
Journal of Software for

Algebra and Geometry

Implementing real polyhedral homotopy
KISUN LEE, JULIA LINDBERG AND JOSE ISRAEL RODRIGUEZ

vol 14 2024

JSAG 14 (2024), 59–71 The Journal of Software for
https://doi.org/10.2140/jsag.2024.14.59 Algebra and Geometry

Implementing real polyhedral homotopy

KISUN LEE, JULIA LINDBERG AND JOSE ISRAEL RODRIGUEZ

ABSTRACT: We implement a real polyhedral homotopy method using three functions. The first function
provides a certificate that our real polyhedral homotopy is applicable to a given system; the second function
generates binomial systems for a start system; and the third function outputs target solutions from the
start system obtained by the second function. This work realizes the theoretical contributions of Ergür and
Wolff (2023) as easy-to-use functions, allowing for further investigation into real homotopy algorithms.

1. INTRODUCTION. Finding all points in a zero-dimensional algebraic variety is an important problem in
many applications in the sciences. This problem amounts to solving a polynomial system of equations with
finitely many complex (real or nonreal) solutions. Many types of algorithms have been proposed using both
symbolic and/or numerical techniques. A popular family of numerical algorithms are called homotopy
continuation algorithms. These algorithms work by continuously deforming the solutions from an “easy”
polynomial system into the desired one. While there exist many off-the-shelf homotopy continuation
solvers that find all complex solutions, many applications, such as to power systems engineering [15],
economics [12], and statistics [16], only require knowledge of the real solutions. In general, there are many
more complex solutions than real ones, leading to wasted computation. For this reason, the problem of
developing an efficient homotopy that finds only the real solutions to a polynomial system is an incredibly
important open problem in the field of numerical algebraic geometry [1].

Recent work tackles this problem by presenting an algorithm that certifiably finds all real solutions as
long as an inequality based on the geometry of the polynomial system is satisfied [8]. This work relies
heavily on mathematical objects from tropical geometry [17]. We implement this algorithm in a Julia
package, giving the first homotopy based software package that can provably find all real solutions to a
patchworked polynomial system without first finding all complex solutions.

We review some of the mathematical concepts behind the algorithms for the functions in Section 2.
In Section 3, we highlight the key proposition from [8] needed for construction of the real polyhedral
homotopy. In Section 4, we describe our implementation of the real polyhedral homotopy, which relies on

The research of Rodriguez was supported by the Office of the Vice Chancellor for Research and Graduate Education at the
University of Wisconsin Madison with funding from the Wisconsin Alumni Research Foundation.
MSC2020: primary 65H14; secondary 14P99.
Keywords: homotopy continuation, numerical algebraic geometry, real algebraic geometry, amoeba, discriminant, polyhedral

homotopy.
RealPolyhedralHomotopy version 1.2.1

© 2024 The Authors, under license to MSP (Mathematical Sciences Publishers).

https://doi.org/10.2140/jsag.2024.14-1
http://msp.org/jsag
http://msp.org/jsag

60 Lee, Lindberg and Rodriguez :::: Implementing real polyhedral homotopy

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 1. The polytope Aw from Example 2.1.

three functions: certify_patchwork, generate_binomials, and rph_track. The code is available
as the Julia package RealPolyhedralHomotopy.jl.

2. PRELIMINARIES.

2A. Regular subdivisions and triangulations. Let A ⊂ Zn be a set of integer lattice points with convex
hull Q = conv(A). A function w : A → R assigning a real number to each lattice point in A is called
a lifting function. Denote the collection of lifted points (a, w(a)) ∈ A × R by Aw. The convex hull
of Aw is a polytope, and projecting the lower faces of conv(Aw) onto the first n-coordinates induces a
polyhedral subdivision 1w of Q, i.e., all cells in 1w are polyhedral. When all cells of 1w are simplices, it
is called a triangulation. If a polyhedral subdivision (or triangulation, respectively) is induced by a lifting
function, we say that the subdivision (or triangulation, respectively) is regular. For a triangulation 1w

of Q = conv(A), we define the secondary cone C(1w) of 1w as the collection of lifting functions that
induce the same regular triangulation. Specifically,

C(1w) = {v ∈ R|A|
| 1v = 1w}.

Example 2.1. Consider A ={0, 1, 2}⊂Z with lifting function w(0)=1, w(1)=0, and w(2)=3. A picture
of Aw is given in Figure 1. The lower faces of conv(Aw) are the line segments conv{(0, 1), (1, 0)} and
conv{(1, 0), (2, 3)}, which induce a regular triangulation of A, namely 1w = {{0, 1}, {1, 2}}. In this
case, we know that any lifting function w = (w0, w1, w2) induces the same triangulation if w0 ≥ w1 and
w2 ≥ w1 when w0, w1, w2 are not all equal. Therefore, we have

C(1w) =
{
(w0, w1, w2) ∈ R3

| w0 ≥ w1 and w2 ≥ w1, where w0, w1, w2 are not all equal
}
.

2B. Cayley configurations and mixed cells. For sets of lattice points A1, . . . , Am in Zn , consider the set

A1 ∗ · · · ∗ Am :=
{
(ai , en+i) ∈ Zn+m

| ai ∈ Ai , i = 1, . . . , m
}

Lee, Lindberg and Rodriguez :::: Implementing real polyhedral homotopy 61

of lattice points in Zn+m , where en+i is the (n + i)-th canonical vector. The set A = A1 ∗· · ·∗ Am is called
a Cayley configuration. Given a Cayley configuration A ∈ Zn+m , we lift A with a lifting function w and
construct a polyhedral subdivision 1w of conv(A). A cell σ in 1w is called mixed if σ has exactly two
elements from each Ai . For a fixed cell σ , we are interested in all lifting functions w such that σ is a
mixed cell of 1w. We call such set a mixed cell cone of σ , and it is formally defined by

M(σ) :=
{
w ∈ R|A|

| σ is a mixed cell in 1w

}
.

For a triangulation 1w of A induced by w, we define the mixed cell cone of 1w as

M(1w) :=

⋂
{σ is a mixed cell in 1w}

M(σ).

Example 2.2. Consider A = {0, 1, 2} with lifting function w = (1, 0, 3) as in Example 2.1. Since
m = n = 1, the Cayley configuration of A is just a translation of A. We observe that 1w is mixed since
each cell contains exactly two elements from A. Let σ1 = {0, 1} ∈ 1w and σ2 = {1, 2} ∈ 1w. Then
M(σ1) = M(σ2), giving

M(1w) =
{
(w0, w1, w2) ∈ R3

| w0 ≥ w1, w2 ≥ w1, w0, w1, w2 are not all equal
}
,

which is the same as C(1w).

2C. A-discriminant and its amoeba. For a sparse polynomial f ∈ C[x1, . . . , xn], we define the (mono-
mial) support A f of f as the set of exponents of all monomials of f . Let C|A f | be the set of polynomials
with complex coefficients supported on A f . Then, a polynomial f ∈ C|A f | can be written as

f (x) =
∑

a∈A f

caxa,

where xa is the monomial xa1
1 · · · xan

n for a = (a1, . . . , an). For a polynomial f =
∑

a∈A f
caxa supported

on A f , let c f := (ca)a∈A f be the coefficient vector for f . For an n-tuple of vectors C = (c f1, . . . , c fn),
we let FC := ⟨ f1, . . . , fn⟩ be a square polynomial system such that c fi is a coefficient vector for fi for
each i = 1, . . . , n. For a Cayley configuration A = A f1 ∗ · · · ∗ A fn , we define the A-discriminant

∇A :=
{
C ∈ C|A|

| FC(x) has a singularity in (C \ {0})n}.
We say that ∇A is nondefective if it is codimension one. We are particularly interested in ∇A(R) :=

∇A ∩ R|A| because in a connected component of the complement of ∇A(R), the number of real solutions
to the corresponding polynomial systems is constant.

When an A-discriminant is nondefective, we may consider the Newton polytope of its defining
polynomial. For a vertex v of the Newton polytope, its normal cone is denoted by N (v). For a lifting
function w for A, we note the following relations, proved in [8, Lemma 2.16], between the secondary
cone C(1w), mixed cell cone M(1w) and the normal cone N (v) of ∇A:

C(1w) ⊆ M(1w) ⊆ N (v) (2-1)

for the vertex v of the Newton polytope of ∇A satisfying that w ∈ N (v).

62 Lee, Lindberg and Rodriguez :::: Implementing real polyhedral homotopy

The log-absolute value map Log | · | : (C \ {0})n
→ Rn is defined by

Log |(x1, . . . , xn)| := (log |x1|, . . . , log |xn|). (2-2)

For a Laurent polynomial f ∈ C[x±

1 , . . . , x±
n], the image of the variety V(f) under the log-absolute value

map is called the amoeba of f and denoted by A(f). For a textbook reference, see [17, Chapter 1].
We remark that the complement of an amoeba consists of convex regions. For the real polyhedral

homotopy algorithm, we will consider a specific lifting function w inducing a triangulation 1w such that
mixed cell cone M(1w) is contained in a complement of the amoeba of ∇A.

2D. Homotopy continuation. For a system F = ⟨ f1, . . . , fn⟩ of polynomials in n variables, finding all
isolated solutions of the system is an important task. Homotopy continuation is a method to find numerical
approximations of solutions of a system of polynomial equations. The main idea is to track solution
paths from a system G called a start system whose solutions are known to the target system F . For a
start system G = ⟨g1, . . . , gn⟩ with the same number of variables and equations of F , we construct a
homotopy H(x, t) such that H(x, 0) = G and H(x, 1) = F . To track the solutions from G = 0 as t varies
from zero to one, a common approach is to use predictor-corrector methods. These methods rely on
numerically solving an ordinary differential equation, called the Davidenko equation, as well as using
Newton iterations. For details, see [21, Chapter 2].

2E. Polyhedral homotopy continuation and Bernstein’s theorem. In order to choose a start system G
for a homotopy continuation algorithm, we want the number of solutions of G(x) = 0 to be roughly equal
to the number of solutions of F(x) = 0. In this paper, the polyhedral homotopy continuation established
by Huber and Sturmfels [10] is considered.

For polytopes P, Q in Rn , the Minkowski sum of the polytopes is defined as

P + Q = {p + q | p ∈ P, q ∈ Q}.

For a nonnegative number a and polytope P , we define a P := {ap | p ∈ P}. The Euclidean volume of the
Minkowski sum Vol(a1 Q1 +· · ·+an Qn) is a homogeneous polynomial in variables a1, . . . , an . The coef-
ficient of the mixed term a1a2 · · · an of the polynomial Vol(a1 Q1 +· · ·+an Qn) is called the mixed volume
of Q1, . . . , Qn and is denoted by MVol(Q1, . . . , Qn). The following celebrated theorem relates the mixed
volume of the Newton polytopes of a polynomial system to the number of isolated solutions in the torus.

Theorem 2.3 (Bernstein’s theorem [2, Theorem A]). Let F be a system of polynomials f1, . . . , fn in
C[x1, . . . , xn]. For Newton polytopes Q fi for each fi , we have(

the number of isolated solutions of F in (C \ {0})n)
≤ MVol(Q f1, . . . , Q fn).

Furthermore, for polynomials f1, . . . , fn with generic coefficients the inequality is tight.

Polyhedral homotopy continuation tracks MVol(Q f1, . . . , Q fn) paths to find all solutions to F =

⟨ f1, . . . , fn⟩ = 0. The idea is to construct a collection of binomial start systems whose number of

Lee, Lindberg and Rodriguez :::: Implementing real polyhedral homotopy 63

solutions sum to MVol(Q f1, . . . , Q fn). We now describe how to find one such system, G. Consider a
polynomial

f (x) =
∑
a∈A

caxa

supported on A. Consider a lifting function w. By multiplying each monomial of f by tw(a), we have the
lifted polynomial

f̄ (x, t) =
∑
a∈A

caxatw(a).

Suppose that a square polynomial system F consists of polynomials f1, . . . , fn supported on A f1, . . . , A fn ,
respectively. Lifting all polynomials in F gives the lifted system F(x, t) which satisfies F(x, 1) = F . The
solutions of F can be expressed by x(t) = (x1(t), . . . , xn(t)), where each xi (t) is a Puiseux series and

xi (t) = tαi yi + (higher order terms in t)

for some rational number αi and a nonzero constant yi . Plugging x(t) into polynomials gives

f̄ j (x(t), t) =
∑

a∈A f j

ca yat ⟨a,α⟩+w(a)
+ (higher order terms in t),

where ya
= ya1

1 · · · yan
n . For the minimum value of ⟨a, α⟩ + w(a) over all a ∈ A f j , divide by t ⟨a,α⟩+w(a)

and set t = 0. Iterating this for each f̄ j , we have a start system G. Note that for a fixed lifting function
w, the minimum can be obtained from different monomials a ∈ A f j depending on α. Therefore, we may
have several start systems G and they induce a collection of start systems.

For most choices of α, the procedure outlined above gives a start system consisting of monomials,
which is not useful since monomial systems of equations have no solutions in the torus. Instead, one
chooses α carefully to get a binomial start system since general binomial systems of polynomial equations
have solutions in the torus and can be solved efficiently using linear algebra [7]. Such an α and the
corresponding binomial system can be obtained from a mixed cell of a triangulation 1w of conv(A)

induced by w.
We summarize this section with the following definition:

Definition 2.4 (polyhedral homotopy). For a polynomial system F =⟨ f1, . . . , fn⟩, with fi =
∑

a∈A fi
caxa ,

define the polyhedral homotopy as

Hm(x, t) :=


∑

a∈A f1
tm1,a caxa,

...∑
a∈A fn

tmn,a caxa,

where each element of m = {mi,a | i ∈ [n] and a ∈ A fi } is in Q≥0 and for each i ∈ [n], the minimum
of {mi,a | a ∈ A fi } equals zero and is obtained precisely twice. We call m the lifting of the polyhedral
homotopy.

By substitution, we have Hm(x, 1) ≡ F(x), which is the target system. Assuming genericity of
the lifting m, and system F , the polyhedral homotopy Hm(x, t) has smooth, nonintersecting paths

64 Lee, Lindberg and Rodriguez :::: Implementing real polyhedral homotopy

in (C \ {0})n
× (0, 1], parameterized by t . The starting points of these paths at t = 0 can be ob-

tained by solving binomial systems. The polyhedral homotopy continuation is implemented in software
HOM4PS2 [13], PHCPack [24], Pss5 [18], and HomotopyContinuation.jl [4].

2F. Certification of numerical solutions. Practical implementations of homotopy continuation rely
on heuristics to compute numerical approximations of solutions to a system of polynomial equations.
Therefore, a posteriori certification for the correctness of these approximations may be necessary. We
say a numerical approximation of a solution of a system F is certified if it can be refined up to arbitrary
precision to an actual solution of F that is uniquely contained in a neighborhood of the approximation
by applying a suitable operator (e.g., the Newton operator). Smale’s α-theory [3, Chapter 8] and the
Krawczyk method [19, Chapter 8] are commonly used for certification. Numerical root certification
algorithms are implemented in the software alphaCertified [9], NumericalCertification.m2 [11],
and the function certify in HomotopyContinuation.jl [5].

3. FINDING A REAL POLYHEDRAL HOMOTOPY. The real polyhedral homotopy algorithm introduced
in [8] provides a framework for finding all real solutions of a polynomial system devised as a variation
of the standard polyhedral homotopy. The main idea stems from Viro’s patchworking for complete
intersections [22]. This result establishes a homeomorphic relation between the set of real solutions of a
polynomial system and the intersection of the positive part of tropical varieties; see [8, Section 2.2] for a
rigorous statement. We say a system is patchworked if the real solution set of the system is homeomorphic
to the union of the intersection points of the subcomplexes obtained by Viro’s patchworking. In other
words, we are interested in constructing a homotopy whose number of real solutions does not change
while tracking.

Sections 2A, 2B, and 2C, provide the preliminaries for the following proposition motivating the real
polyhedral homotopy algorithm in [8]:

Proposition 3.1 [8, Proposition 2.19]. Consider a polynomial system FC =⟨ f1, . . . , fn⟩ with a coefficient
vector C and support sets A f1, . . . , A fn such that dim(A fi) = n for each i . Suppose that u = (u1, . . . , un),
where ui = (ua)a∈A fi

is a vector satisfying that

(1) the vector u is not on the boundary of any secondary cone of the Cayley configuration A =

A f1 ∗ · · · ∗ A fn ,

(2) the ray Log |C | + λu does not intersect A(∇A(R)) for any λ ∈ [0, ∞).

Then, the tuple of real Puiseux series x(t) = (x1(t), . . . , xn(t)) where xi (t) is a real Puiseux series and

xi (t) = tαi yi + (higher order terms in t)

is a solution to the system FC only if (α1, . . . , αn, 1) is an outer normal to a lower facet of
∑n

i=1 conv(Aui
i).

The solution x(t) in Proposition 3.1 is derived in a similar way to the polyhedral homotopy method
outlined in Section 2E.

Lee, Lindberg and Rodriguez :::: Implementing real polyhedral homotopy 65

Since the conditions from the proposition above are not satisfied in general, a certification procedure
for checking if a polynomial system is patchworked is suggested in [8]. Note that the containment (2-1)
shows that the mixed cell cone M(1w) is contained in the corresponding normal cone N (v) of ∇A.
Therefore, a proper choice of a lifting function w might result in the mixed cell cone M(1w) that is
contained in the complement of A(∇A(R)). When such a coefficient vector is given, costly computation of
the amoeba A(∇A(R)) can be replaced by a mixed cell cone computation. Based on the argument above,
the following proposition establishes a sufficient condition for a polynomial system to be patchworked:

Proposition 3.2 [8, Proposition 3.1]. Let FC = ⟨ f1, . . . , fn⟩ be a system of sparse polynomials with coef-
ficient vector C with support sets A f1, . . . , A fn . Let 1w be the triangulation of the Cayley configuration
A = A f1 ∗ · · · ∗ A fn induced by the lifting w = Log |C |. Consider the corresponding dual mixed cell
cone M(1w)◦ and its generating vectors ζ1, . . . , ζL . Then,

⟨Log |C |, ζi ⟩ > ∥ζi∥1 log(|A|) (3-1)

for all i = 1, . . . , L implies that the system FC is a patchworked system. Also, for any v ∈ M(1w), the
ray Log |C | + λv for λ ∈ [0, ∞) does not intersect A(∇A(R)).

Definition 3.3 (real polyhedral homotopy). We say a lifting m induces a real polyhedral homotopy of
F = ⟨ f1, . . . , fn⟩ if

• Hm(x, 1) ≡ F(x) ⊂ R[x],

• {(x, t) ∈ (R \ {0})n
× (0, 1] | Hm(x, t) = 0, and t ∈ (0, 1]} defines smooth nonintersecting paths in

(R\{0})m
×(0, 1], parameterized by t , and emanating from isolated (R\{0})-zeros of F(x)≡ H(x, 1)

and continue toward t = 0,

• the starting points of these paths as t = 0 are obtained by solving binomial systems coming from
mixed cells and the (R \ {0})-zeros of the target system F(x) can be found by tracking these paths
over the real numbers.

Proposition 3.2 gives a method to certify when the lifting m = log(|C |) induces a real polyhedral
homotopy.

Example 3.4. If f1 = −1 − 24000y + x3 and f2 = −9 + 50xy − y2, then the Log |C | lifting corresponds
to the lifted polynomials

−1 − 24000t log 24000 y + x3 and − 9t log 9
+ 50t log 50xy − y2.

Denoting the real Puiseux series solutions by (x(t), y(t)), these lifted polynomials give two homotopies
with binomial start systems induced by mixed cells. The homotopies are

h1(x, y; t) = ⟨−ta1 − 24000y + x3, −9ta2 + 50xy − y2
⟩,

h2(x, y; t) = ⟨−tb1 − 24000y + x3, −9 + 50xy − tb2 y2
⟩,

where a1, a2, b1, b2 ∈ Z>0. We implement a way to certify that this is a (well-chosen) real polyhedral
homotopy and outline our implementation in the next section.

66 Lee, Lindberg and Rodriguez :::: Implementing real polyhedral homotopy

4. REAL POLYHEDRAL HOMOTOPY IMPLEMENTATION. This section describes our Julia implementa-
tion in detail. We assume we are given a polynomial system F = ⟨ f1, . . . , fn⟩ with finitely many complex
solutions. Let C denote the vector of coefficients of the system F .

4A. certify_patchwork. This function certifies if a given system is patchworked so that all real
solutions can be found using the real polyhedral homotopy. It checks if inequality (3-1) holds for each
mixed cell. It returns the value 1 if the system F is certified to be patchworked according to the inequality.
Otherwise, 0 is returned.

@var x y
f1 = -1 - 24000*y + x^3
f2 = -9 + 50*x*y - y^2
F = System([f1, f2])
certify_patchwork(F)

1

Remark 4.1. As an optional argument we have Number_Real_Solutions. When this optional argument
is set to true (default is false) we return (1, k) where k is number of real solutions to the target system when
the target system is patchworked. It works by solving the binomial systems B (discussed in Section 4B)
by using Smith normal forms as outlined in [8, Section 2.5]. For additional details on solving binomial
systems see [7]. Otherwise, we return 0.

certify_patchwork(F; Number_Real_Solutions = true)
(1,4)

4B. generate_binomials. This function takes as an input a polynomial system F = ⟨ f1, . . . , fn⟩ in n
variables and outputs an object called Binomial_system_data that consists of 4 objects: a collection
of binomial systems, their normal vectors, the lifting function, and the mixed cells. Contents in the
object Binomial_system_data stem from the mixed cells induced by the Log |C |-lifting mentioned in
Proposition 3.2. Each value in Binomial_system_data can be called by its name binomial_system,
normal_vectors, lifts, and cells as follows:

Continued from above.
B = generate_binomials(F);
B.binomial_system

2-element Vector{Any}:
Expression[-24000*y + x^3, 50*x*y - y^2]
Expression[-24000*y + x^3, -9 + 50*x*y]

B.lifts
2-element Vector{Vector{Int64}}:
[0, -10085809, 0]
[-3912023, 0, -2197225]

In our implementation, we use the Julia package MixedSubdivisions.jl [23] to compute the
mixed cells. The package requires a lifting function to take on integer values. So in our implementation,
we take 106

· Log |C | rounded to the nearest integer as our lifting. Using this scaled and rounded lifting is
suitable because uniformly scaling a lifting function gives the same triangulation. Therefore, rounding
the lifting function will preserve the desired triangulation so long as Log |C | is of distance at least 10−6

from the boundary of its mixed cell cone. We emphasize that this is a heuristic and for some systems,
one may need to take 10k

· Log |C | for k > 6. In all of our experiments, k = 6 was sufficient to preserve
the desired triangulation.

Lee, Lindberg and Rodriguez :::: Implementing real polyhedral homotopy 67

4C. rph_track. Our function rph_track takes an object Binomial_system_data B and a polyno-
mial system F as its input. It returns the output of tracking the real solutions of the binomial systems
to the target system. For our running example, the function returns all real solutions to F = 0 and no
nonreal solutions.

rph_track(B,F)
4-element Vector{Vector{Float64}}:
[-1095.4451129504978, -54772.25548320812]
[1095.4451137838312, 54772.255524874796]
[8.111114476617955, 0.02219298606763958]
[-8.103507635567631, -0.022213821121964985]

In contrast, the default solve command in HomotopyContinuation.jl finds all six complex solutions
of which two are nonreal and the four real solutions are the solutions found above.

S = HomotopyContinuation.solve(F)
solutions(S)

6-element Vector{Vector{ComplexF64}}:
[-0.003803837191831332 - 8.10709081578636im,

-1.0415806358129898e-5 + 0.022201564813120536im]
[-0.003803837191831332 + 8.10709081578636im,

-1.0415806358129898e-5 - 0.022201564813120536im]
...

We implement our function in two steps: The first step is to use Smith normal forms to find all real
solutions to the binomial systems as mentioned in Remark 4.1. The second step of this function tracks
the real solutions from the binomial systems to the target system using HomotopyContinuation.jl.

Remark 4.2. In the event certify_patchwork function returns 0, rph_track function will still run.
In this situation, there is no guarantee that the real solutions of the start system will converge to real
solutions of the target system nor that every real solution of the target system will be returned. The
following example shows how the real polyhedral homotopy behaves for a non-patchworked system:

@var x y
F2 = System([-1 - 240*y + x^3, -9 + 50*x*y - y^2])
certify_patchwork(F2)

0

B2 = generate_binomials(F2);
R = rph_track(B2,F2)

4-element Vector{Vector{Float64}}:
[-109.54445340262997, -5477.221026962461]
[109.54453673601331, 5477.225193632879]
[2.601807483849416, 0.06921950525397731]
[-2.525776652013741, -0.07130546925252307]

As a consequence, for non-patchworked system we can view our implementation as a heuristic for finding
real solutions to a polynomial system.

4D. An rph_track option. The optional argument Certification, certifies all real solutions to a
patchworked system F found through the aforementioned real polyhedral homotopy algorithm are in fact
good approximations to F(x) = 0. Given correct path tracking, the real polyhedral homotopy guarantees
to find all real solutions when the system is patchworked. To guarantee that the path tracking was done
correctly, we use an a posteriori certification. For a patchworked system F , when the real polyhedral

68 Lee, Lindberg and Rodriguez :::: Implementing real polyhedral homotopy

homotopy root-finding is certified, the function returns a list of solutions to F(x) = 0 and 1; otherwise, it
returns 0.

rph_track(B,F; Certification = true)
([[-1095.4451129504978, -54772.25548320812],...], 1)

When the option Certification is set to true, two extra steps are done in rph_track. First, it
certifies the real start solutions of a binomial system in B are true solutions to B, which provides the
real root count of F = 0. For the second additional step, the numerical approximations for solutions
of F produced by the real polyhedral homotopy tracking are certified using the Krawczyk method. The
certification relies on certify in HomotopyContinuation.jl with details found in [5].

4E. Reliability. For those who are not frequent users of numerical methods in algebraic geometry, we add
this subsection to clearly explain the reliability of our package and the meaning of certification of the output.
Our package relies on the path-tracking heuristics in HomotopyContinuation.jl. It is well known that
numerical path-tracking methods sometimes miss solutions. While in theory such an event happens with
probability zero, in practice, we work with floating point arithmetic so may observe this behavior.

Both verifying (like a trace test [14; 6]) and certifying the completeness of the set of real solutions
still remain open, to the best of the authors’ knowledge. The certification functionality in the package is
limited to checking if all numerical solutions that are computed are certified in the context of Section 2F.
When the system is not patchworked, our implementation does not guarantee finding all real solutions
to a given system, even if path-tracking was perfect. Nevertheless, our package can still run the real
polyhedral homotopy and get an output that is a (potentially proper) subset of the real solution set. When
the certification option is turned on the output consists of certified real solutions with no guarantee of
completeness of the real solution set.

5. OUTLOOK. There may be potential improvement available for the real polyhedral homotopy algorithm
described in this paper by constructing homotopy paths that avoid the real discriminant locus. The current
verification using inequality (3-1) does not give both necessary and sufficient conditions for detecting if
a polynomial system is patchworked and as a result is a conservative way to certify this. To illuminate
the potential of the real polyhedral homotopy algorithm described in this paper, we provide an example
of a polynomial system from game theory where the real polyhedral homotopy algorithm finds all real
solutions even though the system is not certified to be patchworked.

Example 5.1 (a modified version of [20]). Consider a three-player game such that each player has 3
strategies. For i = 1, 2, 3, define the i-th player’s payoff by a 3 × 3 × 3-tensor P (i), and let p(i)

j be the
probability that the i-th player chooses the j-th strategy. In this case, the i-th player’s payoff ai can be
computed as

ai =

3∑
j,k,l=1

P (i)
j,k,l · p(1)

j p(2)
k p(3)

l for i = 1, 2, 3.

Assuming that all players do not change their initial strategy, the vector of probabilities for strategies
of players optimizing output of their own is called a Nash equilibrium. The problem of finding all

Lee, Lindberg and Rodriguez :::: Implementing real polyhedral homotopy 69

Nash equilibria can be modeled as a constrained optimization problem. Constrained optimization problems
with smooth critical points can be solved using the method of Lagrange multipliers. This method then
reduces to solving a system of polynomial equations. For example, all Nash equilibria for the three-player
game described above appear as real solutions to the following system of 12 polynomial equations in
12 unknowns

(
p(1)

1 , p(1)
2 , p(1)

3 , p(2)
1 , p(2)

2 , p(2)
3 , p(3)

1 , p(3)
2 , p(3)

3 , a1, a2, a3
)
:

3∑
j=1

p(1)
j =

3∑
j=1

p(2)
j =

3∑
j=1

p(3)
j = 1,

p(1)
j

(
a1 −

3∑
k,l=1

P (1)
j,k,l · p(2)

k p(3)
l

)
= 0 for j = 1, 2, 3,

p(2)
k

(
a2 −

3∑
j,l=1

P (2)
j,k,l · p(1)

j p(3)
l

)
= 0 for k = 1, 2, 3,

p(3)
l

(
a3 −

3∑
j,k=1

P (3)
j,k,l · p(1)

j p(2)
k

)
= 0 for l = 1, 2, 3.

For randomly chosen payoff tensors

P (1)
=

 34 162 70
136 2001 72
80 32 10

140 174 −183
166 140 −10541
132 176 17

104 68 18
1261 72 20
174 86 94

,

P (2)
=

 56 −6 22
−28 80 1196

12 48 22

5712 −150 74
182 116 22
64 11 46

150 10 150
44 186 60
80 1192 82

,

P (3)
=

 104 162 655
172 152 −12
134 124 170

2116 130 559
25 188 162
118 38 130

134 138 −4
1168 162 178
113 800 152

,

we solve this system using RealPolyhedralHomotopy.jl and see that it returns all eight real solutions.
8-element Vector{Vector{Float64}}:
[0.023564140817086864, -0.003578459398610543,

... , 17.00815164148862, 150.9733200702087]
[0.1690458198092814, 0.94412282597982,

... , 40.84440318232266, 199.80455930749537]
...

In this case, the first nine coordinates of solutions to the polynomial system correspond to probabilities.
By restricting the real solutions to those with positive first nine coordinates we find one Nash equilibrium.

valid_real_solutions = filter(s -> all(s[1:9] .> 0), rsols)
[0.38164510348087044, 0.3858370607366621,

... , 221.7388487672952, 210.9466957898507]

The success of Example 5.1 motivates the future development of heuristic methods for finding a
complete real solution set. In addition to applications in economics, as seen in the previous example, we
hope that problems in reaction networks, statistics, and optimization, where polyhedral geometry has
played a role in counting complex solutions, are ripe for applying real polyhedral homotopy.

70 Lee, Lindberg and Rodriguez :::: Implementing real polyhedral homotopy

ACKNOWLEDGMENT. The authors are grateful to Paul Breiding, Timo de Wolff and Christopher O’Neill
for helpful discussions.

SUPPLEMENT. The online supplement contains version 1.2.1 of RealPolyhedralHomotopy.

REFERENCES.
[1] D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler, Numerically solving polynomial systems with Bertini,

Software, Environments, and Tools 25, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2013. MR Zbl

[2] D. N. Bernstein, “The number of roots of a system of equations”, Funkcional. Anal. i Priložen. 9:3 (1975), 183–185. MR
Zbl

[3] L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and real computation, Springer, New York, 1998. MR Zbl

[4] P. Breiding and S. Timme, “HomotopyContinuation.jl: A package for homotopy continuation in Julia”, pp. 458–465 in
Mathematical software: ICMS 2018 (South Bend, IN), edited by J. H. Davenport et al., Lecture Notes in Computer Science
10931, Springer, 2018. Zbl

[5] P. Breiding, K. Rose, and S. Timme, “Certifying zeros of polynomial systems using interval arithmetic”, ACM Trans. Math.
Software 49:1 (2023), art. id. 11. MR Zbl

[6] T. Brysiewicz and M. Burr, “Sparse trace tests”, Math. Comp. 92:344 (2023), 2893–2922. MR Zbl

[7] T. Chen and T.-Y. Li, “Solutions to systems of binomial equations”, Ann. Math. Sil. 28 (2014), 7–34. MR Zbl

[8] A. A. Ergür and T. de Wolff, “A polyhedral homotopy algorithm for real zeros”, Arnold Math. J. 9:3 (2023), 305–338. MR
Zbl

[9] J. D. Hauenstein and F. Sottile, “Algorithm 921: alphaCertified: certifying solutions to polynomial systems”, ACM Trans.
Math. Software 38:4 (2012), art. id. 28. MR Zbl

[10] B. Huber and B. Sturmfels, “A polyhedral method for solving sparse polynomial systems”, Math. Comp. 64:212 (1995),
1541–1555. MR Zbl

[11] K. Lee, “Certifying approximate solutions to polynomial systems on Macaulay2”, ACM Commun. Comput. Algebra 53:2
(2019), 45–48. MR Zbl

[12] K. Lee and X. Tang, “On the polyhedral homotopy method for solving generalized Nash equilibrium problems of
polynomials”, J. Sci. Comput. 95:1 (2023), art. id. 13. MR Zbl

[13] T. L. Lee, T. Y. Li, and C. H. Tsai, “HOM4PS-2.0: A software package for solving polynomial systems by the polyhedral
homotopy continuation method”, Computing 83:2–3 (2008), 109–133. MR Zbl

[14] A. Leykin, J. I. Rodriguez, and F. Sottile, “Trace test”, Arnold Math. J. 4:1 (2018), 113–125. MR Zbl

[15] J. Lindberg, A. Zachariah, N. Boston, and B. Lesieutre, “The distribution of the number of real solutions to the power flow
equations”, IEEE Trans. Power Syst. 38:2 (2022), 1058–1068. Zbl

[16] J. Lindberg, N. Nicholson, J. I. Rodriguez, and Z. Wang, “The maximum likelihood degree of sparse polynomial systems”,
SIAM J. Appl. Algebra Geom. 7:1 (2023), 159–171. MR Zbl

[17] D. Maclagan and B. Sturmfels, Introduction to tropical geometry, Graduate Studies in Mathematics 161, American
Mathematical Society, Providence, RI, 2015. MR Zbl

[18] G. Malajovich, “Pss5: Polynomial system solver”, 2019, available at https://sourceforge.net/projects/pss5/. Version 5.1.
Zbl

[19] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to interval analysis, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 2009. MR Zbl

[20] I. Portakal, “Polynomial systems arising from Nash equilibria: A story about how game theory meets multilinear systems
and product of simplices”, electronic reference, 2021, available at https://www.JuliaHomotopyContinuation.org/examples/
nash/. Online; accessed 10 March 2023. Zbl

[21] A. J. Sommese and C. W. Wampler, II, The numerical solution of systems of polynomials arising in engineering and science,
World Scientific, Hackensack, NJ, 2005. MR Zbl

http://msp.org/jsag/2024/14-1/jsag-v14-n1-x08-RealPolyhedralHomotopy.zip
http://dx.doi.org/10.1137/1.9781611972702
http://msp.org/idx/mr/3155500
http://msp.org/idx/zbl/1295.65057
http://dx.doi.org/10.1007/BF01075595
http://msp.org/idx/mr/435072
http://msp.org/idx/zbl/0318.12005
http://dx.doi.org/10.1007/978-1-4612-0701-6
http://msp.org/idx/mr/1479636
http://msp.org/idx/zbl/0872.68036
https://rdcu.be/dBesg
http://msp.org/idx/zbl/1396.14003
http://dx.doi.org/10.1145/3580277
http://msp.org/idx/mr/4567897
http://msp.org/idx/zbl/07735112
http://dx.doi.org/10.1090/mcom/3849
http://msp.org/idx/mr/4628769
http://msp.org/idx/zbl/07729931
http://www.sbc.org.pl/Content/129017/007-034.pdf
http://msp.org/idx/mr/3361900
http://msp.org/idx/zbl/1439.13079
http://dx.doi.org/10.1007/s40598-022-00219-w
http://msp.org/idx/mr/4624074
http://msp.org/idx/zbl/1520.14109
http://dx.doi.org/10.1145/2331130.2331136
http://msp.org/idx/mr/2972672
http://msp.org/idx/zbl/1365.65148
http://dx.doi.org/10.2307/2153370
http://msp.org/idx/mr/1297471
http://msp.org/idx/zbl/0849.65030
http://dx.doi.org/10.1145/3371991.3371995
http://msp.org/idx/mr/4033384
http://msp.org/idx/zbl/07659270
http://dx.doi.org/10.1007/s10915-023-02138-0
http://dx.doi.org/10.1007/s10915-023-02138-0
http://msp.org/idx/mr/4550479
http://msp.org/idx/zbl/1519.91013
http://dx.doi.org/10.1007/s00607-008-0015-6
http://dx.doi.org/10.1007/s00607-008-0015-6
http://msp.org/idx/mr/2457354
http://msp.org/idx/zbl/1167.65366
http://dx.doi.org/10.1007/s40598-018-0084-3
http://msp.org/idx/mr/3810571
http://msp.org/idx/zbl/1408.14192
http://dx.doi.org/10.1109/TPWRS.2022.3170232
http://dx.doi.org/10.1109/TPWRS.2022.3170232
http://msp.org/idx/zbl/1499.14099
http://dx.doi.org/10.1137/21M1422550
http://msp.org/idx/mr/4566812
http://msp.org/idx/zbl/07682684
http://dx.doi.org/10.1090/gsm/161
http://msp.org/idx/mr/3287221
http://msp.org/idx/zbl/1321.14048
https://sourceforge.net/projects/pss5/
http://msp.org/idx/zbl/1408.65032
http://dx.doi.org/10.1137/1.9780898717716
http://msp.org/idx/mr/2482682
http://msp.org/idx/zbl/1168.65002
https://www.JuliaHomotopyContinuation.org/examples/nash/
https://www.JuliaHomotopyContinuation.org/examples/nash/
http://msp.org/idx/zbl/1452.14003
http://dx.doi.org/10.1142/9789812567727
http://msp.org/idx/mr/2160078
http://msp.org/idx/zbl/1091.65049

Lee, Lindberg and Rodriguez :::: Implementing real polyhedral homotopy 71

[22] B. Sturmfels, “Viro’s theorem for complete intersections”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21:3 (1994), 377–386.
MR Zbl

[23] S. Timme, “MixedSubdivisions.jl: Package for computing a (fine) mixed subdivision and the mixed volume of lattice
polytopes”, available at https://github.com/saschatimme/MixedSubdivisions.jl. Version 0.5. Zbl

[24] J. Verschelde, “Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy continuation”,
ACM Trans. Math. Softw. 25:2 (1999), 251–276. Zbl

RECEIVED: 11 Jul 2022 REVISED: 9 Jan 2024 ACCEPTED: 24 Jan 2024

KISUN LEE:

kisunl@clemson.edu
School of Mathematical and Statistical Science, Clemson University, Clemson, SC, United States

JULIA LINDBERG:

julia.lindberg@math.utexas.edu
Department of Mathematics, University of Texas-Austin, Austin, TX, United States

JOSE ISRAEL RODRIGUEZ:

jose@math.wisc.edu
Department of Mathematics, University of Wisconsin, Madison, WI, United States

msp

http://www.numdam.org/item?id=ASNSP_1994_4_21_3_377_0
http://msp.org/idx/mr/1310632
http://msp.org/idx/zbl/0826.14032
https://github.com/saschatimme/MixedSubdivisions.jl
https://github.com/saschatimme/MixedSubdivisions.jl
http://msp.org/idx/zbl/1487.65057
http://dx.doi.org/10.1145/317275.317286
http://msp.org/idx/zbl/0961.65047
mailto:kisunl@clemson.edu
mailto:julia.lindberg@math.utexas.edu
mailto:jose@math.wisc.edu
http://msp.org

	1. Introduction
	2. Preliminaries
	2A. Regular subdivisions and triangulations
	2B. Cayley configurations and mixed cells
	2C. A-discriminant and its amoeba
	2D. Homotopy continuation
	2E. Polyhedral homotopy continuation and Bernstein's theorem
	2F. Certification of numerical solutions

	3. Finding a real polyhedral homotopy
	4. Real polyhedral homotopy implementation
	4A. certify_patchwork
	4B. generate_binomials
	4C. rph_track
	4D. An rph_track option
	4E. Reliability

	5. Outlook

