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Computing multiplicity sequences

JUSTIN CHEN, YOUNGSU KIM AND JONATHAN MONTAÑO

ABSTRACT: The MultiplicitySequence package for Macaulay2 computes the multiplicity sequence
of a graded ideal in a standard graded ring over a field, as well as several invariants of monomial ideals
related to integral dependence. We discuss two strategies that were implemented for computing multiplicity
sequences: one via the bivariate Hilbert polynomial, and the other via the technique of general elements.

1. INTRODUCTION. Let (R,m, k) be a d-dimensional Noetherian local ring with maximal ideal m
and residue field k. Let I be an R-ideal. If I is m-primary, then the Hilbert–Samuel multiplicity of I is
defined as the degree of the standard graded algebra

gr(I ) =

∞⊕
n=0

I n/I n+1,

i.e., the normalized leading coefficient of its Hilbert polynomial. This classical numerical invariant has
been the base of several important results in commutative algebra and algebraic geometry. For example, a
classical result of Rees states that the Hilbert–Samuel multiplicity gives an effective criterion for deciding
whether two ideals have the same integral closure, provided R is formally equidimensional [14]. Rees’
theorem is of fundamental importance in singularity theory as it is a key component in the proof of
Teissier’s principle of specialization of integral dependence (PSID), which provides a fiberwise numerical
criterion for a family of hypersurfaces with isolated singularities to be equisingular [15].

The j -multiplicity and ε-multiplicity are extensions of the Hilbert–Samuel multiplicity to arbitrary
ideals. These multiplicities were originally introduced in [1] and [8], respectively, in large part to extend
Rees’ theorem to the non-m-primary case. Such extensions were obtained in [4] and [16], but with the
requirement of having to localize at all prime ideals of R.

The multiplicity sequence of an arbitrary ideal I in R is a sequence of d + 1 nonnegative integers
corresponding to the leading coefficients of the second sum transform of the bivariate Hilbert polynomial
of the standard bigraded algebra

G := gr(m gr(I )) =

∞⊕
i, j=0

mi I j
+ I j+1

mi+1 I j + I j+1 . (1-1)
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This sequence is a particular case of the multiplicities defined by Kleiman and Thorup [9, §8], and it was
also considered by Gaffney and Gassler [5] in the analytic case, and by Achilles and Manaresi [2] in our
general setting. In the recent work [13], Polini, Trung, Ulrich, and Validashti extended Rees’ theorem
to arbitrary ideals without the need for localizations, by using multiplicity sequences. More precisely,
they show that if R is formally equidimensional, then ideals I ⊆ J have the same integral closure if and
only if their multiplicity sequences agree (the forward direction was previously obtained by Ciupercă [3]).
Furthermore, the authors of [13] develop a PSID for arbitrary ideals using the multiplicity sequence,
demonstrating the importance of this invariant.

The main goal of the MultiplicitySequence package in Macaulay2 [10] is to compute the multi-
plicity sequence of graded ideals in standard graded rings over a field. Two strategies have currently been
implemented for doing so: the first one is based on the definition via the bivariate Hilbert polynomial
of G, and the second strategy is based on the technique of general elements; see [2, Theorem 4.1]. Finally,
the package also includes a number of methods related to multiplicities and integral dependence, which
have been adapted to the case of monomial ideals.

2. MULTIPLICITY SEQUENCE. Throughout, we keep the same notation as in the introduction. For a
module M , λ(M) denotes the length of M .

Associated bigraded ring. The second sum transform of the bivariate Hilbert polynomial of G is the
polynomial P(m, n) that agrees with

h(m, n) =

m∑
i=0

n∑
j=0

λ(Gi, j ), where Gi, j =
mi I j

+ I j+1

mi+1 I j + I j+1 (2-1)

for m, n ≫ 0. The polynomial P(m, n) can be written in the form

P(m, n) =

d∑
i=0

ci (I )
(d − i)!i !

md−i ni
+ (lower degree terms),

with ci (I ) ∈ Z≥0 for i = 0, . . . , d [17].

Definition 2.1. The sequence c0(I ), . . . , cd(I ) is called the multiplicity sequence of I .

One has ci (I ) = 0 if i < d −dim R/I or i > ℓ(I ), where ℓ(I ) := dim gr(I )⊗R k is the analytic spread
of I [2, Proposition 2.3]. Moreover, cd(I ) equals the j-multiplicity of I . In particular, if I is m-primary,
then cd(I ) is the Hilbert–Samuel multiplicity of I while ci (I ) = 0 for i ̸= d .

For purposes of Macaulay2 computation, we take the local ring R to be of the form An, where A is a
standard graded algebra over a field and n is its irrelevant ideal (note that lengths of graded modules do not
change under localizing at n). We now describe our first strategy for computing the multiplicity sequence.

Strategy 2.2. Given an ideal I , we compute the bigraded algebra G using tangentNormalCone (which
iteratively calls normalCone). Subsequently, the method hilbertSequence extracts the relevant coeffi-
cients of the Hilbert polynomial P(m, n) of G from the Hilbert series of G.
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Strategy 2.2 is the default strategy for computing the multiplicity sequence, and is executed whenever
multiplicitySequence is called without specifying any options. We illustrate its use in the following
example:

Macaulay2, version 1.17

i1 : needsPackage "MultiplicitySequence";

i2 : S = QQ[a..e]/(ideal(a-b,c)*ideal(c,d,e));

i3 : I = ideal"a2-bd,b4,e3";

i4 : multiplicitySequence I

o4 = HashTable{2 => 3 }
3 => 12

i5 : hilbertSequence tangentNormalCone I

o5 = 0 1 2 3
+----------

3 | . . 3 12
2 | . . 2 .
1 | . 1 . .
0 | . . . .

In the output o4 above, the multiplicity sequence is displayed as a hash table, indicating that c2(I ) = 3
and c3(I ) = 12. The coefficients of the Hilbert polynomial of G are displayed in o5 as a 2-dimensional
table, whose top row is precisely the multiplicity sequence of I .

The most time-consuming step in Strategy 2.2 is that of computing (a presentation of) G — the Hilbert
series and coefficient extraction are comparatively fast. For convenience, this expensive step is cached
upon completion, so later calls to multiplicitySequence for a given ideal are nearly instant.

General elements. Our second strategy is based on Theorem 2.3 below which uses the method of general
elements. For a local ring S, we denote by e(S) the Hilbert–Samuel multiplicity of its maximal ideal.

Theorem 2.3 [13, Remark 2.3]. Suppose R is equidimensional and catenary with infinite residue field.
For any i ⩾ 0 and general elements x1, . . . , xi of I , one has

ci (I ) =

∑
p

λ

(
Rp

(x1, . . . , xi−1)Rp : I ∞ + xi Rp

)
e(R/p), (2-2)

where the sum ranges over the set of prime ideals{
p ∈ V (I ) | ht p = i, p ⊃ (x1, . . . , xi−1) : I ∞

}
, (2-3)

and by convention the colon ideal (x1, . . . , xi−1) : I ∞ is 0 if i = 0 and is 0 : I ∞ if i = 1.

In view of Theorem 2.3, one could compute ci (I ) by choosing general elements x1, . . . , xℓ ∈ I , and
then computing the various lengths and multiplicities in (2-2). However, this necessitates localizing at all
the primes p appearing above, which is undesirable for Macaulay2 computation. Thus we take a different
approach, as explained below.

Strategy 2.4. Via Theorem 2.3, we identify ci (I ) with e(R/Ji ) for a suitable R-ideal Ji , and the latter
can be computed in Macaulay2 using a combination of degree and normalCone (in particular, avoiding
localizations). The ideal Ji is constructed as follows: first, compute the minimal primes of the ideal
(x1, . . . , xi−1) : I ∞

+(xi ). Next, set K to be the intersection of these minimal primes that do not contain I .
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Finally, define Ji := ((x1, . . . , xi−1) : I ∞
+ xi ) : K ∞. To see that ci (I ) = e(R/Ji ), note that we may

identify the set of primes (2-3) as

{p ∈ V (I ) | ht p = i, p ⊃ (x1, . . . , xi−1) : I ∞
}

= {p ∈ V ((x1, . . . , xi−1) : I ∞
+ xi ) | ht p = i} ∩ V (I )

= {p ∈ V ((x1, . . . , xi−1) : I ∞
+ xi ) | ht p = i} \ (Spec(R) \ V (I ))

= {p ∈ V (Ji ) | ht p = i}.

Then by the associativity formula for Hilbert–Samuel multiplicity, the sum in (2-2), taken over the last
set above, is precisely e(R/Ji ).

We illustrate the use of Strategy 2.4. Note that the index i for ci (I ) is specified here.
i6 : R = QQ[a..d];

i7 : I = ideal "a2,ab,b3,ad - bc,c2-bd";

i8 : multiplicitySequence(3, I, Strategy => "generalElements") -- c_3(I)

o8 = 5

i9 : multiplicitySequence(4, I, Strategy => "generalElements") -- c_4(I)

o9 = 7

For specific values of i , Strategy 2.4 may be faster than Strategy 2.2. However, for computing the entire
multiplicity sequence, Strategy 2.2 tends to outperform Strategy 2.4, hence our choice of Strategy 2.2 as
the default strategy.

As noted before, for i = d, the coefficient cd(I ) is equal to the j-multiplicity of I , which has been
studied by several authors; see, e.g., [6; 7; 11; 12]. We isolate this case in the method jMultiplicity,
which is based on code written by H. Schenck and J. Validashti.

3. METHODS FOR MONOMIAL IDEALS. Monomial ideals carry combinatorial structure which often
allows for special algorithms. The MultiplicitySequence package contains a few methods dedicated
to monomial ideals, such as newtonPolyhedron, monomialReduction, and specialized algorithms
for analyticSpread and jMultiplicity in the case of monomial ideals. These methods utilize the
Newton polyhedron of a monomial ideal and scale much more efficiently than general methods. For
comparison, we show the difference in timings for some of these methods:

i10 : I = monomialIdeal"ab2,bc3,cd4,da5";

i11 : elapsedTime jMultiplicity I^3
-- 0.874315 seconds elapsed

o11 = 9639

i12 : elapsedTime jMultiplicity ideal I^3
-- 456.039 seconds elapsed

o12 = 9639

i13 : elapsedTime analyticSpread I^5
-- 0.515529 seconds elapsed

o13 = 4

i14 : elapsedTime analyticSpread ideal I^5
-- 42.4524 seconds elapsed

o14 = 4
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