
Journal of Software for

Algebra and Geometry

Computing arrangements of hypersurfaces
PAUL BREIDING, BERND STURMFELS AND KEXIN WANG

vol 15 2025

JSAG 15 (2025), 11–27 The Journal of Software for
https://doi.org/10.2140/jsag.2025.15.11 Algebra and Geometry

Computing arrangements of hypersurfaces

PAUL BREIDING, BERND STURMFELS AND KEXIN WANG

ABSTRACT: We present a Julia package HypersurfaceRegions.jl for computing all connected
components in the complement of an arrangement of real algebraic hypersurfaces in Rn .

1. INTRODUCTION. Arrangements of real hyperplanes are ubiquitous in combinatorics, algebra and
geometry. Their regions (i.e., connected components) are convex polyhedra, either bounded or unbounded,
and their numbers are invariants of the underlying matroid [6; 13]. The number of bounded regions agrees
with the Euler characteristic of the complex arrangement complement [7; 8], and also with the maximum
likelihood degree (ML degree). The latter is the number of complex critical points of the associated
models in statistics and physics [19].

Arrangements of nonlinear hypersurfaces are equally important, but they are studied much less.
Polynomials of higher degree create features that are not seen when dealing with hyperplanes. The
number of regions is no longer a combinatorial invariant, but it depends in a subtle way on the coefficients.
Moreover, the regions are generally not contractible.

We present a practical software tool, called HypersurfaceRegions.jl and implemented in the
programming language Julia [1], whose input consists of k polynomials in n variables

f1, f2, . . . , fk ∈ R[x1, . . . , xn]. (1)

The output is a list of all regions C of the n-dimensional manifold

U = {u ∈ Rn
: f1(u) · f2(u) · · · fk(u) ̸= 0}. (2)

The list is grouped according to sign vectors σ ∈ {−1, +1}
k , where σi is the sign of fi on C . Unlike in

the case of hyperplane arrangements, each sign vector σ typically corresponds to multiple regions. For
each region C we find the Euler characteristic via a Morse function.

Example 1 (n = k = 3). Figure 1 shows two concentric spheres that are pierced by an ellipse

f1 = x2
1 + x2

2 + x2
3 − 1, f2 = x2

1 + x2
2 + x2

3 − 4, f3 = 100x2
1 + 100x2

2 + x2
3 − 9.

The threefold U has eight regions. Five are contractible, with Euler characteristic χ = 1. The central
region has σ = (−, −, −). The sign vectors (+, −, −) and (+, +, −) each contribute two regions. Two

MSC2020: 14Q30, 57R19, 68-04.
Keywords: hypersurface arrangement, Morse theory, Euler characteristic.
HypersurfaceRegions.jl version 1

© 2025 COPYRIGHT INFORMATION WILL GO HERE

https://doi.org/10.2140/jsag.2025.15-1
http://msp.org/jsag
https://doi.org/10.2140/jsag.2025.15.11
http://msp.org/jsag

12 Breiding, Sturmfels and Wang :::: Computing arrangements of hypersurfaces

Figure 1. A skinny ellipse pierces two concentric spheres. This arrangement has 8 regions.

bounded regions are solid tori, with χ = 0 and σ = (−, −, +), (+, −, +). The unique unbounded region,
with σ = (+, +, +) and χ = 2, is homotopic to the 2-sphere.

Our software HypersurfaceRegions.jl also features heuristics for deciding whether a region is
bounded or unbounded, and which of the regions are fused when the hyperplane at infinity is added. In
our Section 4, titled How to use the software, we explain how this works.

Example 2 (n = 2, k = 21). In del Pezzo geometry [11, Section 3], it is known that removing the 27 lines
from a real cubic surface creates 130 regions. We can confirm this by applying HypersurfaceRegions.jl
to the plane curves in the blow-up construction of the surface. Fix six general points in convex position
in R2. Let f1, . . . , f15 be the lines spanned by pairs of points and f16, . . . , f21 the ellipses spanned by
five of the points. This arrangement has 145 regions, all contractible, of which 115 are bounded and 30
are unbounded. Our software identifies these and fuses 15 pairs of unbounded regions. It outputs the 130
regions in RP2.

The method we present is an adaptation of the algorithm by Cummings, Hauenstein, Hong and
Smyth [9], which in turn is inspired by [12]. Their setting is more general in that they allow semialgebraic
sets defined by both equations and inequalities. We restrict ourselves to arrangement complements, defined
by f1 ̸=0, . . . , fk ̸=0. This enables us to offer tools in Julia [1] that are easy to use and widely applicable.
Our implementation is based on the numerical algebraic geometry software HomotopyContinuation.jl
[5] and on the software DifferentialEquations.jl [16] for solving differential equations.

This paper is organized as follows. In Section 2 we introduce a Morse function for our problem. This is
a modified version of the log-likelihood function associated with f1, . . . , fk . Every region of U contains
at least one critical point. We compute the critical points using HomotopyContinuation.jl . These
points determine the Euler characteristic of each region.

Breiding, Sturmfels and Wang :::: Computing arrangements of hypersurfaces 13

In Section 3 we turn to the mountain pass theorem [2; 14], which ensures that we obtain a connected
graph in each region when tracking paths from index 1 critical points to index 0 critical points. This
tracking procedure is realized in our software by solving an ODE using DifferentialEquations.jl.
In short, our software is built on flows in Morse theory.

Section 4 explains how to run HypersurfaceRegions.jl. It is aimed at beginners with no prior
experience with numerical software. We demonstrate that HypersurfaceRegions.jl can be used for
a wide range of scenarios from the mathematical spectrum. In Section 5 we report on test runs of our
software on generic instances, obtained by sampling random hypersurfaces and random spectrahedra.
Our presentation emphasizes ease and simplicity.

2. LOG-LIKELIHOOD AS A MORSE FUNCTION. The algorithm in [9] rests on Morse theory. We review
some basics from the textbook [15]. Let M be an n-dimensional manifold. A smooth function g :M→ R

is a Morse function if the Hessian matrix (∂2g/∂xi∂x j) is invertible at every critical point of g. The
number of positive eigenvalues of the Hessian matrix is the index of the critical point. Let g be a Morse
function which is exhaustive, i.e., the superlevel set {g ≥ c}= {u ∈M : g(u)≥ c} is compact for each c ∈ R.
If an interval [a, b] ⊂ R contains no critical value of g then the superlevel sets {g ≥ c} are diffeomorphic
for c ∈ [a, b]. By contrast, suppose c is a critical value of g, corresponding to a unique critical point of
index ℓ. Then, for sufficiently small ϵ, the superlevel set {g ≥ c − ϵ} is diffeomorphic to {g ≥ c + ϵ}

with one ℓ-handle of dimension n attached. Since ℓ-handles can be shrunk to ℓ-cells, one arrives at the
following result.

Theorem 3. The manifold M is homotopy equivalent to a CW-complex with exactly one ℓ-cell for every
critical point of index ℓ. In particular, the Euler characteristic of M equals

χ(M) =

n∑
ℓ=0

(−1)ℓµℓ. (3)

where µℓ is the number of index ℓ critical points of the exhaustive Morse function g : M → R.

We shall apply Theorem 3 to the manifold U defined in (2). This requires an exhaustive Morse function.
On each region of U , this role will be played by the rational function

g(x) =

k∏
i=1

| fi (x)|si

q(x)t . (4)

For the denominator q(x) we take a generic polynomial of degree 2 that is strictly positive on Rn . The
exponents s1, . . . , sk, t are arbitrary positive integers which satisfy the inequality

k∑
i=1

si degree(fi) < 2t. (5)

14 Breiding, Sturmfels and Wang :::: Computing arrangements of hypersurfaces

Proposition 4. The function g(x) is an exhaustive Morse function. It is strictly positive on U and it is
zero on each of the hypersurfaces { fi = 0}. It also vanishes at infinity in Rn .

The Morse function g(x) in (4) is called master function in the theory of arrangements [8] and likelihood
function in algebraic statistics [19]. Its logarithm is the log-likelihood function

log(g(x)) =

k∑
i=1

si · log | fi (x)| − t · log(q(x)). (6)

The critical points of g(x) are the solutions in Cn of the equation ∇ log(g(x)) = 0. The generic choice of
the quadric q(x) implies that all critical points have distinct critical values. The number of critical values
is the Euler characteristic of the very affine complex variety

{u ∈ Cn
: f1(u) · f2(u) · · · fk(u) · q(u) ̸= 0}. (7)

The construction of g(x) ensures that each region of U contains at least one critical point. Our algorithm
computes all real critical points, and it connects them via the mountain pass theorem. This will be
explained in Section 3. We now first return to our three ellipsoids.

Example 5. Let f1, f2, f3 be as in Example 1, fix s1 = s2 = s3 = 1 and t = 4, and define

q = (x1 + 2)2
+ (x2 − 3)2

+ (x3 − 3)2
+ (2x1 + x2)

2
+ 4.

This quadric is positive on R3. Our Morse function for the complement of the three ellipses is

g =
| f1 f2 f3|

q4 .

The log-likelihood function log(g) = log(f1) + log(f2) + log(f3) − 4 · log(q) has 29 complex critical
points, so the threefold (7) has ML degree 29. Among the critical points, 21 are real. These serve as
landmark points for the eight regions. For instance, let M be the unbounded region. It contains ten
critical points, and their indices are 0, 0, 1, 1, 1, 1, 2, 2, 2, 2. In the notation of Theorem 3, we have
µ0 = 2, µ1 = 4, µ2 = 4, and hence χ(M) = µ0 − µ1 + µ2 = 2.

The signed Euler characteristic of U is known as the maximum likelihood degree (ML degree) in
algebraic statistics [7; 19]. This is the number of critical points we must compute. Explicitly, the
logarithmic derivative of g(x) translates into the rational function equations

s1

f1

∂ f1

∂x1
+ · · · +

sk

fk

∂ fk

∂x1
+

t
q

∂q
∂x1

= 0,

...
...

...

s1

f1

∂ f1

∂xn
+ · · · +

sk

fk

∂ fk

∂xn
+

t
q

∂q
∂xn

= 0.

The following a priori bound on the number of solutions was established in [7, Theorem 1].

Breiding, Sturmfels and Wang :::: Computing arrangements of hypersurfaces 15

Proposition 6. Let d1, . . . , dk be the degrees of the polynomials f1, . . . , fk . Then the ML degree of U is
bounded above by the coefficient of zn in the rational generating function

(1 − z)n

(1 − zd1) · · · (1 − zdk)(1 − 2z)
. (8)

This bound is attained when the polynomials fi are generic relative to their degrees di .

Example 7. The ML degree in Proposition 6 equals
∑k

i=1 d2
i +

∑
i< j di d j + 1 for n = 2, and it equals∑

i≤ j≤l di d j dl −
∑

i≤ j di d j + 1 for n = 3. See [7, Section 4] for some nice geometry.

Since every region of our manifold U contains at least one critical point, we conclude:

Corollary 8. The number of regions of U is at most the ML degree in Proposition 6.

The bound in Corollary 8 is tight for linear polynomials. This is proved in the subsequent article [17].
We close this section by sketching a proof for hyperplanes in general position.

Suppose k ≥ n and let d1 = · · · = dk = 1. Then the generating function (8) becomes

1
(1 − z)k−n · (1 − 2z)

.

We find that the coefficient of zn in the Taylor expansion of this rational function equals

1 + k +

(k
2

)
+ · · · +

(k
n

)
.

This agrees with the number of all regions in a general arrangement of k hyperplanes in Rn . Thus, all
complex critical points are real, and each critical point lies in its own region.

3. MOUNTAIN PASSES AND PATH TRACKING. The mountain pass theorem guarantees that all critical
points in a region will be connected. This theorem originates in the calculus of variations. We learned
about its importance for numerical computations in real algebraic geometry from the work of Cummings
et al. [9].

We fix the Morse function g on U that is given in (4). Since the quadric q is generic, the function
g has only finitely many critical points, and g takes distinct values at these critical points. Given any
starting point x0 ∈ U , we will reach one of these critical points by numerical path tracking. This is done
by solving the ODE that describes the gradient flow

ẋ(t) = ∇g(x)(t), x(0) = x0. (9)

If x0 is chosen at random then the gradient flow will reach a critical point of index 0. Loosely speaking,
hill climbing in the steepest direction will probably lead us to a mountain peak.

Let p1, p2, . . . , pd ∈ U denote the real critical points of g. Our aim is to build a graph with vertex set
{p1, p2, . . . , pd} whose connected components correspond to the regions of U . For each critical point pi ,
we compute the eigenvalues and eigenvectors of the Hessian Hpi . This is the symmetric n × n matrix of
second derivatives of g(x) evaluated at x = pi .

16 Breiding, Sturmfels and Wang :::: Computing arrangements of hypersurfaces

Note that det(Hpi) ̸= 0 because g was constructed to be a Morse function. An eigenvector v of Hpi is
called unstable if the corresponding eigenvalue is positive. If this holds then

g(pi + ϵv) > g(pi), whenever |ϵ| is small.

If x0 = pi + ϵv is the starting point in (9) then the ODE will lead us to a critical point p j of g that is
different from pi . Whenever this happens, our graph acquires the edge pi → p j .

We now explain why this method connects all critical points in a fixed region. First of all, each pi is
connected to some critical point of index 0. Suppose we start at a critical point pi1 with positive index.
There is a path from pi1 that limits to some critical point pi2 with g(pi2) > g(pi1). If pi2 has positive
index, then the solution path from pi2 limits to some critical point pi3 with g(pi3) > g(pi2). Since there
are only finitely many critical points, the process must terminate and the last critical point in the sequence
pi1, pi2, . . . has index 0.

We are left to show that all index 0 critical points in the same region will be connected. To this end,
we introduce one more tool from Morse theory. The stable manifold of pi is

M(pi) = {pi } ∪ {x ∈ U | ∇g(x) ̸= 0 and the ODE solution starting from x limits to pi }.

The dimension of M(pi) is the number of stable eigenvectors of Hpi . The stable manifolds for critical
points of index 0 have full dimension n in U . So, for each region C of U , we have

C =

⋃
pi ∈C index 0

M(pi), (10)

where the closure is taken in U . Consider any two critical points piα and piβ of index 0 in C . Since
C is connected, (10) implies that there is a sequence of index 0 critical points pi1, . . . , pis such that
the intersections M(piα) ∩ M(pi1) and M(pis) ∩ M(piβ) are nonempty, and also M(pi j) ∩ M(pi j+1) is
nonempty for j = 1, . . . , s − 1. Corollary 10 below tells us that each of these intersections contains at
least one critical point of index 1. Thus any pair of index 0 critical points in C is connected through
index 1 critical points. Therefore, the connectivity of the finite graph we are building for C will be ensured
by Corollary 10.

The Morse function g : C → R satisfies the Palais–Smale condition. This means that every sequence
{x j } in C which satisfies lim j→∞ g(x j) = α ∈ R and lim j→∞ ∇g(x j) = 0 has a convergent subsequence.
The limit of such a convergent subsequence is a critical point in C with critical value α. The Palais–
Smale condition holds in our situation because g is positive on C , it tends to zero on the boundary, and
g−1([α1, α2]) is compact for 0 < α1 < α2.

A path between two points a and b in C is a continuous function γ : [0, 1] 7→ C with γ (0) = a and
γ (1) = b. We write 0a,b for the set of all such paths. A set S ⊂ C separates a and b if every path γ ∈ 0a,b

contains some point in S. We write g(γ) = {g(γ (t)) : t ∈ [0, 1]}. The Palais–Smale condition for g is a
hypothesis for the next result, which is [14, Theorem 3].

Breiding, Sturmfels and Wang :::: Computing arrangements of hypersurfaces 17

Theorem 9 (mountain pass theorem). Fix a closed subset S ⊂ C which separates a and b and satisfies
max(g(x) : x ∈ S) < min(g(a), g(b)). Then ω = sup(min(g(γ)) : γ ∈ a, b) is a critical value of g, and
its preimage g−1(ω) contains a unique critical point of index 1.

Corollary 10. Let pi and p j be index 0 critical points of the Morse function g on C , and suppose that
S = M(pi) ∩ M(p j) is nonempty. Then S contains a critical point of index 1.

Proof. The set S satisfies the hypotheses of Theorem 9 for a = pi and b = p j . Let pℓ be the critical point
which is promised by Theorem 9. The point pℓ necessarily lies in S. □

We have shown that the regions C of U can be identified by gradient ascent from index 1 critical points.
Here we start in the two directions determined by the unique unstable eigenvector. The resulting graph on
the index 0 critical points is guaranteed to be connected. We now summarize our approach. Algorithm 1
forms the basis of HypersurfaceRegions.jl.

Input: Polynomials f1, f2, . . . , fk in R[x1, . . . , xn].

Output: All sign patterns in {−, +}
k that are realized by f1, . . . , fk , and each region with that

sign pattern, along with its Euler characteristic.

Calculate the critical points {p1, . . . , pd} of log g(x) and record the sign vectors

σ = (sign(f1(pi)), . . . , sign(fk(pi))) ∈ {−1, +1}
k for i = 1, . . . , d.

Calculate the Hessian matrix Hpi of each critical point pi , verify that it is invertible, and compute

its index and the unstable eigenvectors.

foreach sign pattern σ do
Identify the set {pi1, . . . , pi j } of all critical points with sign pattern σ .

Initialize a graph Gσ which has this set as its vertex set.

if there is only one vertex pir of index 0 in Gσ then
Add edges between all index > 0 critical points and pir to Gσ .

else
For each index 1 critical point piℓ , identify the unstable eigenvector v, and solve the ODE (9)

starting from piℓ + ϵv and piℓ − ϵv for small ϵ > 0.

Compute the limit points (one or two). Add edge(s) from piℓ to these in Gσ .

For each piℓ of index > 1, pick an unstable eigenvector v, solve (9) from piℓ + ϵv for small

ϵ > 0, and add to Gσ the edge from piℓ to the limit point.

Identify the connected components of the graph Gσ . Compute the Euler characteristic of the

corresponding regions using the formula in (3).
end

Algorithm 1: Computing the regions of an arrangement of k hypersurfaces in Rn .

18 Breiding, Sturmfels and Wang :::: Computing arrangements of hypersurfaces

Correctness proof of Algorithm 1. Each region in U has constant sign pattern for the evaluation of
(f1, . . . , fk), so it suffices to track the ODE paths between critical points with the same sign pattern.
Tracking the ODE along the positive and negative unstable eigenvector directions of index 1 critical points
connects all index 0 critical points in the same region.

A sign pattern σ is realizable if and only if it is attained by some critical point. We now fix σ , and
we consider all critical points with sign pattern σ . For every index > 1 critical point p j1 , the ODE path
connects it with some critical point p j2 with g(p j2) > g(p j1). If again p j2 has index > 1, then the ODE
path from p j2 limits to some critical point p j3 with g(p j3) > g(p j2). Since there are only finitely many
critical points, the process terminates, and p j1 is connected to some critical point of index 0 or index 1
via a sequence of paths. Therefore, the connected components of the graph Gσ correspond exactly to the
regions in U with sign pattern σ . The statement about the Euler characteristic follows from Theorem 3. □

Frequently one is interested in the regions of an arrangement in projective space RPn . Algorithm 2 ad-
dresses this point. To begin with, we take the same input as before, namely f1, f2, . . . , fk ∈ R[x1, . . . , xn].
We further assume that Algorithm 1 has already been run.

Correctness proof of Algorithm 2. All unbounded regions of U intersect the hyperplane at infinity, denoted
{x0 = 0}. If two of them are connected in RPn , then their intersections with {x0 = 0} share a region of
U∞. We sample points qi from each region of U∞. The choice of λ guarantees that λ(1, qi) and −λ(1, qi)

lie in unbounded regions of Rn which are adjacent to the region of qi at infinity. In particular, λ(1, qi)

and −λ(1, qi) lie in the same projective region, and this region contains the unbounded affine regions

Input: All data that were used and computed in Algorithm 1.

Output: A list of all regions in projective space RPn , grouped by realizable sign pattern pairs

in {−, +}
k .

Homogenize f1, . . . , fk ∈ R[x1, . . . , xn] to f ′

1(x0, x1, . . . , xn), . . . , f ′

k(x0, x1, . . . , xn).

Compute the regions of U∞ = {u ∈ Rn−1
: f ′

1(0, 1, u) · · · f ′

k(0, 1, u) ̸= 0} and record the list

{q1, . . . , qd ′} of representatives from each region.

foreach qi do
Find the largest absolute value among all zeros of the polynomials f j (t, tqi) for i = 1, . . . , d

and j = 1, . . . , k. Fix a real number λ larger than that value.

Solve the ODE (9) with starting points λ(1, qi) and −λ(1, qi). Record the limiting critical

points. The regions of these points are connected in RPn .
end
The regions not visited in the previous step are either bounded or undecided.

Algorithm 2: Regions of a projective arrangement of k hypersurfaces in RPn .

Breiding, Sturmfels and Wang :::: Computing arrangements of hypersurfaces 19

that are identified by the ODE (9). One unbounded region can get matched multiple times in this process.
Hence, even three or more regions in Rn can get fused to the same region in RPn . □

In our implementation of Algorithm 2 we discard critical points that are close to the hypersurface
Rn−1

\U∞. These points cause numerical problems when solving the corresponding ODE. Hence, that
part of our software is based on a heuristic.

We now explain the distinction between bounded and undecided, alluded to in step 7. It is a feature of
numerical computations that tangencies and singularities are hard to detect.

Example 11 (n = 2, k = 1). Fix a real number ϵ and consider the plane curves given by

fϵ(x, y) = y2
− (x − 1)(x2

+ ϵ) and gϵ(x, y) = y2
+ ϵx2

− x .

Each curve is viewed as an arrangement in R2 with k = 1. The arrangements { fϵ} and {gϵ} have two
regions for ϵ ≥ 0 and three regions for ϵ < 0. Note the topology changes when we pass from ϵ > 0 to
ϵ = 0. The cubic f0 acquires an isolated point, and the conic g0 becomes tangent to the line at infinity.
Both regions of {g0} are unbounded, but only one of them is recognized as unbounded by Algorithm 2.
The interior of the parabola remains undecided.

We identify bounded regions as follows. We fix a small parameter δ > 0. A region in step 7 is declared
bounded if it is contained in −1/δ < x1 < 1/δ. In practice, we compute critical points of our Morse
function on the hyperplanes x1 = 1/δ and x1 = −1/δ. We process these critical points similar to what is
done in Algorithm 2. Namely, for each critical point q on the hyperplane x1 = 1/δ, we find the largest
value among all zeros of the polynomials f j (t, tq) for j = 1, . . . , k that are smaller than 1/δ. Fix a real
number λ larger than that value, but smaller than 1/δ. We then solve the ODE (9) with starting points
λ · (1, q) and record the limiting critical points. We proceed similarly for the other hyperplane x1 = −1/δ.

If a region in Rn is not visited during this process, then it does not intersect either hyperplane. If its
critical points satisfy −1/δ < x1 < 1/δ, then it is bounded. If a region is not bounded or unbounded, then
it is declared undecided. Thus, undecided regions are close to being tangent to the hyperplane at infinity,
where “close” refers to the tolerance δ.

4. HOW TO USE THE SOFTWARE. Our software is easy to use, even for beginners. We here offer a
step-by-step introduction.1 The first step is to download the programming language Julia. One navigates
to the website https://julialang.org/downloads/ for the latest version. After it is downloaded and installed,
we start Julia and enter the package manager by pressing the] button. Once in the package manager,
type add HypersurfaceRegions and hit enter. This installs HypersurfaceRegions.jl. One leaves
the package manager by pressing the back space button. To load our software into the current Julia
session, type the following command:

using HypersurfaceRegions

Now, we are ready to use the implementation. Let’s compute our first arrangement!!

1For a complete overview over our implementation we refer to the online documentation, which is available at
https://juliaalgebra.github.io/HypersurfaceRegions.jl/.

https://julialang.org/downloads/
https://juliaalgebra.github.io/HypersurfaceRegions.jl/

20 Breiding, Sturmfels and Wang :::: Computing arrangements of hypersurfaces

Figure 2. A hyperboloid and two paraboloids. The paraboloids intersect in a circle that spans a
plane. This arrangement of four surfaces has 12 regions in R3. Four are contractible.

Being ambitious, we start with an example in R3. Consider the four surfaces in Figure 2. The yellow
plane is defined by z = 0. The three quadrics are invariant under rotation around the z-axis. The two
paraboloids are defined by z = x2

+ y2
− 1 and z = −x2

− y2
+ 1. The hyperboloid is defined by

x2
+ y2

−
3
2 z2

=
1
4 . We input this arrangement into our software:

@var x y z
f = [z, x^2 + y^2 - 1 + z, x^2 + y^2 - 1 - z, x^2 + y^2 - 1/4 - 3/2*z^2]
regions(f)

The output for this input is shown on the left in Figure 3. We see that U has 12 regions, and each of
them is uniquely identified by its sign pattern σ ∈ {−, +}

4. Six regions lie outside the hyperboloid, which
means that σ4 = +. Each of them is homotopy equivalent to a circle, so χ = 0. The other six regions lie
inside the hyperboloid, which means σ4 = −.

Two of the regions inside the hyperboloid are unbounded and also circular (χ = 0). Finally, there
are two bounded regions and two regions tangent to the hyperplane at infinity. They are all contractible
(χ = 1). We compute this information by setting a flag as follows:

regions(f; bounded_check = true)

The output of HypersurfaceRegions.jl for this input is shown on the right in Figure 3. This also
reminds us that the number of real critical points depends on q(x), which is random.

One application of our method is the study of discriminantal arrangements. Such arrangements
arise whenever one is interested in the topology of real varieties that depend on parameters. The one-
dimensional case of this is known as real root classification, where one expresses the number of real roots
of a zero-dimensional system as a function of parameters.

To use the current version of HypersurfaceRegions.jl in this context, it is assumed that the
discriminant is known and that it breaks up into smaller factors. Here is an example.

Breiding, Sturmfels and Wang :::: Computing arrangements of hypersurfaces 21

Figure 3. The output of HypersurfaceRegions.jl for the arrangement shown in Figure 2.

Example 12 (polynomial of degree 8). Consider the following polynomial in one variable t :

f (t) = t8
+ x · t7

+ (x + y) · t6
+ t5

+ (x + y) · t4
+ (y + 1) · t3

+ t2
+ (x + y) · t.

The coefficients depend linearly on two parameters x and y. The discriminant of f (t) is a polynomial of
degree 14 in x and y. This discriminant factors into four irreducible factors. Two of these have multiplicity
two. We input the four factors into our software as follows:

@var x y
f = [x + y,

23x^6 + 60x^5*y + 50x^4*y^2 + 16x^3*y^3 + 3x^2*y^4 - 78x^5
- 336x^4*y - 478x^3*y^2 - 284x^2*y^3 - 76x*y^4 - 12y^5 - 87x^4
- 144x^3*y + 54x^2*y^2 + 180x*y^3 + 68y^4 + 28x^3 + 24x^2*y
- 58x*y^2 - 56y^3 - 87x^2 - 300x*y - 208y^2 - 78x - 72y + 23,

x + 3y + 1,
5x^2 + 4x*y + y^2 - 6x - 4y + 5]

regions(f)

The output is shown in Figure 4. Eight of the 16 sign patterns are realizable. The parameter plane is
divided into 12 regions. For instance, σ = (+, −, +, +) contributes two regions, one contractible and
one with two holes (χ = −1). The latter parametrizes polynomials with only two real roots. One sample
point in that region is (x, y) = (−1, 5).

You are now invited to run the following code and to match its output with Figure 1:
@var x y z
f = [x^2 + y^2 + z^2 - 1, x^2 + y^2 + z^2 - 4, 100*x^2 + 100*y^2 + z^2 - 9]
R = regions(f, bounded_check = true)

22 Breiding, Sturmfels and Wang :::: Computing arrangements of hypersurfaces

Figure 4. Output for the discriminantal arrangement in Example 12.

A range of additional features is available in HypersurfaceRegions.jl. For instance, one finds the
critical points in the i-th region of the output by running the following command:

Ri = regions(R)[i]
critical_points(Ri)

One can also locate the region to which a given point (e.g., the origin) belongs, as follows:

p = [0, 0, 0]
membership(R, p)

We next discuss a few implementation details. We use monodromy [10], which was implemented
in HomotopyContinuation.jl [5], for computing the critical points of g(x). The ODE solver from
DifferentialEquations.jl [16] is used for the Morse flows (9) between critical points.

To find critical points, we solve the rational function equations ∇ log(g(x)) = 0 in (4). These are n
equations in n variables x1, . . . , xn and k +1 parameters u = (s1, . . . , sk, t). For the monodromy, we need
a start pair (x0, u0) such that x0 is a solution for ∇ log(g(x)) = 0 with parameters u0. Since ∇ log(g(x))

is linear in u, we can use linear algebra to get such a start pair. Indeed, we can sample a random point x0

and compute u0 by solving linear equations. However, this works only if k + 1 > n, and if ∇ log(g(x0))

has full rank. To avoid these issues, we use the following trick. If k + 1 ≤ n, we define new auxiliary
parameters v = (v1, . . . , vn−k). Using monodromy, we solve the system ∇ log(g(x))− (Au + Bv) = 0,
where A ∈ Cn×(k+1) and B ∈ Cn×(n−k) are random matrices. Afterwards, we track the homotopy

Breiding, Sturmfels and Wang :::: Computing arrangements of hypersurfaces 23

∇ log(g(x)) − λ · (Au + Bv) = 0 from λ = 1 to λ = 0 using the solutions we have just computed. The
parameter continuation theorem [18; 4] asserts that this approach works.

We modified the default options in HomotopyContinuation.jl for the monodromy loops. In
HypersurfaceRegions.jl, a computation finishes if the last 10 new monodromy loops have not
provided any new solutions. The number 10 is a conservative parameter here. Its purpose is to increase
the probability of finding all critical points. The tolerance parameter δ for bounded regions, as described
in the end of Section 3, is set to the default value δ = 10−5.

5. EXPERIMENTS. This final section is dedicated to systematic experiments with our software. We
experimented by running HypersurfaceRegions.jl on random instances, drawn from two classes:

(1) Arrangements defined by random polynomials.

(2) Arrangements defined by random spectrahedra.

The first class is self-explanatory. To create (1), we choose fi at random from some probability distribution
on the space of inhomogeneous polynomials of degree d in n variables.

The second class requires an explanation. We fix positive integers n and m, and we draw n + 1
samples A0, A1, . . . , An from the

(m+1
2

)
-dimensional space of symmetric m × m matrices. We consider

the arrangement defined by the k = 2m
− 1 principal minors of the matrix

A(x) = A0 + x1 A1 + · · · + xn An. (11)

The distinguished region where all k principal minors are positive is the spectrahedron.
The stratification of symmetric matrices by signs of principal minors was studied by Boege, Selover

and Zubkov in [3]. We explore random low-dimensional slices of the Boege–Selover–Zubkov stratification.
How many regions get created, and what is their topology?

Example 13 (n = m = 3). A prominent spectrahedron is the elliptope, which is given by

A(x, y, z) =

1 x y
x 1 z
y z 1

 .

The 2 × 2 minors of this matrix give the six facet equations of the 3-dimensional cube [−1, 1]
3. Our

arrangement lives in R3, and it consists of these six planes plus the cubic surface

det(A) = 2xyz − x2
− y2

− z2
+ 1. (12)

For an illustration see Figure 5. Only four of the six facets are shown for better visibility.
We run HypersurfaceRegions.jl on this k = 7 instance. The arrangement has 43 regions. All have

Euler characteristic 1. The six facet planes of the cube divide R3 into 27 = 1 + 8 + 12 + 6 regions. One is
bounded (the cube itself) and 26 are unbounded cones. The surface (12) divides the cube into 5 regions,
and it divides four of the cones into 4 unbounded regions, for a total of 27 + 4 + 12 = 43 regions. The
projective arrangement has 39 regions.

24 Breiding, Sturmfels and Wang :::: Computing arrangements of hypersurfaces

Figure 5. Arrangement given by the elliptope and the facet planes of the surrounding cube.

n k time min-max #reg min-max #σ max #reg/σ min-max χ

3 8 15.5 46, 325 30, 196 11 −5, 2
3 9 28.9 72, 462 41, 319 7 −2, 2
3 10 68.1 108, 612 83, 437 8 −3, 1
4 4 15.4 9, 38 8, 16 7 −6, 6
4 5 32.6 19, 87 15, 32 7 −7, 3
4 6 72.3 47, 192 32, 64 9 −7, 2
5 5 142.9 34, 67 24, 32 8 −8, 4

Table 1. Random affine arrangements defined by k quadrics in Rn .

We now describe our experiments with arrangements of generic hypersurfaces. We run the program
HypersurfaceRegions.jl on k polynomials in n variables of degree d = 2 and d = 3, where the
coefficients are drawn independently from the standard Gaussian. Each experiment is carried out N times,
where N is inverse proportional to the running time for each instance.

Our findings are presented in Table 1 for d = 2 and in Table 2 for d = 3. For each row we fix the
parameters n and k. The time is the average running time per instance. This is measured in seconds. The
fourth column concerns the total number of regions. We report the minimum number and the maximum
number across all instances. The fifth column similarly reports the range for the number of realizable sign
vectors σ . The sixth column gives the maximal number of regions per fixed sign pattern. And, finally, in
the last column we report the minimum and maximum observed for the Euler characteristics χ of the
regions.

Breiding, Sturmfels and Wang :::: Computing arrangements of hypersurfaces 25

n k time min-max #reg min-max #σ max #reg/σ min-max χ

3 5 25.0 34, 135 27, 32 8 −2, 2
3 6 59.5 67, 186 52, 64 7 −2, 2
3 7 107.5 123, 280 87, 126 7 −2, 2
4 4 127.4 19, 47 16, 16 6 −4, 3
4 5 348.5 46, 119 32, 32 8 −4, 3
5 3 290.9 8, 11 8, 8 2 −7, 4

Table 2. Random affine arrangements defined by k cubics in Rn .

Let us discuss the first row in Table 1. The code runs 15.5 seconds, and it identifies ρ distinct regions
in R3, where 46 ≤ ρ ≤ 325. The number of realizable sign patterns is at most 196. This is less than
the number 2k

= 28
= 256 of all sign patterns. There were up to 11 regions per sign pattern. The Euler

characteristic of any region was between −5 and 2.
Table 2 presents analogous results for cubics in Rn where n = 3, 4, 5. The second-last row concerns

quintuples of cubics in R4. It takes less than six minutes to identify all regions, of which there are up
to 119. We observed a narrow range {−4, . . . , 3} of Euler characteristics.

Generic instances have no tangencies to the hyperplane at infinity. To experiment with that issue, we
can try k paraboloids in Rn . Here is an instance of k = 4 paraboloids for n = 3:

@var x y z
f = [3 + x + 3*y - z + (1 + 2*x + 4*y - 4*z)^2 + (2 + 3*x + 2*y + 3*z)^2,

3 + x + 3*z + (3 - 3*x - 2*z)^2 + (3 + 3*x + 3*y + 4*z)^2,
2 - 2*x - 2*y - 3*z + (2 - x + 4*z)^2 + (2 + 3*x + y + 2*z)^2,
1 - 3*x + 3*y - 3*z + (1 - 2*y + 2*z)^2 + (2 + x + 4*y)^2]

regions(f, bounded_check = true)

Each paraboloid contributes one undecided region touching the hyperplane at infinity. The output in
Figure 6 consists of six regions, each with a unique sign pattern. Notice that the label “undecided” does
not mean we claim this region touches the hyperplane at infinity. It means that our algorithm could not
decide whether this region is bounded or unbounded.

We now turn to random spectrahedra. We sampled symmetric m × m matrices A0, . . . , An where
the entries are independent standard Gaussians. The principal minors of the matrix A(x) define an
arrangement of k = 2m

− 1 hypersurfaces in the affine space Rn . We ran HypersurfaceRegions.jl
on this input. Our results are summarized in Table 3. For each row we fix the parameters n and m. The
columns have the same meaning as before. For instance, the fifth column reports the range for the number
of realizable sign vectors σ .

We also performed computations for m ≥ 4, but we do not report them because we ran into numerical
issues. Frequently, the Hessian of (6) at some critical point is almost singular.

SUPPLEMENT. The online supplement contains version 1 of HypersurfaceRegions.jl.

http://msp.org/jsag/2025/15-1/jsag-v15-n1-x02-HypersurfaceRegions.jl.zip

26 Breiding, Sturmfels and Wang :::: Computing arrangements of hypersurfaces

Figure 6. Output of HypersurfaceRegions.jl for four paraboloids in R3.

n m time min-max #reg min-max #σ max #reg/σ min-max χ

2 2 3.3 4, 8 4, 6 3 1, 1
2 3 4.4 38, 58 24, 35 9 −1, 1
3 3 13.4 80, 122 34, 38 21 −2, 1
4 3 46.3 117, 150 38, 38 26 −2, 1

Table 3. Random arrangements in Rn defined by n + 1 symmetric m × m matrices.

REFERENCES.
[1] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: a fresh approach to numerical computing”, SIAM Rev. 59:1

(2017), 65–98. MR Zbl

[2] J. Bisgard, “Mountain passes and saddle points”, SIAM Rev. 57:2 (2015), 275–292. MR Zbl

[3] T. Boege, J. Selover, and M. Zubkov, “Sign patterns of principal minors of real symmetric matrices”, 2024. arXiv
2407.17826

[4] V. Borovik and P. Breiding, “A short proof for the parameter continuation theorem”, J. Symbolic Comput. 127 (2025),
art. id. 102373. MR Zbl

[5] P. Breiding and S. Timme, “HomotopyContinuation.jl: A package for homotopy continuation in Julia”, pp. 458–465 in
Mathematical software — ICMS 2018, edited by J. H. Davenport et al., Springer, Cham, 2018. Zbl

[6] T. Brysiewicz, H. Eble, and L. Kühne, “Computing characteristic polynomials of hyperplane arrangements with symmetries”,
Discrete Comput. Geom. 70:4 (2023), 1356–1377. MR Zbl

[7] F. Catanese, S. Hoşten, A. Khetan, and B. Sturmfels, “The maximum likelihood degree”, Amer. J. Math. 128:3 (2006),
671–697. MR Zbl

[8] D. Cohen, G. Denham, M. Falk, and A. Varchenko, “Critical points and resonance of hyperplane arrangements”, Canad. J.
Math. 63:5 (2011), 1038–1057. MR Zbl

[9] J. Cummings, J. D. Hauenstein, H. Hong, and C. D. Smyth, “Smooth connectivity in real algebraic varieties”, Numerical
algorithms (2024).

[10] T. Duff, C. Hill, A. Jensen, K. Lee, A. Leykin, and J. Sommars, “Solving polynomial systems via homotopy continuation
and monodromy”, IMA J. Numer. Anal. 39:3 (2019), 1421–1446. MR Zbl

[11] N. Early, A. Geiger, M. Panizzut, B. Sturmfels, and C. H. Yun, “Positive del Pezzo geometry”, preprint, 2023. To appear in
Annales de l’Institut Henri Poincaré Comb. Phys. Interact. arXiv 2306.13604

https://doi.org/10.1137/141000671
http://msp.org/idx/mr/3605826
http://msp.org/idx/zbl/1356.68030
https://doi.org/10.1137/140963510
http://msp.org/idx/mr/3345345
http://msp.org/idx/zbl/1341.58012
http://msp.org/idx/arx/2407.17826
http://msp.org/idx/arx/2407.17826
https://doi.org/10.1016/j.jsc.2024.102373
http://msp.org/idx/mr/4783587
http://msp.org/idx/zbl/07923143
http://msp.org/idx/zbl/1396.14003
https://doi.org/10.1007/s00454-023-00557-2
http://msp.org/idx/mr/4670362
http://msp.org/idx/zbl/07781565
https://doi.org/10.1353/ajm.2006.0019
http://msp.org/idx/mr/2230921
http://msp.org/idx/zbl/1123.13019
https://doi.org/10.4153/CJM-2011-028-8
http://msp.org/idx/mr/2866070
http://msp.org/idx/zbl/1228.32028
https://doi.org/10.1007/s11075-024-01952-3
https://doi.org/10.1093/imanum/dry017
https://doi.org/10.1093/imanum/dry017
http://msp.org/idx/mr/3984062
http://msp.org/idx/zbl/1462.65055
http://msp.org/idx/arx/2306.13604

Breiding, Sturmfels and Wang :::: Computing arrangements of hypersurfaces 27

[12] H. Hong, J. Rohal, M. S. E. Din, and E. Schost, “Connectivity in semi-algebraic sets, I”, 2020. arXiv 2011.02162

[13] L. Kastner and M. Panizzut, “Hyperplane arrangements in polymake”, pp. 232–240 in Mathematical software—ICMS
2020, edited by A. M. Bigatti et al., Lecture Notes in Comput. Sci. 12097, Springer, 2020. MR Zbl

[14] J. J. Moré and T. S. Munson, “Computing mountain passes and transition states”, Math. Program. 100:1 (2004), 151–182.
MR Zbl

[15] L. Nicolaescu, An invitation to Morse theory, 2nd ed., Springer, 2011. MR Zbl

[16] C. Rackauckas and Q. Nie, “Differentialequations.jl — a performant and feature-rich ecosystem for solving differential
equations in Julia”, Journal of Open Research Software 5:1 (2017), art. id. 15.

[17] B. Reinke and K. Wang, “Hypersurface arrangements with generic hypersurfaces added”, 2024. arXiv 2412.20869

[18] A. J. Sommese and C. W. Wampler, II, The numerical solution of systems of polynomials: arising in engineering and
science, World Scientific, Hackensack, NJ, 2005. MR

[19] B. Sturmfels and S. Telen, “Likelihood equations and scattering amplitudes”, Algebr. Stat. 12:2 (2021), 167–186. MR Zbl

RECEIVED: 20 Sep 2024 REVISED: 30 Dec 2024 ACCEPTED: 27 Feb 2025

PAUL BREIDING:

pbreiding@uni-osnabrueck.de
University of Osnabrück, Osnabrück, Germany

BERND STURMFELS:

bernd@mis.mpg.de
Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany

KEXIN WANG:

kexin_wang@g.harvard.edu
Kexin Wang, Harvard University, Cambridge, MA, United States

msp

http://msp.org/idx/arx/2011.02162
https://doi.org/10.1007/978-3-030-52200-1_23
http://msp.org/idx/mr/4139491
http://msp.org/idx/zbl/1506.14003
https://doi.org/10.1007/s10107-003-0489-0
http://msp.org/idx/mr/2072930
http://msp.org/idx/zbl/1063.49021
https://doi.org/10.1007/978-1-4614-1105-5
http://msp.org/idx/mr/2883440
http://msp.org/idx/zbl/1238.57001
https://doi.org/10.5334/jors.151
https://doi.org/10.5334/jors.151
http://msp.org/idx/arx/2412.20869
https://doi.org/10.1142/9789812567727
https://doi.org/10.1142/9789812567727
http://msp.org/idx/mr/2160078
https://doi.org/10.2140/astat.2021.12.167
http://msp.org/idx/mr/4350875
http://msp.org/idx/zbl/1515.62137
mailto:pbreiding@uni-osnabrueck.de
mailto:bernd@mis.mpg.de
mailto:kexin_wang@g.harvard.edu
http://msp.org

	1. Introduction
	2. Log-likelihood as a Morse function
	3. Mountain passes and path tracking
	4. How to use the software
	5. Experiments

