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ABSTRACT: We describe algorithms and their implementations that calculate local and global Schur
indices of ordinary irreducible characters of finite groups and cyclotomic algebras over abelian number
fields. Side benefits include functions for cyclotomic reciprocity calculations and for calculating the defect
group associated with an ordinary irreducible character of a finite group. These functions are available in
GAP via the package wedderga, versions 4.7 and higher.

1. INTRODUCTION. This article summarizes the approach that has been implemented for computing
Schur indices in GAP [7] offered by the GAP package wedderga since version 4.7 [2]. It especially reports on
some of the improvements that have been added since their first implementation in version 4.6, which was
described in [9]. These improvements have already had an impact on new research; see, for example, [1].

The Schur index is a fundamental invariant for algebras and representation theory when working over
nonalgebraically closed fields. The Schur index of a finite-dimensional division algebra D is the square
root of its dimension over its center, i.e., m(D) :=

√
[D : Z(D)], so it can be seen as a measure of its

noncommutativity. Each simple component of a finite-dimensional semisimple algebra is a matrix algebra
over a division algebra, and the Schur index of one of these simple components is the Schur index of its
division algebra part. The Schur index of an irreducible character χ of a finite group G over a field F is the
Schur index of the simple component of FG that corresponds naturally to χ . The Schur index is also equal
to the degree of the minimal extension E of the field of character values F(χ) needed for there to exist
an irreducible representation affording χ whose matrix entries will lie in E . The latter description is the
reason Schur index calculation plays an essential role in many applications of group representation theory.

Currently in wedderga, Schur index calculation for irreducible characters of finite groups can only be
done over cyclotomic number fields. This is not due to limitations on the field implementations in GAP,
but rather to the mathematics involved in the algorithms. (A completely separate wedderga function is
available for computing Schur indices of quaternion algebras whose center is Q [9].)

Note added September 14, 2023: The latest wedderga package distributed with GAP is version 4.10.4.
Version 4.10 includes a significant performance improvement with the addition of the global splitting
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and character descent Functions described in Section 7.3 of the wedderga manual, which are due to
Ángel del Río and myself. The global splitting functions are designed to quickly identify crossed product
algebras with trivial Schur indices, and they help to reduce others to a state where the local Schur index
algorithms listed in Section 7.4 and 7.5, and described in greater detail here, are needed.

2. SCHUR INDEX COMPUTATION. Starting with an irreducible character χ of a finite group G, and a
cyclotomic number field F , one objective of the wedderga package is to provide software for describing
the algebraic structure of the simple component FGe of the group algebra FG for which χ(FGe) ̸= 0.
It is a consequence of the Brauer–Witt theorem (see [16]) that any simple component of the group ring
of a finite group over a cyclotomic number field will be Morita equivalent to a cyclotomic algebra. (By
cyclotomic algebra we mean a crossed product algebra whose factor set takes values that are roots of
unity.) It follows then that the simple component FGe corresponding to χ ∈ Irr(G) can be expressed
as Mr (Bχ ), where Bχ is a cyclotomic algebra whose center is the field of character values F(χ). The
Wedderburn decomposition functions in wedderga produce these cyclotomic crossed product algebras
using the algorithm described in [12].

We also know that FGe is simple, so the cyclotomic algebra Bχ is a matrix ring over a division
algebra D whose Schur index is m F (χ). From the character degree χ(1) we know the dimension of FGe
over its center, so the problem comes down to calculating m F (χ) and identifying D up to isomorphism
over F(χ). Since F(χ) is an algebraic number field, the isomorphism type of D as an F(χ)-algebra is
determined by its list of local invariants, one for each prime P of the number field F(χ), and almost all
of these local invariants are 1; see [13]. By Benard–Schacher theory [4], for our division algebras the
P-local invariants have the same lowest-terms denominator for all primes P lying over a fixed rational
prime p, including the case where p = ∞. The Schur index m F (χ) is the least common multiple of
these denominators, which are known as p-local indices. So it suffices to compute the p-local index for
each rational prime p. Benard–Schacher theory also tells us the p-local index of D can be greater than 1
only at primes p dividing |G|, and greater than 1 at ∞ only when 4 divides |G|. In the end, this finite
list of p-local indices comes quite close to identifying our division algebra up to ring isomorphism, so
wedderga gives the identification of the division algebra in the form of a record containing the center, the
global Schur index, and the list of all of its nontrivial p-local indices. There is no function in wedderga
that isolates the division algebra as an actual algebra in GAP, but our new implementation does offer
functions that can be used to isolate the cyclotomic algebra part of the simple component as an algebra
with structure constants.

3. ALGORITHMS FOR LOCAL INDEX COMPUTATION. The local index of χ at ∞ can be computed
directly from the values of χ using the Frobenius–Schur indicator. Our implementation uses this as a
default, but uses an arithmetic shortcut that is even faster when our simple component FGe is presented
as a cyclic cyclotomic algebra [9]. In this special situation, the implementation makes use of arithmetic
shortcuts for the local index at 2 or an odd rational prime that are based on Janusz’s lemma [10, Lemma 3.1].
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These shortcut algorithms have been improved since the first release to make better use of the cyclotomic
reciprocity functions in wedderga. These functions are designed to calculate the residue degree f , splitting
degree g, and ramification index e of a cyclotomic extension of the form F(ζn)/F at a prime p. An
additional function is offered that computes the maximal subextension of F(ζn)/F that splits completely
at the prime p. Our routines for these rely on a careful determination of the element of the Galois
group that induces the Frobenius automorphism at p. If F ⊆ E ⊆ F(ζn), then E(ζn) = F(ζn), so a
simple manipulation of cyclotomic reciprocity values for F(ζn)/F and for F(ζn)/E at p will produce
the cyclotomic reciprocity values for the extension E/F at p (for more details, see [9]).

When the cyclotomic algebra presentation for FGe is not that of a cyclic cyclotomic algebra, the
algorithm defaults to a procedure for calculating the p-local index of χ with the same mathematical basis
as the one initially developed by Bill Unger and Gabriele Nebe for MAGMA [5].

Step 1: (Brauer–Witt search) For each prime q dividing χ(1), find a minimal subgroup (i.e., a Schur
group) H and ξ ∈ Irr(H) that isolates the q-part of the p-local index of χ .

Step 2: (p-modular characters) If the p-defect group of ξ is cyclic, use Benard’s theorem on characters in
blocks with cyclic defect group [3] to obtain the p-local index of ξ .

Step 3: (Dyadic Schur groups) If the p-defect group of ξ ∈ Irr(H) is not cyclic, then it will be the case
that p = 2, and one can apply Riese and Schmid’s classification of dyadic Schur groups (see [15] and [14])
to obtain the 2-local index of ξ .

Details concerning this procedure were described in [9]. In practice we take advantage of the fact that
wedderga’s presentation of FGe as a cyclotomic algebra gives us a natural extension F(ζn) over which
the algebra splits. Our cyclotomic reciprocity functions allow us to extend the field F to the maximal
p-split subextension E of F inside F(ζn). In this case the p-local index of χ over F is the same as its
p-local index over E . We then recalculate the Wedderburn decomposition of EG and isolate the simple
component corresponding to χ again. Sometimes this simple component already is presented as a cyclic
cyclotomic algebra and the arithmetic shortcuts will get the job done. At worst the defining group H for
this component is metabelian, has 3 generators modulo the derived subgroup, and its defining character ξ

is faithful. These are the H and ξ we require for Step 2.
One of the biggest improvements since the initial release has been the addition of functions that enable

the user to precisely determine the defect group at p for an ordinary character χ . (The author is indebted
to Frieder Ladisch for pointing out the possibility for this improvement.) The new routine makes use
of the ordinary character half of Brauer’s min-max theorem, as presented in [11, (4.4)]. First the defect
classes for the p-block containing χ are found, then we find a class for which the defect group has
minimal order. The theory guarantees that these defect groups of minimal order are the defect groups of
the block [11, (4.5)]. All of this is done using only the ordinary character table and so it is reasonably
efficient even for fairly large groups.

An accurate decision on whether or not the defect group is cyclic means we have to complete at most
one of Steps 2 and 3, both of which can be quite expensive. For example, since our defining group H is
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solvable, we can apply [8], which tells us that when p = 2 and the defect group is abelian, the 2-local index
is 1. For odd primes p, Step 2 will be conclusive when we know the defect group is cyclic. So Step 3
only becomes necessary when p = 2 and the defect group of the 2-block of H containing ξ is nonabelian.

In the latest implementation improvements were made to the final step, which applies a Theorem of
Yamada (see [6, Theorem 9.2]) to calculate the p-local index m F (χ) from the result mQ(χ)(χ) arising from
Benard’s theorem. Again, these improvements resulted from making more direct use of the cyclotomic
reciprocity values for the prime p. The author is indebted to Andreas Bächle and Inneke Van Gelder for
pointing out some discrepancies in the first implementation that led to these improvements.

SUPPLEMENT. The online supplement contains version 4.10.5 of wedderga.
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