
Journal of Software for

Algebra and Geometry

Abstract simplicial complexes in Macaulay2
NATHAN GRIEVE

vol 15 2025

JSAG 15 (2025), 29–39 The Journal of Software for
https://doi.org/10.2140/jsag.2025.15.29 Algebra and Geometry

Abstract simplicial complexes in Macaulay2

NATHAN GRIEVE

ABSTRACT: AbstractSimplicialComplexes.m2 is a package written for Macaulay2. It provides new
infrastructure to work with abstract simplicial complexes and related homological constructions. Its key
novel feature is to implement each given abstract simplicial complex as a certain graded list in the form
of a hash table with integer keys. Among other features, this allows for a direct implementation of the
associated reduced and nonreduced simplicial chain complexes. Further, it facilitates construction of ran-
dom simplicial complexes. The approach that we employ here builds on Stillman and Smith’s Macaulay2
package Complexes.m2; It complements and is entirely different from the simplicial complexes framework
made possible by the Macaulay2 package SimplicialComplexes.m2 of Smith, Hersey and Zotine.

1. INTRODUCTION. AbstractSimplicialComplexes.m2 is a package for Macaulay2 (version 1.24.11).
It provides new infrastructure to work with abstract simplicial complexes. Its key novel feature is to
implement each given abstract simplicial complex as a graded list (in the form of a hash table with integer
keys). This approach is entirely different from the one used in Smith, Hersey and Zotine’s Macaulay2
package SimplicialComplexes.m2 [8; 13].

Our approach, which builds on Stillman and Smith’s package Complexes.m2 [12], allows for a direct
implementation of simplicial and reduced simplicial chain complexes. Another feature of independent
interest is a method that outputs the induced chain complex maps arising via subsimplicial complexes.
Further we provide methods for producing random simplicial complexes and, which also allows for
calculation of random simplicial homology complexes. (See Section 4.)

To place matters into perspective, while the existing implementation of simplicial complexes within
SimplicialComplexes.m2 is well suited for simplicial complex commutative algebra questions that arise
via the celebrated Stanley–Reisner correspondence, a key limitation occurs when working with simplicial
complexes and related homological questions. Indeed, when working within SimplicialComplexes.m2
there is the need to introduce a suitable polynomial ring and then to regard the vertices of each given
simplicial complex as variables of that polynomial ring.

By contrast, AbstractSimplicialComplexes.m2 implements a framework for simplicial complexes

The author thanks the Natural Sciences and Engineering Research Council of Canada for their support through his grants
DGECR-2021-00218 and RGPIN-2021-03821.

It is the author’s pleasure to thank colleagues for their interest and discussions on related topics. The author also thanks
Mike Stillman and Greg Smith for helpful feedback on this work and for correspondence about their package [12]. The author
especially thanks an anonymous referee for a careful reading, testing of the code and thoughtful suggestions.
MSC2020: primary 05E45; secondary 55U10, 62R40, 19-04.
Keywords: simplicial complexes, simplicial chain complexes, random simplicial complexes, topological data analysis.

© 2025 COPYRIGHT INFORMATION WILL GO HERE

https://doi.org/10.2140/jsag.2025.15-1
http://msp.org/jsag
http://msp.org/jsag

30 Grieve :::: Abstract simplicial complexes in Macaulay2

and related homological questions that is based on graded lists as a primitive data type and does not
need to introduce auxiliary constructs such as polynomial rings. (See [4] or [10] for the Stanley–Reisner
correspondence and [1; 7; 11] for the topological theory of abstract simplicial complexes.)

The advantages and drawbacks to such design choice considerations — depending on the applications
that a user has in mind — have been well known to Macaulay2 developers for some time. For example,
they were highlighted early in the development of the Macaulay2 package SpectralSequences.m2 [2].

Indeed, the primary impetus for what we do here arose after revisiting the design choice decisions
that were made in creating the package SpectralSequences.m2. The aim was to extend its functionality
and to give a good forward compatible integration with the package Complexes.m2. An overview of
the main features of the package SpectralSequences.m2 is provided in [3]. Such decision choice
considerations for the package AbstractSimplicialComplexes.m2, which are compatible with the
package Complexes.m2, are a key novel feature to our present work here.

There are also pedagogical reasons for being able to interact with computational tools for understanding
homological questions related to simplicial complexes that are independent of the correspondence of
Stanley and Reisner. This is illustrated in the next example.

Example 1.1 (calculating the homology groups of P2
R and the Klein bottle). The following code illustrates

the calculation of the nonreduced simplicial homology groups of P2
R and the Klein bottle, using simplicial

complex realizations found, for instance, in Armstrong’s Basic Topology [1] (see i2 and i4). Related cal-
culations are illustrated in [2] within the package SpectralSequences.m2, using realizations compatible
with ours, and in [13] within the package SimplicialComplexes.m2, using realizations based on [11].

We refrain from producing such comparable calculations here; instead we focus on illustrating how
to perform the calculations using the package AbstractSimplicialComplexes.m2.
M2-host % M2
Macaulay2, version 1.24.11
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,
Isomorphism, LLLBases, MinimalPrimes, OnlineLookup,
PrimaryDecomposition, ReesAlgebra, Saturation, TangentCone, Truncations, Varieties
i1 : needsPackage"AbstractSimplicialComplexes";
i2 : -- A simplicial complex realization of PP^2_RR

K = abstractSimplicialComplex {{1,2,3},{2,3,4},{3,4,5}, {1,5,4},
{5,2,1},{5,6,2},{4,6,2},
{1,6,4},{3,6,5},{1,6,3}};

i3 : prune HH simplicialChainComplex K
1

o3 = ZZ <-- cokernel | 2 |
0 1

o3 : Complex
i4 : -- A simplicial complex realization of the Klein bottle

L = abstractSimplicialComplex {{1,2,7}, {7,8,2}, {4,7,8},
{4,8,5}, {1,4,5}, {1,5,2}, {2,8,3}, {8,3,9},
{5,8,9}, {5,9,6}, {2,5,6}, {2,6,3}, {3,9,1}, {9,1,4},
{6,9,4},{6,7,4}, {3,6,7}, {3,7,1}};

i5 : prune HH simplicialChainComplex L

Grieve :::: Abstract simplicial complexes in Macaulay2 31

1
o5 = ZZ <-- cokernel | 2 |

| 0 |
0 1

o5 : Complex

The design methodology utilized here, to implement a framework for abstract simplicial complexes
within AbstractSimplicialComplexes.m2, is based on graded lists. Compared with the approach that
is employed in the package SimplicialComplexes.m2, the one adopted there has a number of merits.

As an example, inputing the data of a simplicial complex within AbstractSimplicialComplexes.m2
is less cumbersome than that of SimplicialComplexes.m2. Working within the new package, there is
no need to introduce a polynomial ring and then represent faces as products of the relevant variables.
Instead faces are defined directly as subsets of [n] := {1, . . . , n}. Further, the associated simplicial chain
complexes (both reduced and nonreduced) are defined over Z by default. By extension of scalars one
obtains the reduced and nonreduced chain complexes with coefficients in other rings.

As another example, our approach facilitates a direct construction of random simplicial complexes.
This is an additional novel aspect to the present work which is of an independent interest. It builds, for
example, on the approach from [9]. Such methods to construct random simplicial complexes are currently
not implemented, directly, within the package SimplicialComplexes.m2. However, complementary
constructions of random monomial ideals are implemented within the package RandomIdeals.m2. In
either case, our approach here provides a new point of departure for such themes.

A comparison of computational benchmarks between the packages AbstractSimplicialComplexes.m2
and SimplicialComplexes.m2 suggests that their computable thresholds are comparable (depending
on the application). Also, it is expected that the package AbstractSimplicialComplexes.m2 will see
enhanced computational efficiencies once the main features of the package Complexes.m2, [12], on
which the present package AbstractSimplicialComplexes.m2 builds upon, become part of the core
Macaulay2 infrastructure.

Example 1.2 below helps give a sense for the most basic computational comparable data between
AbstractSimplicialComplexes.m2 and SimplicialComplexes.m2. In considering this example, note
that the methods used in SimplicialComplexes.m2 to construct the maps in the simplicial chain com-
plexes that it produces ultimately rely on methods that are not internal to the package itself. Rather they
rely on methods that are internal to the core Macaulay2 infrastructure. In doing so, some added efficiency,
in terms of construction of simplicial chain complexes, is achieved.

By contrast, in AbstractSimplicialComplexes.m2 the simplicial chain complexes are constructed
directly within the package itself. Aside from these computational considerations, in terms of construction
of simplicial chain complexes, Example 1.2 suggests that one should expect there to be no major
computational efficiency differences in terms of calculating the homology of such chain complexes and
similar kinds of homological constructions.

Example 1.2 (calculations on the 12-simplex). In the following runs, the homology of the 12-simplex
is calculated using the methods of the package AbstractSimplicialComplexes.m2 (run ASC) and

32 Grieve :::: Abstract simplicial complexes in Macaulay2

SimplicialComplexes.m2 (run SC). The header with the system prompt, the version number and the
packages loaded is the same as on the previous page and will not be repeated.

Run ASC:

i1 : needsPackage"AbstractSimplicialComplexes";
i2 : time K = abstractSimplicialComplex(12);
-- used 0.038916s (cpu); 0.0389109s (thread); 0s (gc)

i3 : time k = reducedSimplicialChainComplex(K);
-- used 9.78308s (cpu); 7.7467s (thread); 0s (gc)

i4 : time h = HH k;
-- used 38.1503s (cpu); 21.9464s (thread); 0s (gc)

i5 : time apply(13,i-> i => rank(h_i));
-- used 102.599s (cpu); 50.6054s (thread); 0s (gc)

Run SC:

i1 : needsPackage"SimplicialComplexes";
i2 : R = ZZ[x_1..x_12];
i3 : K = simplexComplex(11,R);
i4 : time k = complex K;
-- used 0.104141s (cpu); 0.104134s (thread); 0s (gc)

i5 : time h = HH k;
-- used 40.9266s (cpu); 22.6574s (thread); 0s (gc)

i6 : time apply(13,i-> i => rank(h_i));
-- used 90.7713s (cpu); 47.5847s (thread); 0s (gc)

The conclusion is that, aside from apparent differences in creating the simplicial chain complexes
themselves (i3 in run ASC and i4 in run SC), the computational thresholds are similar (i4, i5 in run
ASC and i5, i6 in run SC). This is not surprising.

An additional feature of the package AbstractSimplicialComplexes.m2 is that it can produce the in-
duced chain complex maps that arise from nested pairs of simplicial complexes with one simplicial complex
a subsimplicial complex of another. The relevant methods are inducedSimplicialChainComplexMap
and reducedInducedSimplicialChainComplexMap.

As one possible direction for ongoing future development, such methods may find applications towards
creating an interface for the current package AbstractSimplicialComplexes.m2 to integrate with the
package SpectralSequences.m2. Such an interface would also provide a simplification of the main
constructors that are currently used within the package SpectralSequences.m2 to create filtered chain
complexes arising from filtered simplicial complexes.

Another possible future development would expand the package’s infrastructure in the direction of
topological data analysis (see for instance [5] and [6]). The design considerations that we have employed
here will facilitate with this. A first example in this direction is illustrated in Example 4.2. Further,
the question of homological features for models of random simplicial complexes is quite attractive.
In Example 4.1 we indicate one such model which arises in the work [9] and the references therein.

Grieve :::: Abstract simplicial complexes in Macaulay2 33

Organization. In Section 3 we give a brief overview of the AbstractSimplicialComplexes.m2 package
and its syntax. In Section 4 we discuss selected illustrative examples that pertain to homological
calculations with random simplicial complexes. In Section 2 we provide a brief discussion of the relevant
mathematical concepts that underlie what we do here. It also serves to fix the conventions and notation
that are used implicitly within the package itself.

2. MATHEMATICAL PRELIMINARIES.

2.1. Abstract simplicial complexes. For our purposes, by an abstract simplicial complex K on the vertex
set

[n] := {1, . . . , n}

we mean a collection of subsets

σ ⊆ [n]

that is closed under taking subsets. Thus,

τ ⊆ σ ⊆ [n] and σ ∈ K =⇒ τ ∈ K .

2.2. Reduced and nonreduced simplicial chain complexes. Fixing a commutative ring R, our conventions
about reduced and nonreduced simplicial chain complexes with coefficients in R are similar to those
which can be found, for example, in [10].

Let K be an abstract simplicial complex on the vertex set [n]. Recall that

dim K :=max
σ∈K

#σ − 1.

Define K ’s reduced simplicial chain complex with coefficients in R to be the chain complex

0← C−1(K ; R)← · · · ← Ci−1(K ; R)
∂i
←− Ci (K ; R)← . . . : Cred

•
(K ; R);

here

Ci (K ; R) :=

⊕
σ∈K

#σ=i+1

Reσ if −1 ⩽ i ⩽ dim K ,

0 otherwise,

∂i (eσ) :=

i∑
j=0

(−1) j e
{ℓ0<···<ℓ̂ j <···<ℓi }

for 0 ⩽ i ⩽ dim K ,

and

σ = {ℓ0 < · · ·< ℓi } ∈ K .

(The notation {ℓ0 < · · ·< ℓ̂ j < · · ·< ℓi } means {ℓ0 < · · ·< ℓi } with ℓ j removed.)
The nonreduced simplicial chain complex with coefficients in R is defined to be the chain complex

34 Grieve :::: Abstract simplicial complexes in Macaulay2

0← C0(K ; R)← · · · ← Ci−1(K ; R)
∂i
←− Ci (K ; R)← . . . : C

•
(K ; R).

Denote the homology modules of these chain complexes by H red
i (K ; R) and Hi (K ; R) for i ∈ Z. Thus

Hi (K ; R)= ker ∂i/ image ∂i+1 for i ⩾ 0,

H red
i (K ; R)= ker ∂i/ image ∂i+1 for i ⩾−1.

3. BRIEF OVERVIEW OF THE PACKAGE. In the package AbstractSimplicialComplexes.m2 abstract
simplicial complexes are implemented by the type AbstractSimplicialComplexes. Users who wish
to use the package AbstractSimplicialComplexes.m2 to study simplicial complexes on vertex sets
different from [n] should first fix a suitable order-preserving bijection compatible with the standard
lexicographic ordering.

Example 3.1 (constructing abstract simplicial complexes). Simplicial complexes can be constructed within
the package AbstractSimplicialComplexes.m2 using the method abstractSimplicialComplexes.
As input this method takes either an integer n, in which case the output is the n-simplex, or a collection
of subsets of [n], in which case the output is the simplicial complex generated by these subsets.

As another consideration to be aware of, if m ⩽ n and if K is a simplicial complex with vertices
supported on [m] then automatically K is considered as a subsimplicial complex of the n-simplex on [n].

Such features are illustrated via the following code. More details about reduced and nonreduced
simplicial chain complexes are given in Example 3.2.
i1 : needsPackage"AbstractSimplicialComplexes";
i2 : --- make the simplicial complex on [5]

--- generated by {1,2,3,4},{1,3,4},{2,5},{2,4,5}
K = abstractSimplicialComplex({{1,2,3,4},{1,3,4},{2,5},{2,4,5}});

i3 : -- vertices
K_0

o3 = {{1}, {2}, {3}, {4}, {5}}
o3 : List
i4 : -- facets

abstractSimplicialComplexFacets K
o4 = {{2, 4, 5}, {1, 2, 3, 4}}
o4 : List
i5 : -- make the simplex on [6]

L = abstractSimplicialComplex(6);
i6 : -- we regard K as a subsimplicial complex of L

-- the induced simplicial chain complex map is then
f = inducedSimplicialChainComplexMap(L,K)

6 5
o6 = 0 : ZZ <----------------- ZZ : 0

| 1 0 0 0 0 |
| 0 1 0 0 0 |
| 0 0 1 0 0 |
| 0 0 0 1 0 |
| 0 0 0 0 1 |
| 0 0 0 0 0 |

Grieve :::: Abstract simplicial complexes in Macaulay2 35

15 8
1 : ZZ <----------------------- ZZ : 1

| 1 0 0 0 0 0 0 0 |
| 0 1 0 0 0 0 0 0 |
| 0 0 1 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 |
| 0 0 0 1 0 0 0 0 |
| 0 0 0 0 1 0 0 0 |
| 0 0 0 0 0 1 0 0 |
| 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 1 0 |
| 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 1 |
| 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 |

20 5
2 : ZZ <----------------- ZZ : 2

| 1 0 0 0 0 |
| 0 1 0 0 0 |
| 0 0 0 0 0 |
| 0 0 0 0 0 |
| 0 0 1 0 0 |
| 0 0 0 0 0 |
| 0 0 0 0 0 |
| 0 0 0 0 0 |
| 0 0 0 0 0 |
| 0 0 0 0 0 |
| 0 0 0 1 0 |
| 0 0 0 0 0 |
| 0 0 0 0 0 |
| 0 0 0 0 1 |
| 0 0 0 0 0 |

[last line repeats 5 more times]
15 1

3 : ZZ <--------- ZZ : 3
| 1 |
| 0 |

[last line repeats 13 more times]
o6 : ComplexMap
i7 : isWellDefined f
o7 = true

Example 3.2 (constructing reduced and nonreduced simplicial chain complexes). There are two simplicial
chain complex constructors. The following code illustrates the key points.

i2 : K = abstractSimplicialComplex({{1,2,3,4}, {2,3,5}, {1,5}});
i3 : k = simplicialChainComplex K

5 9 5 1
o3 = ZZ <-- ZZ <-- ZZ <-- ZZ

0 1 2 3
o3 : Complex

36 Grieve :::: Abstract simplicial complexes in Macaulay2

i4 : k.dd
5 9

o4 = 0 : ZZ <---------------------------------- ZZ : 1
| -1 -1 -1 -1 0 0 0 0 0 |
| 1 0 0 0 -1 -1 -1 0 0 |
| 0 1 0 0 1 0 0 -1 -1 |
| 0 0 1 0 0 1 0 1 0 |
| 0 0 0 1 0 0 1 0 1 |

9 5
1 : ZZ <---------------------- ZZ : 2

| 1 1 0 0 0 |
| -1 0 1 0 0 |
| 0 -1 -1 0 0 |
| 0 0 0 0 0 |
| 1 0 0 1 1 |
| 0 1 0 -1 0 |
| 0 0 0 0 -1 |
| 0 0 1 1 0 |
| 0 0 0 0 1 |

5 1
2 : ZZ <---------- ZZ : 3

| -1 |
| 1 |
| -1 |
| 1 |
| 0 |

o4 : ComplexMap
i5 : kRed = reducedSimplicialChainComplex K

1 5 9 5 1
o5 = ZZ <-- ZZ <-- ZZ <-- ZZ <-- ZZ

-1 0 1 2 3
o5 : Complex
i6 : kRed.dd

1 5
o6 = -1 : ZZ <----------------- ZZ : 0

| 1 1 1 1 1 |
5 9

0 : ZZ <---------------------------------- ZZ : 1
| -1 -1 -1 -1 0 0 0 0 0 |
| 1 0 0 0 -1 -1 -1 0 0 |
| 0 1 0 0 1 0 0 -1 -1 |
| 0 0 1 0 0 1 0 1 0 |
| 0 0 0 1 0 0 1 0 1 |

9 5
1 : ZZ <---------------------- ZZ : 2

| 1 1 0 0 0 |
| -1 0 1 0 0 |
| 0 -1 -1 0 0 |
| 0 0 0 0 0 |
| 1 0 0 1 1 |
| 0 1 0 -1 0 |
| 0 0 0 0 -1 |
| 0 0 1 1 0 |
| 0 0 0 0 1 |

Grieve :::: Abstract simplicial complexes in Macaulay2 37

5 1
2 : ZZ <---------- ZZ : 3

| -1 |
| 1 |
| -1 |
| 1 |
| 0 |

o6 : ComplexMap

Example 3.3 (constructing chain complex maps induced via subsimplicial complexes.). Given a subsim-
plicial complex L ⊆ K there is support for computing the induced maps of the respective simplicial and
reduced simplicial chain complexes. The following code illustrates the key points.
i2 : K = abstractSimplicialComplex({{1,2},{3}})
o2 = AbstractSimplicialComplex{-1 => {{}} }

0 => {{1}, {2}, {3}}
1 => {{1, 2}}

o2 : AbstractSimplicialComplex
i3 : J = ambientAbstractSimplicialComplex(K)
o3 = AbstractSimplicialComplex{-1 => {{}} }

0 => {{1}, {2}, {3}}
1 => {{1, 2}, {1, 3}, {2, 3}}
2 => {{1, 2, 3}}

o3 : AbstractSimplicialComplex
i4 : f = inducedSimplicialChainComplexMap(J,K)

3 3
o4 = 0 : ZZ <------------- ZZ : 0

| 1 0 0 |
| 0 1 0 |
| 0 0 1 |

3 1
1 : ZZ <--------- ZZ : 1

| 1 |
| 0 |
| 0 |

o4 : ComplexMap
i5 : isWellDefined f
o5 = true

4. RANDOM SIMPLICIAL COMPLEXES. Within the package AbstractSimplicialComplexes.m2 we
provide three ways of producing random simplicial complexes.

The first produces a random simplicial complex with support on [n]. The second method produces
a random simplicial complex with support on [n] and having r-skeleton. The final method produces a
random simplicial complex Yd(n, m) having vertex set [n], complete (d − 1) skeleton and exactly m
dimension d faces chosen at random from all

((n
d+1)
m

)
possibilities.

Such random simplicial complexes appear in many different contexts; see [9] and the references therein.

Example 4.1 (generating random simplicial complexes). The following code illustrates how to work with
these methods using the package AbstractSimplicialComplexes.m2.

38 Grieve :::: Abstract simplicial complexes in Macaulay2

i2 : setRandomSeed(currentTime());
i3 : randomAbstractSimplicialComplex(5)
o3 = AbstractSimplicialComplex{-1 => {{}} }

0 => {{1}, {3}}
1 => {{1, 3}}

o3 : AbstractSimplicialComplex
i4 : randomAbstractSimplicialComplex(5,3)
o4 = AbstractSimplicialComplex{-1 => {{}} }

0 => {{2}, {3}, {4}}
1 => {{2, 3}, {2, 4}, {3, 4}}
2 => {{2, 3, 4}}

o4 : AbstractSimplicialComplex
i5 : tally(for i from 1 to 10000 list (facets randomAbstractSimplicialComplex(5,3,2)))
o5 = Tally{{{1, 2, 3}, {1, 2, 4}, {2, 4, 5}} => 391 }

{{1, 2, 3}, {1, 3, 4}, {3, 4, 5}} => 1338
{{1, 2, 3}, {1, 3, 5}, {2, 3, 4}} => 1293
{{1, 2, 3}, {1, 4, 5}, {2, 4, 5}} => 403
{{1, 2, 4}, {1, 2, 5}} => 1710
{{1, 4, 5}, {2, 4, 5}} => 1774
{{2, 3, 4}, {2, 3, 5}, {3, 4, 5}} => 1557
{{2, 3, 4}, {2, 4, 5}, {3, 4, 5}} => 1534

o5 : Tally

Example 4.2 (homological calculations on random Vietoris–Rips complexes). Motivated by the per-
spective of topological data analysis (see [6], for example), we model an n-dimensional random point
cloud distance matrix as a random n × n upper triangular matrix with random real entries above the
main diagonal. The (i, j)-entry represents the distance d(xi , x j) between the points xi and x j ; the
corresponding Vietoris–Rips complex with vertex set supported on [n] and depending on a parameter
ϵ > 0 is the simplicial complex that has as k-faces those (k+1)-element subsets

{i0 < · · ·< ik} ⊆ [n]

such that

d(xi j , xiℓ) ⩽ ϵ for all i j , iℓ ∈ {i0 < · · ·< ik}.

See [6, p. 104] and [5, Section 2.2] for details.
i2 : -- A random such VR complex on [n] and depending on a given

-- parameter e can be modelled in the following way.
randomVRcomplex := (n,e) -> (
-- return a random VR-complex supported on [n] and depending on parameter e --

L := for i from 1 to n list i;
setRandomSeed(currentTime());
M := fillMatrix(mutableMatrix(RR,n,n), UpperTriangular => true);
myFaces := select(subsets(L), i-> all(apply(subsets(i,2),
j-> M_(j#0-1,j#1-1) <= e)));
K = abstractSimplicialComplex myFaces;
return K);

i3 : -- For example, the facets of a random VR complex on the vertex set [10]
-- and depending on a parameter e = .4 is described as
setRandomSeed(currentTime());

Grieve :::: Abstract simplicial complexes in Macaulay2 39

i4 : K = randomVRcomplex(10,.4);
i5 : facets K
o5 = {{5, 8}, {2, 4, 9}, {3, 4, 6}, {4, 6, 9}, {4, 7, 10}, {6, 8, 9}, {7, 8, 9},

{1, 4, 7, 9}, {2, 3, 4, 10}, {3, 4, 5, 10}}
o5 : List
i6 : prune HH reducedSimplicialChainComplex K

1
o6 = ZZ

1
o6 : Complex

SUPPLEMENT. The online supplement contains version 1.0 of AbstractSimplicialComplexes.m2.

REFERENCES.
[1] M. A. Armstrong, Basic topology, Springer, 1983.

[2] D. Berlekamp, A. Boocher, N. Grieve, E. Grifo, G. G. Smith, and T. Vu, “A spectral sequence package for Macaulay2”,
2016, available at https://macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/SpectralSequences/html/index.html.

[3] A. Boocher, N. Grieve, and E. Grifo, “The software package SpectralSequences”, preprint. arXiv 1610.05338

[4] W. Bruns and J. Herzog, Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University
Press, 1993.

[5] G. Carlsson, “Topology and data”, Bull. Amer. Math. Soc. (N.S.) 46:2 (2009), 255–308.

[6] G. Carlsson and M. Vejdemo-Johansson, Topological data analysis with applications, Cambridge University Press, 2022.

[7] A. Hatcher, Algebraic topology, Cambridge University Press, 2002.

[8] B. Hersey, G. G. Smith, and A. Zotine, “Simplicial complexes in Macaulay2”, J. Softw. Algebra Geom. 13:1 (2023), 53–59.

[9] M. Kahle, F. H. Lutz, A. Newman, and K. Parsons, “Cohen–Lenstra heuristics for torsion in homology of random
complexes”, Exp. Math. 29:3 (2020), 347–359.

[10] E. Miller and B. Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics 227, Springer, 2005.

[11] J. R. Munkres, Elements of algebraic topology, Addison-Wesley, Menlo Park, CA, 1984.

[12] G. G. Smith and M. Stillman, “Complexes: development package for beta testing new version of chain complexes”,
Macaulay2 package, available at https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/Complexes.m2.

[13] G. G. Smith, B. Hersey, and A. Zotine, “SimplicialComplexes: exploring abstract simplicial complexes within commuta-
tive algebra”, Macaulay2 package, available at https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/
SimplicialComplexes.m2.

RECEIVED: 30 Sep 2024 REVISED: 13 Mar 2025 ACCEPTED: 14 Apr 2025

NATHAN GRIEVE: Department of Mathematics and Statistics, Acadia University, Wolfville, NS, B4P 2R6, Canada

and

School of Mathematics and Statistics, Carleton University, Ottawa, ON, K1S 5B6, Canada

and

Département de mathématiques, Université du Québec à Montréal, Montréal, QC, H2X 3Y7, Canada

and

Department of Pure Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada

nathan.m.grieve@gmail.com

msp

http://msp.org/jsag/2025/15-1/jsag-v15-n1-x03-AbstractSimplicialComplexes.m2
https://macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/SpectralSequences/html/index.html
http://msp.org/idx/arx/1610.05338
https://doi.org/10.1090/S0273-0979-09-01249-X
https://doi.org/10.1017/9781108975704
https://doi.org/10.2140/jsag.2023.13.53
https://doi.org/10.1080/10586458.2018.1473821
https://doi.org/10.1080/10586458.2018.1473821
https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/Complexes.m2
https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/SimplicialComplexes.m2
https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/SimplicialComplexes.m2
mailto:nathan.m.grieve@gmail.com
http://msp.org

	1. Introduction
	2. Mathematical preliminaries
	2.1. Abstract simplicial complexes
	2.2. Reduced and nonreduced simplicial chain complexes

	3. Brief overview of the package
	4. Random simplicial complexes

