
Journal of Software for

Algebra and Geometry

Finding points on varieties with Macaulay2
SANKHANEEL BISUI, ZHAN JIANG, SARASIJ MAITRA,

THÁI THÀNH NGUYỄN AND KARL SCHWEDE

vol 13 2023

JSAG 13 (2023), 33–43 The Journal of Software for
https://doi.org/10.2140/jsag.2023.13.33 Algebra and Geometry

Finding points on varieties with Macaulay2

SANKHANEEL BISUI, ZHAN JIANG, SARASIJ MAITRA,
THÁI THÀNH NGUYỄN AND KARL SCHWEDE

ABSTRACT: We present RandomPoints, a package in Macaulay2 designed mainly to identify rational
and geometric points in a variety over a finite field. We provide tools to estimate the dimension of a
variety. We also present methods to obtain nonvanishing minors of a given size in a given matrix, by
evaluating the matrix at a point.

1. INTRODUCTION. Let I be an ideal in a polynomial ring k[x1, . . . , xn] over a finite field k. Let
X := V (I) denote the corresponding set of rational points in affine n-space. Finding one such rational
point or geometric point (geometric meaning a point over some finite field extension), in an algorithmically
efficient manner, is our primary motivation for this package. The authors of the package are Sankhaneel
Bisui, Zhan Jiang, Sarasij Maitra, Thái Thành Nguyễn, Frank-Olaf Schreyer, and Karl Schwede.

There is an existing package [RationalPoints], which we took inspiration from, which aims to find all
the rational points of a variety; our aim here is to find one or more random rational or geometric points on
a variety quickly. We also note that the package [Cremona] can find rational points on projective varieties,
as can the core function randomKRationalPoint in [Macaulay2]. Our methods frequently appear to be
faster and apply in the affine setting as well.

We develop functions that apply various strategies to generate random rational and geometric points
on the given variety. We also provide functions that will expedite the process of determining properties of
the singular locus of X .

We provide the following core functions:

• randomPoints: This tries to find a point in the vanishing set of an ideal. (Section 2)

• dimViaBezout: This tries to compute the dimension of an algebraic set by intersecting with
hyperplanes. (Section 3.1)

• projectionToHypersurface and genericProjection: These functions provide customizable
projection. (Section 4)

Schwede was supported by NSF Grants #1801849, #2101800, FRG #1952522 and a Fellowship from the Simons Foundation.
MSC2020: 13C99, 14G05.
Keywords: RandomPoints, Macaulay2.
RandomPoints version 1.5.3

© 2023 The Authors, under license to MSP (Mathematical Sciences Publishers).

https://doi.org/10.2140/jsag.2023.13-1
http://msp.org/jsag
http://msp.org/jsag

34 Bisui, Jiang, Maitra, Nguyễn and Schwede :::: Finding points on varieties with Macaulay2

• findANonZeroMinor and extendIdealByNonZeroMinor: The first of these finds a submatrix of
a given matrix that is nonsingular at a point of a given ideal. The second adds said submatrix to an
ideal, which is useful for computing partial Jacobian ideals. (Section 5.1)

All polynomial rings considered here will be over finite fields. In the subsequent sections, we explain
the core and helper functions and describe the strategies that we have implemented.

2. OUR PRIMARY PURPOSE: randomPoints. We start with the core function randomPoints, which
is a function to find rational or geometric points in a variety. The typical usage is randomPoints(n, I)
where n is a positive integer denoting the number of points desired, and I is an ideal inside a polynomial
ring. If n is omitted, it is assumed to be 1.

2.1. Options. The user may also choose to provide some additional information, which may accelerate
the computation and improve the probability that a point is found.

Strategy: This parameter can have the value BruteForce, LinearIntersection or Default.

• BruteForce simply tries random points and sees if they are on the variety.

• LinearIntersection intersects with a random linear space.

• Default performs the above strategies in sequence, beginning with BruteForce, then moving
to LinearIntersections with particularly simple linear forms, and gradually ramping up the
randomness of the linear forms.

The speed and the probability of success depend on the strategy (see also Section 3).

Example 2.1. Consider the following example.

i2 : R = ZZ/101[x, y, z];
i3 : J = ideal(x^3 + y^2 + 1, z^3 - x^2 - y^2 + 2);
o3 : Ideal of R
i4 : time randomPoints(J,Strategy=>BruteForce, PointCheckAttempts=>10)

-- used 0.00186098 seconds
o4 = {}
o4 : List
i5 : time randomPoints(J)

-- used 0.0205099 seconds
o5 = {{-1, 0, -1}}
o5 : List
i6 : time randomPoints(J, Strategy=>LinearIntersection)

-- used 0.0334881 seconds
o6 = {{0, 10, 48}}

ExtendField: Intersection with a general linear space will naturally find scheme theoretic points that
are not rational over the base field. Setting the boolean parameter ExtendField to be true will tell the
function that such points are valid. Setting it to be false will tell the function to ignore such points. In
fact, setting ExtendField to be true will also tell Macaulay2 to use linear spaces defined over a field
extension, which can improve randomness properties. This sometimes can slow computation, and other

Bisui, Jiang, Maitra, Nguyễn and Schwede :::: Finding points on varieties with Macaulay2 35

times can substantially speed it up when the variety has few rational points. For some applications, points
over extended fields may also have better randomness properties.

DecompositionStrategy: Within the LinearIntersection strategy, one can also specify the option
DecompositionStrategy. Valid values are Decompose and MultiplicationTable, the latter of
which is currently only implemented for homogeneous ideals. The point is, after intersecting the
linear space and obtaining an ideal defining a set of (possibly thickened) points, we need to find the
minimal associated primes. By default we use Macaulay2’s built-in decompose command. We also have
implemented a MultiplicationTable algorithm, as provided by Frank-Olaf Schreyer, which utilizes
the action of a variable on the residue fields of these points computed in more than one way. This method
is frequently faster for rings with smaller numbers of variables.

The Default strategy switches back and forth between Decompose and MultiplicationTable for
homogeneous ideals (starting with one the function thinks will be fastest). Setting this to Decompose
in the default strategy will force only Decompose to be used; setting it to MultiplicationTable will
force only MultiplicationTable to be used (if the ideal is homogeneous).

Homogeneous: Setting this to be true specifies that the origin (corresponding to the irrelevant ideal) is
not a valid point.

Replacement: When intersecting with a random linear space, it is frequently much faster to use a linear
space defined by relatively sparse equations (i.e., equations that do not involve all variables). Specifying
this parameter to have the value Monomial will mean linear forms such as ax + b are used (for constants
a and b), involving only one variable. Binomial means forms like ax + by + c, using two variables.
Trinomial means forms like ax + by + cz + d . Full means all variables will have coefficients.

DimensionFunction: Our current implementation does not need to know the dimension of V (I).
However, there are places where we try to verify the dimension of an ideal before we decompose the ideal.
You can pass the function dim (the default), or our probabilistic dimViaBezout or any other dimension
function you might prefer.

PointCheckAttempts: When calling randomPoints with a BruteForce strategy, this denotes the
number of trials for brute force point checking. It also controls how many linear spaces to simultaneously
study in the LinearIntersection strategy.

Example 2.2. We re-compute Example 2.1 this time specifying more attempts.
i7 : time randomPoints(J, Strategy => BruteForce, PointCheckAttempts => 10000)
-- used 1.16294 seconds
o7 = {{-43, 25, 29}}

NumThreadsToUse: When calling randomPoints and functions that call it with a BruteForce strategy,
this option allows the user to specify the number of threads to use in brute force point checking.

2.2. Comments on performance and implementation. When working over very small fields, especially
with hypersurfaces, frequently BruteForce is most efficient. This is not surprising as there may not be

36 Bisui, Jiang, Maitra, Nguyễn and Schwede :::: Finding points on varieties with Macaulay2

many points to check. However, if the field size is larger, BruteForce will perform poorly. Even for
some simple examples, it could not provide any rational points if the number of trials is not large enough.
Other strategies work differently on different examples, and the same strategy can sometimes work very
quickly even if it typically works very slowly.

The current version of the LinearIntersection strategy no longer computes the dimension of the
algebraic set. Instead, it first finds a point defined by linear equations. If the point is on the algebraic
set, we are done. If not, we throw away one of the forms and so now have a line and we see if this line
intersects our algebraic set. We continue in this way until we find a point. This appears to avoid a number
of bottlenecks in our previous implementation since Macaulay2 is relatively fast at identifying when a
linear space and a variety do not intersect.

Example 2.3. We begin with an example over a small field.

i2 : R = ZZ/7[x_1..x_10];
i3 : I = ideal(random(2, R), random(3, R));
o3 : Ideal of R
i4 : time randomPoints(I, Strategy => BruteForce, PointCheckAttempts => 20000)

-- used 0.00311884 seconds
o4 = {{-1, -1, 0, 2, 2, -2, -2, -3, -3, -3}}
o4 : List
i5 : time randomPoints(I, Strategy => Default)

-- used 0.081349 seconds
o5 = {{3, 0, 3, 3, 2, -2, 1, -1, 3, 1}}

Example 2.4. Now we work over a larger field.

i6 : S = ZZ/211[x_1..x_10];
i7 : J = ideal(random(2, S), random(3, S));
o7 : Ideal of S
i8 : time randomPoints(J, Strategy => BruteForce, PointCheckAttempts => 2000000)

-- used 17.7988 seconds
o8 = {{15, 67, -27, -103, 56, 66, -23, 28, -50, 13}}
o8 : List
i9 : time randomPoints(J, Strategy => Default)

-- used 0.0864013 seconds
o9 = {{0, 0, 0, 0, 34, 76, 51, 0, 1, 0}}

Example 2.5. Finally, we can allow our functions to extend our field.

i11 : time randomPoints(J, Strategy => Default, ExtendField => true)
-- used 0.144332 seconds

3 2 3 2
o11 = {{0, - a + 62a - 47a - 76, 0, 0, 13a - 18a + 63a - 31, 0, 0,

3 2 3 2
- 20a - 82a + 35a - 19, 55a - 64a - 8a - 50, 1}}

i12 : coefficientRing ring first first o11
o12 = GF 1982119441
i13 : log_211 1982119441
o13 = 4

In this case, we found a degree 4 point.

Bisui, Jiang, Maitra, Nguyễn and Schwede :::: Finding points on varieties with Macaulay2 37

Remark 2.2.1 (comments on the probability of finding a point). In the case of an absolutely irreducible
hypersurface in An

Fq
(defined by f say), there is significant discussion in the literature estimating lower

bounds of number of rational points (see for instance, [Lang and Weil 1954; Ghorpade and Lachaud
2002; Cafure and Matera 2006]) all of which point to the fact that there is “good probability” of finding a
rational point in this case when we intersect with a random line. Heuristically, we can make the following
rough estimation. We expect that each equation f = λ for λ ∈ Fq has approximately the same number
of solutions. Since each point on Fn

q solves exactly one of these equations, we expect that f = 0 has
approximately qn−1 solutions, or in other words, our hypersurface has qn−1 points. Now, a random line L
has q points. We want to find the probability that one of these points is rational for V (f). We would
expect that if these points are randomly distributed, then the probability that our line contains one of
those points 1 −

(
1 −

1
q

)q which tends to 1 − e−1
≈ 0.63 for q large. Alternatively, one can use the proof

of [v. Bothmer and Schreyer 2005, Proposition 2.12] for a more precise statement. For each point of L ,
we see that the probability that the chosen point does not lie in the intersection, L ∩ V (f), is 1 −

1
q . We

then exhaust this search over all the points on L to get the probability that there is indeed a successful
intersection is 1 −

(
1 −

1
q

)q . As q gets larger, this value tends to 1 − e−1
≈ 0.63.

Of course, there are schemes over Fq with no rational points at all, even for plane curves.

Remark 2.2.2 (projecting to a hypersurface first). Suppose X ⊆ An is an algebraic set. In a number of
existing algorithms, one first does a generic (or even not very generic) projection h : An

→ Am and so that
h(X) is a hypersurface (at least set theoretically). Then one finds a point x ∈ h(X) (say as above), and
computes h−1({x}), which is a linear space in An that typically intersects X in a rational point. For example,
this is done in randomKRationalPoint in core Macaulay2. Note that projecting to a hypersurface still is
intersecting with a linear space, since h−1({x}) is linear, but it tries to choose the linear space intelligently.

However, in our experience, doing this generic projection first yields slower results. First, one has to
compute the dimension. There are also numerous cases where computing this hypersurface h(X) can
be quite slow. This particularly appears in cases when one is computing successive minors to identify
the locus where some variety is nonsingular.

On the other hand, instead of using a truly random linear space to intersect with, in the default strategy
we initially try linear spaces whose defining equations have as few terms as possible. For example, in
a ring with 10 variables, we first try binomial linear forms like

−27x2 + 38x7

instead of a random linear form like

−28x1 − 27x2 + 29x3 + 27x4 − 28x5 + 27x6 + 38x7 − 13x8 + 21x9 − 3x10.

Such simple linear spaces are the ones implicitly considered in randomKRationalPoint, for instance,
since that generic projection is so simple. In practice, our approach seems to perform at least as well as
projecting to a hypersurface, without the chance of the code hanging on the generic projection or dimension
computations. We also do successive intersections in a way that avoids computing the dimension as
described above in Section 2.2.

38 Bisui, Jiang, Maitra, Nguyễn and Schwede :::: Finding points on varieties with Macaulay2

3. USEFUL FUNCTIONS: dimViaBezout AND randomCoordinateChange.

3.1. dimViaBezout: We thank Frank-Olaf Scheyer for pointing out that in most of the computations,
computing the codimension of the given ideal is a significant bottleneck. While we have avoided
most dimension computations in our current implementation, we have also implemented a probabilistic
dimension computation of V (I). This function takes as input an ideal I in a polynomial ring over a field
and intersects V (I) with random linear spaces of increasing dimension until there is an intersection. For
example, if the intersection of V (I) with a random line has a point, then we expect that V (I) contains a
hypersurface. If there is no intersection, this function tries a 2-dimensional linear space, and so on. This
can speed up a number of computations. The function also takes in optional inputs as described below:

• DimensionIntersectionAttempts: Our function actually estimates dimension several times and
then averages the result (rounding down) since we tend to overestimate the dimension due to the nature
of dimViaBezout as described above. By default it does this three times unless the Homogeneous
flag is set, in which case it is done five times.

• MinimumFieldSize: If the ambient field is smaller than this integer value, it will automatically be
replaced with an extension field. For instance, there are relatively few linear spaces over a field of
characteristic 2, and this can cause incorrect results to be returned to the user. The user may set the
MinimumFieldSize to ensure that the field being worked over is big enough. If this is not set, the
program tries to choose a reasonable minimum field size based on the ambient ring.

• Homogeneous: If the ideal is homogeneous, we can use homogeneous linear spaces to compute
dimension. Sometimes this is faster and other times slower.

Example 3.1. We illustrate the speed difference in this example.

i2 : S = ZZ/101[y_0..y_9];
i3 : I=ideal random(S^1,S^{-2,-2,-2,-3})+(ideal random(2,S))^2;
o3 : Ideal of S
i4 : time dimViaBezout I

-- used 0.837359 seconds
o4 = 5
i5 : time dim I

-- used 36.8496 seconds
o5 = 5
i6 : time dimViaBezout(I, DimensionIntersectionAttempts=>1)

-- used 0.280803 seconds
o6 = 5

As you can see, doing a single intersection attempt is about three times faster, and it usually gives the right
answer (far more than 99% of the time in this particular example, but in others doing the computation in
triplicate avoids returning incorrect answers).

3.2. randomCoordinateChange: This function takes a polynomial ring as an input and outputs a
coordinate change map, i.e., given a polynomial ring, this will produce a linear automorphism of the ring.
This function checks whether the map is an isomorphism by computing the Jacobian.

Bisui, Jiang, Maitra, Nguyễn and Schwede :::: Finding points on varieties with Macaulay2 39

In some applications, a full random change of coordinates is not desired, as it might cause code to
run very slowly. A binomial change of coordinates might be preferred, or we might only replace some
monomials by other monomials. This is controlled with the following options.

• Replacement: This works like the Replacement option for RandomPoints.

• MaxCoordinatesToReplace: The user can specify that only a specified number of coordinates
should be nonmonomial (assuming Homogeneous is set to true).

• Homogeneous: Setting Homogeneous to false will cause degree zero terms to be added to modified
coordinates (including monomial coordinates).

Example 3.2. We demonstrate some of these options.

i3 : R = ZZ/11[x, y, z];
i4 : randomCoordinateChange(R)

ZZ
o4 = map(R,--[x, y, z],{4x + 5y - 5z, 3x - 4y - 3z, 4x})

11
ZZ

o4 : RingMap R <--- --[x, y, z]
11

i5 : matrix randomCoordinateChange(R, MaxCoordinatesToReplace => 1)
o5 = | x -x-4y-5z y |
i6 : matrix randomCoordinateChange(R, MaxCoordinatesToReplace => 1,

Homogeneous => false)
o6 = | x-3 z-5 -x+3y-4z+2 |

4. OTHER FUNCTIONS: genericProjection AND projectionToHypersurface. We include two
functions providing customizable projections. We describe them here.

4.1. genericProjection. This function finds a random (somewhat, depending on options) generic
projection of the ring or ideal. The typical usages are

• genericProjection(n, I)

• genericProjection(n, R)

where I is an ideal in a polynomial ring, R can denote a quotient of a polynomial ring and n ∈ Z is an
integer specifying how many dimensions to drop. Note that this function makes no attempt to verify that
the projection is actually generic with respect to the ideal.

This gives the projection map from AN
7→ AN−n and the defining ideal of the projection of V (I). If

no integer n is provided then it acts as if n = 1.

Example 4.1. We project a curve in 4-space to one in 2-space.

i1 : R = ZZ/5[x, y, z, w];
i2 : I = ideal(x, y^2, w^3 + x^2);
i3 : genericProjection(2, I)

ZZ 2 2
o3 = (map(R,--[z, w],{- x - 2y - z, - y - 2z}), ideal(z - z*w - w))

5

40 Bisui, Jiang, Maitra, Nguyễn and Schwede :::: Finding points on varieties with Macaulay2

Alternatively, instead of I , we may pass it a quotient ring. It will then return the inclusion of the generic
projection ring into the given ring, followed by the source of that inclusion.

This method works by calling randomCoordinateChange (Section 3) before dropping variables. It
passes the options Replacement, MaxCoordinatesToReplace, Homogeneous to that function.

4.2. projectionToHypersurface. This function creates a projection to a hypersurface. The typical
usages are

• projectionToHypersurface I

• projectionToHypersurface R

where I is an ideal in a polynomial ring and R is a quotient of a polynomial ring. The output is a list
with two entries: the generic projection map and the ideal (respectively the ring).

It differs from genericProjection(codim I - 1, I) as it only tries to find a hypersurface equation
that vanishes along the projection, instead of finding one that vanishes exactly at the projection. This can
be faster and can be useful for finding points. The same approach was used in the point command in the
package [Cremona]. If we already know the codimension is c, we can set Codimension to be c so the
function does not compute it.

5. AN APPLICATION: findANonZeroMinor AND extendIdealByNonZeroMinor. As mentioned in
the introduction, the two functions in this section will provide further tools for computing singular locus,
in addition to those available in the package FastLinAlg.

5.1. findANonZeroMinor: The typical usage of this function is

• findANonZeroMinor(n, M, I)

where I is an ideal in a polynomial ring over QQ or ZZ/p for p prime, M is a matrix over the polynomial
ring and n ∈ Z denotes the size of the minors of interest.

The function outputs the following:

• A randomly chosen point P in V (I) which it finds using randomPoints.

• The indexes of the columns of M that stay linearly independent upon plugging P into M .

• The indices of the linearly independent rows of the matrix extracted from M in the above step.

• A random n × n submatrix of M that has full rank at P .

Besides the options from randomPoints which are automatically passed to that function, the user
may also provide the following additional information:

MinorPointAttempts: This controls how many points at which to check the rank.

Bisui, Jiang, Maitra, Nguyễn and Schwede :::: Finding points on varieties with Macaulay2 41

Example 5.1. We demonstrate this findANonZeroMinor function.

i3 : R = ZZ/5[x, y, z];
i4 : I = ideal(random(3, R) - 2, random(2, R))

3 2 2 3 2 2 2 2 3 2
o4 = ideal(2x - 2x y + 2x*y + y + x z - 2x*y*z + y z - 2x*z + 2y*z - z - 2, - 2x*y - x*z - z)
o4 : Ideal of R
i5 : M = jacobian(I)
o5 = {1} | x2+xy+2y2+2xz-2yz-2z2 -2y-z |

{1} | -2x2-xy-2y2-2xz+2yz+2z2 -2x |
{1} | x2-2xy+y2+xz-yz+2z2 -x-2z |

3 2
o5 : Matrix R <--- R
i6 : findANonZeroMinor(2, M, I, Strategy => GenericProjection)
o6 = ({-2, 1, 1}, {0, 1}, {0, 1}, {1} | x2+xy+2y2+2xz-2yz-2z2 -2y-z |)

{1} | -2x2-xy-2y2-2xz+2yz+2z2 -2x |

5.2. extendIdealByNonZeroMinor: The typical usage is

• extendIdealByNonZeroMinor(n, M, I)

where n, M, I are the same as before. This finds a submatrix of size n × n using findANonZeroMinor;
it extracts the last entry of the output, finds its determinant and adds it to the ideal I , thus extending I . It
has the same options as findANonZeroMinor.

One can use this function to show that rings are regular in codimension 1, that is, satisfy Serre’s
condition (R1).

Example 5.2. Consider the following 3-dimensional example which is regular in codimension 1. Note,
in this example, computing the dimension of the singular locus takes around 30 seconds as there are
15500 minors of size 4 × 4 coming from the associated 7 × 12 Jacobian matrix. However, we can use our
function to quickly find interesting minors.

i2 : T = ZZ/101[x1, x2, x3, x4, x5, x6, x7];
i3 : I = ideal(x5*x6-x4*x7,x1*x6-x2*x7,x5^2-x1*x7,x4*x5-x2*x7,x4^2-x2*x6,x1*x4-x2*x5,

x2*x3^3*x5+3*x2*x3^2*x7+8*x2^2*x5+3*x3*x4*x7-8*x4*x7+x6*x7,
x1*x3^3*x5+3*x1*x3^2*x7+8*x1*x2*x5+3*x3*x5*x7-8*x5*x7+x7^2,
x2*x3^3*x4+3*x2*x3^2*x6+8*x2^2*x4+3*x3*x4*x6-8*x4*x6+x6^2,
x2^2*x3^3+3*x2*x3^2*x4+8*x2^3+3*x2*x3*x6-8*x2*x6+x4*x6,
x1*x2*x3^3+3*x2*x3^2*x5+8*x1*x2^2+3*x2*x3*x7-8*x2*x7+x4*x7,
x1^2*x3^3+3*x1*x3^2*x5+8*x1^2*x2+3*x1*x3*x7-8*x1*x7+x5*x7);

o3 : Ideal of T
i4 : M = jacobian I;

7 12
o4 : Matrix T <--- T
i5 : i = 0; J = I;
o6 : Ideal of T
i7 : elapsedTime(while (i < 10) and dim J > 1 do (

i = i + 1;
J = extendIdealByNonZeroMinor(4, M, J)));

-- 0.640164 seconds elapsed
i8 : dim J
o8 = 1
i9 : i
o9 = 5

42 Bisui, Jiang, Maitra, Nguyễn and Schwede :::: Finding points on varieties with Macaulay2

In this particular example, there tend to be about five associated primes when adding the first mi-
nor to J , and so one expects about five steps as each minor will typically eliminate one of those
primes.

There is some similar functionality for computing partial Jacobian ideals obtained via heuristics (as
opposed to actually finding rational or geometric points) in the package [FastLinAlg]. That package now
uses the functionality contained here in RandomPoints in some of its functions.

6. THE LATEST VERSION. The latest version of the package is available here.

SUPPLEMENT. The online supplement contains version 1.5.3 of RandomPoints.

ACKNOWLEDGEMENTS. The authors would like to thank David Eisenbud and Mike Stillman for useful
conversations and comments on the development of this package. The authors began work on this package
at the virtual Cleveland 2020 Macaulay2 workshop. The authors are also grateful to the reviewers for
suggesting and providing preliminary codes to speed up computations, thereby improving the efficacy of
the package substantially.

Frank-Olaf Schreyer is also an author on this package, as he provided some code related to the
MultiplicationTable decomposition strategy and suggested using a probabilistic approach to compute
dimension.

REFERENCES.
[v. Bothmer and Schreyer 2005] H.-C. G. v. Bothmer and F.-O. Schreyer, “A quick and dirty irreducibility test for multivariate
polynomials over Fq ”, Experiment. Math. 14:4 (2005), 415–422. MR Zbl

[Cafure and Matera 2006] A. Cafure and G. Matera, “Improved explicit estimates on the number of solutions of equations over a
finite field”, Finite Fields Appl. 12:2 (2006), 155–185. MR Zbl

[Cremona] G. Staglianò, “Cremona: rational maps between projective varieties”, Macaulay2 package, available at https://
github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages.

[FastLinAlg] B. Martinova, M. Robinson, K. Schwede, and Y. W. Yao, “FastLinAlg: faster linear algebra operations”, Macaulay2
package, available at https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages.

[Ghorpade and Lachaud 2002] S. R. Ghorpade and G. Lachaud, “Number of solutions of equations over finite fields and a
conjecture of Lang and Weil”, pp. 269–291 in Number theory and discrete mathematics (Chandigarh, 2000), Birkhäuser, Basel,
2002. MR Zbl

[Lang and Weil 1954] S. Lang and A. Weil, “Number of points of varieties in finite fields”, Amer. J. Math. 76 (1954), 819–827.
MR Zbl

[Macaulay2] D. R. Grayson and M. E. Stillman, “Macaulay2, a software system for research in algebraic geometry”, software,
available at http://www.math.uiuc.edu/Macaulay2/.

[RationalPoints] N. Stapleton, “RationalPoints”, Macaulay2 package, available at https://github.com/Macaulay2/M2/tree/
master/M2/Macaulay2/packages.

RECEIVED: 8 Feb 2021 REVISED: 18 Aug 2021 ACCEPTED: 8 May 2023

https://github.com/Macaulay2/Workshop-2020-Cleveland/blob/FastLinAlg/FastLinAlg/M2/RandomPoints.m2
http://msp.org/jsag/2023/13-1/jsag-v13-n1-x03-RandomPoints.m2
http://dx.doi.org/10.1080/10586458.2005.10128933
http://dx.doi.org/10.1080/10586458.2005.10128933
http://msp.org/idx/mr/2193804
http://msp.org/idx/zbl/1152.12300
http://dx.doi.org/10.1016/j.ffa.2005.03.003
http://dx.doi.org/10.1016/j.ffa.2005.03.003
http://msp.org/idx/mr/2206396
http://msp.org/idx/zbl/1163.11329
https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages
https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages
http://msp.org/idx/mr/1962145
http://msp.org/idx/zbl/1080.11049
http://dx.doi.org/10.2307/2372655
http://msp.org/idx/mr/65218
http://msp.org/idx/zbl/0058.27202
http://www.math.uiuc.edu/Macaulay2/
https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages

Bisui, Jiang, Maitra, Nguyễn and Schwede :::: Finding points on varieties with Macaulay2 43

SANKHANEEL BISUI:

sankhaneel.bisui@umanitoba.ca
Department of Mathematics, The University of Manitoba, Winnipeg MB, Canada

ZHAN JIANG:

zoeng@umich.edu
Department of Mathematics, The University of Michigan, Ann Arbor MI, United States

SARASIJ MAITRA:

maitra@math.utah.edu
Department of Mathematics, The University of Utah, Salt Lake City UT, United States

THÁI THÀNH NGUYỄN:

nguyt161@mcmaster.ca
Department of Mathematics, McMaster University, Hamilton ON, Canada

KARL SCHWEDE:

schwede@math.utah.edu
Department of Mathematics, The University of Utah, Salt Lake City UT, United States

msp

mailto:sankhaneel.bisui@umanitoba.ca
mailto:zoeng@umich.edu
mailto:maitra@math.utah.edu
mailto:nguyt161@mcmaster.ca
mailto:schwede@math.utah.edu
http://msp.org

	1. Introduction
	2. Our primary purpose: randomPoints
	2.1. Options
	2.2. Comments on performance and implementation

	3. Useful functions: dimViaBezout and randomCoordinateChange
	3.1. dimViaBezout:
	3.2. randomCoordinateChange:

	4. Other functions: genericProjection and projectionToHypersurface
	4.1. genericProjection
	4.2. projectionToHypersurface

	5. An application: findANonZeroMinor and extendIdealByNonZeroMinor
	5.1. findANonZeroMinor:
	5.2. extendIdealByNonZeroMinor:

	6. The latest version

