
Journal of Software for

Algebra and Geometry

SubalgebraBases in Macaulay2
MICHAEL BURR, OLIVER CLARKE, TIMOTHY DUFF,

JACKSON LEAMAN, NATHAN NICHOLS AND ELISE WALKER

vol 14 2024

JSAG 14 (2024), 97–109 The Journal of Software for
https://doi.org/10.2140/jsag.2024.14.97 Algebra and Geometry

SubalgebraBases in Macaulay2

MICHAEL BURR, OLIVER CLARKE, TIMOTHY DUFF,
JACKSON LEAMAN, NATHAN NICHOLS AND ELISE WALKER

ABSTRACT: We describe a recently revived version of the software package SubalgebraBases, which
is distributed in the Macaulay2 computer algebra system. The package allows the user to compute and
manipulate subalgebra bases — which are also known as SAGBI bases, or canonical bases, and form a
special class of Khovanskii bases — for polynomial rings and their quotients. We provide an overview of
the design and functionality of the SubalgebraBases package and demonstrate how the package works
on several motivating examples.

1. INTRODUCTION. In the field of computational algebraic geometry, the notion of a Gröbner basis
plays an instrumental role in solving many basic problems involving polynomial ideals. For computations
involving polynomial algebras, there is an analogous, but more subtle, notion of a subalgebra basis. This
notion was introduced independently by Kapur and Madlener [19] and Robbiano and Sweedler [25],
where the names canonical basis and SAGBI basis were also proposed. In more recent years, the name
Khovanskii basis has also been adopted [20] to describe a more general notion for valued algebras.

The SubalgebraBases package in Macaulay2 was initially developed around 1997 by Stillman and
Tsai [16]. In subsequent years, this package was inaccessible to most users due to internal changes
in Macaulay2, until version 1.18 was released in mid-2021. Our work before and after this rerelease
has focused on restoring the package’s original functionality, implementing additional algorithms, and
designing new data structures that facilitate working with larger examples and admit new features in the
package.

Other software packages exist for computing subalgebra bases. In recent work of Bruns and Conca [6],
they develop new methods for computing subalgebra bases and implement them in Singular [13]. They
also compare the performance of their package to existing software packages for computing subalgebra
bases. In particular, they compare their package to a previous version of our SubalgebraBases package
in Macaulay2, a preexisting package in Singular [13], and the package [3] in an upcoming release

Burr was partially supported by NSF grant DMS-1913119 and SIMONS collaboration grant #964285.
The work was started when Oliver Clarke was at the University of Bristol supported by the EPSRC Doctoral Training Partnership
award EP/N509619/1 and continued while being an overseas researcher under a postdoctoral fellowship of the Japan Society for
the Promotion of Science.
Duff acknowledges support from an NSF Mathematical Sciences Postdoctoral Research Fellowship (DMS-2103310).
MSC2020: 14-04, 68W30.
Keywords: SAGBI basis, Newton–Okounkov body, computer algebra, Macaulay2, symbolic computation.
SubalgebraBases version 1.3

© 2024 The Authors, under license to MSP (Mathematical Sciences Publishers).

https://doi.org/10.2140/jsag.2024.14-1
http://msp.org/jsag
https://doi.org/10.2140/jsag.2024.14.97
http://msp.org/jsag

98 Burr, Clarke, Duff, Leaman, Nichols and Walker :::: SubalgebraBases in Macaulay2

of CoCoA [1]. Certain computations may be faster, slower, or infeasible with different software packages.
As far as we are aware, the SubalgebraBases package is currently the only package that works with
quotients of polynomial rings.

Outline. In Section 2, we provide some background on subalgebra bases, with examples illustrating
the basic usage of our package. In Section 3A, we introduce the main data structures: the Subring
and SAGBIBasis types, which allow for resuming partial subalgebra basis computations, and describe
the various methods that they enable. Section 3B summarizes several options that may be useful for
computing subalgebra bases, and Section 3C covers some additional functionality. Finally, in Section 4,
we provide some more sophisticated examples of our package in action. The examples appearing in this
paper may be found in the file accompanyingCode.m2.

2. BACKGROUND AND BASIC COMPUTATIONS. For a field k, let R :=k[x1, . . . , xn] be a polynomial ring,
which we equip with a monomial order < . Unless otherwise specified, we follow the Macaulay2
convention for variable ordering, in which xn < · · · < x1. Consider a subalgebra A := k[fi | i ∈ I] ⊂ R,
where I is some index set. The initial algebra in<(A) is generated by the initial terms of all elements
in A:

in<(A) = k[in<(f) | f ∈ A].

Definition 2.1. A set {g j } j∈J ⊆ A is a subalgebra basis for A, with respect to the order < , if

in<(A) = k
[
{in<(g j)} j∈J

]
.

Just as Gröbner bases enable many computations with polynomial ideals, the knowledge of a finite
subalgebra basis allows us to answer several basic questions about a given algebra. A basic application is
algebra membership: if g1, . . . , gs ∈ A form a subalgebra basis for A, then any polynomial f ∈ R has an
associated normal form r ∈ R: for some polynomial q ∈ k[y1, . . . , ys],

f = q(g1, . . . , gs) + r, (1)

with the property that either none of the monomials of r are contained in in<(A), which implies r is
unique. The polynomials q and normal form r appearing in (1) can be computed using an analogue of
multivariate polynomial division known as the subduction algorithm. A description of the subduction
algorithm may be found in [25, Algorithm 1.5] or [27, Algorithm 11.1], for example.

Unlike Gröbner bases, the theory of subalgebras bases is not, strictly speaking, algorithmic. For
instance, as illustrated in Example 2.3, a finitely generated polynomial algebra need not have a finite
subalgebra basis with respect to a given term order. Nevertheless, there are many interesting examples
for which finite subalgebra bases exist and can be computed. We consider a classical and well-known
example from invariant theory.

Example 2.2. Let R = Q[x1, x2, x3] and consider the first three power-sums in R,

f1 = x1 + x2 + x3, f2 = x2
1 + x2

2 + x2
3 , f3 = x3

1 + x3
2 + x3

3 .

Burr, Clarke, Duff, Leaman, Nichols and Walker :::: SubalgebraBases in Macaulay2 99

The underlined monomials above are the initial terms with respect to the GRevLex order on R. The algebra
A = Q[f1, f2, f3] is the ring of invariants for the standard action of the symmetric group S3 ↷ R, induced
by σ · xi = xσ(i) for each i . A subalgebra basis for A consists of the three elementary symmetric
polynomials,

g1 = x1 + x2 + x3, g2 = x1x2 + x1x3 + x2x3, g3 = x1x2x3,

hence in<(A) = Q[x1, x1x2, x1x2x3]. We verify these assertions in Macaulay2 with the code below.

needsPackage "SubalgebraBases";
R = QQ[x_1..x_3];
A = subring {x_1+x_2+x_3, x_1^2+x_2^2+x_3^2, x_1^3+x_2^3+x_3^3};
SB = sagbi A
gens SB
isSAGBI SB

The three lines without semicolons produce the following output, informing us that SB is an instance
of the type SAGBIBasis, and that our computation terminated successfully:

i4 : SB = sagbi A
o4 = SAGBIBasis Computation Object with 3 generators, Limit = 20.
o4 : SAGBIBasis
i5 : gens SB
o5 = | x_1+x_2+x_3 x_1x_2+x_1x_3+x_2x_3 x_1x_2x_3 |

1 3
o5 : Matrix R <–- R
i6 : isSAGBI SB
o6 = true

To verify f = x4
1 + x4

2 + x4
3 ∈ A, we may compute q and r appearing in (1) as follows:

i5 : A = subring(gens SB, GeneratorSymbol => g);
i6 : f = x_1^4 + x_2^4 + x_3^4;
i7 : q = f // A

4 2 2
o7 = g - 4g g + 2g + 4g g

1 1 2 2 1 3
o7 : QQ[g ..g]

1 3
i8 : r = f % A
o8 = 0
o8 : R

For a given set of algebra generators { fi }i∈I , the binomial syzygies on the set of initial terms {in<(fi)}i∈I ,
also known as tête-a-têtes [25], provide an analogue of S-polynomials from Gröbner basis theory. The
binomial syzygies yα

− yβ generate the kernel of the monomial map

ϕin<(f) : k[yi | i ∈ I] 7→ k[in<(fi) | i ∈ I], yi 7→ in<(fi).

If we consider a presentation of the algebra A given by

ϕ f : k[yi | i ∈ I] 7→ A, yi 7→ fi ,

100 Burr, Clarke, Duff, Leaman, Nichols and Walker :::: SubalgebraBases in Macaulay2

then the initial term of the “S-polynomial” Sα,β = ϕ f (yα
− yβ) ∈ A is strictly less than in<

(
ϕ f (yα)

)
=

in<

(
ϕ f (yβ)

)
. Applying the subduction algorithm, we obtain a normal form rα,β ∈ A for Sα,β analogous

to r in (1). If every rα,β is zero, then the set { fi }i∈I forms a subalgebra basis. Otherwise, we enlarge the
set of generators to include all nonzero rα,β and restart the computation.

Example 2.3. Consider the algebra A = Q[x1 + x2, x1x2, x1x2
2] ⊆ Q[x1, x2], and let < be the GRevLex

order. The initial algebra in<(A) = Q[x1, x1x2, x1x2
2 , x1x3

2 , . . .] is not finitely generated. However, we
can still compute a partial subalgebra basis in Macaulay2 as follows:

i3 : R = QQ[x_1,x_2];
i4 : SB = subalgebraBasis({x_1+x_2, x_1*x_2, x_1*x_2^2}, Limit => 7)
o4 = | x_1+x_2 x_1x_2 x_1x_2^2 x_1x_2^3 x_1x_2^4 x_1x_2^5 x_1x_2^6 |

1 15
o4 : Matrix R <–- R

The option Limit (whose default value is 20) allows the procedure outlined above to terminate. The
final S-polynomial computed is

Sα,β = (x1 + x2)(x1x5
2) − (x1x2

2)(x1x4
2) = x1x6

2 ,

of degree 7. Using isSAGBI, we can check that the computation is incomplete.

i3 : isSAGBI SB
o3 = false

Remark 2.4. It is important to note that setting the Limit option does not guarantee that all subalgebra
basis generators up to that degree have been found. During the subalgebra basis computation, it is possible
for low-degree subalgebra basis generators to arise from high-degree S-polynomials. For example,
consider the following algebra with respect to the Lex term order with x > y:

S = Q[x2
+y, x2 y, x2 y2, x2 y10

+x] ⊆ Q[x, y].

We observe that, for each i ≥3, there is a degree i+3 S-polynomial which shows that x2 yi
∈ S. For instance,

we have x2 y3
= (x2

+y)(x2 y2)−(x2 y)2, and, by using x2 y3, we have x2 y4
= (x2

+y)(x2 y3)−(x2 y)(x2 y2),
and so on. In particular, we have x2 y10

∈ S. However, the lowest degree S-polynomial which shows that
x ∈ S is degree 12 and is given by x = (x2 y10

+ x)− (x2 y10). So, if we compute a subalgebra basis in
Macaulay2 with the Limit option set to any value less than 12, then the result will not include x among
the generators.

Various extensions of Definition 2.1 may be found in the literature. For instance, in [21], a Noetherian
integral domain with identity replaces the coefficient field k. Building upon this, the authors of [26]
extend the theory of subalgebra bases to quotients of these polynomial rings. Currently, our package can
be used to compute a (partial) subalgebra basis for a finitely-generated subalgebra A ⊆ R/I , where I is a
polynomial ideal. In this setting, the initial algebra in<(A) is defined to be a subalgebra of R/ in<(I);
see, for example, [20; 26]. We provide an example illustrating this functionality below.

Burr, Clarke, Duff, Leaman, Nichols and Walker :::: SubalgebraBases in Macaulay2 101

Example 2.5 [26, Example 2]. Fix a positive integer n. If we let

S = Q[a, b, c, d, u1, . . . , un, v1, . . . , vn]/(ad − bc − 1),

and A ⊆ S be the subalgebra generated by G = {aui + bvi , cui + dvi }1≤i≤n ⊆ Q, then

G ∪ {uiv j − u jvi }1≤i< j≤n

forms a subalgebra basis for A with respect to Lex. We verify this below when n = 3.

i1 : n = 3;
i2 : R = QQ[a,b,c,d,u_1..u_n, v_1..v_n, MonomialOrder => Lex];
i3 : S = R / ideal(a*d - b*c - 1);
i4 : G = flatten for i from 1 to n list {a*u_i + b*v_i, c*u_i + d*v_i};
i5 : SB = subalgebraBasis G
o5 = | cu_3+dv_3 cu_2+dv_2 cu_1+dv_1 au_3+bv_3 au_2+bv_2 au_1+bv_1 u_2v_3-u_3v_2

u_1v_3-u_3v_1 u_1v_2-u_2v_1 |
1 9

o5 : Matrix S <–- S
i6 : isSAGBI SB
o6 = true

3. DESIGN AND FUNCTIONALITY.

3A. Data structures and resuming computations. We provide two main data structures for working with
subalgebras and subalgebra bases: the Subring and SAGBIBasis types. An instance of the type Subring,
which we call a subring, represents a subalgebra A of either a polynomial ring or a quotient ring. Subrings
are designed to behave similarly to the core data type Ideal. The other main type SAGBIBasis captures
the state of a subalgebra basis computation, making it similar to a GroebnerBasis computation object.
In particular, this type is designed to keep track of the already-computed elements of the subalgebra basis,
and we refer to an instance of the type SAGBIBasis as a computation object.

A subring A is a light-weight object that keeps track of the generators of the algebra A, and may be used
as an argument for the main functions that compute subalgebra bases; subalgebraBasis and sagbi. A
subring also keeps track of the furthest-advanced computation object that has been constructed during
a subalgebra basis computation. To access or create a computation object, we use the function sagbi.
The generators associated with a computation object are the currently-known elements of a (partial)
subalgebra basis. Applying the method function isSAGBI to a subring checks whether its generators are
a subalgebra basis, exploiting any previous computations. On the other hand, applying isSAGBI to a
computation object will check if the currently-known (partial) subalgebra basis is a complete subalgebra
basis for the original algebra.

Algebra generators associated with an instance of Subring or SAGBIBasis can be recovered using
gens. For example, if S is a subring and isSAGBI sagbi S returns true, then a complete subalgebra
basis for S has been computed. In this case, the subalgebra basis may be accessed with gens sagbi S,
or equivalently subalgebraBasis S. Note that this is different to performing isSAGBI S, which, if
true, means that gens S is a subalgebra basis.

102 Burr, Clarke, Duff, Leaman, Nichols and Walker :::: SubalgebraBases in Macaulay2

Example 3.1. Let A = Q[x + y, x6, y6
] ⊆ Q[x, y]. The following code computes a partial GRevLex

subalgebra basis:

i1 : R = QQ[x,y];
i2 : A = subring {x+y, x^6, y^6}
o2 = subring of R with 3 generators
o2 : Subring
i3 : SB = sagbi(A, Limit => 5)
o3 = Partial SAGBIBasis Computation Object with 1 generators, Limit = 5.
o3 : SAGBIBasis
i4 : isSAGBI SB
o4 = false

The computation object SB above records the state of a subalgebra basis computation accounting for
binomial syzygies of degree up to 5. This computation does not compute the S-polynomial (x + y)6

−(x6),
whose initial term is needed to generate the initial algebra. Since the subring A has recorded the progress
of the last computation, we may resume computation with a higher value for Limit.

i5 : SB' = sagbi(A, Limit => 100)
o5 = SAGBIBasis Computation Object with 3 generators, Limit = 100.
o5 : SAGBIBasis
i6 : isSAGBI SB'
o6 = true
i7 : gens SB'
o7 = | x+y y6 x5y+5/2x4y2+10/3x3y3+5/2x2y4+xy5 |

1 3
o7 : Matrix R <–- R

Remark 3.2. Subring and SAGBIBasis are both immutable types. However, a Subring keeps track
of the progress of computations by caching partial results. Both Subring and SAGBIBasis have
generators and ambientRing values, which can be accessed by their respective methods. However,
the SAGBIBasis type has many additional keys reserved for internal use. One key of particular interest is
SAGBIdata, which stores user-readable information such as the original generators of the subring, the
partially computed subalgebra basis, and whether the subalgebra basis computation is complete.

3B. Computation options. When calling sagbi or subalgebraBasis, several options for fine-tuning
computations may be used. These options typically carry over when resuming computations. Two
exceptions are the options Limit, which is always taken to be the specified or default value, and
PrintLevel, which is described below and controls the verbosity of the computation. However, by using
the option RenewOptions, the options may be modified. The option Recompute is used to completely
restart a subalgebra basis computation. We catalog several other options below, which may be useful in
various settings:

PrintLevel: This option takes a nonnegative integer and controls the verbosity of the function. For
successively higher values, the function will print more data related to the computation.

Burr, Clarke, Duff, Leaman, Nichols and Walker :::: SubalgebraBases in Macaulay2 103

SubductionMethod: This option controls whether subduction is performed by top-level code ''Top''
or by engine-level compiled code ''Engine''. The engine-level code can be faster for computations
that require many subduction steps. One advantage of ''Top'' is that one can view intermediate results
(e.g., from subduction) if a high enough PrintLevel is used.

Strategy: This option controls how the computation object is modified after new generators are added
to the subalgebra basis. There are two primary strategies: ''DegreeByDegree'' and ''Incremental''.
The strategy ''DegreeByDegree'' computes a partial Gröbner basis for the reduction ideal, whereas the
strategy ''Incremental'' computes a full Gröbner basis. However, the strategy ''DegreeByDegree''
computes the partial Gröbner basis from scratch, whereas the strategy ''Incremental'' makes use
of the previously computed full Gröbner basis to speed up the computation of the next full Gröbner
basis. Both strategies have strengths and weaknesses: ''DegreeByDegree'' is suited to computations
where a large number of new generators are added at a particular degree, and ''Incremental'' is well-
suited to computations where very few generators are added at each degree. The default option is the
strategy ''Master'' which heuristically blends between the ''DegreeByDegree'' and ''Incremental''
strategies in order to gain performance benefits from each method.

AutoSubduceOnPartialCompletion: This option controls whether the subalgebra basis generators
are subducted against each other. More precisely, if no new subalgebra basis generators are found at a
particular degree, then the current subalgebra basis generators are subducted against each other. This
produces a reduced set of generators. We intend for this option to be used when the supplied generators
are suspected to be a subalgebra basis; reducing the number of generators speeds up the computation of
the subsequent binomial syzygies.

3C. Other functionality. The function subduction takes a collection of polynomials g1, . . . , gs and
subducts a given polynomial f ∈ R (or matrix of polynomials) against them. When g1, . . . , gs are encoded
using a subring A or computation object, then g1, . . . , gs are taken to be the generators of S or (partial)
subalgebra basis generators of A, respectively.

Example 3.3. Fix the polynomial ring Q[x, y], and let G = {x2
+ x, y2

+ y}. We subduct the polynomial
f = x2 y2

+ x3 y against G with respect to GRevLex as follows:

i1 : R = QQ[x,y];
i2 : G = {x^2 + x, y^2 + 1};
i3 : subduction(G, x^2*y^2 + x^3*y)

3 2
o3 = x y - x*y
o3 : R

As in Example 2.2, we may compute normal forms using the operator % . Analogous to its use
with ideals and Gröbner bases, the syntax f % S works for S of class either Subring or SAGBIBasis.
If no complete subalgebra basis for S of class Subring is known, then f % S falls back on an extrinsic
method using Gröbner bases to compute the normal form. On the other hand, if either a complete

104 Burr, Clarke, Duff, Leaman, Nichols and Walker :::: SubalgebraBases in Macaulay2

subalgebra basis has been computed for S or S is of class SAGBIBasis, then f % S subducts f against the
(partial) subalgebra basis associated with S.

Example 3.4. Consider the subalgebra A = C[x + y, xy, xy2
] in Example 2.3. Let

f = xy3
+ xy4

+ xy5
+ xy6

∈ A.

We illustrate the different behaviors of % in the code below.

i1 : R = QQ[x,y];
i2 : A = subring {x+y, x*y, x*y^2};
i3 : SB = sagbi(A, Limit => 5);
i4 : f = x*y^3 + x*y^4 + x*y^5 + x*y^6;
i5 : f % A
o5 = 0
o5 : R
i6 : f % SB

6 5
o6 = x*y + x*y
o6 : R
i7 : SB = sagbi(A, Limit => 7);
i8 : f % SB
o8 = 0
o8 : R

The generators associated with SB, namely

{x + y, xy, xy2, xy3, xy4, xy5, xy6
},

form a partial subalgebra basis for A. To subduct f against these generators, we may use f % SB. However,
the generators of SB do not form a complete subalgebra basis for A, so the operation f % A falls back on
the extrinsic method.

The function groebnerMembershipTest is an extrinsic membership test for elements of a subring.
It can potentially be used in cases where a subring has an intractable subalgebra basis. If a sufficiently
large partial subalgebra basis has already been computed, then it is recommended to use the operator %
or the function subduction.

Example 3.5. Following from Example 3.4, we test the membership of f in A as follows:

i9 : groebnerMembershipTest(f, A)
o9 = true

The function intersect computes the intersection of two subrings using an analogous method
to that of intersecting ideals via Gröbner bases [10]. The output of the function is an instance of
IntersectedSubring, which is a type that inherits from Subring. To check whether the output is
guaranteed to be equal to the full intersection of the subrings, we use the function isFullIntersection.
If the function isFullIntersection returns true then the generators of the intersected subring are a
subalgebra basis for the intersection.

Burr, Clarke, Duff, Leaman, Nichols and Walker :::: SubalgebraBases in Macaulay2 105

Example 3.6. Consider the subrings A1 = Q[x2, xy] and A2 = Q[x, y2
] of the quotient ring S =

Q[x, y]/⟨x3
+ xy2

+ y3
⟩. We compute the intersection A1 ∩ A2 as follows:

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);
i3 : S = R/I;
i4 : A1 = subring {x^2, x*y};
i5 : A2 = subring {x, y^2};
i6 : A = intersect(A1, A2)
o6 = QQ[p_0..p_5], subring of S
o6 : IntersectedSubring
i7 : gens A
o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

1 6
o7 : Matrix S <–- S
i8 : isFullIntersection A
o8 = true

Since isFullIntersection A returns true, the generators of the intersected subring A are in fact
guaranteed to generate the entire ring A1 ∩ A2. Moreover the generators are a subalgebra basis for the
intersection with respect to the monomial order GRevLex.

If isFullIntersection A returns false for an intersected subring A, then the generators of A may
or may not generate the entire intersection. When this occurs, we suggest experimenting with options of
intersect such as Limit or SAGBILimitType.

4. EXAMPLES. Subalgebra bases have a number of applications. A short sample of the literature,
including several recent papers which use the SubalgebraBases package, follows: [2; 4; 5; 11; 12; 15;
17; 18; 22; 26; 28].

Example 4.1. Following [11, Section 2], we describe the adjoint action of SO(3) on its Lie algebra and
its ring of invariants. We write

(R, t) ∈ SO(3)⋉R3
= SE(3)

for an element of the Special Euclidean group of rigid motions of R3. To describe the adjoint action of
SE(3) on its Lie algebra se(3), it is convenient to define, for each t = (t1, t2, t3)T

∈ R3, a skew-symmetric
matrix

[t]× =

 0 −t3 t2
t3 0 −t1

−t2 t1 0

.

We identify elements of se(3) with their Plücker coordinates (w, v) ∈ se(3). The adjoint action of SE(3)

on se(3) is given by

(R, t) ·

(
w

v

)
=

(
R 0

[t]× R R

)(
w

v

)
=

(
Rw

[t]× Rw + Rv

)
. (2)

106 Burr, Clarke, Duff, Leaman, Nichols and Walker :::: SubalgebraBases in Macaulay2

Consider the polynomial algebra A ⊆ Q[ti , wi , vi]i∈{1,2,3} generated by the entries of the matrix in (2)
with the rotation R set to be the 3 × 3 identity matrix. Explicitly, the subring is given by

A = Q[w1, w2, w3, −t3w2+t2w3+v1, t3w1−t1w3+v2, −t2w1+t1w2+v3].

The ring of invariants of se(3) under the action of the translational subgroup R3
◁ SE(3) is given by the

intersection A ∩ Q[wi , vi]i∈{1,2,3}. We compute this intersection using a monomial order that eliminates
the variables t1, t2, t3.

i1 : R = QQ[t_1..t_3, w_1..w_3, v_1..v_3, MonomialOrder =>{Eliminate 3, Lex}];
i2 : SB = sagbi {w_1, w_2, w_3, -t_3*w_2+t_2*w_3+v_1, t_3*w_1-t_1*w_3+v_2,

-t_2*w_1+t_1*w_2+v_3};
i3 : isSAGBI SB
o3 = true
i4 : SB' = selectInSubring (1, gens SB)
o4 = | w_3 w_2 w_1 w_1v_1+w_2v_2+w_3v_3 |

1 4
o4 : Matrix R <–- R

It follows from this computation that the algebra of translational invariants is simply Q[w1, w2, w3, w·v],
which confirms the computation in [11, Section 5.1]. The action above naturally extends to an ac-
tion on (w1, v1, . . . ,wn, vn) ∈ se(3)n , called a multiscrew. In the file accompanyingCode.m2, calling
screwsExample n will attempt to compute a subalgebra basis for the translational invariants for any
number n. In particular, it is straightforward to verify the computation when n = 2, which is used in [11,
Section 5.2] as a step in computing full invariant ring.

Besides invariant-theoretic applications such as Examples 2.2 and 4.1, computing subalgebra bases is
also a key operation for constructing toric degenerations. A toric degeneration is a particular type of flat
family whose generic fibers are some variety of interest and whose special fiber is a toric variety. Various
properties of the variety of interest that are preserved under flat limits (e.g., dimension and degree) can
then be studied via toric degenerations by passing to the toric fiber. Newton–Okounkov bodies are a
closely-related construction, whose applications include counting the number of solutions to classes of
polynomial systems; see, e.g., [5; 7; 14; 24]. Using subalgebra bases, toric degenerations have been
constructed for many families of varieties, including Grassmannians, flag varieties, and Cox–Nagata
rings [4; 9; 23; 28]. We conclude with two representative examples.

Example 4.2. Consider the matrix

A =

1 0 0 1 −1 0
0 1 0 −1 0 1
0 0 1 0 1 −1

,

and let G = ker(A). The columns of A are six points in P2, which are the points of intersection of four
generic lines. Following [28, Example 2.6], the Cox–Nagata ring is given by

RG
= Q[x1, . . . , x6, L124, L135, L236, L456, M16, M25, M34] ⊆ Q[x1, . . . , x6, y1, . . . , y6],

Burr, Clarke, Duff, Leaman, Nichols and Walker :::: SubalgebraBases in Macaulay2 107

where the polynomials L• and M• are described below. We verify that the generators indeed form a
subalgebra basis as follows:

i1 : R = QQ[x_1..x_6, y_1..y_6];
i2 : L124 = y_3*x_5*x_6 + x_3*y_5*x_6 - x_3*x_5*y_6;
i3 : L135 = y_2*x_4*x_6 - x_2*y_4*x_6 + x_2*x_4*y_6;
i4 : L236 = y_1*x_4*x_5 + x_1*y_4*x_5 - x_1*x_4*y_5;
i5 : L456 = y_1*x_2*x_3 + x_1*y_2*x_3 + x_1*x_2*y_3;
i6 : M16 = y_2*x_3*x_4*x_5 + x_2*y_3*x_4*x_5 - x_2*x_3*y_4*x_5 + x_2*x_3*x_4*y_5;
i7 : M25 = y_1*x_3*x_4*x_6 + x_1*y_3*x_4*x_6 + x_1*x_3*y_4*x_6 - x_1*x_3*x_4*y_6;
i8 : M34 = y_1*x_2*x_5*x_6 + x_1*y_2*x_5*x_6 - x_1*x_2*y_5*x_6 + x_1*x_2*x_5*y_6;
i9 : RG = subring {x_1..x_6, L124, L135, L236, L456, M16, M25, M34};
i10 : isSAGBI RG
o10 = true
i11 : leadTerm gens RG
o11 = | x_1 x_2 x_3 x_4 x_5 x_6 x_5x_6y_3 x_4x_6y_2 x_4x_5y_1 x_2x_3y_1 x_3x_4x_5y_2

x_3x_4x_6y_1 x_2x_5x_6y_1 |

The special fiber of the toric degeneration from this construction is the algebra generated by the above
monomials.

Example 4.3. Let X = (xi, j) be a 3 × 6 matrix of variables and R = Q[xi, j] be a ring in those variables.
Under the Plücker embedding, the coordinate ring of the Grassmannian Gr(3, 6) is generated by the
maximal minors of X . The maximal minors do not form a subalgebra basis with respect with respect to a
weight vector associated to a hexagonal matching field [8; 9; 23].

i1 : R = QQ[x_(1,1)..x_(3,6), MonomialOrder => {Weights => {0,0,0,0,0,0,
0,15,3,12,9,6,0,7,14,21,28,35}}];

i2 : X = transpose genericMatrix (R, 6, 3);
3 6

o2 : Matrix R <–- R
i3 : A = subring for s in subsets (6, 3) list det X_s;
i4 : isSAGBI A
o4 = false
i5 : SB = sagbi(A, Limit => 100, SubductionMethod => ''Engine'')
o5 = Partial SAGBIBasis Computation Object with 21 generators, Limit = 100. o5 : SAGBIBasis
i6 : isSAGBI SB
o6 = true

Since isSAGBI A is false, the 20 maximal minors that generate A do not form a subalgebra basis,
and a twenty-first generator is required for a complete subalgebra basis.

ACKNOWLEDGEMENTS. We wish to thank the organizers of two virtual Macaulay2 workshops held
in 2020 through Cleveland State University and the University of Warwick. These workshops provided
first introductions for several of the authors. We also thank several working group participants for their
help during early stages of redeveloping this package. We would like to thank Aldo Conca for pointing

108 Burr, Clarke, Duff, Leaman, Nichols and Walker :::: SubalgebraBases in Macaulay2

out some bugs in the previous versions of our package, and the referees for their suggestions which greatly
improved both this paper and the associated software package.

This article has been coauthored by an employee of National Technology & Engineering Solutions
of Sandia, LLC under contract no. DE-NA0003525 with the U.S. Department of Energy (DOE). The
employee co-owns right, title and interest in and to the article and is responsible for its contents. The
United States Government retains and the publisher, by accepting the article for publication, acknowledges
that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this article or allow others to do so, for United States
Government purposes. The DOE will provide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan .

SUPPLEMENT. The online supplement contains version 1.3 of SubalgebraBases.

REFERENCES.
[1] J. Abbott, A. M. Bigatti, and L. Robbiano, “CoCoA, a system for doing computations in commutative algebra”, available at

http://cocoa.dima.unige.it.

[2] M. Belotti and M. Panizzut, “Discrete geometry of Cox rings of blow-ups of P3”, preprint, 2022. arXiv 2208.05258

[3] A. M. Bigatti and L. Robbiano, “Saturations of subalgebras, SAGBI bases, and U-invariants”, available at https://
www.dima.unige.it/~bigatti/data/ComputingSaturationsOfSubalgebras/. Zbl

[4] L. Bossinger, S. Lamboglia, K. Mincheva, and F. Mohammadi, “Computing toric degenerations of flag varieties”, pp.
247–281 in Combinatorial algebraic geometry, edited by G. G. Smith and B. Sturmfels, Fields Inst. Commun. 80, Fields
Inst. Res. Math. Sci., Toronto, ON, 2017. MR Zbl

[5] P. Breiding, M. Michałek, L. Monin, and S. Telen, “The algebraic degree of coupled oscillators”, preprint, 2022. arXiv
2208.08179

[6] W. Bruns and A. Conca, “SAGBI combinatorics of maximal minors and a SAGBI algorithm”, J. Symbolic Comput. 120
(2024), art. id. 102237. MR Zbl

[7] M. Burr, F. Sottile, and E. Walker, “Numerical homotopies from Khovanskii bases”, Math. Comp. 92:343 (2023), 2333–2353.
MR Zbl

[8] O. Clarke, “Matching fields in Macaulay2”, preprint, 2023. Zbl arXiv 2306.09693

[9] O. Clarke, F. Mohammadi, and F. Zaffalon, “Toric degenerations of partial flag varieties and combinatorial mutations of
matching field polytopes”, J. Algebra 638 (2024), 90–128. MR Zbl

[10] D. A. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms: An introduction to computational algebraic geometry
and commutative algebra, 4th ed., Springer, Cham, 2015. MR Zbl

[11] D. Crook and P. Donelan, “Polynomial invariants and SAGBI bases for multi-screws”, preprint, 2020. Zbl arXiv
2001.05417v2

[12] J. P. Dalbec, “Straightening Euclidean invariants”, Ann. Math. Artificial Intelligence 13:1–2 (1995), 97–108. MR Zbl

[13] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, “SINGULAR 4-3-0, a computer algebra system for polynomial
computations”, available at http://www.singular.uni-kl.de.

[14] T. Duff, N. Hein, and F. Sottile, “Certification for polynomial systems via square subsystems”, J. Symbolic Comput. 109
(2022), 367–385. MR Zbl

[15] M. Göbel, “Visualizing properties of comprehensive SAGBI bases — two examples”, Appl. Algebra Engrg. Comm. Comput.
12:5 (2001), 429–435. MR Zbl

[16] D. R. Grayson and M. E. Stillman, “Macaulay2, a software system for research in algebraic geometry”, available at https://
macaulay2.com/. Zbl

https://www.energy.gov/downloads/doe-public-access-plan
http://msp.org/jsag/2024/14-1/jsag-v14-n1-x11-SAGBIBases.zip
http://cocoa.dima.unige.it
http://msp.org/idx/arx/2208.05258
https://www.dima.unige.it/~bigatti/data/ComputingSaturationsOfSubalgebras/
http://msp.org/idx/zbl/1472.13044
http://msp.org/idx/mr/3752503
http://msp.org/idx/zbl/1390.14194
http://msp.org/idx/arx/2208.08179
http://msp.org/idx/arx/2208.08179
http://dx.doi.org/10.1016/j.jsc.2023.102237
http://msp.org/idx/mr/4610820
http://msp.org/idx/zbl/1295.13010
http://dx.doi.org/10.1090/mcom/3689
http://msp.org/idx/mr/4593218
http://msp.org/idx/zbl/1519.14047
http://msp.org/idx/zbl/1467.14116
http://msp.org/idx/arx/2306.09693
http://dx.doi.org/10.1016/j.jalgebra.2023.09.026
http://dx.doi.org/10.1016/j.jalgebra.2023.09.026
http://msp.org/idx/mr/4654752
http://msp.org/idx/zbl/1529.14028
http://dx.doi.org/10.1007/978-3-319-16721-3
http://dx.doi.org/10.1007/978-3-319-16721-3
http://msp.org/idx/mr/3330490
http://msp.org/idx/zbl/0861.13012
http://msp.org/idx/zbl/0928.14038
http://msp.org/idx/arx/2001.05417v2
http://msp.org/idx/arx/2001.05417v2
http://dx.doi.org/10.1007/BF01531325
http://msp.org/idx/mr/1327797
http://msp.org/idx/zbl/0855.68094
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
http://dx.doi.org/10.1016/j.jsc.2020.07.010
http://msp.org/idx/mr/4316045
http://msp.org/idx/zbl/1476.14103
http://dx.doi.org/10.1007/s002000100084
http://msp.org/idx/mr/1864612
http://msp.org/idx/zbl/0992.13006
https://macaulay2.com/
http://msp.org/idx/zbl/0362.18015

Burr, Clarke, Duff, Leaman, Nichols and Walker :::: SubalgebraBases in Macaulay2 109

[17] M. Gross, P. Hacking, S. Keel, and M. Kontsevich, “Canonical bases for cluster algebras”, J. Amer. Math. Soc. 31:2 (2018),
497–608. MR Zbl

[18] B. Huber, F. Sottile, and B. Sturmfels, “Numerical Schubert calculus”, J. Symbolic Comput. 26:6 (1998), 767–788. MR
Zbl

[19] D. Kapur and K. Madlener, “A completion procedure for computing a canonical basis for a k-subalgebra”, pp. 1–11 in
Computers and mathematics (Cambridge, MA, 1989), edited by E. Kaltofen and S. M. Watt, Springer, New York, 1989.
MR Zbl

[20] K. Kaveh and C. Manon, “Khovanskii bases, higher rank valuations, and tropical geometry”, SIAM J. Appl. Algebra Geom.
3:2 (2019), 292–336. MR Zbl

[21] J. L. Miller, “Analogs of Gröbner bases in polynomial rings over a ring”, J. Symbolic Comput. 21:2 (1996), 139–153. MR
Zbl

[22] P. Misra and S. Sullivant, “Gaussian graphical models with toric vanishing ideals”, Ann. Inst. Statist. Math. 73:4 (2021),
757–785. MR Zbl

[23] F. Mohammadi and K. Shaw, “Toric degenerations of Grassmannians from matching fields”, Algebr. Comb. 2:6 (2019),
1109–1124. MR Zbl

[24] N. K. Obatake and E. Walker, “Newton–Okounkov bodies of chemical reaction systems”, Adv. in Appl. Math. 155 (2024),
art. id. 102672. MR Zbl

[25] L. Robbiano and M. Sweedler, “Subalgebra bases”, pp. 61–87 in Commutative algebra (Salvador, Brazil, 1988), Lecture
Notes in Mathematics 1430, Springer, Heidelberg, 1990. Zbl

[26] M. Stillman and H. Tsai, “Using SAGBI bases to compute invariants: Effective methods in algebraic geometry”, J. Pure
Appl. Algebra 139:1-3 (1999), 285–302. MR Zbl

[27] B. Sturmfels, Gröbner bases and convex polytopes, University Lecture Series 8, American Mathematical Society, Providence,
RI, 1996. MR Zbl

[28] B. Sturmfels and Z. Xu, “Sagbi bases of Cox–Nagata rings”, J. Eur. Math. Soc. 12:2 (2010), 429–459. MR Zbl

RECEIVED: 23 Feb 2023 REVISED: 12 Mar 2024 ACCEPTED: 18 Mar 2024

MICHAEL BURR:

burr2@clemson.edu
Clemson University, Clemson, SC, United States

OLIVER CLARKE:

oliver.clarke@ed.ac.uk
University of Edinburgh, Edinburgh, United Kingdom

TIMOTHY DUFF:

timduff@uw.edu
Department of Mathematics, University of Washington, Seattle, WA, United States

JACKSON LEAMAN:

jleaman@g.clemson.edu
Clemson University, Clemson, SC, United States

NATHAN NICHOLS:

nathannichols454@gmail.com
Department of Mathematics and Statistical Sciences, Marquette University, Milwaukee, WI, United States

ELISE WALKER:

eawalke@sandia.gov
Center for Computing Research, Sandia National Laboratories, Albuquerque, NM, United States

msp

http://dx.doi.org/10.1090/jams/890
http://msp.org/idx/mr/3758151
http://msp.org/idx/zbl/1446.13015
http://dx.doi.org/10.1006/jsco.1998.0239
http://msp.org/idx/mr/1662035
http://msp.org/idx/zbl/1064.14508
http://msp.org/idx/mr/1005954
http://msp.org/idx/zbl/0692.13001
http://dx.doi.org/10.1137/17M1160148
http://msp.org/idx/mr/3949692
http://msp.org/idx/zbl/1420.14146
http://dx.doi.org/10.1006/jsco.1996.0006
http://msp.org/idx/mr/1394601
http://msp.org/idx/zbl/0916.13012
http://dx.doi.org/10.1007/s10463-020-00765-0
http://msp.org/idx/mr/4274248
http://msp.org/idx/zbl/1457.92125
http://dx.doi.org/10.5802/alco.77
http://msp.org/idx/mr/4049839
http://msp.org/idx/zbl/1504.14089
http://dx.doi.org/10.1016/j.aam.2024.102672
http://msp.org/idx/mr/4700058
http://msp.org/idx/zbl/07804848
http://dx.doi.org/10.1007/BFb0085532
http://msp.org/idx/zbl/0725.13013
http://dx.doi.org/10.1016/S0022-4049(99)00015-8
http://msp.org/idx/mr/1700547
http://msp.org/idx/zbl/0928.14038
http://dx.doi.org/10.1090/ulect/008
http://msp.org/idx/mr/1363949
http://msp.org/idx/zbl/0870.13009
http://dx.doi.org/10.4171/JEMS/204
http://msp.org/idx/mr/2608947
http://msp.org/idx/zbl/1202.14053
mailto:burr2@clemson.edu
mailto:oliver.clarke@ed.ac.uk
mailto:timduff@uw.edu
mailto:jleaman@g.clemson.edu
mailto:nathannichols454@gmail.com
mailto:eawalke@sandia.gov
http://msp.org

	1. Introduction
	2. Background and basic computations
	3. Design and functionality
	3A. Data structures and resuming computations
	3B. Computation options
	3C. Other functionality

	4. Examples

