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ABSTRACT: Grid diagrams are a combinatorial version of classical link diagrams, widely used in
theoretical, computational and applied knot theory. Motivated by questions from (bio)-physical knot
theory, we introduce GridPyM, a Sage compatible Python module that handles grid diagrams. GridPyM
focuses on generating and simplifying grids, and on modelling local transformations between them.

1. INTRODUCTION. Grid diagrams are a handy and computationally efficient model for oriented link
diagrams. They admit a concise description, can be easily randomised and (unlike standard link diagrams)
are able to encode certain local geometric features of links. They were first introduced in a slightly
different form in [16], and later on in [9; 13] under the name of arc presentations. The latter paper also
introduced a set of combinatorial moves, commonly known as Cromwell moves, connecting any two
grids representing equivalent link diagrams.

Grid diagrams are ubiquitous in theoretical and applied knot theory. Indeed, they arise naturally in
contact geometry, as they represent Legendrian diagrams of links in S3, endowed with its standard tight
contact structure. Further, a certain subset of Cromwell moves bijectively corresponds to Reidemeister
moves preserving the Legendrian isotopy class of the link [14; 19].

Grid diagrams can also be interpreted as representing links in a genus one Heegaard decomposition of
the 3-sphere. Here, the grid is identified with the Heegaard torus, with horizontal and vertical lines acting
as the cores and co-cores of the 1 and 2 handles. This is the ideal setup to define a combinatorial version
of knot Floer homology [20; 24], known as grid homology [17]; see also [23] for a detailed reference,
and [1] for a lens space version. Despite its straightforward definition, a direct computation of grid
homology becomes quickly unfeasible, as the chain complex has a number of generators which grows
factorially in the size of the grid. It is, however, possible to greatly simplify the grid homology chain
complex [5], and there is a relatively efficient algorithm to compute it [2] implemented in the software
GridLink [10]. Note that faster computation of knot Floer homology [22] can be achieved using more
recent techniques developed in [21].

Thanks to their combinatorial definition, grid diagrams provide a convenient model to investigate on
asymptotic properties of (bio)physical knots [12; 27]. As an example, they have been used to quantify
the intensity of crossing change-mediated fluxes between different knot types, and to demonstrate the
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Figure 1. From left to right: an example of a grid diagram, and how to obtain an oriented
link diagram from it by resolving each double point as a vertical overpass.

dependency of those fluxes on the local geometry of knotted configurations. In turn, this provided strong
evidence that the simplification action of specific DNA enzymes is driven by a geometric selection of
sites [4]. One further potential use of grid diagrams is to help with the search of band changes and the
determination of Gordian distance between knot types [6; 7; 18; 26].

The most used program currently available to manipulate grid diagrams is GridLink. One of the main
features of GridLink is a very efficient simplification function. Here we present GridPyM, a Sage [25]
compatible Python module that aims at enhancing certain functionalities present in GridLink, and at
extending its manipulation capabilities.

In particular, the module is built for generating large populations of complex grids to be employed for
the statistical analysis of properties of the grid model. For this purpose, on one hand it is necessary to
be able to quickly generate a large amount of random grid diagrams, possibly with specific properties
(e.g., a fixed or bounded number of components). On the other hand, easy ways of efficiently simplifying
large samples of grids are needed to accelerate invariants computations. Thus, GridPyM’s focus is on
generating, simplifying and randomising grids, rather than the computation of invariants, which can be
carried out afterwards with efficient existing programs (such as [11; 22; 25]).

2. GRID DIAGRAMS. A grid diagram G is a n × n square plane grid, together with two sets of n
markings, conventionally denoted by X and O. Here n ≥ 2 is called the grid number or dimension of G.

The grid is subdivided into n2 little squares, and the markings are placed in these squares according to a
“sudoku” rule, so that each row and column contains exactly one marking of each kind, and each square con-
tains at most one marking. We adopt the convention according to which the markings are listed as ordered
tuples X = [X1, . . . , Xn] and O = [O1, . . . , On], where the i-th component denotes the position (from the
left, and starting from 0) of the marking on the i-th row, where rows are enumerated from the bottom up.
For example, the grid in the left of Figure 1 is described by the pair of markings X = [7, 2, 4, 5, 6, 1, 0, 3]

and O = [5, 6, 7, 0, 3, 4, 1, 2]. Note that the combinatorial requirement on the markings implies that X

and O are a pair of collision-free permutations of {0, . . . , n − 1}, where n is the grid number.
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Figure 2. From left to right: a grid diagram representing the (right) trefoil, the effect
of applying a stabilisation, the effect of an interleaving commutation on the stabilised
diagram and a shift along the vertical axis.

To a grid diagram G we can associate an oriented link diagram as follows: on each row of the grid,
connect with a horizontal segment the unique O marking to the only X, and do the same on columns
from X to O. Resolving each double point, with the convention that vertical lines are always overpasses,
yields a diagram representing a link L(G). A schematic outline of the process is shown in Figure 1.

It is easy to realise that any oriented link can be represented by infinitely many grid diagrams. Further,
there is a finite set of moves, known as Cromwell moves (see Figure 2 for some examples), with the
property that two grid diagrams are related by a finite sequence of such moves if and only if the links
they represent are isotopic. These moves are therefore a grid-diagrammatic analogue of the classical
Reidemeister moves on link diagrams.

3. GRIDPYM: MODULE DESCRIPTION AND MAIN FUNCTIONS. In what follows, we give a brief
description of the Python module GridPyM, and of some of the main functions implemented.

3.1. Installation and use. GridPyM is stored in the “GridPythonModule” GitHub repository (see [3]),
together with some Jupyter notebooks [15], interactively explaining basic usage and functions. We tried to
keep the module as self-contained as possible. The only external imports required are the rather standard
libraries sympy, random2 and matplotlib. As a consequence, there is full compatibility with Sage,
and GridPyM can be imported and used in conjunction with Sage’s built-in link functions. The module
works for all versions of Python greater than or equal to 3. The code will be periodically updated, and we
refer to the GitHub repository for the most recent version. GridPyM can be downloaded from its GitHub
repository. To install GridPyM, write in a terminal

pip install GridPythonModule

To import GridPyM and its functions in a Python environment / terminal, write
import GridPythonModule

from GridPythonModule import *

3.2. Grid generation. GridPyM provides several different ways of generating grids, divided into:

• generating random grids with prescribed features (number of components and grid number) using
the generate_random_grid commands,
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• generating a grid representing specific link types (e.g., torus links),

• loading from a library of low crossing number knots using load_knot,

• loading grids representing low crossing number Legendrian knots (taken from the Legendrian knot
atlas [8]), using load_legendrian_knot.

A list of available knot types can be accessed via, respectively, the commands available_knots and
available_legendrian_knots.

3.3. Grid handling and moves. GridPyM includes all standard Cromwell moves (cyclic shifts, noninter-
leaving column/row commutations and (de)stabilisations, see Figure 2). Rows and columns commutations
might change the underlying link type of the diagram, depending on the local combinatorics. We include
those resulting in a crossing changes [23, Proposition 3.1.13], and band attachments. Band attachments are
divided into coherent or uncoherent, depending on whether they change or not the number of components
of the link. Examples on how to perform these moves are shown in the online supplement.

It is also possible to perform some other operations to generate new links from given ones, such as
disjoint union, connected sum, and some cables, e.g., taking parallel copies of a knot (see Figure 3 for an
example). Other standard knot-theoretic functions include inverting the orientation, taking the mirror
image and rotating the grid (note that rotating the grid by π

2 produces a representative for the mirror of
the link). See the online supplement for further examples.

3.4. Grid simplification and randomisation. The simplest way to reduce the size of a grid diagram is to
perform a destabilisation. We implemented the function destabilise_all to simplify a grid by recur-
sively destabilising all nontrivial configurations in which two markings are adjacent (described in Figure 4).

The function destabilise_all is the key component of the main simplification function of GridPyM:
simplify_grid. The simplify_grid function takes a grid diagram as input and tries (with customisable
levels of effort) to simplify it, by performing destabilisations and a (customisable) number of random
noninterleaving commutations and cyclic shifts. Note that by the monotonic simplification theorem [13],
this process is (with probability 1, in the absence of computational issues) guaranteed to return the 2 × 2
grid diagram, whenever L(G) represents the unknot. See the online supplement for examples. Further
options include restricting to Cromwell moves that preserve the Legendrian or transverse class (so that
the input and simplified grid represent the same Legendrian or transverse knot type).

The function scramble_grid provides the opposite operation: given a grid, it performs a customisable
amount of random moves to it, making it on average more complex. Again, there is the option to preserve
the Legendrian or transverse isotopy class.

3.5. Grid and contact knot invariants. As mentioned before, the suite of link invariants was kept to a
minimum. We have thus only included invariants that can be efficiently computed from the grid, and that
are not easily computable by other compatible programs. In particular, the only available topological
invariant of the link type is the number of components. All other functions mentioned below are instead

http://msp.org/jsag/2024/14-1/jsag-v14-n1-x05-GridPyM.zip
http://msp.org/jsag/2024/14-1/jsag-v14-n1-x05-GridPyM.zip
http://msp.org/jsag/2024/14-1/jsag-v14-n1-x05-GridPyM.zip
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Figure 3. Some examples of grid diagrams obtained with GridPyM’s drawing function
draw_grid (from top to bottom and left to right): the 8 crossings negatively clasped
twist knot, a random knot in grid number 20, the (11, 9) torus knot and its flat (3, 1) cable.

Figure 4. The effect of the destabilize_all function on a scrambled grid representing
the 52 knot. This function performs all possible “generalised” destabilisations on the grid.
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Figure 5. A schematic representation showing one way to associate a braid diagram to a
grid diagram.

either invariants of the Legendrian or transverse class, or combinatorial invariants of the grid. In the
former category we have the Thurston–Bennequin number, self-linking and rotation number. In the latter
we have the grid number (so just the dimension of the given grid), crossing number, and the grid length;
this is just the sum of the lengths of the vertical and horizontal segments forming the link.

It is also possible to convert a given grid diagram into a braid (see Figure 5); this is done using the
convert_to_braid function, whose output is a string containing the standard generators of a braid
whose closure represents the link. For example, [1, 1, 1] is the (right) trefoil, while [1, −2, 1, −2] is the
figure-eight knot. Note that there is an option to automatically choose a presimplification function; in
other words, the function first attempts to simplify the grid before computing the associated braid word.

Another way of passing from grid diagrams to knots is through Gauss codes. The output of the Gauss
code and braid conversion functions are chosen to be compatible with Sage, as shown in the example
below. Note that the following code needs to be run on Sage:

>> G = load_knot(‘7_3’)

>> braid_word = convert_to_braid(G)

>> print(braid_word)
[5, 4, 3, 2, 5, 4, 3, 2, 1, -2, 1]

>> B = BraidGroup(6)

>> K = Knot(B(braid_word))

>> print(K.alexander_polynomial())
2*t^-2 - 3*t^-1 + 3 - 3*t + 2*t^2

>> g_code = Gauss_code(G)

>> print(g_code)
[[[1, 2, -3, 4, -2, -5, 6, -7, 8, -1, -4, 3, 5, -6, 7, -8]],
[1, -1, 1, 1, 1, 1, 1, 1]]

>> L = Knot(g_code)

>> show(L.plot())

>> print(L.jones_polynomial())
-t^9 + t^8 - 2*t^7 + 3*t^6 - 2*t^5 + 2*t^4 - t^3 + t^2

4. SAMPLE COMPUTATIONS. In this final section, we collect some basic results obtained with GridPyM,
mostly as a check of some of its functionalities. We analyse the distribution of several invariants for
randomly generated grids in the grid number range 5–100 (see Figures 6–8). For related results, see [4; 12].
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number is ∼ 0.6667 and ∼ 0.1111 for crossing number / grid number.
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