8. We check R is regular in codimension 1 where R is obtained by gluing
random lines through the origin in A3 together to a single line. This is a 3-dimensional
ring that is regular in codimension 1, but not codimension 2. The Jacobian matrix is
substantially less sparse than when we glued the three coordinate axes.

Strategy Attempts Average time Successful

StrategyDefault 100 5.2 100%
StrategyDefaultNonRandom 100 1.3 100%

Points 20 7.3 100%
StrategyDefaultWithPoints 20 4.0 100%

Regular in codimension 1, 11 variables, 52 equations, 44148904800 possible 7×7 minors

Table 9. We check R is regular in codimension 1 where R is obtained by gluing
three coordinate axis lines through the origin in A4 together to a single line. This is
a 4-dimensional ring that is regular in codimension 2, but not codimension 3. The
Jacobian matrix is fairly sparse, but has some quite complicated sections.

Strategy Attempts Average time Successful

StrategyDefault 20 14.9 100%
StrategyDefaultNonRandom 20 5.5 100%

Points 10 ∞? 0%
StrategyDefaultWithPoints 10 ∞? 0%

Regular in codimension 2, 11 variables, 52 equations, 44148904800 possible 7×7 minors

Table 10. We check R is regular in codimension 2 where R is obtained by gluing
three coordinate axis lines through the origin in A4 together to a single line. This is
a 4-dimensional ring that is regular in codimension 2, but not codimension 3. The
Jacobian matrix is fairly sparse, but has some quite complicated sections. Strategies
involving Points fail quickly as they use more than 64 gigabytes of RAM.
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