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LOCALIZATION OF POINT VORTICES UNDER CURVATURE
PERTURBATIONS

ROBERTO GARRA

We discuss the effect of curvature on the dynamics of a two-dimensional invis-
cid incompressible fluid with initial vorticity concentrated in N small disjoint
regions, that is, the classical point vortex system. We recall some results about
point vortex dynamics on simply connected surfaces with constant curvature K ,
that is, plane, spherical, and hyperbolic surfaces. We show that the effect of
curvature can be treated as a smooth perturbation to the Green’s function of the
equation related to the stream function in the planar case. Then we obtain as a
main result that the localization property of point vortices, already proved for the
plane, is preserved also under the effect of curvature perturbation.

1. Introduction

Vortex dynamics is a fundamental topic in fluid mechanics. In the framework of
ideal incompressible fluid it is described by the Euler equation. A classical approx-
imation made in order to study vortex dynamics analytically in two dimensions is
to treat singular vorticity distributions. This means replacing a partial differential
equation with infinite degrees of freedom with a system of ordinary differential
equations with N degrees of freedom. This point vortex model was first introduced
by Helmholtz in 1858 and Kirchhoff in 1876; it was also treated in classic textbooks
like [Batchelor 1967] (for a detailed historical review see [Llewellyn Smith 2011]).
The study of point vortex dynamics is still an important topic in mathematical
physics, a “classical mathematics playground” as stated in [Aref 2007]. It finds
its physical roots in the analysis of the dynamics of a two-dimensional inviscid
incompressible fluid with initial vorticity sharply concentrated in N small disjoint
regions. There are many papers devoted to the mathematical analysis of this model
in the framework of dynamical systems (see, for example, [Newton 2001]) and
mathematical fluid mechanics (see, for example, [Marchioro and Pulvirenti 1994]).
However a critical point of this model is the divergence of the velocity computed in
the point where the single vortex is localized. This (infinite) term could be skipped
in a heuristic way from a physical point of view because it is a self-interaction term.
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But from a mathematical point of view a rigorous connection between the Euler
equation and the point vortex model is given by the proof that, if

ω0(x)dx→
N∑

i=1

aiδxi (dx),

then

ωt(x)dx→
N∑

i=1

aiδxi (t)(dx).

The proof of this fact was firstly given in [Marchioro and Pulvirenti 1993]. In more
detail, it was proved there (and in [Marchioro 1998] that the time evolution of a
system of vortices initially concentrated in N small disjoint regions of diameter ε
remains concentrated in N disjoint vortices with diameter d(ε)→ 0 as ε→ 0. This
property of the point vortex model is called localization.

Here we analyze the effect of curvature on the dynamics of N sharply concen-
trated vortices. There are a number of papers [Hally 1980; Kimura 1999] devoted to
the analysis of vortex motion on surfaces with constant curvature, for example, on
spheres [Crowdy 2006] and hyperbolic surfaces [Hwang and Kim 2009]. Moreover,
Boatto [2008] treated the perturbative effect of curvature on the stability of a ring
of vortices.

The main aim of this paper is to prove that the property of localization of the
dynamics of point vortex motion is preserved under the effect of curvature pertur-
bation. Actually, we show that the effect of the constant curvature K of the surface
on the dynamics can be treated by means of a smooth perturbation to the Green’s
function of the plane case. Then we include this perturbation in an external mean
field and we show that the localization of the vortices under the effect of curvature
is essentially a corollary to the theorem of localization stated in [Marchioro and
Pulvirenti 1993].

This result is really interesting from a physical point of view because it states
that strong concentrated vortices remain concentrated under the effect of curvature.
For example, in the spherical case we can apply it to the dynamics of vortices
over the Earth’s surface. Moreover, we can generalize this result to any regular
surface that can be locally approximated with a Riemannian manifold with constant
curvature K .

The plan of the paper is as follows: in Section 2 we introduce the constitutive
equations of the point vortex model, in Section 3 we recall some useful results
about point vortex dynamics on surfaces with constant curvature, and in Section 4
we discuss the main result, recalling the localization theorem in the planar case
and proving that it also works taking into account the effect of curvature.



LOCALIZATION OF POINT VORTICES UNDER CURVATURE PERTURBATIONS 21

2. Point vortex motion in fluid mechanics

Here we introduce the constitutive equations of point vortex motion in the whole
plane R2. Consider the Euler equation about a two-dimensional inviscid incom-
pressible fluid with unitary density:

∂tω+ (u · ∇)ω = 0, ∇ · u = 0, ω = curl u = ∂1u2− ∂2u1, (2-1)

with boundary condition u→ 0 as |x |→∞. Here u ≡ (u1, u2) denotes the velocity
field.

Then we define the stream function ψ(x, t) such that u(x, t)=∇⊥ψ(x, t), with
∇
⊥
≡ (∂2,−∂1). It is immediate to see that

ω(x, t)=−∇2ψ(x, t), (2-2)

that is, a Poisson-type equation with ω as a source term. We notice that formally
the stream function plays the role of a Hamiltonian; this explains the great interest
in the point vortex system in the field of dynamical systems.

By using the definition of a stream function, we find the explicit form of the
velocity field by means of the Green’s function of (2-2):

u(x, t)=∇⊥ψ =
∫
∇
⊥G(r, r ′)ω(r ′)dr ′, (2-3)

depending on the initial conditions on the vorticity and the domain. If the initial
vorticity field is generated by N disjoint point vortices, we use an initial condition
given by a measure

ω(x, 0)dx =
N∑

i=1

aiδxi (dx), (2-4)

where ai is the vortex intensity of the i-vortex situated at xi . This is the so-called
point vortex system. The dynamics of the N point vortex system is defined by the
Green’s function of (2-2). It clearly depends on the domain. For example, in the
whole plane R2, the evolution equations for a system of point vortices is given by

dxi (t)
dt
=−∇

⊥

N∑
j=1; j 6=i

a j G(xi (t), x j (t)), xi (t = 0)= xi , (2-5)

where G(xi , x j )= 1/(2π) ln|xi (t)− x j (t)| is the Green’s function of (2-2) in the
plane. It appears as a discrete solution of the Euler equation.

Starting from this mathematical formulation, there are a great number of possible
investigations about the point vortex system. In the framework of mathematical
fluid mechanics, a wide discussion of the properties of such systems and the rig-
orous relation with the Euler equation can be found in [Marchioro and Pulvirenti
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1994]. In the framework of dynamical systems there are a great number of papers
devoted to the analysis of integrability, relative equilibria, and applications; we
refer to [Newton 2001].

In the next section we recall the explicit form of the Green’s function in the
planar, spherical, and hyperbolic cases.

3. Dynamics of point vortices on surfaces of constant curvature

Here we recall the main results about the Green’s function of the Poisson equation
over surfaces with constant curvature K . First of all, we recall that the three sur-
faces with constant curvature, a sphere (K > 0), a Euclidean plane (K = 0), and
a hyperbolic plane (K < 0), can be considered as three different situations inside
a family of Riemannian manifolds with the curvature K as a parameter. We refer
to [Kimura 1999] for an unified geometrical setting of this problem. In this work
the fundamental solution of the Poisson equation over a spherical surface is given
as a function of the geodesic distance r from the north pole of the sphere, that is,
r = θR= θ/

√
K , with θ its colatitude and R the radius of the sphere. Then Kimura

found, in a direct way, the Green’s function for the hyperbolic case as a function
of the same variables. We can prove that the Green’s function G K only depends
upon the geodesic distance r and is given by

2πG K>0 =− ln sin

√
K r
2

for a spherical surface, r ∈
(

0,
π
√

K

)
, (3-1)

2πG0 =− ln r for a plane, r ∈ (0,∞), (3-2)

2πG K<0 =− ln tanh
√
|K | r
2

for a hyperbolic surface, r ∈ (0,∞). (3-3)

Then if we take the difference 1K>0 between (3-1) and (3-2), we obtain

1K>0(r)=− ln sin

√
K r
2
+ ln r = ln

r

sin
(1

2

√
Kr
) . (3-4)

This is a continuous function, with a bounded first derivative for r ∈ (0, π/
√

K )
where the Green’s function is defined, that is, it is also a Lipschitz function. This
last statement has a central role in the following discussion. Actually, we can treat
the effect of curvature as a Lipschitz perturbation to the Green’s function of the
planar case. The same reasoning can be applied in the hyperbolic case. In this case
we find a Lipschitz function 1K<0 for r ∈ (0,∞).

Moreover, it is simple to check by Taylor expansion that the planar case can be
recovered in the limit K → 0. In more detail, when considering the limit K → 0,
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we obtain:

2πG K>0 =− ln[sin(
√

Kr/2)] + ln(
√

K/2)∼− ln(r)− K
24

r2
+ . . . , (3-5)

2πG K<0 =− ln[tanh(
√
|K |r/2)] + ln(

√
|K |/2)∼− ln(r)+

|K |
12

r2
+ . . . . (3-6)

Then it’s clear that the effect of the curvature on the dynamics can be parametrized
as a smooth perturbation to the Green’s function on the plane.

Finally we can write the Green’s function of the Poisson equation over a surface
with constant curvature as:

G(r)= G0(r)+1K (r), (3-7)

where G0 = −1/(2π) ln(r) is the Green’s function on the plane and 1K (r) is a
Lipschitz perturbation dependent on the curvature K as previously defined.

This means that, from (2-3), the velocity field of the fluid over a surface with
constant curvature is given by

u(x, t)=∇⊥ψ(x, t)= u0(x, t)+ uK (x, t), (3-8)

where

u0(x, t)=
∫
∇
⊥G0(r, r ′)ω(r ′)dr ′,

uK (x, t)=
∫
∇
⊥1K (r, r ′)ω(r ′)dr ′.

As already discussed, we can treat the contribution uK due to the curvature effect as
a Lipschitz field. Then from a Lagrangian point of view the fluid particle satisfies
the following equation:

dx(t)
dt
= u0(x, t)+ uK (x, t). (3-9)

In the following we will use directly u(x, t) for the velocity field of the planar case.

4. Localization of the vortices under curvature perturbation

In the planar case, we call “localization” the following property of the dynamics of
a system of point vortices: the time evolution of N concentrated vortices, according
to the Euler equation in the two-dimensional case, remains concentrated in N small
disjoint regions of diameter d(ε)→ 0 as ε→ 0 [Marchioro and Pulvirenti 1993;
Marchioro 1998]. This result provides a rigorous connection between the Euler
equation and the point vortex model, giving a complete justification for skipping the
divergent self-interaction term in the point vortex dynamics (for a full discussion
of this point see [Marchioro and Pulvirenti 1994]).
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In more detail, we recall the following localization theorem:

Theorem 4.1 [Marchioro 1998]. Consider an initial datum

ωε(x, 0)=
N∑

i=1

ωε;i (x, 0) (4-1)

where ωε;i (x, 0) is a function with a definite sign supported in a region 3ε;i such
that

3ε;i = suppωε;i (x, 0)⊂6(zi |ε), 6(zi |ε)∩6(z j |ε)= 0 if i 6= j, (4-2)

for ε small enough. Here 6(z|r) denotes the circle of center z and radius r . The
intensity of any single vortex is∫

dx ωε;i (x, 0)≡ ai ∈ R, (4-3)

independent of ε and we assume

|ωε;i (x, 0)| ≤ Mε−γ , M > 0, γ > 0. (4-4)

Denote by ωε(x, t) the time evolution of (4-1) according to the Euler equation
with boundary condition u→ 0 as |x | →∞. Then, for any fixed time T , for any
α ∈

[
0, 1

3

)
and 0≤ t ≤ T , we have:

• For all d > 0, there exists ε0(d, T ) such that, if ε < ε0, then ωε(x, t) =∑N
i=1 ωε,i (x, t). Moreover, suppωε;i (x, t) ⊂ 6(zi (t)|d), where d → 0 as

ε→ 0 and zi (t) is the solution of the differential system

żi (t)=
N∑

j=1;i 6= j

ai∇
⊥G(|zi − z j |), ∇

⊥
= (∂2,−∂1), zi (0)= zi , (4-5)

where G(·) is the Green’s function of the Poisson equation in the planar case
with vanishing boundary condition at infinity.

• For any continuous bounded function f (x)

lim
ε→0

∫
ωε(x, t) f (t)=

N∑
i

ai f (zi (t)). (4-6)

The value of T > 0 must be such that there are no collapses for any t < T ;
a complete discussion of the existence of such a T is given in [Marchioro and
Pulvirenti 1994].

Note that this formulation is an improvement of the previous result stated in
[Marchioro and Pulvirenti 1993], giving a much better estimate of the support
d(ε) of the vortices.
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The main step for the proof of this theorem is to study the localization of a
single vortex, simulating the effect of the other N − 1 vortices with a Lipschitz
external field F(x, t). In this case the motion of the vortex is described by the
Euler equation in the weak form:

d
dt
ω( f )= ω[(u+ F) · ∇ f ], (4-7)

where ω( f (x))=
∫

dx ω(x, t) f (x) and f (x) is a bounded smooth function. From
a Lagrangian point of view, we have

dx
dt
= u(x, t)+ F(x, t). (4-8)

Then, defining the center of vorticity as

Bε(t)≡
∫

xωε(x, t)dt, (4-9)

we state the following theorem about the localization of a single blob:

Theorem 4.2. Suppose that

supp|ωε(x, 0)| ⊂6(x∗|ε) (4-10)

and

|ωε(x, 0)| ≤ Mε−γ , M > 0, γ > 0,
∫

dx ωε(x, 0)= 1. (4-11)

Then, there exists C(β, T ) > 0, with β > 0, such that for 0≤ t ≤ T

supp|ωε(x, t)| ⊂6(B(t)|d) (4-12)

where
d = C(β, T )εβ, (4-13)

and B(t) is the solution of the ordinary differential equation

d B(t)
dt
= F(B(t), t), (4-14)

B(0)= x∗. (4-15)

We refer to [Marchioro 1998] for the complete proof of this theorem, and in the Ap-
pendix we sketch the proof for the utility of the reader. Here we again remark that
one of the central assumptions is about the Lipschitz continuity of the simulating
external field.

Starting from these results, we can finally state our main result: the localization
property of point vortices is preserved in surfaces with constant curvature.
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Theorem 4.3. Consider an initial datum

ωε(x, 0)=
N∑

i=1

ωε;i (x, 0), (4-16)

where ωε;i (x, 0) is a function with a definite sign supported in a region 3ε;i such
that

3ε;i = suppωε;i (x, 0)⊂6(zi |ε), 6(zi |ε)∩6(z j |ε)= 0 if i 6= j, (4-17)

for ε small enough. The intensity of any single vortex is∫
dx ωε;i (x, 0)≡ ai ∈ R, (4-18)

independent of ε and we assume

|ωε;i (x, 0)| ≤ Mε−γ , M > 0, γ > 0. (4-19)

Denote by ωε(x, t) the time evolution of (4-1) on a surface of constant curvature
K according to the Euler equation, then Theorem 4.1 holds.

The proof of this theorem is similar to that of the planar case, considering first
of all the localization of a single vortex. We have shown that the effect of curvature
on the Green’s function can be treated as a Lipschitz perturbation to the Green’s
function of the planar case. Then the localization of a single vortex is a corollary
of Theorem 4.2

Corollary 4.4. Consider a single point vortex such that

supp|ωε(x, 0)| ⊂6(x∗|ε), |ωε(x, 0)| ≤ Mε−γ ,

M > 0, γ > 0,
∫

dx ωε(x, 0)= 1.
(4-20)

Denote by ωε(x, t) the time evolution on a surface with constant curvature K ,
according to the Euler equation. Then, there exists C(β, T ) > 0, with β > 0,
such that for 0≤ t ≤ T

supp|ωε(x, t)| ⊂6(B(t)|d), (4-21)

where
d = C(β, T )εβ, (4-22)

and B(t) is the solution of the ordinary differential equation

d B(t)
dt
= FK (B(t), t), B(0)= x∗. (4-23)
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where FK (x, t) is a Lipschitz field including in a single term the effect of the curva-
ture (depending on K ) and the effect of the other N − 1 vortices on the dynamics
of the single vortex.

The main improvement was proved in Section 3: the velocity term linked to the
curvature effect is a Lipschitz function. Then we include the effect of curvature on
the motion in a single Lipschitz term in (4-7). It is simple then to come back to
the general case of the N vortices and to prove the main result.

We conclude that the localization theorem for point vortices moving on surfaces
with constant curvature is a consequence of the analysis given in Section 3 about
the effect of the curvature on vortex dynamics. Then its proof is exactly the same
as that of the planar case discussed in [Marchioro 1998].

This result is valid for any regular surface. Actually, it is always possible to
approximate locally these surfaces with manifolds with constant curvature K . Then
we can develop exactly the same reasoning, including the curvature effect in an
external Lipschitz continuous field. Moreover, the localization holds also in the
presence of internal frontiers such as continents on the Earth’s surface. Again, the
physical meaning of this rigorous result is that it permits one to skip the singular
part of the self-interacting term in the point vortex model, previously neglected in
the basis of heuristic physical reasoning.

Appendix: Proof of Theorem 4.2

Here we give a synthetic idea of the rather technical proof of the localization
theorem stated in [Marchioro 1998], recalling the fundamental steps. The main
difficulty is due to the singularity of the kernel in the velocity expression

u(x, t)=
∫

K (x − y)ωε(y, t)dy, (A.1)

where

K (x − y)=∇⊥G(x − y)=
∇
⊥ ln|x − y|

2π

in the planar case without boundaries.
First we introduce the moment of inertia Iε with respect to the center of vorticity

defined in (4-9):

Iε =
∫
ωε(x, t)(x − Bε(t))2 dx . (A.2)

We want to show that the main part of the vorticity is concentrated around the
center of vorticity. It is simple to prove that if F = 0 then Bε and Iε are constant
along the motion, bringing us to (4-14).
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If F 6= 0 then

d I
dt
= 2

∫
(x − Bε(t))F(x, t)ωε(x, t)dx . (A.3)

Then, by using the Lipschitz condition on F(x, t) we find∣∣∣d I
dt

∣∣∣≤ 2L
∫
(x − Bε(t))2ωε(x, t)dx = 2L Iε(t), (A.4)

and integrating we obtain ∣∣∣d I
dt

∣∣∣≤ I0e2Lt , (A.5)

so that

lim
ε→0

Iε(t)= 0 at least as ε2. (A.6)

Hence we find that the main part of the vorticity remains concentrated around the
center of vorticity. However we have to give an estimate of the mass and velocity
of the filaments of vorticity generated by fluid particles near the boundaries and
spreading out from the initially concentrated field. With this purpose we prove that
the mass of vorticity near the boundary of the support is very small when ε→ 0.
Here the main technical complication is due to the singularity of the kernel in (A.1).
First we introduce a nonnegative function WR ∈ C∞(R2) satisfying the following
conditions, for a fixed C1 > 0:

WR(r)=
{

1 if |r |< R,
0 if |r |> 2R,

(A.7)

|∇WR(r)|<
C1

R
, (A.8)

|∇WR(r)−∇WR(r ′)|<
C1

R2 |r − r ′|. (A.9)

Then we define a regularized measure of the mass of vorticity outside 6(Bε(t)|r):

µt(R)= 1−
∫

dx WR(x − Bε(t))ωε(x, t), (A.10)

such that if suppωε(x, t) ⊂ 6(Bε(t)|r) then µt(R) = 0. Hence it gives a direct
measure of the localization of the vorticity field.

We evaluate the growth in time of such a measure:

dµt

dt
=−

∫
dx ∇WR(x − Bε(t))

(
u(x, t)+ F(x, t)− d B

dt

)
ωε(x, t). (A.11)
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Using (4-14) and (A.1), we obtain

dµt

dt
=−

∫
dx ωε(x, t)∇WR(x−Bε(t))

∫
dy K (x−y)ωε(y, t)

−

∫
dx ωε(x, t)∇WR(x−Bε(t))

∫
dy ωε(y, t)(F(x, t)−F(y, t)). (A.12)

To give an estimate to the first term of (A.12), we split the integration domain into
many different rings, defined by the following sets:

• if h < n, Th ≡ {(x, y)|x 6∈6(Bε(t)|R), y ∈6(Bε(t)|ah)−6(Bε(t)|ah−1)},

• if h = n, Tn ≡ {(x, y)|x 6∈6(Bε(t)|R), y 6∈6(Bε(t)|an−1)},

• if h < n, Sh ≡ {(x, y)|y 6∈6(Bε(t)|R), x ∈6(Bε(t)|ah)−6(Bε(t)|ah−1)},

• if h = n, Sn ≡ {(x, y)|y 6∈6(Bε(t)|R), x 6∈6(Bε(t)|an−1)},

where a0 = 0, a1 = 1, and ak = 2ak−1.
Starting from the set Th , where ∇WR(y)= 0, we obtain∣∣∣∣∫

D
dyωε(x, t)ωε(y, t)∇WR(x − Bε(t))K (x − Bε(t))

+

∫
D

dyωε(x, t)ωε(y, t)∇WR(x − Bε(t))
[
K (x − y)− K (x − Bε(t))

]∣∣∣∣, (A.13)

where D ≡6(Bε(t)|ah)−6(Bε(t)|ah−1).
In (A.13) the first term is null because ∇WR(x) · K (x) = 0. Moreover, we

observe that

|K (x − y)− K (x)|< const.
ρ

|x |(|x | − ρ)
if |y|< ρ < |x |, (A.14)

so the contribution to (A.13) due to Th is bounded by

(A.13)≤ const.
mt(R)

R

{
ε

R2 +

n−1∑
h=2

ahε
2

R(R− ah)a2
h−1

}
≤

ε

R3 mt(R), (A.15)

where mt(R)= 1−
∫
ωε(y, t)dy is the vorticity mass outside 6(Bε(t)|R).

The contribution due to Tn is simply bounded by using the fact that ∇WR(r)
removes the singularity of the kernel, because

|(∇WR(x)−∇WR(y))K (x − y)| ≤
1
R2 where R = |x − Bε(t)|. (A.16)

Then it is also simple to give an estimate to the second term of (A.12) by using the
Lipschitz continuity of F(x, t). Recollecting all the terms we have∣∣∣∣dµ(R)dt

∣∣∣∣≤ A(R, ε)mt(R), (A.17)
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where the explicit expression of A(R, ε) comes directly from the previous reason-
ing by simple calculation. We observe, from the definition of regularized mass,
that

mt(R)≤ µt

( R
2

)
; (A.18)

using this inequality in (A.17) and integrating we obtain

µt(R)≤ µ0(R)+ A(R)
∫ t

0
µt

( R
2

)
dt. (A.19)

Then we can use an iterative procedure:

µt(R)≤ µ0(R)+ A(R)
∫ t

0
µt

( R
2

)
dt

≤ µ0(R)+µ0

( R
2

)
A(R)

∫
dt + A(R)A

( R
2

) ∫ t

0
dt1

∫ t1

0
dtµt

( R
4

)
,

(A.20)
choosing the number n of iterations so that n→∞ as ε→ 0 and µ0(R2−n)= 0.
We finally have that

mt(R)≤
(const.)n

n!
→ 0 as ε→ 0 faster than any power of ε. (A.21)

This means that the vorticity mass becomes very small near the boundary if we
take strong concentrations, that is, ε→ 0. Then it is also simple to prove that the
velocity field generated by the fluid particles near the boundary vanishes for strong
concentrations. Finally the main theorem is achieved essentially from these results.

Here we have just recalled the main steps of the proof, leaving to the reader
the most part of calculations. As just seen, the property of the solution about the
Lipschitz continuity of the field generated by the other N − 1 vortices is central for
the proof of the localization.
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