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ABSTRACT: We introduce the MatrixSchubert package for the computer algebra system Macaulay2.
This package has tools to construct and study matrix Schubert varieties and alternating sign matrix
(ASM) varieties. The package also introduces tools for quickly computing homological invariants of such
varieties, finding the components of an ASM variety, and checking if a union of matrix Schubert varieties
is an ASM variety.

1. INTRODUCTION. Fulton [6] introduced matrix Schubert varieties in the study of Schubert varieties in
the complete flag variety. In that paper, Fulton showed that matrix Schubert varieties are Cohen–Macaulay
and gave an attractive description of their codimension and defining equations from a combinatorial
perspective. Since that time, there has been a great deal of interest in their algebraic, geometric, and
combinatorial properties; see, for example, [4; 5; 8; 12; 13; 15; 16; 17; 18].

More recently, Weigandt [20] introduced alternating sign matrix (ASM) varieties, which generalize
matrix Schubert varieties, and gave a combinatorial description of their defining equations that generalizes
Fulton’s description in the case of matrix Schubert varieties (equivalently, when the ASM happens to be
a permutation matrix). There are to date no combinatorial descriptions of the codimension of an ASM
variety nor a combinatorial criterion to determine if it is Cohen–Macaulay or even unmixed.

The MatrixSchubert package implements many basic functions for permutations and ASMs (such
as extending a partial ASM to an ASM, checking if one permutation avoids another, and finding the
descent set of a permutation) as well as more complicated ones that rely on one or several theoretical
results. Several such examples are described in greater detail in Sections 5 and 7.

One goal of this package is to implement core results from the past three decades on commutative
algebraic aspects of Schubert calculus (particularly those found in [6; 12; 15; 20]) for the purpose of
enjoying the theory that has already been developed. Another is to facilitate inquiry into the many open

This work was begun at a Macaulay2 mini-school and workshop funded by NSF grant DMS-2302476 and hosted by the
University of Minnesota. We thank the NSF for its support and the University of Minnesota for its hospitality. Klein is partially
supported by NSF grant DMS-2246962. LaClair was partially supported by NSF grant DMS-2100288 and by Simons Foundation
Collaboration Grant for Mathematicians #580839.
MSC2020: primary 05E14, 05E40, 13C70, 13P10, 14M12; secondary 05A05, 13C15, 14M15, 14N15.
Keywords: matrix Schubert varieties, alternating sign matrices, pipe dreams, Grothendieck polynomials, Castelnuovo–Mumford

regularity, Schubert calculus, Schubert polynomial.
MatrixSchubert.zip version 1

© 2025 COPYRIGHT INFORMATION WILL GO HERE

https://doi.org/10.2140/jsag.2025.15-1
http://msp.org/jsag
http://msp.org/jsag


42 Almousa, Grate, Huang, Klein, LaClair, Luo and McDonough :::: The MatrixSchubert package

questions that remain, including those surrounding resolutions and Betti numbers of matrix Schubert
varieties and ASM varieties, Cohen–Macaulayness of ASM varieties, and codimension of ASM varieties.

2. BACKGROUND AND SOME BASIC FUNCTIONS.

2.1. Permutations. Let Sn denote the group of permutations of n letters. For a permutation w ∈ Sn , we
call the matrix that has 1’s in the positions (i, w(i)) and 0’s in all other positions the permutation matrix
of w. (As a cautionary note, some authors take the convention that the matrix described here — and used
throughout the package MatrixSchubert — is the permutation matrix of w−1.)

Given w ∈ Sn , the Rothe diagram of w is

D(w) = {(i, j) : i, j ∈ [n], w(i) > j, and w−1( j) > i}.

The Coxeter length of w satisfies ℓ(w) = |D(w)|. The essential set of w is

Ess(w) = {(i, j) ∈ D(w) : (i + 1, j), (i, j + 1) ̸∈ D(w)}.

i1 : needsPackage "MatrixSchubert"
i2 : w = {2,1,5,4,3};
i3 : rotheDiagram w
o3 = {(1, 1), (3, 3), (3, 4), (4, 3)}
o3 : List
i4 : essentialSet w
o4 = {(1, 1), (3, 4), (4, 3)}
o4 : List

2.2. Alternating sign matrices. A partial alternating sign matrix (partial ASM) is a matrix with entries
in {−1, 0, 1} so that partial sums taken along each row (and column) are all 0 or 1. If the entries of each
row (and column) sum to 1 (in which case the matrix must be square), we call the partial ASM an ASM.
The ASMs whose entries all lie in {0, 1} are exactly the permutation matrices.

The rank function of the m × n partial ASM A = (Ai, j ) is defined by

rkA(a, b) =

a∑
i=1

b∑
j=1

Ai, j

for 1 ≤ a ≤ m, 1 ≤ b ≤ n. (Note that if A is not a permutation matrix, then rkA(a, b) may not be the rank
of the submatrix of A consisting of its first a rows and first b columns.)

Given a matrix M , let M[i],[ j] be the submatrix of M consisting of the first i rows and j columns.
Given an m × n partial ASM A, we define the ASM variety of A to be

X A := {M ∈ mat(m, n) : rk(M[i],[ j]) ≤ rkA(i, j) for all (i, j) ≤ (m, n)}.

If A ∈ Sn , we call Xw a matrix Schubert variety. For background on matrix Schubert varieties, including
a geometric motivation for their definition and a description of their connection to Schubert varieties,
see [6; 14].
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We call the defining radical of X A in R = κ[z1,1, . . . , zm,n], κ an arbitrary field, an ASM ideal or, when
A ∈ Sn , a Schubert determinantal ideal.

Proposition 2.1 [6, Proposition 3.3]. For w ∈ Sn , the ideal Iw is prime with codim(Iw) = ℓ(w), and R/Iw
is Cohen–Macaulay.

The function schubertCodim w computes the codimension of Iw (that is, the codimension of
spec(R/Iw) in spec(R)) using [6, Proposition 3.3] and the equality ℓ(w) = |D(w)|. Returning to
the example w = 21543, one may compare the outcome below to the size of D(w), computed above:

i5 : schubertCodim w
o5 = 4

In [6, Lemma 3.10], Fulton gave a generating set for the Schubert determinantal ideal Iw. Fix an
m × n generic matrix Z = (zi, j ). We write Ik(Z[i],[ j]) for the ideal of R generated by the k-minors in the
submatrix Z[i],[ j] of Z consisting of its first i rows and first j columns. Then

Iw =

∑
(i, j)∈Ess(w)

Irkw(i, j)+1(Z[i],[ j]),

and we call these generators the Fulton generators. There is a generalization of the Fulton generators for
ASM ideals; see [20, Lemma 5.9].

The function schubertDeterminantalIdeal takes in either a permutation (as a list representing its
one-line notation) or a partial ASM matrix and produces its ASM ideal via its Fulton generators (which
typically do not form a minimal generating set):

i6 : v = {3,1,4,2};
i7 : schubertDeterminantalIdeal v
o7 = ideal (z , z , - z z + z z , - z z + z z , - z z + z z )

1,1 1,2 1,2 2,1 1,1 2,2 1,2 3,1 1,1 3,2 2,2 3,1 2,1 3,2

A term order on R so that the lead term of the determinant of any submatrix of Z is the product of
terms along its antidiagonal is called an antidiagonal term order.

We now state a pivotal result, due to Knutson and Miller in the case of Schubert determinantal
ideals. One can extend the result to ASM ideals using either Frobenius splitting [11] or a combinatorial
argument [20]. For full details on the latter, see [10].

Theorem 2.2 [10; 11; 12; 20]. Fix a partial ASM A. The Fulton generators of IA form a Gröbner basis
under any antidiagonal term order <. Consequently, in<(IA) is radical.

Rather than computing an ASM ideal and then afterwards computing a Gröbner basis, these theorems
allow us to get an antidiagonal initial ideal directly from the permutation or ASM.

i8 : A = matrix{{0,0,1,0},{1,0,-1,1},{0,0,1,0},{0,1,0,0}};
i9 : antiDiagInit A
o9 = monomialIdeal (z , z , z z , z z , z z )

1,1 1,2 1,3 2,1 1,3 2,2 2,2 3,1
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3. RANK TABLES. The rank function rkA(i, j) of an m × n partial ASM used in the definition of an
ASM ideal can be applied to all (i, j) ≤ (m, n). The entire function can be computed and recorded in an
m × n matrix, implemented via the method rankTable:

i10 : M = matrix{{0,1,0},{1,-1,0}};
2 3

o10 : Matrix ZZ <--- ZZ
i11 : rankTable M
o11 = | 0 1 1 |

| 1 1 1 |
2 3

o11 : Matrix ZZ <--- ZZ

Given any rank table that could be constructed from a partial ASM, the method rankTableToASM
produces the unique partial ASM of the same size as the input having that rank table:

i12 : rankTableToASM matrix{{0,1,1},{0,1,1},{1,2,2}}
o12 = | 0 1 0 |

| 0 0 0 |
| 1 0 0 |

3 3
o12 : Matrix ZZ <--- ZZ

For the typical ASM, many different rank tables could be used to construct the same ASM variety X A.
The method rankTableToASM expects the (unique) matrix with minimum possible entries, which is the
one constructed in Section 2.2; see [19, Lemma 1]. If the user has a nonminimal rank table (as a matrix of
nonnegative integers), the function rankTableFromMatrix transforms the nonminimal rank table into a
minimal rank table:

i13 : rankTableFromMatrix matrix{{0,1,2},{0,4,1},{8,2,4}}
o13 = | 0 1 1 |

| 0 1 1 |
| 1 2 2 |

3 3
o13 : Matrix ZZ <--- ZZ

Among other uses, rank tables also facilitate efficient addition of ASM ideals. Every sum of ASM
ideals is again an ASM ideal [20, Section 3], and the rank table of the sum is the entrywise minimum
of the rank tables of the ASMs appearing as summands. If A1, . . . , Ak are all m × n partial ASMs, the
method schubertAdd computes the rank tables of the Ai (via rankTable), takes entrywise minima (via
entrywiseMinRankTable), and computes an ASM ideal from that rank table. Both the ASM and its
rank table are saved in the cache of the newly computed ASM ideal:

i14 : N = matrix{{1,0,0},{0,0,1}}
o14 = | 1 0 0 |

| 0 0 1 |
2 3

o14 : Matrix ZZ <--- ZZ
i15 : idealSum = schubertAdd{M,N}
o15 = ideal (z , - z z + z z )

1,1 1,2 2,1 1,1 2,2
o15 : Ideal of QQ[z ..z ]

1,1 2,2
i16 : peek idealSum.cache
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o16 = CacheTable{ASM => | 0 1 0 0 | }
| 1 -1 0 1 |
| 0 1 0 0 |
| 0 0 1 0 |

rankTable => | 0 1 1 1 |
| 1 1 1 2 |
| 1 2 2 3 |
| 1 2 3 4 |

i17 : getASM idealSum
o17 = | 0 1 0 0 |

| 1 -1 0 1 |
| 0 1 0 0 |
| 0 0 1 0 |

4 4
o17 : Matrix ZZ <--- ZZ

4. PATTERN AVOIDANCE. The MatrixSchubert package has functions to test pattern avoidance for
permutations.

A permutation is called vexillary if it avoids the permutation 2143. The class of one-sided ladder
determinantal ideals coincides exactly with the class of vexillary matrix Schubert varieties. The vexillary
condition has a large number of equivalent definitions. We direct the reader to [13, Section 3.2] for many
of them. Testing if a permutation is vexillary is implemented via the isVexillary function:

i18 : w = {7,2,5,8,1,3,6,4};
i19 : isVexillary w
o19 = false
i20 : w = {1,6,9,2,4,7,3,5,8};
i21 : isVexillary w
o21 = true

A permutation w is CDG if it avoids all eight of the following patterns:

13254, 21543, 214635, 215364, 215634, 241635, 315264, 4261735.

The class of CDG permutations was named in [7], where a diagonal Gröbner basis was conjectured
for the class; proved in [9]. Every CDG permutation is vexillary, and the CDG permutations form the
largest named class of permutations for which a diagonal Gröbner basis of their matrix Schubert varieties
is known. Testing if a permutation is CDG is implemented via the isCDG function:

i22 : w = {5,7,2,1,6,4,3};
i23 : isCDG w
o23 = false
i24 : w = {1,3,5,7,2,4,6};
i25 : isCDG w
o25 = true

We say that w is Cartwright–Sturmfels if it avoids all of the following twelve patterns:

12543, 13254, 13524, 13542, 21543, 125364, 125634, 215364, 215634, 315264, 315624, 315642.
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For background on the Cartwright–Sturmfels property of ideals in general, see [3]. For a proof that the
Cartwright–Sturmfels property is characterized by the given pattern avoidance condition, that Cartwright–
Sturmfels Schubert determinantal ideals have an universal Gröbner basis, and that any initial ideal of
a Cartwright–Sturmfels Schubert determinantal ideal is Cohen–Macaulay, see [3, Theorem 4.6]. Every
Cartwright–Sturmfels Schubert determinantal ideal is CDG.

Testing if a permutation is Cartwright–Sturmfels is implemented via the isCartwrightSturmfels
functions:

i26 : w = {3,1,2,6,5,4};
i27 : isCartwrightSturmfels w;
o27 = false
i28 : w = {6,3,5,2,1,4};
i29 : isCartwrightSturmfels w
o29 = true

More generally, avoidsAllPatterns inputs a permutation and a list of patterns to avoid, and deter-
mines if the permutation avoids all of the patterns. This allows users to test conjectures related to pattern
avoidance in a much more general capacity.

5. ALGORITHMS FOR CASTELNUOVO–MUMFORD REGULARITY. Castelnuovo–Mumford regularity is
a fundamental invariant in commutative algebra and algebraic geometry that in a rough sense gives a
measure of the complexity of a module or sheaf.

In this package we implement (as schubertRegularity) a purely combinatorial formula developed
by Peckenik, Speyer, and Weigandt [15, Theorem 1.2] for computing the Castelnuovo–Mumford regularity
of R/Iw for arbitrary w ∈ Sn . We also extend the functionality of schubertRegularity so that it can
compute the Castelnuovo–Mumford regularity of the coordinate ring associated to a partial ASM by
passing to the antidiagonal initial ideal, a valid strategy in light of an important theorem of Conca and
Varbaro [2] together with Theorem 2.2. See Section 5.2 for a fuller explanation.

5.1. Matrix Schubert varieties. The theoretical foundation for the schubertRegularity function is a
result of Pechenik, Speyer, and Weigandt.

Theorem 5.1 [15, Theorem 1.2]. For w ∈ Sn ,

reg(R/Iw) = raj(w) − |D(w)|

where raj(w) is the Rajchgot index of a permutation.

We refer the reader to [15] for the definition of the Rajchgot index.
The function schubertRegularity takes either a permutation in one-line notation (that is, as a list)

or a partial ASM and returns the Castelnuovo–Mumford regularity of the associated coordinate ring. The
computation of the Rajchot index of a permutation involves determining longest subsequences of the per-
mutation subject to certain conditions. We utilize memoization in determining these longest subsequences
which leads to drastic speed improvements over Macaulay2’s built-in command regularity. (By that,
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we mean that there are examples of the type we would be inclined to compute in the course of research
which run reliably faster, not that we have performed any type of formal efficiency analysis. We include a
couple of illustrating examples here.) The following example run on a computer with an AMD Ryzen 5
5600U processor demonstrates the extent of this speed-up:

i30 : w = {1,2,3,9,8,4,5,6,7};
i31 : I = antiDiagInit(w, CoefficientRing=>ZZ/3001);

ZZ
o31 : MonomialIdeal of ----[z ..z ]

3001 1,1 9,9
i32 : M = comodule I;
i33 : time regularity M

-- used 1.41504 seconds
o33 = 6
i34 : time schubertRegularity w

-- used 0.000181139 seconds
o34 = 6
i35 : time schubertRegularity random toList (1 .. 100)

-- used 4.03299 seconds
o35 = 1925

5.2. ASM varieties. The function schubertRegularity also accepts as input a partial ASM. There is a
unique way to extend any partial ASM to an ASM without changing the associated ideal (implemented as
partialASMToASM). The function schubertRegularity first executes that extension and then checks
whether the resulting n × n matrix is a permutation matrix; in which case the Castelnuovo–Mumford
regularity is computed via Theorem 5.1. Otherwise, the antidiagonal initial ideal of the ASM is computed,
and the built-in Macaulay2 command regularity is used. The Castelnuovo–Mumford regularity of the
quotient by the initial ideal will coincide with the Castelnuovo–Mumford regularity of the coordinate ring
corresponding to the ASM by [2, Corollary 2.7] since the antidiagonal initial ideal is squarefree [12; 20]:

i36 : A = matrix{{0,0,1,0},{0,1,-1,1},{1,-1,1,0},{0,1,0,0}};
4 4

o36 : Matrix ZZ <--- ZZ
i37 : time regularity comodule schubertDeterminantalIdeal A

-- used 0.00968312 seconds
o37 = 1
i38 : time schubertRegularity A

-- used 0.0100184 seconds
o38 = 1
i39 : B = matrix{{1,0,0,0,0,0,0,0},{0,1,0,0,0,0,0,0},{0,0,0,0,1,0,0,0},

{0,0,0,0,0,1,0,0},{0,0,1,0,0,-1,1,0},{0,0,0,1,-1,1,0,0},
{0,0,0,0,1,0,0,0},{0,0,0,0,0,0,0,1}};

8 8
o39 : Matrix ZZ <--- ZZ
i40 : time regularity comodule schubertDeterminantalIdeal B

-- used 1.01169 seconds
o40 = 8
i41 : time schubertRegularity B

-- used 0.08511 seconds
o41 = 8
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We are disappointed that, as we see above with the ASM A, the command schubertRegularity is
sometimes slower than the already-available regularity command applied to an ASM ideal. However,
as we see above with the ASM B, schubertRegularity can be a meaningful improvement over
regularity in other cases.1 As a rule of thumb, we recommend schubertRegularity for ASM
ideals with more generators of higher degrees and regularity for ASM ideals with fewer generators or
generators in lower degrees.

6. SCHUBERT AND GROTHENDIECK POLYNOMIALS. The MatrixSchubert package provides func-
tions to compute Schubert, double Schubert, and Grothendieck polynomials for permutations. We give
a brief overview of how these families of polynomials are constructed, and refer the reader to [12] for
a more detailed (and somewhat more general) treatment. Let x = {x1, . . . , xn}, and let S denote the
polynomial ring in x over the field κ . Let ∂i be the i-th divided difference operator, which sends f ∈ S to

∂i ( f ) =
f (x1, . . . , xn) − f (x1, . . . , xi+1, xi , . . . , xn)

xi − xi+1
.

It is not obvious that ∂i ( f ) ∈ S, but it is true. Let w0 = nn − 1 · · · 321, i.e., the longest word in Sn . For
w ∈ Sn , the Schubert polynomial Sw is defined recursively as follows:

Sw0(x) =

n∏
i=1

xn−i
i ∈ Z[x] and Swsi (x) = ∂iSw(x)

where si is a right descent of w (i.e., w(i) > w(i + 1)). The double Schubert polynomial Sw(x, y) is
defined using the same recursion, but with initial condition Sw0(x, y) =

∏
i+ j≤n(xi − y j ) ∈ Z[ y][x].

Finally, the Grothendieck polynomial Gw(x) is defined by the recursion

Gw0(x) =

n∏
i=1

xn−i
i and Gwsi (x) = ∂i (Gw(x) − xi+1Gw(x))

where si is a right descent of w. Computing these polynomials for a permutation w ∈ Sn given in one-line
notation is implemented via the schubertPolynomial, doubleSchubertPolynomialnomial, and
grothendieckPolynomial functions respectively:

i42 : w = {2,1,4,3};
i43 : schubertPolynomial w

2
o43 = x + x x + x x

1 1 2 1 3
o43 : QQ[x ..x ]

1 4
i44 : doubleSchubertPolynomialnomial w

1We expect that the issue is that we are for some reason describing the sets of rows and columns whose minors define the
ASM ideal (or its antidiagonal initial ideal) less efficiently than the minors command does. This explanation is compatible with
our experience that antiDiagInit is typically slower than schubertDeterminantalIdeal for dominant permutations, i.e.,
permutations indexing Schubert determinantal ideals that are already monomial ideals.



Almousa, Grate, Huang, Klein, LaClair, Luo and McDonough :::: The MatrixSchubert package 49

2 2
o44 = x + x x + x x - 2x y - x y - x y + y - x y + y y - x y + y y

1 1 2 1 3 1 1 2 1 3 1 1 1 2 1 2 1 3 1 3
o44 : QQ[x ..x , y ..y ]

1 4 1 4
i45 : grothendieckPolynomial w

2 2 2 2
o45 = x x x - x x - x x - x x x + x + x x + x x

1 2 3 1 2 1 3 1 2 3 1 1 2 1 3
o45 : QQ[x ..x ]

1 4

The default options for computing Schubert, double Schubert, and Grothendieck polynomials use
the definitions by divided difference operators, where we deterministically pick one reduced word for
each w to apply the divided difference operators. For Schubert polynomials, we also provide the option
Algorithm=>"Transition" that computes Schubert polynomials via transition equations; see, e.g., [21].
For Grothendieck polynomials, we provide three different implementations: "DividedDifference",
"Degree", and "PipeDream". The "Degree" option computes the twisted K -polynomials of the matrix
Schubert variety and should not be used for any practical implementation. The "PipeDream" option
computes Grothendieck polynomials by the pipe dream formula. We provide these different options for
any users who are interested in comparing efficiency of the different algorithms.

7. STUDYING ASM VARIETIES VIA INITIAL IDEALS. Rank functions induce a lattice structure on the
set of n × n ASMs defined by A ≥ B if and only if rkA(i, j) ≤ rkB(i, j) for all i, j ∈ [n]. The restriction
of this partial order to Sn recovers the (strong) Bruhat order on Sn . Define

perm(A) = {w ∈ Sn : w ≥ A, and, if w ≥ v ≥ A for some v ∈ Sn , then w = v}.

Proposition 7.1 [20, Proposition 5.4; 10, Lemma 2.6]. If A is an ASM and < is an antidiagonal term
order, then

IA =

⋂
w∈perm(A)

Iw and in<(IA) =

⋂
w∈perm(A)

in<(Iw).

By combining Knutson and Miller’s [12, Theorem B] with Bergeron and Billey’s [1, Theorem 3.7],
one may construct a reduced word for w ∈ Sn from the indices of the variables generating any minimal
prime of in<(Iw).

It is of independent combinatorial interest to understand the lattice of ASMs. The function
permSetOfASM takes in an ASM A and computes perm(A) by decomposing the antidiagonal initial ideal
of IA and reading a reduced word from each of the primes appearing in the decomposition. The set of
distinct permutations encountered comprises perm(A) and therefore also indexes the components in a
prime decomposition of IA:

i46 : A = matrix{{0,1,0},{1,-1,1},{0,1,0}};
i47 : permSetOfASM A
o47 = {{3, 1, 2}, {2, 3, 1}}
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The function schubertDecompose takes in an ideal, computes its initial ideal by the default term
order in Macaulay2 (which is antidiagonal) and, from the minimal primes of that ideal, finds and returns
the set of permutations with at least one reduced word given by the set of generators of one of those
minimal primes. The primary use of this function is on an ideal the user knows to be an ASM ideal IA

(such as one arising directly from the matrix A or as a sum of other ASM ideals), in which case the output
will be perm(A):

i48 : schubertDecompose schubertDeterminantalIdeal A
o48 = {{3, 1, 2}, {2, 3, 1}}

If the user has an ideal and is unsure if that ideal is an ASM ideal, they may use the function isASMIdeal,
which takes in an ideal I and first applies schubertDecompose. It then takes entrywise maxima (using
entrywiseMaxRankTable) among the rank tables of the permutations found from schubertDecompose.
Using rankTableToASM, it constructs the partial ASM A whose ASM ideal is determined by that rank
table. Finally, isASMIdeal returns a boolean indicating if IA is equal to the input ideal. In case it is,
isASMIdeal caches the partial ASM A so that I = IA. The ASM A may then be retrieved via getASM:

i49 : I1 = schubertDeterminantalIdeal {3,4,1,2};
o49 : Ideal of QQ[z ..z ]

1,1 4,4
i50 : I2 = sub(schubertDeterminantalIdeal {3,2,4,1},ring I1);
o50 : Ideal of QQ[z ..z ]

1,1 4,4
i51 : I = intersect(I1,I2);
o51 : Ideal of QQ[z ..z ]

1,1 4,4
i52 : isASMIdeal I
o52 = true
i53 : A = getASM I
o53 = | 0 0 1 0 |

| 0 1 0 0 |
| 1 -1 0 1 |
| 0 1 0 0 |

The antidiagonal initial ideal of an ASM ideal can be used for additional computations in light of recent
and impactful results of Conca and Varbaro [2]. Fix a partial ASM A and antidiagonal term order <.
A result from [2] closely related to that discussed in the section on Castelnuovo–Mumford regularity
states that R/IA is Cohen–Macaulay if and only if R/ in<(IA) is Cohen–Macaulay (which again uses that
in<(IA) is radical). The function isSchubertCM assesses Cohen–Macaulayness of R/IA by checking if
the equality pdim(in<(IA)) = codim(in<(IA)) holds.

We continue from the example above and then consider a familiar non-Cohen–Macaulay variety:
i54 : isSchubertCM A
o54 = true
i55 : B = matrix{{0,0,1,0,0},{0,0,0,1,0},{1,0,-1,0,1},{0,1,0,0,0},{0,0,1,0,0}};

5 5
o55 : Matrix ZZ <--- ZZ
i56 : trim schubertDeterminantalIdeal B



Almousa, Grate, Huang, Klein, LaClair, Luo and McDonough :::: The MatrixSchubert package 51

o56 = ideal (z , z , z , z , z z , z z , z z , z z )
2,2 2,1 1,2 1,1 2,3 3,2 1,3 3,2 2,3 3,1 1,3 3,1

i57 : isSchubertCM B
o57 = false

The Stanley–Reisner complexes of antidiagonal initial ideals of ASM ideals are of independent
interest. Knutson and Miller [12] introduced subword complexes, of which Stanley–Reisner complexes
of antidiagonal initial ideals of Schubert determinantal ideals are the motivating example. Given a
permutation w, the method subwordComplex produces the Stanley–Reisner complex of the antidiagonal
initial ideal of Iw:

i58 : w = {2,1,4,3};
i59 : netList facets subwordComplex w

+--------------------------------------------------------+
o59 = |z z z z z z z z z z z z z z |

| 1,2 1,4 2,1 2,2 2,3 2,4 3,1 3,2 3,3 3,4 4,1 4,2 4,3 4,4|
+--------------------------------------------------------+
|z z z z z z z z z z z z z z |
| 1,2 1,3 1,4 2,1 2,3 2,4 3,1 3,2 3,3 3,4 4,1 4,2 4,3 4,4|
+--------------------------------------------------------+
|z z z z z z z z z z z z z z |
| 1,2 1,3 1,4 2,1 2,2 2,3 2,4 3,2 3,3 3,4 4,1 4,2 4,3 4,4|
+--------------------------------------------------------+

i60 : v = {2,1,6,3,5,4};
i61 : # facets subwordComplex v
o61 = 35

Moreover, Knutson and Miller [12] showed that the prime components of the antidiagonal initial ideal
of Schubert determinantal ideals are indexed by combinatorial objects called pipe dreams (by [12], now
adopted as standard terminology in the literature) or RC-graphs (by [1], to which we refer the reader for
background).

In particular, to read off an associated prime of the antidiagonal initial ideal from a pipe dream, one
simply needs to read off the locations of the + tiles in the pipe dream. This package provides the class
PipeDream to display and manipulate pipe dreams:

i62 : u = {2,1,4,3,6,5};
i63 : (pipeDreams u)_0
o63 = +/+/+/

//////
//////
//////
//////
//////

o63 : PipeDream
i64 : (decompose antiDiagInit u)_0
o64 = monomialIdeal (z , z , z )

1,1 1,3 1,5
o64 : MonomialIdeal of QQ[z ..z ]

1,1 6,6

The generator z1,1 corresponds to the + tile in location (1, 1) of the given pipe dream, the generator
z1,3 to the + tile in location (1, 3), and the generator z1,5 to the + tile in location (1, 5).
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Figure 1. One pipe dream for w = 214365. + is interpreted as a cross tile, and / is interpreted as
an elbow tile, and entries below the main antidiagonal are ignored, as is standard.

To compare the Macaulay2 drawing of a pipe dream with those in [12] and subsequent literature, + is
interpreted as a cross tile, and / is interpreted as an elbow tile.

8. SOME DIAGONAL TERM ORDERS. Knutson and Miller’s [12] result that every antidiagonal term order
determines the same initial ideal of a given Schubert determinantal ideal has been used heavily throughout
the MatrixSchubert package. By contrast, different diagonal term orders can yield different initial ideals.
The various diagonal initial ideals of Schubert determinantal ideals are a topic of active research. Given
a permutation in one-line notation or a partial ASM, the functions diagLexInitSE, diagLexInitNW,
diagRevLexInit will each produce an initial ideal under a distinct diagonal term order.

Precisely, diagLexInitSE is the lexicographic order for which zn,n is largest and the remaining
variables are ordered by reading left across the bottom row, then right to left across row n − 1, and so on
until arriving finally at z1,1, the smallest variable. diagLexInitNW is the lexicographic order for which
z1,1 is largest and the remaining variables are ordered by reading right across the top row, then left to
right across row 2, and so on until arriving finally at zn,n , the smallest variable. And diagRevLexInit is
the reverse lexicographic order where zn,1 is the smallest (or most penalized) variable followed by the
variables encountered reading left to right along the bottom row, then left to right along row n − 1 and so
on until arriving at z1,n .

The example w = 214365, taken from [10], is the smallest example of which the authors are aware of
a permutation with different initial ideals for different diagonal term orders. The authors are unaware of
any examples for which diagLexInitSE and diagRevLexInit produce different initial ideals. In the
example below, the Macaulay2 output recording the ambient rings of the initial ideals has been omitted
for brevity:

i65 : w = {2,1,4,3,6,5}
o65 = {2, 1, 4, 3, 6, 5}
o65 : List
i66 : diagLexInitSE w

2
o66 = monomialIdeal (z z z z z z , z z z z z ,

5,5 4,3 3,4 3,2 2,1 1,3 5,5 4,3 3,4 2,1 1,2
z z z , z z z z z z , z )
3,3 2,1 1,2 5,5 4,3 3,4 3,1 2,3 1,2 1,1

i67 : diagLexInitNW w
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o67 = monomialIdeal (z , z z z , z z z z z ,
1,1 1,2 2,1 3,3 1,2 2,1 3,4 4,3 5,5

2
z z z z z z , z z z z z z )
1,2 2,3 3,1 3,4 4,3 5,5 1,3 2,1 3,2 3,4 4,3 5,5

i68 : diagRevLexInit w
2

o68 = monomialIdeal (z z z z z z , z z z z z ,
5,5 4,3 3,4 3,2 2,1 1,3 5,5 4,3 3,4 2,1 1,2

z z z , z z z z z z , z )
3,3 2,1 1,2 5,5 4,3 3,4 3,1 2,3 1,2 1,1

9. AVAILABLE EXAMPLES OF ASMS. For the convenience of the user, we provide several lists of
ASMs. For 1 ≤ n ≤ 7, ASMFullList n returns a complete list of all n × n ASMs, as objects of type
Matrix. To access a list of m random n × n ASMs, ASMRandomList(n,m) returns a random length-m
list of n × n ASMs, presented as Matrix objects:

i69 : ASMRandomList(5,4)
o69 = {| 1 0 0 0 0 |, | 0 0 0 1 0 |, | 0 0 0 1 0 |, | 0 0 0 0 1 |}

| 0 0 1 0 0 | | 1 0 0 -1 1 | | 0 1 0 -1 1 | | 0 0 1 0 0 |
| 0 0 0 1 0 | | 0 1 0 0 0 | | 1 -1 1 0 0 | | 1 0 0 0 0 |
| 0 1 0 -1 1 | | 0 0 0 1 0 | | 0 0 0 1 0 | | 0 1 -1 1 0 |
| 0 0 0 1 0 | | 0 0 1 0 0 | | 0 1 0 0 0 | | 0 0 1 0 0 |

Additionally, for n ≤ 6, lists of nonpermutation n × n ASMs that define a Cohen–Macaulay variety,
ASMs that do not define a Cohen–Macaulay variety, and antidiagonal initial ideals of ASMs are pro-
vided. They can be accessed with cohenMacaulayASMsList n, nonCohenMacaulayASMsList n, and
initialIdealsList n, respectively.

It is well known that there are 429 5 × 5 ASMs, of which 5! are permutation matrices. Each
nonpermutation 5 × 5 ASM is contained in exactly one of the lists cohenMacaulayASMsList 5 or
nonCohenMacaulayASMsList 5:

i70 : CM = cohenMacaulayASMsList 5;
i71 : NCM = nonCohenMacaulayASMsList 5;
i72 : #CM+#NCM+5! == 429
o72 = true
i73 : #ASMFullList 5
o73 = 429
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SUPPLEMENT. The online supplement contains version 1 of MatrixSchubert.zip.
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