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ABSTRACT: We present the Macaulay2 package CotangentSchubert. We show its use in computing
motivic Chern and Segre classes of Schubert cells of partial flag varieties and in checking recently found
combinatorial formulae for their products.

1. INTRODUCTION. Cotangent Schubert calculus is an extension of Schubert calculus, a classical
topic in enumerative geometry, that builds upon recent advances in algebraic geometry [3] as well as
developments in geometric representation theory and quantum integrable systems [15; 16]; see [17] for a
pedagogical introduction.

CotangentSchubert is a Macaulay2 [13] package which has two main objectives. The first one is to
define the basic objects of cotangent Schubert calculus in the context of equivariant K -theory of (partial)
flag varieties; that is, motivic Chern and Segre classes of Schubert cells. The second one is to provide an
implementation of the formulas of [10; 11; 12], which give the expansion of the product of Segre classes
in terms of certain combinatorial gadgets known as puzzles. They are a vast generalisation of the original
puzzles of Knutson and Tao [9] for ordinary Schubert calculus of Grassmannians, and to differentiate
them from the latter, we sometimes call them “generic puzzles”. Since these puzzle formulas are rather
complicated, a computerised check is most useful.

2. SET-UP AND DEFINITION OF THE RINGS. Let P\G be a (partial) flag variety, where G = GLn(C)

and P is a parabolic subgroup, with the convention that B− ⊆ P , where B− is the group of invertible
lower triangular matrices. Cotangent Schubert calculus is concerned with cohomology (or K -theory) of
X := T ∗(P\G), the total space of the cotangent bundle of P\G. Nonequivariantly,

H∗(X)∼= H∗(P\G)

(and similarly in K -theory); however, we always include equivariance with respect to scaling of the fiber
of the cotangent bundle, resulting in

H∗C×(X)∼= H∗(P\G)[h]

(and similarly in K -theory KC×(X)∼= K (P\G)[t±]), where h (or t) is the equivariant parameter. Further-
more, we may also consider equivariance with respect to the natural action of the Cartan torus T ⊂G on X ,
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leading to rings H∗
T̂
(X) or K T̂ (X) with T̂ = C×× T . Finally, in all that follows we consider localised

cohomology rings in the sense that the base ring (cohomology of a point) is replaced with its fraction
field; and in K -theory, we allow ourselves to take the square root of t , defining q = t−1/2.

We now turn to the package CotangentSchubert. All the code given below assumes that the latter has
been loaded with:

i1 : needsPackage "CotangentSchubert";

CotangentSchubert offers two different presentations of these rings.

2.1. The Borel presentation. In the so-called Borel presentation, the generators of the cohomology /
K -theory rings (as algebras over the cohomology of a point) are the Chern classes of tautological bundles
(see, e.g., [14, §3.6.4]). In CotangentSchubert, the convention is that the generators are Chern classes of
duals of tautological bundles.

The basic command that creates these rings is setupCotangent, whose arguments, specifying the
partial flag variety, are the increasing sequence of dimensions of the vector spaces in the filtration:

i2 : (A,B,FF,I)=setupCotangent(2,4,Presentation=>Borel, Ktheory=>false,Equivariant=>false)

o2 = ( A, B, F, {0011, 0101, 0110, 1001, 1010, 1100})
o2 : Sequence

The command returns every ring that is created, allowing the user to name (i.e., globally assign)
them. There are three: the first one, A, is the ring HC×(X), where in the example X = T ∗Gr(2, 4); by
changing the options Ktheory and Equivariant, one can obtain instead KC×(X) or equivariance with
respect to the whole of T̂ . The second one, B, is the ring HC×(T ∗(B−\G)) of the associated full flag
variety; according to the splitting principle, A is a subring of B and it is often the most convenient way to
consider it. Finally, F is the base field, i.e., the fraction field of HC×(pt)∼= frac(Z[h]).

For convenience, setupCotangent also returns the list I of torus fixed points of X in their usual
“string” notation, i.e., if P\G is the d-step flag variety

{0= F0 < F1 < · · ·< Fd < Fd+1 = Cn
},

I is the list of words of n letters in the alphabet {0, . . . , d} such that the number of occurrences of k,
0≤ k ≤ d , is dim(Fk+1/Fk). All classes defined below are naturally indexed by such strings.

We can check the presentation of A:
i3 : describe A

o3 = F[x1,{1,2}, x2,{1,2}, x1,{3,4}, x2,{3,4}](
x1,{3,4}+x1,{1,2},−x2

1,{3,4}+x2,{3,4}+x2,{1,2}, x3
1,{3,4}−2 x1,{3,4}x2,{3,4}, x2

1,{3,4}x2,{3,4}−x2
2,{3,4}, x1,{3,4}x2

2,{3,4}, x3
2,{3,4}

)
The notation for variables is that xi,A is the i-th Chern class associated to the subset A= {i+1, . . . , j}

corresponding to the tautological bundle Fk+1/Fk where dim Fk = i and dim Fk+1 = j .
One can check that A has the expected dimension (over F) which is the cardinality of I :
i4 : b=basis A

o4 =
(
1 x1,{1,2} x2

1,{1,2} x1,{1,2}x2,{1,2} x2,{1,2} x2
2,{1,2}

)
o4 : Matrix A1

←− A6
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There is a natural embedding from A to B which can be accessed using promote:
i5 : promote(b,B)

o5 =
(
1 x2+ x1 x2

2 + 2 x1x2+ x2
1 x1x2

2 + x2
1 x2 x1x2 x2

1 x2
2

)
o5 : Matrix B1

←− B6

where the xi are the Chern roots; as usual, this can be reversed using lift:
i6 : lift(oo,A)

o6 =
(
1 x1,{1,2} x2

1,{1,2} x1,{1,2}x2,{1,2} x2,{1,2} x2
2,{1,2}

)
o6 : Matrix A1

←− A6

CotangentSchubert implements two types of pushforward to a point. The first one is from X itself,
with the method pushforwardToPointFromCotangent:

i7 : pushforwardToPointFromCotangent b

o7 =
(

28
h8

28
h7

18
h6

4
h5

9
h6

1
h4

)
o7 : Matrix F1

←− F6

Since the map X→ pt is not proper, one obtains denominators.
It is however often useful to pushforward from P\G rather than its cotangent bundle; i.e., classes are

first sent to the cohomology ring of P\G by pullback (i.e., restriction to the zero section of X ), and then
pushed forward to a point:

i8 : pushforwardToPoint b

o8 = (0 0 0 0 0 1)

o8 : Matrix F1
←− F6

Finally, note that one can also access the Chern classes of tautological bundles using the method
tautoClass:

i9 : tautoClass(2,0)

o9 = x1x2
o9 : B

where the two arguments (i, k) correspond to the i-th Chern class of the vector bundle Fk+1/Fk . As with
most CotangentSchubert functions, an optional argument allows to specify the ring:

i10 : tautoClass(2,0,A)

o10 = x2,{1,2}
o10 : A

2.2. The equivariant localisation presentation. The equivariant localisation theorem (see, e.g., [18])
asserts that after appropriate localisation, the inclusion of the fixed point set X T̂ into X induces an
isomorphism between K T̂ (X) and K T̂ (X T̂ ) (and similarly in cohomology); since the torus fixed points
of X are isolated, K T̂ (X T̂ )∼= F|I | with componentwise product, thus providing a very simple presentation
of K T̂ (X).

This is implemented in CotangentSchubert by changing the option Presentation:
i11 : (D,FF,I)=setupCotangent(2,4,Presentation=>EquivLoc,Ktheory=>false)

o11 = (D, F, {0011, 0101, 0110, 1001, 1010, 1100})
o11 : Sequence
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Note that this presentation obviously requires Equivariant=>true (which is the default). The output
is a little different in the sense that the cohomology of the full flag variety is not used in this presentation.
Furthermore, A is not encoded as a ring but rather as a vector space with an additional componentwise
product:

i12 : tautoClass(2,0)

o12 =



y1 y2
y1 y3
y1 y4
y2 y3
y2 y4
y3 y4


o12 : D

i13 : (tautoClass(1,0))ˆ2∗tautoClass(2,1)

o13 =



(y2+ y1)2 y3 y4

y2(y3+ y1)2 y4

y2 y3(y4+ y1)2

y1(y3+ y2)2 y4

y1 y3(y4+ y2)2

y1 y2(y4+ y3)2


o13 : D

The yi are the (cohomological) equivariant parameters of T .
One can go from the Borel presentation (with Equivariant=>true) to the equivariant localisation

presentation using restrict, as will be illustrated in the next section.
Though in what follows, for illustration purposes, we shall mostly use the Borel presentation, it should

be noted that the equivariant localisation presentation is more efficient computationally and should be
preferred for any flag varieties beyond the smallest ones.

3. DEFINITION OF THE CLASSES. So far no use has been made of the “cotangent” part of X . We now
introduce the main actors of this package, namely motivic classes (which in some ways generalise Schubert
classes to the cotangent setting; see also Section 5). There are two main categories of classes

• motivic Chern classes; and

• motivic Segre classes.

The definition of motivic Chern classes can be found in [3]; a very different point of view, closer to
cotangent Schubert calculus, can be found in [16] — the equivalence between the two, in an appropriate
context, is described in [2; 7]. CotangentSchubert computes motivic Chern and Segre classes of Schubert
cells inside P\G, viewed as classes in K T̂ (X) — or, with the option Ktheory=>false, Chern and Segre
Schwartz–MacPherson classes viewed as classes in HT̂ (X) (since the motivic classes are an extension
to K -theory of the latter). These classes each come in various flavours to accommodate the differing
conventions in the literature. Furthermore, they can be defined with either of the presentations of Section 2.
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We shall illustrate these classes with the Borel presentation first:
i14 : (A,B,FF,I)=setupCotangent(1,3,Presentation=>Borel,Ktheory=>true,Equivariant=>false)

o14 = (A, B, F, {011, 101, 110})
o14 : Sequence

Motivic Chern classes are defined using chernClass:
i15 : chernClass "101"

o15 = −(2 q2
−3)

q2 x2x3+
q2
−2

q2 x2+
q2
−2

q2 x3+
1

q2

o15 : B

The argument can be a single string (describing the fixed point contained in the Schubert cell), or a list:
i16 : chernClsBorel=chernClass I

o16 =
(

q4
−6 q2

+6
q4 x2x3+

2 q2
−3

q4 x2+
2 q2
−3

q4 x3+
1

q4
−(2 q2

−3)

q2 x2x3+
q2
−2

q2 x2+
q2
−2

q2 x3+
1

q2 x2x3−x2−x3+1
)

o16 : Matrix B1
←− B3

By default the classes live in B; to obtain them in A, write
i17 : lift(chernClsBorel,A)

o17 =
(

2 q2
−3

q4 x1,{2,3}+
q4
−6 q2

+6
q4 x2,{2,3}+

1
q4

q2
−2

q2 x1,{2,3}+
−(2 q2

−3)

q2 x2,{2,3}+
1

q2 − x1,{2,3}+ x2,{2,3}+1
)

o17 : Matrix A1
←− A3

or simply specify the ring explicitly with chernClass(I,A) or chernClass(I,B).
In cohomology, chernClass produces homogenised versions of Chern–Schwartz–MacPherson classes,

where h plays the role of homogeneity parameter; to recover the ordinary (inhomogeneous) classes, one
must set h =−1.

There is a variant of motivic Chern classes which is accessed via stableClass; they correspond to
the classes Stλ of [11] (images of fixed points under the stable envelope map with a certain choice of
parameters), and we refer to this paper for details; see also [2]. For every type of class, there is also
a corresponding dual class; in CotangentSchubert, the latter have a prime added to their names (e.g.,
chernClass’); in its simplest form, the duality statement is

i18 : matrix table(I,I,(i,j)->pushforwardToPointFromCotangent(
stableClass i ∗ stableClass’ j))==1

o18 = true

Switching to the equivariant setting:
i19 : (A,B,FF,I)=setupCotangent(1,3,Presentation=>Borel,Ktheory=>true,Equivariant=>true)

o19 = (A, B, F, {011, 101, 110})
o19 : Sequence

we can define likewise motivic Segre classes using segreClass:
i20 : segreClsBorel=segreClass I

o20 =
(

q4

(q2z2−z1)(q2z3−z1)
x2x3+

−q2z1
(q2z2−z1)(q2z3−z1)

x2+
−q2z1

(q2z2−z1)(q2z3−z1)
x3+

z2
1

(q2z2−z1)(q2z3−z1)

−q4(q2z3+q2z2−z2−z1)

(q2z2−z1)(q2z3−z1)(q2z3−z2)
x2x3+

q2z2(q4z3−z1)

(q2z2−z1)(q2z3−z1)(q2z3−z2)
x2+

q2z2(q4z3−z1)

(q2z2−z1)(q2z3−z1)(q2z3−z2)
x3

+
−q2z2(q2z2z3+q2z1z3−z1z3−z1z2)

(q2z2−z1)(q2z3−z1)(q2z3−z2)

q4

(q2z3−z1)(q2z3−z2)
x2x3+

−q4z3
(q2z3−z1)(q2z3−z2)

x2+
−q4z3

(q2z3−z1)(q2z3−z2)
x3+

q4z2
3

(q2z3−z1)(q2z3−z2)

)
o20 : Matrix B1

←− B3
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One proceeds similarly in the equivariant localisation presentation:
i21 : (D,FF,I)=setupCotangent(1,3,Presentation=>EquivLoc,Ktheory=>true)

o21 = (D, F, {011, 101, 110})
o21 : Sequence

i22 : segreCls=segreClass I

o22 =


1 0 0

(q−1)(q+1)z1
q2z2−z1

q2(z2−z1)

q2z2−z1
0

(q−1)(q+1)z1
q2z3−z1

q2(q−1)(q+1)z2(z3−z1)

(q2z3−z1)(q2z3−z2)

q4(z3−z1)(z3−z2)

(q2z3−z1)(q2z3−z2)


o22 : Matrix F3

←− F3

We can compare the two presentations with restrict:
i23 : restrict segreClsBorel == segreCls

o23 = true

There is a variant of motivic Segre classes, accessed via sClass, which only differs from segreClass
by a power of q; they correspond to the classes Sλ of [11], and we refer to this paper for details.

In what follows we use exclusively the S classes. We compute their multiplication table as follows:
i24 : sCls=sClass I;

o24 : Matrix F3
←− F3

i25 : Table table(I,I,(i,j)->sCls^(-1)∗(sClass i ∗ sClass j))

o25 =


1

−q(q−1)(q+1)z1
q2z2−z1

−q2(q−1)(q+1)z1(z2−z1)

(q2z2−z1)(q2z3−z1)




0
(q−1)(q+1)z1

q2z2−z1

−q(q−1)2(q+1)2z1z2
(q2z2−z1)(q2z3−z1)


 0

0
(q−1)(q+1)z1

q2z3−z1




0
(q−1)(q+1)z1

q2z2−z1

−q(q−1)2(q+1)2z1z2
(q2z2−z1)(q2z3−z1)




0
q(z2−z1)

q2z2−z1

−(q−1)(q+1)z2(q4z2z3−q4z1z3−q4z1z2+q2z1z2+q2z2
1−z1z2)

(q2z2−z1)(q2z3−z1)(q2z3−z2)


 0

0
q(q−1)(q+1)z2(z3−z1)

(q2z3−z1)(q2z3−z2)


 0

0
(q−1)(q+1)z1

q2z3−z1


 0

0
q(q−1)(q+1)z2(z3−z1)

(q2z3−z1)(q2z3−z2)




0
0

q2(z3−z1)(z3−z2)

(q2z3−z1)(q2z3−z2)


o25 : Expression of class Table

4. PUZZLES. In [11], a combinatorial rule to compute the expansion of the product of motivic Segre
classes into motivic Segre classes (cf the multiplication table at the end of the previous section) is given
in terms of so-called puzzles. In CotangentSchubert this is implemented for d-step flag varieties, d ≤ 3
(in principle there is a puzzle rule at d = 4 but it is quite complicated, and its implementation is left for
future work).

CotangentSchubert allows to draw such puzzles with the method puzzle. We now give several
examples of use.
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4.1. d = 1 puzzles.
i26 : P=puzzle("011","101")

o26 =



11
1

01
10

11
1

11
1

00
0

100
1

11
1

01
10

110

0

11
1

100
1

100
1

11
1

00
0

110

0

101

11
1

100
1


o26 : List

By default, puzzle inherits options from the last setup, though it accepts optional arguments to modify
this behaviour. In the example, we see the puzzle associated to the product S011S101. The input is given
by the two strings on the top two sides of the triangle; the output is the string at the bottom of the triangle
(all strings are read left-to-right). The puzzle itself is filled with triangles and rhombi (the list of allowed
triangle and rhombi labels at d = 1 is given in [11, §4.1]). Note that the inside of the puzzle contains
labels that do not occur on the boundary (so-called multinumbers; here, 10).

To compute the actual entries of the multiplication table, one associates to each puzzle a fugacity (i.e.,
an element of F which is the product of fugacities of each elementary triangle or rhombus of the puzzle,
also given in [11, §4.1]). This is accessed via fugacity:

i27 : apply(P,fugacity)

o27 =
{

(q−1)(q+1)z1
q2z2−z1

,
−q (q−1)2(q+1)2z1z2
(q2z2−z1)(q2z3−z2)

,
q (q−1)2(q+1)2z1z2(z2−z1)

(q2z2−z1)(q2z3−z1)(q2z3−z2)

}
o27 : List

One must then sum over the puzzles; in CotangentSchubert this can be performed with the help of
fugacityVector:

i28 : fugacityVector P

o28 =


0

(q−1)(q+1)z1
q2z2−z1

−q (q−1)2(q+1)2z1z2
(q2z2−z1)(q2z3−z1)


o28 : F3

One recognises one of the entries of the multiplication table o25.

4.2. d = 2, 3 puzzles. One can similarly produce puzzles for 2 or 3-step flag varieties. Let us do an
example in the full flag variety of C4:

i29 : (A,FF,I)=setupCotangent(1,2,3,4,Ktheory=>false);

i30 : segreCls=sClass I;

o30 : Matrix F24
←− F24

i31 : λ="3021"; µ="2130";

On the one hand, the product SλSµ can be computed directly:
i33 : lhs=sClass λ ∗ sClass µ;
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On the other hand, we can ask for puzzles with sides λ, µ:
i34 : P=puzzle(λ,µ)

o34 =



21

11
1

331

1
00

0

22
2

332

2
100

1

30

200
2

33
3

21

11
1

331

1
00

0

22
2

30

100
1

200
2

332

2
33

3

21

11
1

30

00
0

22
2

1032
(32)(10)

332

2

30

100
1

33
3

21

11
1

30

00
0

22
2

1032
(32)(10)

331

1

30

200
2

33
3

21

11
1

30

00
0

22
2

100
1

331

1

200
2

332

2
33

3


o34 : List

and compute
∑

ν cλ,µ
ν Sν , where cλ,µ

ν is the sum of fugacities of puzzles with sides λ, µ, ν:
i35 : rhs=segreCls*(fugacityVector P);

We check that indeed
i36 : lhs==rhs -- should be true!

o36 = true

4.3. Separated descent puzzles. Consider two strings λ and µ of the same length n in the alpha-
bets _ , k, . . . , n− 1 and 0, . . . , k− 1, _ , respectively. For simplicity, we assume here that every letter
0, . . . , n− 1 occurs exactly once in λ∪µ. For example, at k = 2, n = 4, one could pick

λ= _ 32 _ and µ= 1 _ 0_ .

Geometrically, we can think of them as strings indexing fixed points of

Fℓ(k, k+ 1, . . . , n) and Fℓ(1, 2, . . . , k, n),

respectively, (with nonstandard alphabets _ < k < · · ·< n and 0 < · · ·< k−1 < _ ). There is a natural map

Fℓ(1, 2, . . . , n)
p
−→Fℓ(k, k+ 1, . . . , n)× Fℓ(1, 2, . . . , k, n),

so we can expand
p∗(Sλ

⊗ Sµ)=
∑

ν

cλ,µ
ν Sν

The restriction map for Segre classes is quite simple: it reads

p∗(Sλ)=
∑
µ≺λ

q |µ|−|λ|Sµ,
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where the summation is over strings µ that “refine” λ in the natural sense. E.g., starting from the strings
λ= _ 2 _ and µ= 10 _ , one reindexes them as λ̃= 010 and µ̃= 102; then

i37 : (A’,B,FF,I’)=setupCotangent(2,3,Presentation=>Borel,Ktheory=>true,Equivariant=>true);

i38 : a=sClass "010"

o38 = −q (q4z3−z1)

(q2z2−z1)(q2z3−z1)(q2z3−z2)
x2

3 +
q (q4z2

3+q2z1z3+q2z1z2−z1z3−z1z2−z2
1)

(q2z2−z1)(q2z3−z1)(q2z3−z2)
x3+

−q z1z3(q2z3+q2z2−z2−z1)

(q2z2−z1)(q2z3−z1)(q2z3−z2)

o38 : B

i39 : (A,B,FF,I)=setupCotangent(1,2,3,Presentation=>Borel,Ktheory=>true,Equivariant=>true);

i40 : a==sClass "021" + q * sClass"120" – fill blanks in arbitrary ways

o40 = true

i41 : b=sClass "102"

o41 =
−q5

(q2z2− z1)(q2z3− z1)(q2z3− z2)
x2x2

3 +
q3(z2+ z1)

(q2z2− z1)(q2z3− z1)(q2z3− z2)
x2x3

+
q3z2

(q2z2− z1)(q2z3− z1)(q2z3− z2)
x2

3 +
−q z1z2

(q2z2− z1)(q2z3− z1)(q2z3− z2)
x2

+
q z2(q4z3− q2z3− q2z2− z1)

(q2z2− z1)(q2z3− z1)(q2z3− z2)
x3+

−q z1z2(q2z3− z3− z2)

(q2z2− z1)(q2z3− z1)(q2z3− z2)
o41 : B

The corresponding puzzles are described in [12]; they can be obtained with puzzle, as we show on an
example.

i42 : segreCls=sClass I;

o42 : Matrix B1
←− B6

i43 : P=puzzle("_2_","10_",Paths=>true); Table transpose apply(P,p->p,fugacity p)

o44 =

1
1

01
01

1
1

2
2

0
0

2
2

1
1

01
01

0
0

2
2

1
1

2
2

(q − 1)2(q + 1)2z2
1

(q2z2− z1)(q2z3− z1)

−(q − 1)3(q + 1)3z2
1z2

q (q2z2− z1)(q2z3− z1)(q2z3− z2)

1
1

0
0

0
0

12
12

2
2

1
1

1
1

0
0

0
0

12
12

1
1

2
2

(q − 1)(q + 1)z2
q2z3− z2

−q (q − 1)2(q + 1)2z1z2
(q2z2− z1)(q2z3− z2)

o44 : Expression of class Table

i45 : (segreCls∗fugacityVector P)_0==a∗b

o45 = true
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Note the use of the option Paths=>true for aesthetic purposes: it shows that the puzzles are simply a
collection of (disjoint but possibly intersecting) lattice paths propagating in arbitrary ways with southwest
or southeast steps.

4.4. Puzzles with multinumbers at the bottom. A similar but distinct product rule can be obtained by
taking the pullback of

Fℓ( j, k, n)→ Gr( j, n)×Gr(k, n),

where j ≤ k, as briefly mentioned in [8, §1.3]. This can be achieved with puzzles where we allow 10s as
part of the bottom string; some reindexing is again needed, namely (0, 10, 1) 7→ (0, 1, 2).

For instance, trying to multiply classes from Gr(1, 3) and Gr(2, 3):
i46 : (A1,B,FF,I1)=setupCotangent(1,3,Presentation=>Borel,Ktheory=>true,Equivariant=>false);

i47 : a=sClass "101";

i48 : (A2,B,FF,I2)=setupCotangent(2,3,Presentation=>Borel,Ktheory=>true,Equivariant=>false);

i49 : b=sClass "010";

i50 : (A,B,FF,I)=setupCotangent(1,2,3,Presentation=>Borel,Ktheory=>true,Equivariant=>false);

i51 : segreCls=sClass I;

o51 : Matrix B1
←− B6

i52 : a==sClass "102" + q * sClass "201"

o52 = true

i53 : b==sClass "021" + q * sClass "120"

o53 = true

is obtained by
i54 : P=puzzle("101","010"); Table transpose apply(P,p->p,fugacity p)

o55 =

01
10

11
1

01
10

00
0

110

0
11

1

01
10

11
1

00
0

00
0

100
1

01
10

01
10

11
1

00
0

00
0

1010

10
11

1

01
10

110

0
00

0

100
1

01
10

11
1

1 1 −1
q −q

o55 : Expression of class Table

i56 : (segreCls ∗ fugacityVector P)_0==a∗b

o56 = true

In greater generality, by allowing more multinumbers at the bottom, one can obtain various pull-
back / product rules; for example, here is one of the puzzles contributing to the product of pullbacks
from

Fℓ(1, 3, 4, 6)× Fℓ(2, 3, 5, 6)

to the full flag variety of C6:
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i57 : P=puzzle("312130","013022",Equivariant=>false); P#(random(#P))

o58 =

00
0

110

0
330

0
00

0
220

0
220

0

13
31

33
3

01
10

22(10)

10

22(10)

10

11
1

311
3

221

1
221

1

12
21

3(21)21

3
22

2

211
2

322
3

23
32

o58 : Puzzle

5. BACK TO ORDINARY SCHUBERT CALCULUS. Cotangent Schubert calculus can be thought of as a
deformation of ordinary Schubert calculus, in the sense that when one sends the equivariant parameter t
to zero or infinity (or in cohomology, h to infinity), the leading term of the various motivic classes is
simply the corresponding Schubert class (up to various dualities; i.e., one may obtain the class of the
structure sheaf of the Schubert variety, or of its dualising sheaf, or the ones obtained from those by the
automorphism that sends vector bundles to their duals). For ease of comparison, Schubert classes are also
implemented in CotangentSchubert:

i59 : (A,B,FF,I)=setupCotangent(1..3,Presentation=>Borel,Ktheory=>false,Equivariant=>false);

i60 : Gr=schubertClass I

o60 = (1 x2+ x1 x1 x2
1 x1x2 x2

1 x2)

o60 : Matrix B1
←− B6

For example, in cohomology, one may expand CSM classes into Schubert classes and check positivity
of coefficients, in the spirit of [1]:

i61 : CSM=chernClass I;

o61 : Matrix B1
←− B6

i62 : sub(inverse basisCoeffs Gr * basisCoeffs CSM, h=>-1)

o62 =



1 0 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
2 1 2 1 0 0
2 2 1 0 1 0
1 1 1 1 1 1


o62 : Matrix Q6

←− Q6

Note the use of basisCoeffs to expand an element of a finite-dimensional algebra on the basis of
the latter.
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One can also produce puzzles for ordinary Schubert calculus, i.e., the classic puzzles of [9] or their
extension to higher flag varieties and K -theory in [4; 5; 6; 10], using the option Generic=>false:

i63 : P=puzzle("021","102",Generic=>false); Table transpose apply(P,p->p,fugacity p)

o64 =

11
1

00
0

220

0

102
2(10)

22
2

100
1

11
1

021
(21)0

221

1

22
2

00
0

200
2

1 1
o64 : Expression of class Table

i65 : schubertClass "021" * schubertClass "102"==schubertClass "120" + schubertClass "201"

o65 = true

SUPPLEMENT. The online supplement contains version 0.63 of CotangentSchubert.
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