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ABSTRACT: Finite group actions on free resolutions and modules arise naturally in many interesting
examples. Understanding these actions amounts to describing the terms of a free resolution or the
graded components of a module as group representations which, in the nonmodular case, are completely
determined by their characters. With this goal in mind, we introduce a Macaulay2 package for computing
characters of finite groups on free resolutions and graded components of finitely generated graded modules
over polynomial rings.

1. INTRODUCTION. Let R be a polynomial ring over a field k, and M be a finitely generated graded
R-module. Let G be a linearly reductive group acting k-linearly on R and M , and assume these actions
preserve degrees and distribute over R-multiplication. If F• is a minimal graded free resolution of M ,
then the action of G extends to F•. More precisely, if m denotes the irrelevant maximal ideal of R,
then the finite-dimensional vector spaces Fi/mFi carry a natural structure of graded G-representations
(see [Galetto 2016, Proposition 2.4.9 and Remark 2.4.10] for details). This additional structure makes
a resolution more rigid as the differentials must commute with the group action; in some cases, this
makes it possible to construct the differentials explicitly using representation theory (see, for example,
[Sam 2009; Sam and Weyman 2011]). Understanding how G acts on the modules Fi/mFi may also
lead to interesting combinatorial descriptions of the Betti numbers of M , such as in [Galetto 2020,
Corollary 4.12]. Free resolutions equipped with group actions (also known as equivariant resolutions)
have found many important applications, such as the computation of Betti numbers of determinantal
varieties [Lascoux 1978], and a proof of the existence of pure free resolutions [Eisenbud et al. 2011]
(a central aspect of Boij-Söderberg theory).

From a computational perspective, the [Macaulay2] package HighestWeights [Galetto 2015] allows
users to determine the representation theoretic structure of an equivariant resolution with the action of a
semisimple Lie group in characteristic zero. Recent publications [Zamaere et al. 2014; Efremenko et al.
2018; Galetto et al. 2018; Bauer et al. 2019; Galetto 2020; Biermann et al. 2020; Murai 2020; Shibata
and Yanagawa 2023; Raicu 2021; Murai and Raicu 2022] point to an interest in equivariant resolutions
with actions of finite groups, particularly symmetric groups. However, at the time of writing, no software
solution is available to compute such actions. The present article introduces the Macaulay2 package
BettiCharacters to fill this gap. In the nonmodular case (i.e., when the characteristic of the field does
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not divide the order of the group), finite-dimensional representations of finite groups are determined, up
to isomorphism, by their characters (see [Serre 1977, Chapter 2] for an introduction to the subject). Thus
understanding the G-action on a minimal free resolution F• amounts to describing the graded characters
of the representations Fi/mFi or, equivalently, the characters of the graded components (Fi/mFi ) j . The
uniqueness of minimal free resolutions implies (Fi/mFi ) j ∼=TorR

i (M, k) j as G-representations. Moreover,
the character of G on TorR

i (M, k) j evaluated at the identity of G is the dimension of TorR
i (M, k) j as a

k-vector space, i.e., the (i, j)-th Betti number of M . Therefore we adopt the following definition, after
which the package is named.

Definition. The (i, j)-th Betti character of G on M, denoted βG
i, j (M), is the character of G on TorR

i (M, k) j .

The package BettiCharacters implements the algorithm described in [Galetto 2022, Algorithm 1],
which in essence propagates the group action from the module M through a (previously computed)
minimal free resolution F•. In addition, BettiCharacters also allows users to compute the characters
of G on the graded components of M . The rest of this article illustrates the main functionalities of the
package.1 The author thanks the anonymous referee for carefully reviewing this work.

2. EXAMPLE: A SYMMETRIC SHIFTED IDEAL. Consider the ideal generated by all quadratic squarefree
monomials in a ring with four variables.

i1 : R = QQ[x_1..x_4];

i2 : I = ideal apply(subsets(gens R,2),product)

o2 = ideal (x x , x x , x x , x x , x x , x x )
1 2 1 3 2 3 1 4 2 4 3 4

o2 : Ideal of R

i3 : RI = res I

1 6 8 3
o3 = R <-- R <-- R <-- R <-- 0

0 1 2 3 4

o3 : ChainComplex

The symmetric group S4 acts by permuting the ring variables and, in doing so, preserves the ideal.
Thus the action passes to the quotient and its minimal free resolution. The equivariant structure of the
resolution is described in [Galetto 2020, Theorem 4.11] and [Efremenko et al. 2018, Theorem 4.1].
The ideal also belongs to the larger class of symmetric shifted ideals, whose equivariant resolutions are
described in [Biermann et al. 2020, Theorem 6.2]. To verify these results computationally, we first define
the group action. Since characters are class functions (i.e., constant on conjugacy classes) it is enough
to define a single group element per conjugacy class. In the case of a symmetric group, the method
symmetricGroupActors returns the desired elements as one-row matrices of substitutions for the ring
variables. Then we set up the action on the resolution as an object of type ActionOnComplex using the
action method.

1All computations performed in Macaulay2 version 1.19.1 on Fedora 36, using BettiCharacters 2.0.
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i4 : needsPackage "BettiCharacters";

i5 : S4 = symmetricGroupActors R

o5 = {| x_2 x_3 x_4 x_1 |, | x_2 x_3 x_1 x_4 |, | x_2 x_1 x_4 x_3 |,
---------------------------------------------------------------
| x_2 x_1 x_3 x_4 |, | x_1 x_2 x_3 x_4 |}

o5 : List

i6 : A = action(RI,S4)

o6 = ChainComplex with 5 actors

o6 : ActionOnComplex

Now we can use the character method to compute Betti characters.

i7 : a = character A

o7 = Character over R

(0, {0}) => | 1 1 1 1 1 |
(1, {2}) => | 0 0 2 2 6 |
(2, {3}) => | 0 -1 0 0 8 |
(3, {4}) => | 1 0 -1 -1 3 |

o7 : Character

The output is of type Character, a new kind of hash table introduced by the package. The keys are
pairs containing the homological degree and internal (multi)degree of the nonzero components of a graded
character. The values are one-row matrices whose entries are the traces of the previously defined group
elements.

Finally, we decompose this character against the character table of the symmetric group, which can be
obtained using the method symmetricGroupTable. The irreducible characters χλ of S4 are in bijection
with the partitions λ of 4 (see [Fulton 1997, §7]), which appear as row labels in the character table. The
column labels are the cardinalities of the conjugacy classes represented by the permutations in o5.

i8 : T = symmetricGroupTable R

o8 = Character table over R

| 6 8 3 6 1
--------+-------------------

(4) | 1 1 1 1 1
(3,1) | -1 0 -1 1 3

2 |
(2 ) | 0 -1 2 0 2

2 |
(2,1 ) | 1 0 -1 -1 3

4 |
(1 ) | -1 1 1 -1 1

o8 : CharacterTable

The decomposition is achieved with the method decomposeCharacter. The output is a table whose
rows are labeled by pairs of homological degree and internal (multi)degree, and whose columns are
labeled by irreducible characters of the group. The entry in a given cell is the coefficient of the irreducible
character labeled by the column in the degree labeled by the row.
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i9 : decomposeCharacter(a,T)

o9 = Decomposition table

| 2 2
| (4) (3,1) (2 ) (2,1 )

----------+--------------------------
(0, {0}) | 1 0 0 0
(1, {2}) | 1 1 1 0
(2, {3}) | 0 1 1 1
(3, {4}) | 0 0 0 1

o9 : CharacterDecomposition

The computation above shows that the Betti character β
S4
1,2 of the quotient by the ideal in the example is

χ (4)
+ χ (3,1)

+ χ (2,2).
The methods in BettiCharacters are completely independent of the group. However, the package

contains methods that simplify working with symmetric groups, as shown in the current example.

3. EXAMPLE: KLEIN POINT CONFIGURATION. We consider the Klein configuration of points in the
projective plane. The defining ideal I is explicitly constructed in [Bauer et al. 2019, Proposition 7.3].
Although I is defined over the rationals, we work over the cyclotomic field obtained by adjoining a
primitive seventh root of unity for the purpose of defining a group action.

i1 : kk=toField(QQ[a]/ideal(sum apply(7,i->a^i)));

i2 : R=kk[x,y,z];

i3 : f4=x^3*y+y^3*z+z^3*x

3 3 3
o3 = x y + y z + x*z

o3 : R

i4 : f6=-1/54*det(jacobian transpose jacobian f4)

5 5 2 2 2 5
o4 = x*y + x z - 5x y z + y*z

o4 : R

i5 : I=minors(2,jacobian matrix{{f4,f6}});

o5 : Ideal of R

The unique simple group G of order 168 acts on the projective plane preserving the Klein configuration.
This induces an action on our polynomial ring preserving the ideal I . The action (which is minimally
defined over our cyclotomic field) is explicitly described in [Bauer et al. 2019, §2.2]. In particular, the
group is generated by elements g of order 7, h of order 3, and i of order 2. Since we are interested in
some characters of G, we need a representative for each conjugacy class; therefore, in addition to g, h,
and i, we also consider the identity element, the inverse of g, and an element j of order 4. We define all
these group elements as matrices.

i6 : g=matrix{{a^4,0,0},{0,a^2,0},{0,0,a}};

3 3
o6 : Matrix kk <--- kk
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i7 : h=matrix{{0,1,0},{0,0,1},{1,0,0}};

3 3
o7 : Matrix ZZ <--- ZZ

i8 : i=(2*a^4+2*a^2+2*a+1)/7 * matrix{{a-a^6,a^2-a^5,a^4-a^3},
{a^2-a^5,a^4-a^3,a-a^6},
{a^4-a^3,a-a^6,a^2-a^5}};

3 3
o8 : Matrix kk <--- kk

i9 : j=-1/(2*a^4+2*a^2+2*a+1) * matrix{{a^5-a^4,1-a^5,1-a^3},
{1-a^5,a^6-a^2,1-a^6},
{1-a^3,1-a^6,a^3-a}};

3 3
o9 : Matrix kk <--- kk

i10 : G={id_(R^3),i,h,j,g,inverse g};

As proved in [Seceleanu 2015, Theorem 4.4] and [Bauer et al. 2019, Proposition 8.1], the symbolic
cube I (3) is not contained in the square I 2. The second proof of [Bauer et al. 2019, Proposition 8.1]
reduces the failure of containment to showing the graded component of degree 21 in the quotient I (2)/I 2

is a trivial G-representation. By local duality, this is equivalent to showing that the last module in a
minimal free resolution of I 2 is generated in degree 24 by a one-dimensional trivial G-module. We
proceed to compute the character of G on the last module of the resolution of I 2.

i11 : I2=I^2;

o11 : Ideal of R

i12 : RI2=res I2

1 6 6 1
o12 = R <-- R <-- R <-- R <-- 0

0 1 2 3 4

o12 : ChainComplex

i13 : needsPackage "BettiCharacters";

i14 : A=action(RI2,G,Sub=>false)

o14 = ChainComplex with 6 actors

o14 : ActionOnComplex

The action is defined with the option Sub=>false, which allows passing group elements as square
matrices rather than one-row matrices of substitutions as in Section 2. Next we compute the character of
the G-action on the resolution of I 2 in homological degree 3.

i15 : character(A,3)

o15 = Character over R

(3, {24}) => | 1 1 1 1 1 1 |

o15 : Character

As expected, we obtain a trivial character concentrated in degree 24.
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The BettiCharacters package can also compute the characters of a finite group on the graded
components of a module. Using the package [SymbolicPowers], we can directly establish that the
character of G on the graded component of degree 21 in I (2)/I 2 is trivial.

i16 : needsPackage "SymbolicPowers";

i17 : Is2 = symbolicPower(I,2);

o17 : Ideal of R

i18 : M = Is2 / I2;

i19 : B = action(M,G,Sub=>false)

o19 = Module with 6 actors

o19 : ActionOnGradedModule

i20 : character(B,21)

o20 = Character over R

(0, {21}) => | 1 1 1 1 1 1 |

o20 : Character

SUPPLEMENT. The online supplement contains version 2.1 of BettiCharacters.
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