Tropical computations for toric intersection theory in Macaulay2

Alessio Borzi

vol 14 2024
Tropical computations for toric intersection theory in Macaulay2

ALESSIO BORZÌ

ABSTRACT: We present the Macaulay2 package TropicalToric for toric intersection theory computations using tropical geometry.

1. INTRODUCTION. Toric varieties are ubiquitous in algebraic geometry. Their intersection theory was first studied in Fulton and Sturmfels [12], and it has many applications in different contexts, including wonderful and tropical compactifications [7; 10; 34], birational geometry [5; 14; 15], tropical geometry [23], tropical intersection theory [2; 21; 22; 29; 30] and combinatorial Hodge theory [1; 19; 20].

In a certain way, intersection classes of a toric variety with fan Σ can be thought of in terms of balanced subfans of Σ, also referred to as Minkowski weights; see [12] or [27, Theorem 6.7.5]. From the structure theorem of tropical geometry [27, Theorem 3.3.5], we know that the tropicalization of a subvariety of a torus $Y \subseteq T^n$ is a balanced fan. A surprising connection between tropical and toric geometry is that the tropicalization of Y is the balanced fan corresponding to the intersection class of the closure of Y inside an “enough refined” toric variety; see Theorem 3.1 for a more precise statement. This fact allows us to compute toric intersection classes starting from the data of the tropicalization.

We present a new package, TropicalToric, for Macaulay2 [26]. The package implements toric cycles and intersection products on simplicial toric varieties (Section 2), and, following the ideas outlined above, allows us to compute the intersection class of an irreducible subvariety of a simplicial toric variety not contained in the toric boundary, from the data of its tropicalization (Section 3). The tropicalization is performed with the use of the Macaulay2 package Tropical [3]. Further, we present some applications to the intersection theory of wonderful compactifications and the moduli space $\overline{M}_{0,n}$ and illustrate an example in a multiprojective space using a theorem of Huh and Katz [20] about characteristic polynomials of realizable matroids.

2. TORIC INTERSECTION THEORY. In this section, we review the basics of toric intersection theory, for more information see [12], [6, Section 12.5] or [27, Section 6.7]. In addition, we showcase how it is implemented in the package.

Let X_Σ be a smooth complete toric variety of dimension n with fan Σ. We denote by $\Sigma(k)$ the cones of Σ of dimension k, with $Z^k(X_\Sigma) = Z_{n-k}(X_\Sigma)$ the group of codimension k cycles and with $A^k(X_\Sigma) = A_{n-k}(X_\Sigma)$ the codimension k Chow group, that is, the group of codimension k cycles modulo

Keywords: tropical geometry, toric geometry, intersection theory, wonderful compactifications.

TropicalToric version 1.0

© 2024 The Author, under license to MSP (Mathematical Sciences Publishers).
rational equivalence. The codimension k Chow group $A^k(X_{\Sigma})$ is generated by the set $\{[V(\sigma)] : \sigma \in \Sigma(k)\}$ of classes of orbit closures of codimension k, and the relations in each Chow group can be described in an explicit way; see [12, Proposition 2.1].

We can show (see [11, Chapter 8]) that there is an intersection product $A^k(X_{\Sigma}) \times A^r(X_{\Sigma}) \to A^{k+r}(X_{\Sigma})$ that makes $A^*(X_{\Sigma}) = \bigoplus_{k=0}^{\infty} A^k(X_{\Sigma})$ into a graded ring, called the Chow ring of X_{Σ}. If we now assume that X_{Σ} is just complete and simplicial, then the intersection product can be defined on rational cycles, making $A^*(X_{\Sigma}) \otimes \mathbb{Q} = A^*(X_{\Sigma}) \otimes \mathbb{Q}$ into a graded ring. The structure of the Chow ring has an explicit description; see, for instance, [27, Theorem 6.7.1].

Our Macaulay2 package implements toric cycles and the intersection product as in [6, Lemma 12.5.2].

Example 2.1. Let X_{Σ} be the blow-up of \mathbb{P}^2 at one of the coordinate points, where the fan Σ and the primitive ray vectors of its rays are

$$
\begin{align*}
\rho_0 &= [1,0], \\
\rho_1 &= [1,1], \\
\rho_2 &= [0,1], \\
\rho_3 &= [-1,-1].
\end{align*}
$$

Let H be the strict transform in X_{Σ} of a general line in \mathbb{P}^2 and E be the exceptional divisor. The Picard group of X_{Σ} is generated by the classes of these two divisors Pic$(X_{\Sigma}) = \langle [H], [E] \rangle$. With the notation above, we have

$$
\begin{align*}
[V(\rho_0)] &= [H] - [E], \\
[V(\rho_1)] &= [E], \\
[V(\rho_2)] &= [H] - [E], \\
[V(\rho_3)] &= [H].
\end{align*}
$$

Now we verify with our package that the divisor class $[V(\rho_1)]$ has a negative self-intersection.

```plaintext
i1 : needsPackage "TropicalToric";
i2 : raysList = \{\{1,0\}, \{1,1\}, \{0,1\}, \{-1,-1\}\};
i3 : coneList = \{\{0,1\}, \{1,2\}, \{2,3\}, \{3,0\}\};
i4 : X = normalToric Variety (raysList, coneList);
i5 : E = X_{\{1\}}
o5 = X_{\{1\}}
o5 : ToricCycle on X
```

Now define the toric cycle $V(\rho_1)$.

```plaintext
i6 : X_{\{1\}} * E
o6 = - X_{\{1, 2\}}
o6 : ToricCycle on X
```

We point out that the type `ToricCycle` should not be confused with the type `ToricDivisor` from the `NormalToricVarieties` package. The toric cycle $V(\sigma)$ of the normal toric variety X associated to the cone σ given by a list of rays L is defined with the command X_L. For example, $X_{\{1, 2\}}$ or $X_{\{0\}}$ define toric cycles, whereas $X_{\{1\}}$ defines a toric divisor. We are allowed only to multiply a toric cycle with a toric divisor. Now, we finally compute the self intersection of E:

```plaintext
i6 : X_{\{1\}} * E
o6 = - X_{\{1, 2\}}
o6 : ToricCycle on X
```
The resulting cycle $-V(\rho_1 + \rho_2)$ is rationally equivalent to E^2. The negative sign tells us that the self-intersection number of the exceptional divisor is -1. We can compute the degree of maximal codimension cycles with degCycle:

\[
i7 : \text{degCycle}(-X_{\{1,2\}}) \\
o7 = -1
\]

3. TROPICAL COMPUTATIONS. In this section, we describe and showcase the algorithm implemented in the main function of the package `classFromTropical` that computes the intersection class of an irreducible subvariety of a smooth toric variety from its tropicalization.

The algorithm is mainly based on the following result, that appears in various versions in the literature; see, for instance, [23, Lemma 2.3], [21, Section 9] or [27, Theorem 6.7.7].

Theorem 3.1. Let Y be a subvariety of the algebraic torus T^n, and let \bar{Y} be its closure in a toric variety X_{Σ} such that $|\Sigma| = \text{trop}(Y)$ and Σ is simplicial. Let Σ' be a simplicial completion of the fan Σ, and let $i : X_{\Sigma} \to X_{\Sigma'}$ be the induced inclusion. Then, for every maximal cone σ in Σ, we have

\[
m(\sigma) = \deg([i_*(\bar{Y})] \cdot [V(\sigma)]),
\]

where $m(\sigma)$ is the multiplicity of σ in $\text{trop}(Y)$.

Now let Y be an irreducible k-dimensional subvariety of an n-dimensional simplicial toric variety X_{Σ}, and suppose that $Y \cap T^n \neq \emptyset$. Note that in this setting we cannot directly apply Theorem 3.1 since $\text{trop}(Y)$ is not necessarily a subfan of Σ.

In order to compute the class of Y in the Chow ring of X_{Σ}, we proceed as follows. First, let Σ' be a completion of Σ and $i : X_{\Sigma} \to X_{\Sigma'}$ be the induced inclusion. Now let $\tilde{\Sigma}$ be a refinement of Σ' such that it contains a subfan with support the tropicalization of $Y \cap T^n$, and let $\pi : X_{\tilde{\Sigma}} \to X_{\Sigma'}$ be the induced toric map. From [12, Proposition 2.4], we have an isomorphism $A_k(X_{\Sigma}) \simeq \text{Hom}(A^k(X_{\Sigma'}), \mathbb{Z})$ mapping a class $[Z]$ to the homomorphism $[Z'] \mapsto \deg([Z] \cdot [Z'])$. Therefore, in order to compute the class $[Y] \in A_k(X_{\Sigma})$, it is enough to compute the intersection numbers $\deg([i_*(Y)] \cdot [V(\sigma)])$ for every $\sigma \in \Sigma'(k)$, as the classes $[V(\sigma)]$ generate $A^k(X_{\Sigma'})$. Let Y' be the strict transform of Y in $X_{\tilde{\Sigma}}$. From the projection formula [11, Proposition 2.3 (c)], we have

\[
[i_*(Y)] \cdot [V(\sigma)] = \pi_*(i'_*[Y']) \cdot [V(\sigma)] = \pi_*(i'_*[Y']) \cdot \pi^*(\pi_*(V(\sigma))),
\]

from which it follows that $\deg([i_*(Y)] \cdot [V(\sigma)]) = \deg([i'_*[Y'] \cdot \pi^*(\pi_*(V(\sigma)))]).$ These last intersection numbers can be computed from the tropicalization of $Y \cap T^n$ by using Theorem 3.1, since $\deg([i'_*[Y'] \cdot [V(\sigma')]])$ is the multiplicity of the cone $\sigma' \in \tilde{\Sigma}(k)$ in the tropicalization of $Y \cap T^n$.

The algorithm described above, while working on any simplicial toric variety, requires to compute a completion. This can be avoided by requiring the toric variety X_{Σ} to be smooth. In fact, the only step in which we are really using the completion is when we apply [12, Proposition 2.4] (sometimes called Kronecker duality). If the variety X_{Σ} is smooth, this can be substituted instead with Poincaré duality.
The function `classFromTropical` performs the above algorithm to compute a toric cycle rationally equivalent to a given irreducible subvariety Y of a smooth toric variety X_Σ (by using Poincaré duality). The input of the function consists of the toric variety X_Σ and the ideal I of $Y \cap T^n$ of the Laurent ring of T^n. Since Laurent rings are not implemented in Macaulay2, the actual input will be instead the saturation of I with respect to the product of the variables in the polynomial ring:

```plaintext
i2 : X = toricProjectiveSpace 2;
i3 : R = QQ[x,y];
i4 : I = ideal(x+y+1);
i5 : classFromTropical(X,I)
o5 = X_{0}
o5 : ToricCycle on X
i6 : J = ideal(x*y + x + y);
i7 : classFromTropical(X,J)
o7 = 2*X_{0}
o7 : ToricCycle on X
```

The function `classFromTropicalCox` allows us to input the ideal of Y in the Cox ring of X_Σ:

```plaintext
i8 : R = ring X;
i9 : I = ideal(R_0+R_1+R_2);
i10 : classFromTropicalCox(X,I)
o10 = X_{0}
o10 : ToricCycle on X
```

4. Applications.

4A. Wonderful compactifications. Let \mathcal{A} be an essential hyperplane arrangement of $n + 1$ hyperplanes in \mathbb{P}^d. The intersection lattice $\mathcal{L}(\mathcal{A})$ of \mathcal{A} is isomorphic to the lattice of flats of the underlying matroid M of \mathcal{A} [32, Proposition 3.6]. Fix a building set G of the lattice of flats of M (see [10, Section 2]), let $\Sigma \subseteq \mathbb{R}^{n+1}/\mathbb{R}1 \cong \mathbb{R}^n$ be the Bergman fan of M with respect to G (see [27, Chapter 4]) and let X_Σ be its associated toric variety. From [27, Proposition 4.1.1], the hyperplane arrangement complement $Y = \mathbb{P}^d \cup \mathcal{A}$ is naturally isomorphic to a linear subspace of the algebraic torus T^n. Thus we can embed Y inside the toric variety X_Σ and consider its closure \overline{Y}. This compactification coincides with the so-called De Concini–Procesi wonderful compactification [7], with respect to the building set G (see [34, Section 4]). The next result follows from [7, Theorem 3.2]; see also [9, Definition 2.3].

Proposition 4.1. Let X_1, \ldots, X_t be a linear extension of the opposite order of $\mathcal{L}(\mathcal{A})$. The wonderful compactification \overline{Y} is the result of successively blowing up \mathbb{P}^d at (the strict transforms of) X_1, \ldots, X_t.

In [10], Feichtner and Yuzvinsky showed that the cohomology of \overline{Y} agrees with that of X_Σ. Since both varieties are homology isomorphism schemes (in the sense of the definition in the appendix of [24]), their Chow rings coincide as well.
Theorem 4.2 [27, Theorem 6.7.14]. Let \overline{Y} be a wonderful compactification of a hyperplane arrangement \mathcal{A} with respect to a building set \mathcal{G}, and let Σ be the associated Bergman fan. Then

$$A^*(\overline{Y}) \simeq A^*(X_\Sigma),$$

where the above isomorphism is the pullback map induced by the inclusion.

The above theorem allows us to view the intersection classes of a wonderful compactification as intersection classes of the associated toric variety. Thus, we can use our package to perform intersection theory computations on wonderful compactifications.

Example 4.3. Let \mathcal{A} be a line arrangement consisting of 4 lines L_0, L_1, L_2, L_3 in \mathbb{P}^2 given by the equations $x_0 = 0, x_1 = 0, x_2 = 0, x_0 + x_1 = 0$, respectively. Let A be the matrix with columns the normal vectors of the lines L_i, and let P_1, P_2, P_3, P_4 be the points of intersection of the lines of \mathcal{A}, depicted as

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

The underlying matroid M of \mathcal{A}, on the ground set $\{0, 1, 2, 3\}$, is realized by the matrix A by labeling the columns with 0, 1, 2, 3, respectively. The lattice of flats $\mathcal{L}(M)$ of M is represented by

$$\{0, 1, 2, 3\} \quad \{0, 1, 3\} \quad \{0, 2\} \quad \{1, 2\} \quad \{2, 3\} \quad \{0\} \quad \{1\} \quad \{2\} \quad \{3\} \quad \emptyset$$

There are four rank 1 flats, corresponding to the lines L_0, L_1, L_2, L_3, and four rank 2 flats, corresponding to the points P_1, P_2, P_3, P_4. Let $\mathcal{G} = \mathcal{L}(M) \setminus \{\emptyset\}$ be the maximal building set of $\mathcal{L}(M)$. Then, from Proposition 4.1, the wonderful compactification \overline{Y} of the complement $Y = \mathbb{P}^2 \setminus \cup \mathcal{A}$ with respect to \mathcal{G} is the blow-up of \mathbb{P}^2 at the points P_1, P_2, P_3, P_4. In particular, \overline{Y} is a smooth projective surface, all Weil divisors are Cartier [17, Proposition II.6.11] and the class group is isomorphic to the Picard group [17, Corollary II.6.16]. From [17, Proposition V.3.2], the Picard group of \overline{Y} has a basis given by

$$\text{Pic}(\overline{Y}) = \langle [H], [E_1], \ldots, [E_t] \rangle,$$

where $[H]$ is the class of the strict transform H of a general line in \mathbb{P}^2, and $[E_i]$ is the class of the exceptional divisor E_i of the blow-up at P_i.

[Diagram of the line arrangement and the corresponding matroid and lattice]
The Bergman fan $\Sigma \subseteq \mathbb{R}^3/\mathbb{R} 1$ of M with respect to G has eight rays, denoted $\{\rho_i : 0 \leq i \leq 7\}$. Their primitive ray vectors are given by the columns of the matrix

$$
\begin{bmatrix}
\rho_0 & \rho_1 & \rho_2 & \rho_3 & \rho_4 & \rho_5 & \rho_6 & \rho_7 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
\end{bmatrix}
$$

where $\rho_0, \rho_1, \rho_2, \rho_3$ correspond to the rank 1 flats in G, which in turn correspond to the lines L_0, L_1, L_2, L_3, respectively, and $\rho_4, \rho_5, \rho_6, \rho_7$ correspond to the rank 2 flats in G, that correspond to the points P_1, P_2, P_3, P_4, respectively. Since G is the maximal building set, the maximal cones of Σ are just the maximal chains of the lattice of flats $L(M)$.

By using the isomorphism in Theorem 4.2, let $[Y_\rho]$ denote the class in $A^*(\overline{Y})$ isomorphic to the class of the torus invariant divisor of X_Σ associated to the ray ρ_i. Expressing these divisors in the Picard basis (1), we have

$$
[Y_{\rho_0}] = [H] - [E_1] - [E_2], \quad [Y_{\rho_1}] = [E_1],
$$

$$
[Y_{\rho_2}] = [H] - [E_1] - [E_3], \quad [Y_{\rho_3}] = [E_2],
$$

$$
[Y_{\rho_4}] = [H] - [E_2] - [E_3] - [E_4], \quad [Y_{\rho_5}] = [E_3],
$$

$$
[Y_{\rho_6}] = [H] - [E_1] - [E_4]. \quad [Y_{\rho_7}] = [E_4].
$$

(2)

Let $\mathbb{C}[y_0^{\pm 1}, y_1^{\pm 1}, y_2^{\pm 1}]$ be the Laurent ring of the torus

$$
T^3 = \{(1 : y_0 : y_1 : y_2) : y_0, y_1, y_2 \in \mathbb{C}^* \} \subseteq \mathbb{P}^3.
$$

The embedding $\mathcal{Y} \hookrightarrow T^3$ is given by $(x_0 : x_1 : x_2) \mapsto (x_0 : x_1 : x_2 : x_0 + x_1)$, and the Laurent ideal of \mathcal{Y} inside T^3 is $I = (-1 - y_0 + y_2)$.

Now, let C be the conic in \mathbb{P}^2 passing through the points P_1, P_2 and P_3 given by the equation $x_0x_1 + x_0x_2 + x_1x_2$. The ideal of C in T^3 is $(y_0 + y_1 + y_0y_1) + I$. We expect the class of its strict transform in \overline{Y} to be $[2H - E_1 - E_2 - E_3]$. We now verify this with our package, using the function $\text{classWonderfulCompactification}$.

```plaintext
i2 : R = QQ[y_0,y_1,y_2];
i3 : I = ideal(-1-y_0+y_2);
i4 : f = y_0+y_1+y_0*y_1;
i5 : raysList = {{-1,-1,-1},{1,0,0},{0,1,0},
                    {0,0,1},{0,-1,0},{-1,0,-1},
                    {1,1,0},{0,1,1}};
i6 : conesList = {{4,0},{4,1},{4,3},{5,0},{5,2},
                    {6,1},{6,2},{7,2},{7,3}};
i7 : X = normalToricVariety (raysList, conesList);
i8 : D = classWonderfulCompactification(X,I,f)
o8 = X^{\{0\}} + X^{\{4\}} + X^{\{1\}}
o8 : ToricCycle on X
```
To check that this is the result we expect, compare with (2). Note that we have (tropically) dehomogenized the rays of X_Σ with respect to the first coordinate in order to be consistent with our choice of coordinates of T^3.

4B. The moduli space $\overline{M}_{0,n}$. The Deligne–Mumford compactification of the moduli space $M_{0,n}$ can be realized as a wonderful compactification; see, for instance, [27, Example 6.7.16]. Therefore, we can apply to $\overline{M}_{0,n}$ the machinery described in the previous section. As an application, we compute one of the 15 Keel–Vermeire divisors of $\overline{M}_{0,6}$, using one of the equations listed in [16, Table 2]. These divisors, found independently by Keel and Vermeire [35], were the first example of an effective divisor of $\overline{M}_{0,n}$ whose class lies outside the cone generated by the classes of the boundary divisors, answering in the negative a conjecture of Fulton; see [25].

```math
i2 : R = QQ[x_0..x_8];
i3 : I = ideal {-x_0+x_3+x_4, -x_1+x_3+x_5,-x_2+x_3+x_6,
-x_0+x_2+x_7, -x_1+x_2+x_8, -x_0+x_1+1};
i4 : X = normalToricVariety fan tropicalVariety I;
i5 : f = x_0*x_1-x_2*x_3;
i6 : D = classWonderfulCompactification(X,I,f);
i7 : D = toricDivisorFromCycle(D)
o7 = X - X - 2*X + X + 2*X + 2*X - X + 2*X + 2*X - X^2 5 6 7 9 10 11 13 14 17
o7 : ToricDivisor on X
```

Now fix the Picard basis of X_Σ given by the boundary divisors associated to the rays of Σ with primitive ray vectors not equal to the standard vectors e_i. The complement of this Picard basis is indexed by the list $l = \{0, 1, 2, 4, 5, 7, 11, 13, 21\}$. The function `makeTransverse` computes a divisor linearly equivalent to a given divisor D, with support disjoint from a given list l. We use this function to compute a representation of the class of the Keel–Vermeire divisor computed above, in the Picard basis we fixed:

```math
i8 : l = \{0,1,2,4,5,7,11,13,21\};
i9 : D = makeTransverse(D,l)
o9 = X - X - 2*X + X + 2*X + 2*X - X + 2*X + 2*X - X^2 6 7 9 10 11 13 14 17
+ 2*X - X^20 - X^22 - X^24
o9 : ToricDivisor on X
```

Finally, we verify that the obtained divisor is outside the cone generated by the classes of boundary divisors. In order to do so, we interface with Polymake [13] by using the function `polymakeConeContains`:

```math
i10 : D = apply(#rays X, i->D#i);
i11 : Bdivisors = apply(#rays X, i-> makeTransverse(X_i,l));
i12 : Bdivisors = apply(Bdivisors, B-> apply(#rays X, i->B#i));
i13 : polymakeConeContains(D,Bdivisors)
o13 = false
```

In [18] it was proved, by using computational methods, that the boundary divisors and the Keel–Vermeire divisors generate the effective cone of $\overline{M}_{0,6}$. In [5] it was proved that the effective cone of $\overline{M}_{0,n}$
for \(n \geq 10 \) is not polyhedral. The problem of determining the effective cone of \(\overline{M}_{0,n} \) for \(n \in \{7, 8, 9\} \) is still open. Some examples of extremal effective divisors on \(\overline{M}_{0,7} \) were found in [4; 8; 28]. We performed computations similar to those displayed above on \(\overline{M}_{0,7} \) and found the mentioned examples with a brute-force approach. More recently, in [31], several thousands of extremal effective divisors on \(\overline{M}_{0,7} \) were found.

4C. Characteristic polynomials. Our last application is an explicit verification of a theorem proved by Huh and Katz [20] about characteristic polynomials of realizable matroids.

Let \(A \) be an arrangement of \(n+1 \) hyperplanes on \(\mathbb{P}^d \), let \(M \) be its underlying matroid of rank \(d+1 \), and let \(\mathcal{L}(M) \) be the lattice of flats of \(M \). The characteristic polynomial of \(M \) is
\[
\chi_M(q) = \sum_{F \in \mathcal{L}(M)} \mu(\emptyset, F) q^{d+1-r(F)},
\]
where \(\mu \) is the Möbius function of \(\mathcal{L}(M) \); see [33, Section 3.7]. The reduced characteristic polynomial of \(M \) is \(\overline{\chi}_M(q) = \chi_M(q)/(q-1) \).

Now we embed the complement \(Y = \mathbb{P}^d \setminus \cup A \) in \(T^n \subseteq \mathbb{P}^n \), as described in Section 4A, and consider the Cremona map
\[
\varphi : \mathbb{P}^n \dashrightarrow \mathbb{P}^n, \quad (x_0, \ldots, x_n) \mapsto (x_0^{-1}, \ldots, x_n^{-1}).
\]
Finally, let \(\overline{Z} \) be the closure in \(\mathbb{P}^n \times \mathbb{P}^n \) of the graph \(Z \) of the restriction \(\varphi|_Y \).

Theorem 4.4 (Huh and Katz [20]). Define the integers \(a_i \in \mathbb{Z} \) by the formula
\[
\overline{\chi}_M(q) = \sum_{i=0}^{d} (-1)^i a_i q^{d-i}.
\]
Then
\[
[Z] = \sum_{i=0}^{d} a_i [\mathbb{P}^{d-i} \times \mathbb{P}^i] \in A_d(\mathbb{P}^n \times \mathbb{P}^n).
\]

Example 4.5. Let \(G \) be the graph
\[
G = \[
\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}
\]
\[
A = \[
\begin{array}{ccc}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}
\].
\]
Let \(M \) be the rank 3 graphic matroid of \(G \), realized by the matrix \(A \) above. The characteristic polynomial of \(M \) coincide with the chromatic polynomial of \(G \). Let \(\mathbb{C}[x_0^{\pm 1}, x_1^{\pm 1}, x_2^{\pm 1}, x_3^{\pm 1}] \) be the Laurent ring of the torus \(T^4 = \{(1 : x_0 : x_1 : x_2 : x_3) : x_0, x_1, x_2, x_3 \in \mathbb{C}^*\} \subseteq \mathbb{P}^4 \).

Let \(A \) be the hyperplane arrangement realizing \(M \). More explicitly, the normal vectors of its hyperplanes are the columns of the matrix \(A \). The Laurent ideal of the hyperplane arrangement complement \(Y = \mathbb{P}^2 \setminus \cup A \) embedded in \(T^4 \subseteq \mathbb{P}^4 \) is given by \(I = (-1 + x_0 + x_2, -1 + x_1 + x_3) \).
Now consider a copy of T^4 with Laurent ring $\mathbb{C}[x_4^{\pm1}, x_5^{\pm1}, x_6^{\pm1}, x_7^{\pm1}]$. Let $Z \subseteq T^4 \times T^4$ be the graph of the Cremona map $\varphi : \mathbb{P}^4 \dashrightarrow \mathbb{P}^4$ restricted to Y. The ideal of Z in the Laurent ring $\mathbb{C}[x_0^{\pm1}, \ldots, x_7^{\pm1}]$ of $T^4 \times T^4$ is generated by I and the polynomials $x_i x_{i+4} - 1$ for $i \in \{0, 1, 2, 3\}$.

```
i2 : R = QQ[x_0..x_7];
i3 : I = ideal(-1+x_0+x_2,-1+x_1+x_3,
        x_0*x_4-1,x_1*x_5-1,x_2*x_6-1,x_3*x_7-1);
o3 : Ideal of R
i4 : P4 = toricProjectiveSpace 4;
i5 : X = NormalToricVarieties$cartesianProduct(P4,P4);
i6 : D = classFromTropical(X,I)
o6 = 4*X + 4*X + X
   {0,1,2,3,5,6} {0,1,2,5,6,7} {0,1,5,6,7,8}
o6 : ToricCycle on X
```

We obtained $[\bar{Z}] = [\mathbb{P}^2 \times \mathbb{P}^0] + 4[\mathbb{P}^1 \times \mathbb{P}^1] + 4[\mathbb{P}^0 \times \mathbb{P}^2]$. We now verify that the coefficients of this class are the same, up to sign, to those of the (reduced) chromatic polynomial of G:

```
i7 : needsPackage "Graphs";
i8 : G = graph({{0,1},{1,2},{2,3},{3,0},{0,2}});
i9 : p = chromaticPolynomial G
   4 3 2
   x - 5x + 8x - 4x
   o9 : ZZ[x]
i10 : x = (ring p)_0;
i11 : p/(x-1)
   3 2
   x - 4x + 4x
   o11 : frac(ZZ[x])
```

ACKNOWLEDGEMENTS. I am grateful to my advisor, Diane Maclagan, for her guidance and suggestions during the development of this project. Part of the Macaulay2 package presented is based on some code previously written by Diane Maclagan, Sameera Vemulapalli, Corey Harris, Erika Pirnes and Ritvik Ramkumar.

SUPPLEMENT. The online supplement contains version 1.0 of TropicalToric.

REFERENCES.

Tropical computations for toric intersection theory in Macaulay2

[31] M. D. Sikirić and E. Jovinelly, “Extreme divisors on $\tilde{M}_{0,7}$ and differences over characteristic 2”, preprint, 2022. arXiv 2203.13917

RECEIVED: 27 Sep 2022 REVISIED: 27 Jul 2023 ACCEPTED: 14 Sep 2023

ALESSIO BORZÌ:
aleosio.borzi@mis.mpg.de
Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, Germany