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ABSTRACT: In the last decade, developments in tropical geometry have provided a number of uses
directly applicable to problems in statistical learning. The TML package is the first R package which
contains a comprehensive set of tools and methods used for basic computations related to tropical
convexity, visualization of tropically convex sets, as well as supervised and unsupervised learning models
using the tropical metric under the max-plus algebra over the tropical projective torus. Primarily, the TML
package employs a Hit-and-Run Markov chain Monte Carlo sampler in conjunction with the tropical
metric as its main tool for statistical inference. In addition to basic computation and various applications
of the tropical HAR sampler, we also focus on several supervised and unsupervised methods incorporated
in the TML package including tropical principal component analysis, tropical logistic regression and
tropical kernel density estimation.

1. INTRODUCTION. Tropical geometry is a relatively young field which involves examining the char-
acteristics of geometric structures defined by the solution set of a series of a polynomial equations in
max-plus, or tropical, algebra. Alternatively, tropical geometry can be described as the piecewise-linear
analogue of classical geometry, as discussed in [9; 21]. In general, tropical geometry focuses on structures
existing in the tropical projective torus defined as the quotient space Re/R1 which is isomorphic to Re−1.
To date researchers have focused much attention on the theoretical underpinnings of tropical algebra and
geometry; see [9; 13; 21; 30] for a thorough treatment.

As with any mathematical field, it is natural to examine how the ideas of tropical geometry can be
used to solve various statistical problems. However, while methods are currently being developed for
applied problems associated with tropical geometry, few comprehensive resources exist to handle such
problems. In this article we attempt to fill this need by introducing the TML package [5], which provides
a number of tropical statistical methods developed for use on problems associated with tropical geometry
in the R programming language [27]. The TML package can be obtained through the Comprehensive R
Archive Network (CRAN) at https://cran.r-project.org/web/packages/TML/index.html.

1A. Data science and tropical geometry. Statistical tools in data science are often classified in terms of
supervised and unsupervised learning. In the case of supervised learning, data observations possess a
dependent variable in the form of a label or quantity of interest which is used to train models in order to
predict outcomes or classify unseen data based on those labels. Unsupervised learning is descriptive in
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nature, where data observations possess no predetermined response variable. The goal in unsupervised
learning is to better understand the relationships between data observations or intuit the underlying
structure of the data. A thorough yet concise summary with a number of open problems related to
supervised and unsupervised learning as applied to tropical geometry can be found in [44]. We leverage
these terms in this article as well for methods like tropical logistic regression (supervised learning),
tropical principal component analysis (unsupervised learning), and tropical kernel density estimation
(unsupervised learning). We also give significant focus to Markov chain Monte Carlo methods that do not
necessarily fall exclusively in one class of machine learning but can be incorporated into supervised and
unsupervised techniques or standalone for statistical inference computations.

While the research to develop tropical geometric statistical tools is nascent, there have been significant
developments in a number of areas. One powerful tool in Euclidean space is the Markov chain Monte
Carlo (MCMC) sampler, which combines Monte Carlo sampling with Markov chains. Instead of Monte
Carlo sampling according to a specific distribution, MCMC methods sample points by building a Markov
chain that converges to a desired target distribution [31]. The first Markov chain Monte Carlo Hit-and-Run
(HAR) sampling technique for use in the tropical projective torus was introduced in [48]. This method
samples points uniformly from polytropes, which are tropical polytopes that are classically convex, as
well as full-dimensional elements of any generic tropical simplex (see Definition 1.27). The authors also
show how to sample points over the space of ultrametrics using line segments [48]. This method was
extended to show how to sample points about a center of mass with a given dispersion parameter in a
method akin to Gaussian sampling in Euclidean space in [3]. These aforementioned HAR samplers feature
prominently in several aspects of statistical learning as they have been applied in a number of settings.
The HAR methods were employed in [47] to execute nonparametric density estimation techniques over
the space of ultrametrics which is known to be tropically convex [36]. How to employ HAR methods
to estimate the volume of a tropical polytope was shown in [6]. Being able to sample points this way
paves the way for approaching statistical problems ranging from integral estimation to optimization in the
setting of the tropical projective torus.

In supervised learning, Akian, et al. define in [1] the idea of tropical linear regression as the best
approximation of a set of data observations using a tropical hyperplane. They then show the relationship
of the tropical hyperplane approximation with mean payoff games. Supervised classification method
called tropical logistic regression for use over the space of rooted and equidistant phylogenetic trees was
introduced in [2]. In this case, phylogenetic trees are defined in terms of ultrametrics and are classified
into one of two species trees (see Section 1D). Tropical analogues of other supervised methods exist such
as tropical support vector machines [10]. Specifically, Gartner and Jaggi define in [10] the notion of
the tropical support vector machine (SVM) as a binary classification mechanism. Extensions of tropical
SVMs as classifiers are exhibited in both [38] and [46].

Research into tropical unsupervised methods is also burgeoning. The tropical analogue of principal
component analysis (PCA), where the n-th order principal component can be represented as the best
fit tropical polytope for a set of observations that are ultrametrics is introduced in [45]. It should be
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noted that tropical PCA methods have been adapted to use HAR methods to find the best fit polytope.
The tropical analogue of k-means and hierarchical clustering over the tropical projective torus as well as
focusing on the space of ultrametrics was introduced in [4].

1B. The TML package. Availability of software tools in tropical geometry is plentiful when it comes to
computer algebra. Singular is a computer algebra system for polynomial computations with emphasis
on commutative algebra, algebraic geometry, and singularity theory which includes functionality for
use in tropical geometry [33]. However, while Singular provides functionality for applications related
to tropical geometry, there is no functionality for specific statistical methods. Similarly, polymake is
a software used for research in polyhedral geometry which includes tropical geometry [12]. As with
Singular, polymake focuses on the geometric and combinatorial analysis of polytopes. Additionally,
polymake provides nice visualization options for tropical polytopes. The Open Source Computer Algebra
Research (OSCAR) project provides an extensive corpus of tools by combining the functionality of
several software environments including both Singular and polymake for use in the Julia programming
language [24].

While there exists a significant number of software programs that include a focus on tropical geometry
as it relates to computer algebra, few resources exist specifically for statistical computation. And though
the algstat package for the R programming language specifically focuses on algebra statistics, it provides
no tools for the tropical case [16]. In fact, there is no comprehensive suite of tropical statistical tools
available. Nonetheless, some functionality exists in a piecemeal manner in the R programming language.
Supervised and unsupervised learning methods are available in the RTropical package which makes
use of tropical SVMs as well as tropical PCA over the space of phylogenetic trees [39]. Basic tropical
arithmetic functions are available in the tropical package [15].

In this article we introduce the TML which serves to provide a comprehensive suite of statistical
tools applicable to tropical geometry for use in the R programming language. The package consists of
functions and methods ranging from basic tropical arithmetic and linear algebra functions to more complex
supervised and unsupervised tropical machine learning techniques. The TML package is distributed on
the Comprehensive R Archive Network (CRAN) with version control managed through Git on GitHub
(https://github.com/barnhilldave/TML).

The organization of this article is as follows. In Section 1C we offer the essential elements of tropical
geometry that provide the background for the methods introduced in the TML package. In Section 2 we
illustrate basic loading and operations of the TML package as well as visualization methods. Because
MCMC methods feature prominently in the TML package, Section 3 focuses on the tropical HAR
sampler developed in [48] called vertex HAR with extrapolation and illustrates its usage. Section 4
follows with examples for the prominent methods of statistical inference in the TML package. These
applications include volume estimation of tropical polytopes, tropical logistic regression, tropical PCA,
and tropical kernel density estimation. We finish the article with concluding remarks and potential future
developments.

https://github.com/barnhilldave/TML
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1C. Tropical basics. In this section we provide the necessary tropical geometric background, notation,
and terminology as it relates to functions in the TML package. This section is divided into two subsections.
The first section focuses on tropical analogues of arithmetic and linear algebraic operations. The second
subsection defines several essential concepts associated with tropical polyhedral geometry. Where
appropriate we provide examples associated with the definitions in this section.

Tropical arithmetic. In general, research in tropical geometry studies the properties of the space defined
by the tropical semiring represented by the triplet (R ∪{−∞}, ⊕, ⊙). Here, classical addition is replaced
by max (⊕) and classical multiplication is replaced by classical addition (⊙) [9; 21]. This space is known
as the tropical projective torus represented by Re/R1, where 1 := (1, 1, . . . , 1) is the vector with all ones
in Re. This requires that if v := (v1, . . . , ve) ∈ Re/R1,

(v1 + c, . . . , ve + c) = (v1, . . . , ve) = v. (1)

For an extensive treatment, see [13] and [21].

Example 1.1. Suppose we have e = 3 and let v = (1, 2, 3) ∈ Re/R1. Then

v = (1, 2, 3) = (0, 1, 2).

Definition 1.2 (tropical arithmetic operations). Under the tropical semiring with the tropical, or max-plus
algebra (R ∪ {−∞}, ⊕, ⊙), we have the arithmetic operations of addition and multiplication defined as

x ⊕ y := max{x, y}, x ⊙ y := x + y where x, y ∈ R ∪ {−∞}.

Here −∞ is the identity element under addition ⊕ and 0 is the identity element under multiplication ⊙.
We may also define the tropical semiring with the min-plus algebra (R∪{∞},⊞, ⊙), where arithmetic

operations of addition and multiplication defined as:

x ⊞ y := min{x, y}, x ⊙ y := x + y where x, y ∈ R ∪ {∞}.

Remark 1.3. Note that the min-plus algebra and max-plus algebra are related by the classical multiplica-
tion by (−1) since the min operation and the max operation are homogeneous.

Example 1.4. Let x = 1, y = −1. Then we have

1 ⊕ (−1) = max{1, −1} = 1, (2)

1 ⊙ (−1) = 1 + (−1) = 0, (3)

1⊞ (−1) = min{1, −1} = − 1. (4)

Definition 1.5 (tropical scalar multiplication and vector addition). For any x, y ∈ R ∪ {−∞} and for any
v = (v1, . . . , ve), w = (w1, . . . , we) ∈ (R ∪ {−∞})e, we have tropical scalar multiplication and tropical
vector addition defined as:

x ⊙ v ⊕ y ⊙ w := (max{x + v1, y + w1}, . . . , max{x + ve, y + we}).



Barnhill, Yoshida, Aliatimis and Miura :::: Tropical geometric tools for machine learning: the TML package 137

Example 1.6. Suppose we have e = 3 and let v = (0, 1, 2), w = (0, 0, 0) ∈ Re/R1. Then

1 ⊙ v ⊕ (−1) ⊙ w = (max{1 + 0, (−1) + 0}, max{1 + 1, (−1) + 0}, max{1 + 2, (−1) + 0})

= (1, 2, 3).

Definition 1.7 (generalized Hilbert projective metric). For any tropical points v := (v1, . . . , ve), w :=

(w1, . . . , we) ∈ Re/R1 where [e] := {1, . . . , e}, the tropical distance (also known as tropical metric) dtr

between v and w is defined as

dtr(v, w) := max
i∈[e]

{vi − wi } − min
i∈[e]

{vi − wi }.

For any two points v, w ∈ Re/R1, the tropical distance between v and w assumes equation (1) holds.
Otherwise the tropical distance is not a metric.

Example 1.8. Suppose we have e = 3 and let v = (0, 1, 2), w = (0, 0, 0) ∈ Re/R1. Then

dtr(v, w) = max{0 − 0, 1 − 0, 2 − 0} − min{0 − 0, 1 − 0, 2 − 0} = 2 − 0 = 2.

It is worth to note that dtr is not a metric over Rd . For example, if we take u′
= (3, 3, 3), w′

= (0, 0, 0)∈ R3.
Then, we have

dtr(u, w) = max{3 − 0, 3 − 0, 3 − 0} − min{3 − 0, 3 − 0, 3 − 0} = 3 − 3 = 0.

But, u′
̸= w′ over R3. Therefore dtr is not a metric over R3. However,

(3, 3, 3) = (0, 0, 0)

over R3/R1. Therefore, dtr is metric over R3/R1.

Definition 1.9 (tropical determinant [13]). Let w be a positive integer. For any square tropical matrix B
of size w × w with entries in R ∪ {−∞}, we say the tropical determinant of B as follows:

tdet(B) := max
σ∈Sw

{Bσ(1),1 + Bσ(2),2 + · · · + Bσ(w),w}, (5)

where we denote the (i, j)-th entry of B as Bi, j and Sw represents every permutation of [w] := {1, . . . , w}.

Example 1.10. Suppose we have a 3 × 3 tropical matrix

B =

1 2 3
2 1 1
0 0 2

 .

Then

tdet(B) = B21 + B12 + B33 = 2 + 2 + 2 = 6.
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Tropical geometric structures. The definitions that follow describe and clarify characteristics of polytopes
and hyperplanes in the tropical projective torus. By convention, we focus on tropical geometry defined by
a max-plus algebra. However, all geometric structures may be described in terms of min-plus algebra by
replacing the max function with the min function. As stated in Remark 1.3, the min-plus algebra and
max-plus algebra are related by the classical multiplication by (−1).

Definition 1.11 (tropical line segment from [21]). Given two points u, v, a tropical line segment between
u, v denoted as 0u,v , consists of the concatenation of at most e−1 Euclidean line segments. A point in the
collection of points b, defining the end points of each Euclidean line segment is called a bend point of 0u,v .
Including u and v, 0u,v consists of at most e bend points. We show how to compute the set b in (6).

Example 1.12. Suppose u = (0, 0, 0) and v = (0, 3, 1). Then the tropical line segment 0u,v consists
of the concatenation of two line segments: one from u = (0, 0, 0) to (0, 2, 0) and the other one from
(0, 2, 0) to (0, 3, 1).

Maclagan and Sturmfels show in [21] how to construct a tropical line segment between two vectors in
the proof of their Proposition 5.2.5. For a pair of vectors u =: (u1, . . . , ue), v := (v1, . . . , ve) ∈ Re/R1,
the tropical line segment can be constructed as follows: Without loss of generality, assume that (v1−u1)≥

· · · ≥ (ve−1 − ue−1) ≥ (ve − ue) = 0 over the tropical projective torus Re/R1 once the coordinates of
v − u have been permuted. The tropical line segment 0u,v from v to u is given by (d − 1) connected line
segments with breakpoints such that

(ve − ue) ⊙ u ⊕ v = v

(ve−1 − ue−1) ⊙ u ⊕ v = (v1, v2, v3, . . . , ve−1, ve−1 − ue−1 + ue)

...

(v2 − u2) ⊙ u ⊕ v = (v1, v2, v2 − u2 + u3, . . . , v2 − u2 + ue)

(v1 − u1) ⊙ u ⊕ v = u.

(6)

Definition 1.13 (tropical polytopes [13]). Suppose we have S ⊂ Re/R1. If

x ⊙ v ⊕ y ⊙ w ∈ S

for any x, y ∈R and for any v, w∈ S, then S is called tropically convex. Suppose V ={v1, . . . , vs
}⊂Re/R1.

The smallest tropically convex subset containing V is called the tropical convex hull or tropical polytope
of V which can be written as the set of all tropical linear combinations of V

tconv(V ) = {a1 ⊙ v1
⊕ a2 ⊙ v2

⊕ · · · ⊕ as ⊙ vs
| a1, . . . , as ∈ R}.

The smallest subset V ′
⊆ V such that

tconv(V ′) = tconv(V )

is called a minimum, or generating set, with |V ′
| being the cardinality of V ′. For P = tconv(V ′) the

boundary of P is denoted ∂ P .
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x0

Figure 1. Tropical ball, Bl(x0) ∈ R3/R1 with radius l. Center point is indicated in red
with the generating set V ′ shown in orange [3].

Remark 1.14. A tropical polytope of two points u, v ∈ Re/R1 is called a tropical line segment, de-
noted 0u,v.

We use the term max-tropical polytope if a tropical polytope is defined in terms of the max-plus algebra.
Conversely, we use the term min-tropical polytope if a tropical polytope is defined in terms of the min-plus
algebra. When the context is clear we use the term tropical polytope.

Definition 1.15 (polytropes [14]). A classically convex tropical polytope is called a polytrope.

Definition 1.16 (tropical simplex). A tropical simplex is a tropical polytope that possesses a minimum
vertex, or generating, set V ′ such that |V ′

| = e. A tropical simplex is denoted P1. All polytropes are
tropical simplices. The converse is not true.

An important type of polytrope is a tropical ball. A tropical ball is the analogue of a Euclidean ball
which is defined as

Br (x) = {y ∈ Re
| ∥x − y∥2 ≤ r}

and indicates the set of all points falling within a distance r of a point x where distance is calculated by
the L2-norm. In the case of a tropical ball, distance is defined in terms of the tropical metric shown in
Definition 1.7.

Definition 1.17 (tropical ball). A tropical ball, Bl(x0), around x0 ∈ Re/R1 with a radius l > 0 is defined
as follows:

Bl(x0) = {y ∈ Re/R1 | dtr(x0, y) ≤ l}.

The minimum generating set V ′ of a tropical ball consists of exactly e vertices in which case a tropical
ball is a tropical simplex [8, Section 2]. Figure 1 provides the generic structure of a tropical ball.

In many situations, we are interested in the projection of a point onto a tropical polytope. This projection
can be represented by using Formula 5.2.3 in [21] and is shown below.
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(0,0,0)

(0,2,5)

(0,3,1)

(0,1,0)

(0,2,2)

(0,-2,5)

(0,-2,3)

Figure 2. Tropical polytopes in R3/R1. The tropical polytope on the left is a polytrope
and therefore a tropical simplex [3].

Proposition 1.18 (tropical projection [21, Formula 5.2.3]). Let V := {v1, . . . , vs
} ⊂ Re/R1 and let

P = tconv(v1, . . . , vs) ⊆ Re/R1 be a tropical polytope with its vertex set V . For x ∈ Re/R1, let

πP(x) :=

s⊕
l=1

λl ⊙ vl, where λl = min{x − vl
}. (7)

Then

dtr(x, πP(x)) ≤ dtr(x, y)

for all y ∈ P .

Now we turn our attention to definitions which exhibit the relationship between min-tropical hyperplanes
and max-tropical polytopes.

Definition 1.19 (tropical hyperplane [30]). For any ω := (ω1, . . . , ωe) ∈ Re/R1, the max-tropical hyper-
plane defined by ω, denoted as H max

ω , is the set of points x ∈ Re/R1 such that

max
i∈[e]

{ωi + xi } (8)

is attained at least twice, i.e., the function is not linear. Similarly, a min-tropical hyperplane denoted as
H min

ω , is the set of points x ∈ Re/R1 such that

min
i∈[e]

{ωi + xi } (9)

is attained at least twice. If it is clear from context, we simply denote Hω as a tropical hyperplane in
terms of the min-plus or max-plus algebra where ω is the normal vector of Hω. The point −ω represents
a point contained in Hω where the maximum or minimum is attained e times. This point is called the
apex of Hω.
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v

S̄1
ω S̄2

ω

S̄3
ω

Figure 3. Generic tropical hyperplane H max
ω in R3/R1 with associated closed sectors.

The red point represents the apex, v with ω = −v [3].

Definition 1.20 (sectors from Section 5.2 in [13]). Every tropical hyperplane, Hω, divides the tropical
projective torus, Re/R1 into e connected components, which are open sectors

Si
ω := {x ∈ Re/R1 | ωi + xi > ω j + x j , ∀ j ̸= i}, i = [e].

These closed sectors are defined as

S
i
ω := {x ∈ Re/R1 | ωi + xi ≥ ω j + x j , ∀ j ̸= i}, i = [e].

Lemma 1.21 (distance to a tropical hyperplane Hω [10]). The tropical distance from a point v ∈ Re/R1 to
a max-tropical hyperplane H max

0 where ω represents the normal vector of zeros, is given by the difference
between the maximum and second maximum of v. That is

dtr(H0, v) = max(v) − 2nd max(v). (10)

For a min-tropical hyperplane H min
0 , the tropical distance from a point v is

dtr(H0, v) = 2nd min(v) − min(v). (11)

For a generic tropical hyperplane Hω,

dtr(Hω, v) = dtr(H0, v + ω). (12)

Figure 3 illustrates the construction of H max
ω with apex at v = (0, 4, 7) and ω = −v. Additionally, we

observe the point u = (0, 3, 1) in relation to H max
ω along with each sector S̄i

ω as shown in Definition 1.20.
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Definition 1.22 (tropical hyperplane arrangements). For a given set of points, V = {v1, . . . , vs
}, tropical

hyperplanes with apices at each vi
∈ V represent the tropical hyperplane arrangement of V , A(V ), where

A(V ) := {H−v1, . . . , H−vs }.

If we consider a collection of tropical hyperplanes defined in terms of the max-plus algebra, we call this
arrangement a max-tropical hyperplane arrangement denoted Amax(V ). Likewise, considering tropical
hyperplanes defined in terms of the min-plus algebra is called a min-tropical hyperplane arrangement
denoted Amin(V ).

Definition 1.23 (cells). For a given hyperplane arrangement, A(V ), a cell is defined as the intersection of
a finite number of closed sectors. Cells may be bounded or unbounded. Bounded cells are polytropes.

Definition 1.24 (bounded subcomplex [9]). For a vertex set, V , A(V ) defines a collection of bounded
and unbounded cells which is known as a cell decomposition. The union of bounded cells defines the
bounded subcomplex, K(V ).

Theorem 1.25 [13, Corollary 6.17]. A max-tropical polytope, P , is the union of cells in K(V ) of the cell
decomposition of the tropical projective torus induced by Amin(V ).

Theorem 1.25 describes K(V ) as a collection of bounded cells induced by some A(V ). Figure 4
represents a tropical polytope in terms of its vertex set (left) and hyperplane arrangement (right).

Throughout this paper we are interested in sampling the union of (e − 1)-dimensional polytropes
belonging to K(V ). The union of (e − 1)-dimensional polytropes is described in the following definition.

Definition 1.26 (dimension of a tropical polytope). The dimension of a tropical polytope, P ∈ Re/R1, is
defined by the bounded cell of maximal dimension in CP and is denoted as dim(P).

Definition 1.27 (i-trunk and i-tentacles [20, Definition 2.1]). Let P be a tropical polytope and let
i ∈ [e−1] := {1, . . . , e−1}. Let FP be the set of relatively open tropical polytopes in CP . For any T ∈FP ,
T is called an i-tentacle element of FP if it is not contained in the closure of any (i + 1)-dimensional
tropical polytope in FP where the dimension of T less than or equal to i . The i-trunk of P , is defined as

Tri (P) :=

⋃
{F ∈ FP : ∃G ∈ FP with dim(G) ≥ i such that F ⊆ G}

where dim(G) is the dimension of G ⊂ FP . The Tri (P) represents the portion of the K(V ) with (i − 1)-
tentacles removed. The minimum enclosing ball containing only Tri (P) ⊆ P is denoted Bk(Tri (P)).

Example 1.28. Consider the tropical polytope, P = {(0, 0, 0), (0, −1, 1), (0, 2, 2), (0, 1, −1)}. The
Tr2(P) is the gray portion shown in Figure 5.

For many statistical problems, a first step in statistical inference is finding a center of mass for some
given data. This is no less true when handling data in the tropical projective torus. To that end, we concern
ourselves with finding the Fermat–Weber point in the tropical projective torus, or simply the tropical
Fermat–Weber point.
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(0,-1,1)

(0,0,0)

(0,1,-1)

Figure 4. Tropical polytope expressed in terms of its vertex set V (left) and Amin(V )

(right). In the right figure, pseudovertices not belonging to V are defined by the intersec-
tion of min-tropical hyperplanes with apices at each vi

∈ V [3].

(0,-1,1)

(0,0,0)

(0,1,-1)

(0,2,2)

Figure 5. A tropical polytope, P , in R3/R1 defined by four vertices. The Tr2(P) is the
portion in gray [6].

Definition 1.29 (tropical Fermat–Weber points [19]). For a given set of points V = {v1, . . . , vs
} in a

metric space M, the Fermat–Weber point for the set V is

arg min
y

s∑
i=1

d(y, vi ), (13)
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(0,0,0)

(0,2,5)

(0,3,1)(0,1,1)

(0,2,2)

(0,2,1)

Figure 6. Fermat–Weber region defined by three points. Points in the gray triangle
satisfies (14) [4; 19].

where d(·) represents the function defining a distance metric in M and the point y ∈ M represents a
center of mass. A tropical Fermat–Weber point is similarly defined but replacing d(·) with the tropical
metric dtr(·)

arg min
y

s∑
i=1

dtr(y, vi ). (14)

Remark 1.30. The tropical Fermat–Weber point is not guaranteed to be unique; see [19].

In this paper we introduce a number of ways to obtain a tropical FW point and then apply the resulting
point, or center of mass, to problems of statistical inference.

1D. Tropical geometry and phylogenetic trees. One area of interest where tropical geometry is directly
applicable is in the biological science of phylogenomics. Phylogenomics is a discipline focusing on
reconstructing the evolutionary history of organisms. One method of representing this evolutionary history
is through the use of phylogenetic trees. Phylogenetic trees are weighted unrooted or rooted trees whose
internal nodes do not have labels but external nodes have labels. They serve as data structures representing
the evolution of genes from related, and usually present-day, species or some other taxa. In terms of
graph theory, phylogenetic trees represent rooted out-trees consisting of a root node, unlabeled internal
nodes, and external leaf nodes. The root node of the tree represents a common evolutionary ancestor
among several taxa, internal nodes represent speciation events over time, and the external, leaf, nodes
represent the present-day taxa.

Example 1.31. Figure 7 shows an example of a rooted phylogenetic tree with four leaves {a, b, c, d}.

Of particular interest, as it relates to tropical geometry, are those phylogenetic trees that are equidistant
trees. Equidistant trees are unrooted phylogenetic trees where the distance from the root node to each leaf
node is the same. It is shown in [7] that equidistant trees can be represented as ultrametrics which are
described in Definition 1.33 and illustrated in Example 1.34.
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Figure 7. Example for a rooted phylogenetic tree of four leaves with labels {a, b, c, d}.
Each number in each edge represents a weight on the edge which represents an evolu-
tionary time and mutation rates.
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Figure 8. Example for an equidistant tree of four leaves with labels {a, b, c, d}. The
total weights on the path from its root to each leaf is 1.

Example 1.32. Figure 8 shows an example of an equidistant tree with four leaves {a, b, c, d}. Note that
the total weights on the path from its root to each leaf is 1 for all leaves.

Definition 1.33 (ultrametric). Let [m] := {1, . . . , m} and define the distance function d : [m]× [m] → R

to be a metric over [m]. Then if

max{d(i, j), d(i, k), d( j, k)}

is attained at least twice, i.e., is not unique, for any i, j, k ∈ [m], d is an ultrametric.
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Example 1.34. Suppose m = 3. Let d be a metric on [m] := {1, 2, 3} such that

d(1, 2) = 2, d(1, 3) = 2, d(2, 3) = 1.

Since the maximum is achieved twice, d is an ultrametric.

Specifically, for any equidistant tree T ∈ Um where Um represents the space of ultrametrics on m
leaves, the vector representing the pairwise distances between leaf nodes is an ultrametric. Further, it
was shown in [35] that Um is a tropical Grassmanian and is therefore tropically convex. This affords
us the opportunity to apply statistical methods based on tropical geometry to the space of equidistant
phylogenetic trees. We leverage this characteristic of phylogenetic trees throughout this paper by applying
the methods of the TML package to equidistant phylogenetic trees.

The coalescent model. One way to evaluate how well supervised and unsupervised learning techniques
perform when empirical data is unavailable is by using simulated data sets. One method to obtain
simulated data is by using the coalescent model. The coalescent model was first described in [17] and, for
a given sample of taxa, represents a stochastic genealogical process illustrating coalescing events which
shows the ancestral lineage of those related taxa. The coalescent model uses species tree to represent the
overall lineage of related species with phylogenetic trees showing the lineage of specific genes of the
related species in the species tree. We can think of phylogenetic trees emanating from a species tree [28].
For a thorough treatment of the coalescent model, see [32]. Using the coalescent model we can simulate
samples of phylogenetic trees that come from specific species trees.

The coalescent is a common model used in a wide range of software. For the simulated data used in
this article and included in the TML package, we employ the software called Mesquite [22]. Mesquite
takes the arguments of species depth, SD, and effective population, denoted Ne. The SD indicates the
number of epochs between the common ancestor (root node) and taxa of the present day (leaf nodes). We
define the gene trees in terms of the ratio

R =
SD
Ne

.

If we set Ne = 100000 and SD = 500000, then we have R = 5. Notably, the Mesquite software does not
represent equidistant trees as ultrametrics. However, the output of equidistant trees taken from Mesquite
can be manipulated into ultrametric form using tools from the phytools R package [29]. A total of twelve
data sets, each representing 1000 simulated phylogenetic trees on ten leaves with R taking the values of
0.25, 0.5, 1, 2, 5, and 10, coming from two different species trees were constructed from Mesquite are
included in the TML package. Using phytools, these twelve data sets were manipulated into ultrametrics
and are included as Sim_Trees1 for the six datasets coming from species tree one and Sim_Trees2
from those coming from species tree two.

2. BASIC OPERATIONS. This section describes the basic functionality of TML and how to execute
some simple computations.
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2A. Loading TML and basic operations. The TML package is loaded as all R packages are loaded:

R> library(‘‘TML’’)

Once TML is loaded all functionality is available. We note that except in specific cases, all functions
and examples are based on linear algebraic operations in terms of this max-plus algebra. However, all
basic functions and some applications may also be employed in terms of min-plus algebra. This is
accomplished by assigning the built-in max() or min() to the tadd (tropical addition) argument. The
default in each case is tadd=max. By assigning tadd=min in the associated function, the function is
executed in terms of min-plus algebra.

Most inputs into functions in TML involve vectors or matrices. For example if we wish to find the
tropical distance between two points in R3/R1 we input the following:

R> u <- c(0,1,2)
R> v <- c(0,4,7)
R> trop.dist(u,v)

[1] 5

As is shown in (1), adding a scalar c to each element of the vector in Re/R1 represents the same vector.
This means that for a given vector, we can normalize the vector by adding the additive inverse of the
value of any element of the vector. For example:

R> u <- c(2,3,4)
R> normaliz.vector(u)

[1] 0 1 2

In practice we can choose any element of the vector but by convention TML forces the scalar value in
the first position to be zero. As we observe, if we instead have unnormalized vectors we still obtain the
same tropical distance between points obviating the need to normalize vectors prior to using the function.

R> v <- c(3,7,10)
R> trop.dist(u,v)

[1] 5

We can also apply a normalizing operation to a set of vectors. In general, we consider a set of vectors
as defining a tropical polytope where each row vector consists of a point in the polytope. Importantly, the
collection of points need not be the minimum generating set of the tropical polytope. The code snippet
below illustrates the use of the normaliz.polytope() function on a set of vectors that defines a tropical
polytope. We can say that both matrices represent the same polytope by using the fact that v = v + c1,
for any v ∈ Rd/R1 and any c ∈ R, in equation (1).
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R> (P<-rbind(c(3,3,3),c(4,6,9),c(2,5,3)))

[,1] [,2] [,3]
[1,] 3 3 3
[2,] 4 6 9
[3,] 2 5 3

R> (P_normalized <- normaliz.polytope(P))

[,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 2 5
[3,] 0 3 1

As with classical linear algebra we can find the tropical analogue of the determinant of a matrix
as shown in equation (5). This is equivalent to a linear assignment problem optimization problem as
discussed in [13]. In the example that follows, we intentionally show setting tadd=max argument despite
the fact that this argument defaults to max. Throughout the rest of the paper we ignore this argument for
max-plus algebraic functions. Again, the input is a matrix where rows are the points in R/R1.

R> tdets(P_normalized, tadd=max)

[[1]]
[1] 8

[[2]]
[,1] [,2] [,3]

[1,] 0 0 0
[2,] 0 3 1
[3,] 0 2 5

This output comes in the form of a list where the first element represents the value of the tropical
determinant and the second element is a matrix of the same points reordered such that the elements of
each row vector contributing to the value of the determinant are on the diagonal.

It is common to work with phylogenetic trees, but the statistical methods of tropical geometry use
vectorized input. A vector representing a phylogenetic tree consists of components expressing the pairwise
distances between the m leaves as the sum of branch lengths connecting those leaves. Consequently, the
vector has dimension e =

(m
2

)
. The following example illustrates how a tree with 4 leaves is converted

to a vector in R6 using the function tree.to.vector(). The names of the components of the output
vector correspond to pairs of leaves. There is also another function (vector.to.equidistant.tree())
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Figure 9. Plot of the phylogenetic tree resulting from the previous code block.

that takes the vector of pairwise distances and converts them back to an equidistance tree. This is done
by applying hierarchical clustering to the distance vector. The output of this function is always an
equidistant tree, even when the vector is not ultrametric. Therefore, the functions tree.to.vector()
and vector.to.equidistant.tree() are inverse only in the space of equidistant trees as shown in
the code chunk below. A nonequidistant tree can be converted to an approximate equidistant tree by using
the composite function vector.to.equidistant.tree ◦ tree.to.vector. For equidistant trees, the
composite function returns the original equidistant tree as illustrated in the example below.

In the code chunk below, read.tree() calls the function read.tree() after loading the ape package.
Then by using a piping function, |> we apply several sequential functions eventually giving a plot of the
phylogenetic tree as shown in Figure 9.

R> library(ape)
R> tree <- read.tree(text=’((A:1, B:1):2, (C:1, D:1):2);’)
R> (vector <- tree.to.vector(tree,normalization = FALSE))
"A-B A-C A-D B-C B-D C-D
2 6 6 6 6 2"

R> tree |>
tree.to.vector(normalization = FALSE) |>
vector.to.equidistant.tree() |>
plot(type = "c")

R> tree_from_vector <- vector.to.equidistant.tree(vector)
R> all.equal(tree,tree_from_vector)
[1] TRUE

The final line in the code block illustrates that we obtain the original tree using the function
vector.to.equidistant.tree().

2B. Tropical line segments, hyperplanes, polytopes, and projections. This section focuses on the
functions in TML related to tropical geometric structures such as tropical line segments, polytopes,
hyperplanes, and projections with associated computations. In each case we can swap to min-plus
geometry through use of the add argument.
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Many of these functions involve constructing visualizations of these geometric structures. The TML
package relies on the rgl package, which provides methods for three-dimensional visualization using
OpenGL [23; 43]. However, if OpenGL is not available, loading the rgl package may fail. If rgl fails to
load, the visualization functions in TML may fail. To fix this problem the user should reference rgl at
https://cran.r-project.org/web/packages/rgl/readme/README.html.

Using equation (6) we can construct the tropical line segment by calculating the associated bend points.

R> u <- c(0,1,2)
R> v <- c(0,4,7)
R> TLineSeg(u,v)

[[1]]
[1] 0 4 7

[[2]]
[1] 3 4 7

[[3]]
[1] 5 6 7

The previous example represents a line segment from the vector v = (0, 4, 7) to u = (0, 1, 2). Note
that in this case the second and third bend points are not normalized (i.e., the first value of each vector
equal to zero). This can easily be accomplished using the lapply() function in conjunction with the
normaliz.vector() function from TML.

R> TLineSeg(u,v,tadd=max) |> lapply(normaliz.vector)

[[1]]
[1] 0 4 7

[[2]]
[1] 0 1 4

[[3]]
[1] 0 1 2

It should be noted also that for two vectors in Re/R1 the TLineSeg() function output list consists
of e bend points, but some bend points may be redundant. This is an indication that the line segment
consists of fewer than e bend points.

Tropical hyperplanes, as defined in equation (8) are defined simply by the point in the tropical projective
torus that serves as the hyperplane apex. The TML package provides functions to visualize tropical

https://cran.r-project.org/web/packages/rgl/readme/README.html
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Figure 10. Max-tropical (left) and min-tropical hyperplanes (right) in two and three
dimensions using the hyper3d() function.

hyperplanes in two and three dimensions as well as functions to measure the tropical distance from a point
in the tropical projective torus to the nearest point on the hyperplane. The argument ext is a scalar value
that defines are far the hyperplane should be extended. The min.ax and max.ax define the minimum and
maximum limits of the axes of the plot.

R> D <- c(0,0,0); E <- c(0,0,0,0)
R> ext <- 4
R> max.ax <- -5
R> min.ax <- 5
R> draw.thyper(D, ext, min.ax, max.ax, plot=TRUE)
R> draw.thyper(D, ext, min.ax, max.ax, plot=TRUE, tadd=min)
R> draw.thyper(E, ext, min.ax, max.ax, plot=TRUE)
R> draw.thyper(E, ext, min.ax, max.ax, plot=TRUE, tadd=min)

Visualizations from the output of the previous code is shown in Figure 10. Max-tropical hyperplanes
in both two dimensions and three dimensions are shown on the left with min-tropical hyperplanes shown
on the right.
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Figure 11. Tropical distance from a point (0, −2, −8) (blue) to the max-tropical hyper-
plane defined by the normal vector ω = (0, −1, −1). Note that ω corresponds with the
apex of the tropical hyperplane (0, 1, 1) (green).

The statistical methods introduced in this article utilize the tropical distance from a point to a tropical
hyperplane. The distance from a point to a tropical hyperplane is shown in Lemma 1.21 for both the
max-tropical and min-tropical case. The function trop.hyper.dist() takes three inputs: the normal
vector associated with the apex of the tropical hyperplane, any generic point in the tropical projective
torus, and assigning tadd=max or tadd=min indicating whether to use max- or min-plus algebra.

"this is new"
R> O <- c(0,-1,-1)
R> x0 <- c(0,-2,-8)
R> trop.hyper.dist(O,x0)

[1] 3

R> trop.hyper.dist(O,x0,tadd=min)

[1] 6

Recall from Definition 1.19 the normal vector is the same as changing the sign of the point in the
tropical projective torus representing the apex of the tropical hyperplane. Figure 11 shows a point on the
tropical hyperplane that is closest to the point (0, −2, −8). The tropical distance to this point is shown in
the code above. Notably, unlike using a Euclidean distance, the point on the tropical hyperplane that is
closest to the point of interest may not be unique, but for points drawn from continuous distributions the
projections will be with probability 1.

We now turn our attention to tropical polytopes as tropical polytopes are the primary geometric
structures that are used in most functions in the TML package. The primary focus here is to illustrate
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Figure 12. Tropical balls in two and three dimensions each with a radius of two, using
the Trop_ball() function. The red point in each figure represents the center point.

how we visualize different tropical polytopes. Visualization is combinatorially challenging even in
lower dimensions. Here we show a couple of examples of visualizations of two-dimensional and three-
dimensional tropical polytopes. As stated in Section 1C, a tropical ball is an important polytrope in
tropical geometry. The function Trop_ball() allows us to render a two- or three-dimensional tropical
ball.

R> d <- 2
R> Trop_ball(D, d, a=1, cls=’white’, fil=TRUE, cent.col=’red’)
R> Trop_ball(E, d, a=.5, cls=’lightblue’,

fil=TRUE, cent.col=’red’)

The code above takes several inputs, the first being the center of the tropical ball, the radius of the tropical
ball in terms of tropical distance, and several other inputs involving the transparency and color options.
Figure 12 provides the output of two tropical balls from the example above in two dimensions (left) and
three dimensions (right).

Visualization of generic tropical polytopes can be accomplished in two or three dimensions using
the draw.tpolytope.2d() and draw.tpolytope.3d() functions. These functions take four inputs: a
matrix of points in the tropical projective torus, a color argument for the polytope itself, a color argument
for the vertices of the polytope, and assigning tadd=max or tadd=min indicating whether to use max- or
min-plus algebra.

R> P <- rbind(c(0,-2,2),c(0,-2,5),c(0,2,1),c(0,1,-1))
R> draw.tpolytope.2d(P, "darkgreen", "black")

R> P <- rbind(c(0,0,0,0),c(0,1,2,5),c(0,1,3,1),c(0,2,5,10))
R> draw.tpolytope.3d(P, "darkgreen", "black")

Figures 13 and 14 show the output from the previous code. Note that in each case the function draws line
segments between each vertex (and more points in the three-dimensional case) in the polytope. This is
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Figure 13. 2-D rendering of a tropical polytope using the draw.tpolytope.2d()
function. Black points represent the vertices of the tropical polytope.

Figure 14. 3-D rendering of a tropical polytope using the draw.tpolytope.3d()
function. Black points represent the vertices of the tropical polytope.

due to the combinatorial challenge with forming this polytopes. The tropical polytopes themselves are
defined by the boundary.

The last specific function we address in this section is the project.pi() function. The projection
of a point x onto a tropical polytope P denoted π(x) is the point in P that is closest to x in terms of
tropical distance. It must be noted that unlike Euclidean distance, tropical projections are not necessarily
unique. In fact oftentimes there is an interval of points satisfying equation (7). For a thorough discussion
of projections, see [3].
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Figure 15. Projection of the point x = (0, 6, 2) onto the tropical polytope P , where
P := {(0, 0, 0), (0, 3, 1), (0, 2, 5)}. Here π(x) = (0, 3, 2) but any point on the boundary
of P from (0, 3, 2) to (0, 3, 1) could serve as π(x).

R> P <-rbind(c(0,0,0),c(0,2,5),c(0,3,1))
R> x <- c(0,6,2)
R> project.pi(P,x)

[1] 0 3 2

The output above provides one of perhaps an infinite number of points that can serve as π(x). As in
previous functions, project.pi() defaults to using max-plus algebra but the addition of tadd=min
allows for projections in terms of min-plus algebra. Continuing from the previous example, we can
illustrate how the projection of a point onto P appears visually.

R> pi_x <- project.pi(P, x)
R> draw.tpolytope.2d(P, "blue", "red")
R> lines(c(x[2], pi_x[2]), c(x[3], pi_x[3]), lty = "dashed")
R> points(c(x[2], pi_x[2]), c(x[3], pi_x[3]), pch = 19,

col = "green")

The functions introduced in this section serve as standalone functions but they also provide the basis
of other functions in the TML package. In the sections that follow, we introduce the statistical tools that
leverage these basic functions.

2C. Calculating a tropical Fermat–Weber point. In this section we introduce several functions that allow
us to calculate tropical Fermat–Weber points. The output of these functions are incorporated in a variety of
statistical methods included in the TML package, some of which are described below. Here we introduce
two methods of finding the tropical FW point. The first is a method that uses linear programming while
the second employs a fast gradient-based method.
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Figure 16. Tropical Fermat–Weber point calculated using the Trop_FW() function.
Black points indicated the data. The red point is the tropical FW point.

The first method to find a tropical FW point for a given set of data is introduced in the trop.FW()
function. This function employs a linear programming approach to find a tropical FW point for a given
set of data V = {v1, . . . , vs

} by solving the constrained optimization problem

min
y

s∑
i=1

dtr(v
i , y) (15)

y j − yk − vi
j + vi

k ≤ −dtr(v
i , y) ∀i ∈ [s] and 1 ≤ j, k ≤ e (16)

y j − yk − vi
j + vi

k ≥ dtr(v
i , y) ∀i ∈ [s] and 1 ≤ j, k ≤ e. (17)

The example below shows how this is employed by using simulated data set consisting of 150 normalized
points in the tropical projective torus which is found in the TML package as Sim_points. Note that
trop.FW() takes as input points which are normalized using the normaliz.polytope() function. The
Sim_points is already normalized so normalization is not required. A plot of the output for the code
below is shown in Figure 16.

R> set.seed(23)
R> V <- Sim_points
R> FW <- trop.FW(V)
R> plot(V[,2],V[,3],pch=19,cex=.8,xlab="v2",ylab="v3",asp=1)
R> points(FW[2],FW[3],pch=19,col=’red’)

While a FW point can be found directly using linear programming, gradient-based numerical methods
like those developed and employed in [2] are much faster. Of particular interest in [2] is inferring the
class of species tree associated with a set of gene tree. Because it is proven that the set of tropical FW
points asymptotically converges to the maximum likelihood estimate (MLE) vectorized tree under this
model this task can be reduced to finding a tropical FW point associated with the set of gene trees. FW
points are used in [2] in lieu of MLE trees because the former is faster to compute numerically and it
enjoys optimality sufficiency condition.
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Figure 17. Equidistant tree representation of a Fermat–Weber point of 1290 gene trees
from the lungfish data [18].

The following example illustrates how to compute a FW point using the gradient method of 1290 gene
trees associated with a lungfish data set used in [18] by employing the function FWpoint.numerical().
This data set is accessible in the TML package which includes a dissimilarity matrix when lung_fish
is called. The leaf labels are given by the column names of the lung_fish data and are extracted inside
the vector.to.equidistant.tree() function as shown below.

R> lung_fish |>
FWpoint.numerical() |>
vector.to.equidistant.tree() |>
plot()

The functions introduced in this section serve as standalone functions but they also provide the basis
of other functions in the TML package. In the sections that follow, we introduce the statistical tools that
leverage these basic functions.

3. TROPICAL HAR AS A MAIN TOOL FOR INFERENCE. Markov chain Monte Carlo (MCMC) methods
are an extremely important tool in statistical inference. Since their development in the first half of the
twentieth century, MCMC methods have proven effective in a broad spectrum of scientific disciplines.
Among the most flexible and easily constructed MCMC methods is the hit-and-run (HAR) sampler. Like
all MCMC samplers, HAR samplers sample points according to a target distribution by moving from one
point to another by defining a subset of a state space in terms of line segments. Both the current point
and the possible next points fall on this line segment [34].

Up until recently, no MCMC samplers existed to sample points from a state space that could be defined
as tropically convex. With the introduction of the sampler vertex HAR with extrapolation (VHE) as shown
in [48], tropically convex sets can be sampled more effectively. VHE samples points from tropical line
segments where tropical line segments are defined by the projection of the current point onto two tropical
polytopes defined by subsets of a vertex set, V , which defines a tropical simplex, P . A single iteration
takes as input the current point, x0 and the vertex set, V . The vertex set is then randomly divided into
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two subsets, V 1, V 2
⊂ V , such that tconv(V i ) = P i and the cardinality of each subset is |V 1

| = e − 1
and |V 2

| = 1, respectively. Next, the extrapolation step occurs where πP1(x0) and πP2(x0) are calculated
using equation (7). Yoshida et al. in [48] show that x0 is contained in the tropical line segment defined by
πP1(x0) and πP2(x0) and that this tropical line segment is intrinsic to P . These properties ensure that the
Markov property is preserved and that any point sampled from this tropical line segment remains in P .
All MCMC methods discussed in this research are variations of VHE. For more detail, see [48].

As most methods in TML rely on this novel HAR sampler, we devote this section to providing an in
depth examination of its basic implementation as well as a number of variations. Of note, when using
MCMC samplers one would typically use different starting points for each iteration. However, for ease
of demonstration, we often use the piping operator to collect sampled points in the following examples
requiring the starting point to remain the same.

3A. HAR sampling from a tropical line segment. We begin by showing how we sample from a tropical
line segment as the line segment is the basic geometric structure used in HAR sampling. There are
two variations we illustrate here. The first shows how we sample points uniformly from a tropical line
segment as shown in [48]. This method is implemented using the HAR.TLineSeg() function. For any
two points in the tropical projective torus, we can define a tropical line segment and then sample from the
line segment. The code that follows shows how to sample a single point from a tropical line segment.

R> set.seed(1)
R> u <- c(0,3,1)
R> v <- c(0,0,0)
R> e <- length(u)
R> bend_pts <- TLineSeg(u, v) |> lapply(normaliz.vector)
R> G_uv <- do.call("rbind", args = bend_pts)
R> draw.tpolytope.2d(G_uv,’black’,’black’)
R> pt <- HAR.TLineSeg(G_uv[1, ], G_uv[e, ]) |> normaliz.vector()
R> points(pt[2],pt[3],pch=19,col=’red’)

To sample multiple points from a tropical line segment we can employ HAR.TLineSeg() in a for()
loop in the following chunk. Figure 18 shows the building of the line segment, sampling a single point,
and then sampling 200 points from the line segment.

R> pts <- HAR.TLineSeg(u, v) |>
normaliz.vector() |> replicate(200, expr = _) |> t()

R> points(pts[, 2], pts[, 3], pch = 19, cex = .75, col=’red’)

The TML package also gives the option to sample points from a tropical line segment about a point
representing a center of mass as shown in [3]. In practice, this is similar to Gaussian sampling about a
point µ with a standard deviation σtrop which controls dispersion in terms of the tropical distance. The
HAR.TLineSeg.centroid() function performs this calculation. Continuing from the previous example



Barnhill, Yoshida, Aliatimis and Miura :::: Tropical geometric tools for machine learning: the TML package 159

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
0

.5
0

.5
1

.0
1

.5

x2

x
3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
0

.5
0

.5
1

.0
1

.5
x2

x
3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
0

.5
0

.5
1

.0
1

.5

x2

x
3

Figure 18. A tropical line segment (top) with the blue points indicating the break points
and end points, a single point sampled from the tropical line segment in green (center),
and 200 points sampled from the tropical line segment.
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Figure 19. Sampling 200 points (green) about a center of mass µ = (0, 2, 0) with scale
parameter σtrop = 0.2.

we show the results of sampling 200 points about a center of mass represented by the point µ = (0, 2, 0)

with a scale parameter σtrop = 0.2.

R> set.seed(1)
R> m <- c(0, 2, 0); s <- .2
R> pts <- HAR.TLineSeg.centroid(u, v, m, s) |>

replicate(200, expr = _) |> t()
R> draw.tpolytope.2d(G_uv,’red’,’blue’)
R> points(pts[,2],pts[,3],pch=19,cex=.3,col=’green’)

Comparing the distance of the sampled points from the center of mass µ we can determine the quantiles
associated with the tropical distance.

R> pts |> apply(1,trop.dist, D1=m) |> quantile()
0% 25% 50% 75% 100%

0.0002291895 0.0636676116 0.1309480012 0.2323379661 0.7342599864
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The previous code chunk illustrates quantiles associated with the tropical distance for points sampled
about the center of mass, µ, according to a scale parameter σtrop = 0.2. As shown in [48], each point on a
tropical line segment defined by two points u, v ∈ Re/R1 can be mapped to a scalar value, ℓ∈ [0, dtr(u, v)].
This means µ corresponds to some scalar ℓ0 ∈[0, dtr(u, v)]. In the function HAR.TLineSeg.centroid(),
scalar values are randomly chosen such that ℓ ∼ N (0, σtrop) distribution. Then, using classical addition, ℓ

is added to ℓ0. In this way, we define the next sampled point y as

y = (ℓ + ℓ0) ⊙ u ⊕ v

as shown in (6). Because ℓ0 corresponds to the center of mass µ, ℓ0 remains constant so each sampled point
is expressed in terms of the tropical distance from µ. This results in points being sampled according to
a location-scale distribution with location parameter µ and scale parameter σtrop. For more detail, see [3].

3B. HAR sampling from a tropical polytope. Using the line sampling methods described above we can
sample from tropical polytopes (see Definition 1.13). This is accomplished using the VE.HAR() function.
This function allows the user to sample points uniformly from the (e − 1)-trunk of a tropical simplex
(Definition 1.27). Arguments for the VE.HAR() function include a matrix defined as the vertices of the
tropical simplex, an initial point, and a scalar value indicating the number of intermediate points to sample
between the initial state and the final state in the Markov chain. The state in the chain represents the
sampled point. Figure 20 shows the results of sampling from a polytrope (top) and a generic tropical
simplex (bottom).

R> set.seed(1)
R> P <- rbind(c(0, 0, 0), c(0, 2, 5), c(0, 3, 1))
R> x0 <- c(0, 2.5, 3.2)
R> draw.tpolytope.2d(P, "blue", "red")

R> pts <- VE.HAR(P, x0, I = 50) |>
replicate(1000, expr = _) |> t()

R> points(pts[, 2], pts[, 3], xlab = "x2", ylab = "x3",
asp = 1, pch = 19, cex = .3)

R> K <- rbind(c(0, -1, 1), c(0, 0, 0), c(0, 1, -1))
R> x0 <- c(0, 0.5, 0.5)
R> draw.tpolytope.2d(K, "blue", "red")

R> pts <- VE.HAR(K, x0, I = 50) |>
replicate(1000, expr = _) |> t()

R> points(pts[, 2], pts[, 3], xlab = "x2", ylab = "x3",
asp = 1, pch = 19, cex = .3)
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Figure 20. Two tropical polytropes, (left) with vertices indicated in red and results after
using VE.HAR() to sample 1000 points from each polytope.

In addition, we can also sample points about a center of mass (location parameter, µ) with dispersion
controlled by a scale parameter, σtrop, which is defined in terms of the tropical metric. This method is
described in detail in [3]. In Euclidean space some HAR methods that sample points according to a
Gaussian distribution do so by projecting the center of mass onto the generated line and then sample
about the projection according to N ∼ (0, σ ) where σ is a fixed standard deviation. The centroid-based
sampler in the TML package leverages the mechanics of the basic VHE sampler described previously.
However, once the line segment is constructed in the extrapolation step, the point µ representing the
location parameter, is projected onto this line segment. However, in the tropical projective torus, the
projection of a point onto a line segment is not usually unique. So the algorithm employs a bisection
search to approximate the interval of points which provides all valid projections of the location parameter
onto the tropical line segment. From this interval, is selected uniformly using the HAR.TLineSeg()
function. If we do not define and then sample from the entire interval of possible projections, sampling
biases towards the projection of µ defined by equation (7). Once selected, this sampled point represents
the projection of the location parameter onto the tropical line segment and we sample about this point
according to a N (0, σtrop) distribution. For detail on how this is accomplished, see Chapter 2 in [3].
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Figure 21. Sampling 1000 points about a center of mass using the VE.HAR.centroid() function.

In the TML package, the VE.HAR.centroid() function executes this method. The function
VE.HAR.centroid() takes as inputs the vertices of a tropical simplex, a starting point, and a scalar value
determining the length of the Markov chain. In addition, a point serving as a center of mass representing
the location parameter, and a scale parameter in the form of a scalar to control dispersion are also used.
Figure 21 shows an output of sampling about a center of mass.

R> P <- rbind(c(0, 0, 0), c(0, 0, 1000), c(0, 1000, 0))
R> x0 <- c(0, 2.5, 3.2)
R> m <- c(0, 500, 500)
R> pts <- VE.HAR.centroid(P, x0, I = 50, m, s = 4) |>

replicate(1000, expr = _) |> t()

R> plot(pts[, 2], pts[, 3], xlab = "x2", ylab = "x3", asp = 1)
R> points(m[2], m[3], pch = 19, col = "red")

The previous example treats the state space as a large, ordinary square, with the center of mass being
the center of the square. The intent of the exercise is to show that we can sample points about a center of
mass according to a centroid-based distribution which incorporates the tropical metric. The code snippet
below only provides a visualization for the scale parameter equal to 0.05 though Figure 22 provides
visualization for each scale parameter value. The code block only provides the code for the points sampled
using a scale parameter of σtrop = 0.05.
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R> P <- matrix(c(0,0,0,0,2,5,0,3,1),3,3,TRUE)

R> y_star <- c(0,2.1,3.6)

R> m <- c(0,1,1)

R> sds <- c(.05,.1,.5,1)

R> N <- 1000

R> poins <- replicate(4,matrix(NA,0,dim(P)[2],TRUE))

R> for (j in 1:length(poins)){

y <- y_star

for (i in 1:N){

y <- VE.HAR.centroid(P,y,I=50,m,sds[j])

poins[[j]] <- rbind(poins[[j]],y)

}

}

R> draw.tpolytope.2d(P,’lightblue’,’red’,plot=TRUE)

R> points(poins[[1]][,2],poins[[1]][,3],pch=3,cex=.4)

R> points(m[2],m[3],col=’orange’,pch=19,cex=.4)

In Figure 22, we observe that as the scale parameter increases, the sampling biases towards the
boundaries because the state space is a polytope and therefore bounded.

The functions in this section illustrate the basics of HAR sampling over the tropical projective torus.
In the next section we provide specific data science applications using the methods in the TML package.

4. TML FOR TROPICAL STATISTICS. In this section we provide several applications of the methods
available in the TML package. We begin with an application to show how to estimate the volume
of a tropical polytope as described in [6], which is a NP-hard problem [11]. Next, we provide a
supervised learning method involving tropical logistic regression applied to classifying phylogenetic
trees as introduced in [2]. Then we show how to apply unsupervised learning in the form of tropical
principal component analysis, again, applied to phylogenetic trees [26]. Finally, we show how to
implement a nonparametric tropical kernel density estimation method as a way to identify outliers related
to phylogenetic trees on [m] leaves [47].

4A. Application 1: Volume estimation of a tropical polytope. A challenging problem in polyhedral
geometry is estimating the volume of polytopes and is no less challenging in the tropical setting. In this
section, we follow the methods devised and illustrated in [6]. In general, for a given tropical polytope,
P , this involves finding a minimum enclosing tropical ball, denoted Br (P). By sampling from Br (P),
which is of known volume, we can estimate the volume of P by multiplying the volume of Br (P) by the
proportion of sampled points with membership in P .



164 Barnhill, Yoshida, Aliatimis and Miura :::: Tropical geometric tools for machine learning: the TML package

−2 −1 0 1 2 3 4 5

0
1

2
3

4
5

x2

x
3

−2 −1 0 1 2 3 4 5

0
1

2
3

4
5

x2

x
3

−2 −1 0 1 2 3 4 5

0
1

2
3

4
5

x2

x
3

−2 −1 0 1 2 3 4 5

0
1

2
3

4
5

x2

x
3

Figure 22. Sampling 1000 points from P , where P :={(0, 0, 0), (0, 3, 1), (0, 2, 5)} about
the center of mass µ = (0, 1, 1) (in orange) using the VE.HAR.centroid() function for
four different scale parameters 0.05 (top left), .1 (top right), .5 (bottom left), 1 (bottom
right).

This application begins with computing Br (P) for a given P using the min_enc.ball() function.
The output of the function is a two element list with the first element representing the center point of the
ball and the second element representing the radius of the tropical ball in terms of tropical distance.

set.seed(1)
R> P <- rbind(c(0,0,0),c(0,3,1),c(0,2,5))
R> (B <- P |> min_enc.ball())
$Center
[1] 0.0 2.0 2.5

$Radius
[1] 2.5
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Next we use the trop.bal.vert() to obtain the points in the minimum generating set of Br (P). The
output is a matrix with rows representing the points in the minimum generating set V ′ of Br (P).

R> (BR <- trop.bal.vert(B[[1]],B[[2]]))

[,1] [,2] [,3]
[1,] 0 -0.5 0.0
[2,] 0 4.5 2.5
[3,] 0 2.0 5.0

Using the output of points from the trop.bal.vert() function and the original tropical polytope, P ,
we can estimate the volume of P . This is accomplished through the use of the trop.Volume() function.
Inputs include an the matrix representing the tropical points defining the tropical ball, a matrix representing
the points defining the original tropical polytope, an initial point, the number of points to sample, a scalar
value representing the length of each Markov chain, and the radius, r , of Br (P).

R> x0 <- c(0,1.5,.4); s <- 200; I <- 50; r <- B[[2]]
R> trop.Volume(BR,P,x0,s,I,r)
$Ratio
[1] 0.67

$Vol_Ball
[1] 18.75

$Vol_Poly
[1] 12.5625

The output of the trop.Volume() function is a list containing three elements. The first element
represents the proportion of points falling in the polytope of interest. The second element represents the
volume of Br (P) and the third represents the volume estimate of the tropical polytope.

4B. Application 2: Tropical logistic regression. We now introduce the supervised learning method of
tropical logistic regression as applied to phylogenetics. In [2], tropical logistic regression is introduced
and shown to outperform classical logistic regression when applied to phylogenetic trees. Specifically,
tropical logistic regression is a binary classification method applied to a given set of phylogenetic trees.
The classifications represent membership into one of two species trees.

Next, we turn to using tropical logistic regression to the problem of classifying gene trees according to
the species tree that generated them. For this application, we use the two sets of 1000 phylogenetic trees,
Sim_Trees11 and Sim_Trees21 (or simply T 1 and T 2 where the ratio R = SD/Ne = 1) where each
phylogenetic tree has ten leaves and is represented as an ultrametric. Using T 1 and T 2, the task is now to
classify unseen gene trees.
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The tropical logistic regression model first infers the species tree that generated the corresponding
trees of each class. Under the coalescent model which is explained in Section 1D, the species trees and
gene trees are equidistant and so the corresponding vectors are ultrametric. However, a Fermat–Weber
point, which is used in lieu of the MLE tree, may not be an ultrametric. Ideally, we would like to have an
additional constraint, requiring that the species tree be an ultrametric. By adding a regularization term that
penalizes deviations from the space of ultrametrics, we instead consider the modified Fermat–Weber point

arg minω∈Re

{ N∑
i=1

dtr(xi , ω)+ λ∥ω − π(ω)∥2
}
,

where xi ∈ Re/R1 is the i-th vectorized gene tree, π is a projection onto the space of ultrametrics and
λ is the regularization rate in terms of the l2-norm. This method is employed in the standalone function
FWpoint.num.w.reg() which is incorporated in the tropical logistic regression method defined by
trop.logistic.regression(). However, by default there is no regularization i.e., λ=0. With the
default setting, the function is identical to FWpoint.numerical(). It has been observed that the AUCs of
tropical logistic regression are lower when regularization is applied, but the inferred species trees are closer
to the true species trees. Therefore, the modified Fermat–Weber point is more useful for inference than
classification. Once the inferred species trees have been computed in trop.logistic.regression(),
the two scaling parameters are computed by solving an optimization problem using the conjugate gradient
method, with the MLE estimate for the scale parameters being used as an initial guess for the optimizer.
The following example shows how tropical logistic regression can be employed.

R> library("ROCR")
R> D <- rbind(Sim_Trees11, Sim_Trees21)
R> Y <- c(rep(0, dim(Sim_Trees11)[1]),

rep(1, dim(Sim_Trees21)[1]))
R> N <- length(Y)
R> set.seed(1)
R> train_set <- sample(N, floor(0.8 * N)) ## 80/20 train-test split
R> pars <- trop.logistic.regression(D[train_set, ], Y[train_set],

penalty = 1e4)
R> test_set <- (1:N)[-train_set]
R> Y.hat <- rep(0, length(test_set))
R> for (i in 1:length(test_set))

Y.hat[i] <- prob.class(pars, D[test_set[i], ])

R> prediction(Y.hat, Y[test_set]) |>
performance(measure = "tpr", x.measure = "fpr") |>
plot(lwd = 2,
main = "ROC Curve for Logistic Regression Model")
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ROC Curve for Logistic Regression Model
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Figure 23. ROC curve produced by the code snippet above.

R> prediction(Y.hat, Y[test_set]) |>
performance(measure = "auc") |>
slot("y.values")

[[1]]
[1] 0.970966

From the example above we see that the area under the curve associated with the receiver operator
characteristic (ROC) curve is close to one. This indicates a near-perfect classification for the given
example. Figure 23 provides a visual representation of the ROC curve associated with the example above.

4C. Application 3: Tropical PCA. Principal component analysis (PCA) is an unsupervised learning
technique used for dimension reduction. Tropical PCA is no different but focuses on finding a best-fit
tropical polytope for some data in the tropical projective torus. As in the previous section, we focus on
the space of equidistant trees on [m] leaves. As shown in the previous section, an equidistant tree can be
defined as an ultrametric. In the TML package, tropical principal component analysis focuses on the tree
space defined as the space of ultrametrics on [m] leaves. This method was first introduced in [26] and
extended in [45].

In the examples below we instead use simulated data where each point resides in the tropical pro-
jective torus. The best-fit polytope, specifically a tropical triangle, is calculated through the use of the
tropical.PCA.Polytope() function. This function takes an iterative approach to finding the vertices
of the best-fit tropical triangle by incorporating vertex HAR with extrapolation which was shown in
Section 3B. The primary purpose is to visualize the data along with the associated tropical triangle which
is shown through the code that follows.
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R> set.seed(1)

R> s <- 3 # number of vertices.
R> d <- 3 # dimension
R> N <- 100 # sample size

R> V <- rbind(
c(100, 0, 0),
c(0, 100, 0),
c(0, 0, 100),
c(-100, 0, 0),
c(0, -100, 0),
c(0, 0, -100)

)

R> D <- cbind(
rnorm(N, mean = 5, sd = 5),
rnorm(N, mean = -5, sd = 5),
rnorm(N, mean = 0, sd = 5)

)

R> index <- sample(1:N, s)
R> S <- D[index, ]
R> DD <- pre.pplot.pro(S, D) |> apply(2, normaliz.vector)
R> res <- tropical.PCA.Polytope(S, D, V, I = 1000, 50)
R> DD <- pre.pplot.pro(res[[2]], res[[3]])
R> trop.tri.plot.w.pts(normaliz.ultrametrics(res[[2]]), DD)

The output of this code provides the tropical triangle shown in Figure 24. Of note, the best fit tropical
polytope is an approximation and users should expect to get a different tropical triangle that is different
than the one pictured in Figure 24.

4D. Application 4: Tropical kernel density estimation. A kernel density estimator (KDE) is a nonpara-
metric density estimation method which uses kernel functions. This is a useful method in determining
a number of data characteristics when the distribution of the data is unknown. This technique uses a
kernel function, κ(·) which is simply a nonnegative, smooth function and conjunction with a bandwidth
parameter [37; 40]. Like any density function however, there also must exist some normalizing constant,
C such that 1

C κ(·) integrates to one. A common kernel density estimator is the Gaussian kernel with
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Figure 24. Best-fit tropical triangle found using tropical.PCA.Polytope().

mean zero and standard deviation equal to one

1
√

2π
exp

(
−

x2

2

)
. (18)

In (18), the normalizing constant is the fraction prior to the exponential function. The bandwidth,
or dispersion, parameter is represented by the standard deviation in the case of the Gaussian kernel.
Importantly, a reasonable density estimate requires an appropriate choice for bandwidth.

Kernel density estimation over the tropical projective torus has previously been investigated by Weyen-
berg et al. in [41], which specifically focused on kernel density estimation over the space of phylogenetic
trees using what is called the BHV metric. One of the more challenging aspects of their method was that
the location of the center of the kernel function causes the value of the normalizing constant to vary. This
requires a recalculation of the normalizing constant for each data point.

As an alternative to this method in [47], Yoshida et al. introduced the notion of kernel density estimation
over the treespace represented as the space of ultrametrics on [m] leaves using the tropical metric in
conjunction with a Laplacian kernel function. Conducted experiments suggested that the normalizing
constant remains constant regardless of the center of the function with m ≥ 5. Bandwidth, which is
based on the tropical metric, is chosen using a “nearest neighbor” approach as in [42] meaning that the
bandwidth parameter is equal to the tropical distance to the closest other data point.

The TML package provides tropical kernel density estimation in the form of the tropical.KDE()
function. The method leverages two functions from the KDETrees package called pw.trop.dist()
and bw.nn() to first calculate the pairwise tropical distance between each data point and then find the
bandwidth parameter for each data point [42]. In [42], Weyenberg et al. show how, using their BHV
metric-based approach, to identify outliers in a set of gene trees. In this case, an outlier tree is a tree that
falls in the tail of the distribution of trees.
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Yoshida et al. conducted a similar experiment using the method developed in [47] on a the space
of ultrametrics on m = 10 leaves to identify such outliers with fixed effective populations but differing
species depths (SD). The species depth indicates the number of epochs between the common ancestor
of all species (root node) and present day (leaf nodes). For this experiment, we consider an effective
population of Ne = 100000 and varying species depths such that we obtain a sequence of ratios, R, of SD
to Ne equal to 0.25, 0.5, 1, 2, 5, and 10.

The example below consists, again, of using the same two sets of 1000 simulated gene trees, T 1 and
T 2, with ten leaves where R = 5 (represented as Sim_Trees1 and Sim_Trees2). We then provide the
cumulative results for each R in the plots of the receiver operator characteristic (ROC) curves for each R
that follow.

In order to determine how well we can identify outliers using the tropical.KDE() function, we
examine each tree in T 2 as it is appended to the set of trees in T 1. Using the pairwise tropical distance
function, pw.trop.dist(), and bw.nn(), we find the bandwidth value for each tree in the set. Then,
we calculate the density value using tropical.KDE() function. We determine how well the method
identifies outliers by examining the receiver operator characteristic (ROC) curve. The larger the value
of the area under the ROC curve, the better the method is at identifying outliers. In the code chunk
below, we assume the density estimate on the final trial for all trees with original membership in T 1 is
representative of density estimates from previous trials. Therefore, when calculating values for the ROC
curve in the code chunk below, we only use those density estimates. For demonstration, the following
code chunk only shows the code necessary for R = 5 scenario.

R> set.seed(1)
R> I <- 1000 ## The number of trials
R> D1 <- Sim_Trees15; D2 <- Sim_Trees25; Q5 <- rep(0, I)
R> N1 <- nrow(D1)
R> for(i in 1:I){

D <- rbind(D1, D2[i,])
k <- dim(D)[1]
P5 <- rep(0, k)
X <- 1:k
sigma <- D |> pw.trop.dist(D) |> bw.nn()
P5 <- tropical.KDE(D, n, sigma, h = 2)
Q5[i] <- P5[k]

}
R> y <- c(rep(1, N1), rep(0, I))
R> predProbKDE5 <- c(P5[1:N1], Q5)
R> KDE5.ROC <- performance(prediction(predProbKDE5, y),

measure="tpr", x.measure="fpr")
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In general, we see that as SD, and therefore R, increases, so does the AUC value as shown below.
When we reach the experiment representing R = 10, we see perfect classification, indicated by the AUC
being equal to one. Figure 25 shows the associated ROC curves for each value of R. This provides us
with a visual representation of the AUC values below.

R> (KDE025.AUC <- performance(prediction(predProbKDE025, y),
measure=‘‘auc’’)@y.values)

[[1]]
[1] 0.563876

R> (KDE05.AUC <- performance(prediction(predProbKDE05, y),
measure="auc")@y.values)

[[1]]
[1] 0.630703

R> (KDE1.AUC <- performance(prediction(predProbKDE1, y),
measure="auc")@y.values)

[[1]]
[1] 0.697034

R> (KDE2.AUC <- performance(prediction(predProbKDE2, y),
measure="auc")@y.values)

[[1]]
[1] 0.87902

R> (KDE5.AUC <- performance(prediction(predProbKDE5, y),
measure="auc")@y.values)

[[1]]
[1] 0.998542

R> (KDE10.AUC <- performance(prediction(predProbKDE10, y),
measure="auc")@y.values)

[[1]]
[1] 1

5. CONCLUSION. This paper provides a basic description of the tropical machine learning methods
and functionality of the TML package in R. While we provide a thorough descriptions of most available
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Figure 25. ROC curve for outlier detection when comparing two sets of gene trees with
varying SD. Note that an increasing R indicates an increasing SD.

methods in the TML package we cannot cover everything. One important unsupervised method not
covered are clustering methods over the tropical projective torus. We recommend to read [4] for a thorough
treatment.

As shown in [25], all Euclidean statistical models can be described in terms of tropical algebra. With this
in mind, we anticipate that TML package will continue to mature as new tropical data science methods are
developed. We are already observing alternative methods of employing tropical support vector machines us-
ing HAR methods and neural networks in terms of tropical algebra. We encourage collaborators to provide
input and recommendations via the TML GitHub page at https://github.com/barnhilldave/TML/issues.
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