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ON THE THEORY OF DIFFUSION AND SWELLING
IN FINITELY DEFORMING ELASTOMERS

GARY J. TEMPLET AND DAVID J. STEIGMANN

The role of a relaxed local intermediate configuration associated with free swelling
is examined in the context of diffusion of a liquid in an isotropic elastomer. It is
found that this configuration is energetically optimal if the free-energy function
of the polymer-liquid gel is polyconvex. Further aspects of the general theory of
diffusion in elastomers are also discussed.

1. Introduction

We study the modern continuum theory for diffusion of an incompressible liquid in
an incompressible elastomer [Treloar 1975; Truesdell 1962; Adkins 1964; Weits-
man 1987; Shi et al. 1981; Rajagopal 2003; Baek and Srinivasa 2004; Prasad and
Rajagopal 2006]. In addition to examining the structure of constitutive equations
and initial-boundary-value problems, we study the role of a local intermediate con-
figuration induced by free swelling, defined as dilation of the polymer network in
the absence of stress due to the presence of an infused liquid. We show, for isotropic
elastomers, that the local free-swelling deformation minimizes energy if the free-
energy function for the polymer network satisfies the condition of polyconvexity. In
fact we are able to weaken this requirement to rank-one convexity. Accordingly the
decomposition of the deformation into elastic and swelling deformations, assumed
a priori in current theories of diffusion in polymers [Pence and Tsai 2005; Hong
et al. 2008; Duda et al. 2010; Chester and Anand 2011; Duda et al. 2011], is mean-
ingful for free-energy functions commonly used to model elastomers. Moreover,
because of the basic role played by polyconvexity in Ball’s landmark existence
theory [1977] for conventional elasticity, our results indicate that an extension of
that theory to accommodate diffusion should be feasible.

We use standard notation such as At , A−1, A∗, tr A and JA. These are respec-
tively the transpose, the inverse, the cofactor, the trace and the determinant of
a tensor A, regarded as a linear transformation from a three-dimensional vector
space to itself, the latter being identified with the translation space of the usual
three-dimensional Euclidean point space. We also use Sym+ to denote the linear
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space of positive symmetric tensors and Orth+ to denote the group of rotation ten-
sors. We denote the standard tensor product of vectors by interposing the symbol
⊗. The Euclidean inner product of tensors A and B is A · B = tr(ABt), and the
associated norm is |A| =

√
A · A. Lastly, D is used to denote the gradient with

respect to position x in a reference configuration and FA stands for the tensor-
valued derivative of a scalar-valued function F(A).

Section 2 contains an outline of the general theory, including the diffusive bal-
ance law, the swelling constraint and the definition of dissipation. The latter is
shown to lead to a constitutive structure in which the stress and chemical poten-
tial are determined, modulo a Lagrange multiplier, by a free-energy function that
depends on the deformation gradient and the concentration of diffusant. The role
played by polyconvexity in this theory is examined and used to analyze the free-
swelling problem, which forms the basis of a decomposition of the deformation
into elastic and swelling components. The general constitutive equation for the
mobility tensor is also examined and shown to satisfy all invariance and symmetry
requirements. The relatively simple theory for two-dimensional problems is sum-
marized in Section 3, and an Appendix is included in which necessary and sufficient
conditions for polyconvexity in respect of isotropic materials are discussed.

2. Three-dimensional theory

2.1. Basic equations and inequalities. We outline the basic theory for diffusion
in elastomers undergoing finite deformations. For the most part our model may
be viewed as a specialization of a thermodynamical theory presented in [Gurtin
et al. 2010]. Here, however, thermal effects are suppressed, and the model reverts
to conventional finite-elasticity theory in the absence of diffusion. The effects
of inertia are also suppressed, in deference to the fact that the associated time
scales typically differ markedly from those associated with the effects of diffusion.
Further, we do not take chemical reactions into account, although it is possible to
do so in a manner that is compatible with the present framework.

Let c(x, t) be the concentration of diffusant, where t is the time and x is position
in a fixed reference placement κ . For example, it is common to take the concentra-
tion to be the number of molecules of diffusant per unit volume of the reference
configuration adopted for the dry elastomer [Chester and Anand 2011], the latter
then being identified with κ . Alternatively, in [Gurtin et al. 2010] the concentration
is defined to be the mass of diffusant per unit reference volume. The ratio of the sec-
ond of these definitions to the first is the mass of a molecule of diffusant, a constant.
Accordingly, these definitions are equivalent. A third definition of c, equivalent to
these and more convenient for our purposes, is introduced in the next subsection.
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For any subvolume π of κ we have the diffusive balance

d
dt

∫
π

c dv =−
∫
∂π

m · n da for all π ⊂ κ, (1)

where m(x, t) is the flux of diffusant and ∂π is the piecewise smooth boundary,
with exterior unit normal n, of the region π ⊂ κ . The inequality m · n> 0 (resp.,
< 0) corresponds to local transport of diffusant out of (resp., into) π ; transport
vanishes when m · n vanishes. The flux m arises entirely from diffusant transport,
resulting in a change of mass of the gel (polymer-diffusant mixture) associated with
κ . Consistent with this interpretation, we suppress bulk production of diffusant,
which would otherwise require the addition of a volumetric source term to (1).

The local form of (1) is

ċ+Div m = 0 in κ, (2)

where the superposed dot stands for ∂/∂t at fixed x and Div is the divergence with
respect to x.

We assume the existence of a free-energy function 9(F, c), yielding the energy
of the gel per unit volume of κ , where F, with JF > 0, is the gradient of a defor-
mation function y = χ(x, t) yielding the position at time t of a point associated
with position x ∈ κ . Thus χ represents the motion of the infused elastomer. For
convenience we suppress reference to a possible explicit dependence on x in the
notation for the free-energy function.

The power supplied to the arbitrary part π of the body, assuming no body forces
and no volumetric sources of diffusant, is

P(π, t)=
∫
∂π

( p · ẏ− q · n) da, (3)

where
p= Pn, (4)

in which P is the Piola stress, is the traction acting on the boundary, and q is
the rate of energy supply due to the flux of diffusant; that is, the rate at which
the energy content of the gel changes due to the transport of diffusant across ∂π .
The sign appearing before q conforms to the convention adopted in (1). With this
interpretation of q, it follows on logical grounds alone that

q = µm, (5)

where µ, the chemical potential, is the energy conducted by the diffusant into the
gel; ie., the energy per unit of diffusant concentration. The same conclusion fol-
lows from a rigorous thermodynamic treatment of diffusion in which the chemical
potential is admitted as an independent variable [Gurtin et al. 2010].
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Following [Gurtin et al. 2010] we suppose that m depends constitutively on the
list {F, c, Dµ}, while P depends constitutively on {F, c}. Further, if the net force
on an arbitrary subvolume π ⊂ κ vanishes, as we assume, then the stress satisfies

Div P = 0 in κ. (6)

The dissipation is denoted by D(π, t) and defined as the difference between the
power supplied to π and the rate of change of the total energy in π . Thus,

D(π, t)= P(π, t)−
d
dt

∫
π

9 dv. (7)

It is assumed to be non-negative for every subregion; i.e.,

D(π, t)≥ 0. (8)

Using (4), applying the divergence theorem and supposing all fields to be smooth
in π yields ∫

∂π

p · ẏ da =
∫
π

Div(P t ẏ) dv, (9)

in which
Div(P t ẏ)= P · Ḟ, (10)

by virtue of (4) and (6). Accordingly, (2), (3), (7) and (10), together with Div(µm)=
µDiv m+m · Dµ, furnish

D(π, t)=
∫
π

(P · Ḟ+µċ− 9̇ −m · Dµ) dv, (11)

and (8) then yields the local restriction

(9F − P) · Ḟ+ (9c−µ)ċ+m · Dµ≤ 0. (12)

2.2. Volume decomposition, the swelling constraint and the basic constitutive
structure. Most workers adopt the assumption that the volume of the gel is simply
the sum of the volumes of the elastomer and the liquid diffusant. We invoke this
assumption here and thus conclude that for any π ⊂ κ ,∫

π

JF dv =
∫
π

(JFe+ JFd) dv, (13)

where JFe and JFd respectively are the current volume of elastomer and diffusant
per unit reference volume. Accordingly,

JF = JFe+ JFd in κ. (14)

Here and henceforth we assume that sufficient liquid is available to support dilation.
The alternative, corresponding to an unsaturated condition [Deng and Pence 2010;
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Rivlin 1977], entails the global constraint that the total dilation reduce to the sum
of the elastomer and liquid volumes. This carries a uniform reaction pressure that
must be added to the expression for the (Cauchy) stress (see previous references).

Following [Chester and Anand 2011], here we suppose the contribution of the
diffusant to arise solely from its transport into κ . Thus,

JFd = cdvd , (15)

where cd is the number of molecules of diffusant per unit volume of κ and vd is
the volume of a molecule of diffusant. The latter is presumed to be constant if the
diffusant is incompressible. Accordingly, JFd and cd furnish equivalent definitions
of concentration in this case. The assumption that the elastomer is essentially
incompressible is also virtually ubiquitous. This implies that JFe = 1 and hence
the swelling constraint [Chester and Anand 2011]

JF = 1+ c, where c = cdvd , (16)

applicable to incompressible elastomers infused with an incompressible diffusant.
Because c is defined as the product of non-negative scalars, it follows from (16)
that

JF ≥ 1. (17)

The simplicity of (16) justifies our choice of c — the volume of diffusant present
in the gel per unit volume of dry elastomer — as the measure of concentration.
Accordingly, for a gel consisting of an incompressible elastomer infused with an
incompressible diffusant, the deformation and concentration are not independent.

To account for this interdependence in (12), we use (16) in the form ċ = J̇F ,
together with J̇F = F∗ · Ḟ, obtaining

[9F − P + (9c−µ)F∗] · Ḟ+m · Dµ≤ 0, (18)

in which Ḟ is unrestricted and, importantly, F and c are to be regarded as being
independent when computing the derivatives of 9. Thus 9 is regarded as a smooth
extension of the free-energy function from the nine-dimensional manifold in R10

defined by the constraint (16). The extended function is thus defined and differ-
entiable for all {F, c} ∈ R10. Accordingly, our constitutive hypotheses may be
combined with a standard argument (e.g. [Liu 2002]) to conclude from (18) that

P =9F − q F∗, where q = µ−9c, (19)

together with
m · Dµ≤ 0. (20)

Because the argument is purely local in space and time, q may vary with x and t .
Accordingly, it is an additional field to be determined in the course of the analysis
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of the initial-boundary-value problem, which includes the constraint (16). The
dissipation in any subvolume is then given by

D(π, t)=−
∫
π

m · Dµ dv (21)

and satisfies inequality (8). The connection P = T F∗, where T is the Cauchy stress,
implies that q is mechanically indistinguishable from a pressure. Equivalent results
are derived in [Chester and Anand 2011], albeit by a rather circuitous procedure.

Our hypotheses, together with an important result due to Gurtin [2000], yield
the general constitutive structure compatible with (20) in the form

m = M(F, c, Dµ)Dµ, (22)

in which the (2nd order) mobility tensor M satisfies

Dµ ·M(F, c, Dµ)Dµ≤ 0. (23)

In this work we restrict attention to the practically important case in which the
mobility tensor is insensitive to Dµ. Its symmetric part is therefore non-positive,
and is negative definite if (23) holds as a strict inequality for all non-zero Dµ, so
that m · Dµ= 0 if and only if Dµ= 0. Henceforth we assume this to be the case.

Thus the problem is to solve the five equations consisting of the diffusive bal-
ance (2), the equilibrium equation (6), and the swelling constraint (16) for the five
variables in the list {χ , c, q}. Standard boundary data entail the specification of
p or y, and µ or m · n, on (possibly different) complementary parts of ∂κ . A
distribution of chemical potential may be specified in the domain κ at an initial
time, and the constitutive equation (19)2 may be used to generate an initial distri-
bution of concentration in terms of the specified chemical potential field and the
(unknown) initial deformation gradient and Lagrange multiplier fields; the swelling
constraint, the equilibrium equation and associated boundary data may then be used
to determine initial deformation and Lagrange multiplier fields, and the diffusive
balance (2) then used to obtain the initial distribution of the time derivative of
concentration. This information is used to advance the concentration in time, and
the procedure then repeated for a specified time interval to generate the evolving
spatial distribution of the list {χ , c, q}.

Frame invariance of material response requires that the free-energy function and
the mobility tensor depend on F via the right Cauchy–Green deformation tensor, or
equivalently via the right stretch tensor [Gurtin et al. 2010]. The restriction on the
free-energy function is equivalent to the symmetry of the Cauchy stress [Rajagopal
and Srinivasa 2012] and so renders the moment-of-momentum balance redundant
whenever the linear momentum balance is satisfied.
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We apply (20) for π = κ and suppose traction p to be assigned on a part of
the boundary and position to be assigned on the complementary part. Suppose the
diffusant flux m · n and chemical potential µ vanish on complementary parts of ∂κ .
If the traction field is conservative in the sense that the power is expressible as

P(κ, t)=
d
dt

L , (24)

where L is a suitable load potential, then

d
dt

E(κ, t)+D(κ, t)= 0, (25)

where D(κ, t) is given by (21) with π = κ , and

E =
∫
κ

9 dv− L (26)

is the total potential energy of the gel. Inequality (8) then implies that the potential
energy is dissipated.

Specifically, the energy associated with the state {χ(x, t), c(x, t)} is no larger
than that associated with state {χ(x, t−τ), c(x, t−τ)} for any τ > 0. There-
fore the energy of a state at fixed time t is optimal relative to any trajectory
tending to that state. Consequently, if {χ(x, t), c(x, t)} is a trajectory starting at
{χ(x, t0), c(x, t0)} and tending to {χ∞(x), c∞(x)} a.e. as t→∞, then E∞ ≤ E0,
where E0 and E∞ are the values of E at times t0 and infinity; asymptotically
stable states thus minimize the potential energy. Moreover, if the decay of energy
is gradual, in the sense that E(t − τ)→ E(t)+ o(τ ) as t→∞, then d E/dt→ 0
as t →∞. In this case we have from (21) that Dµ∞(x) = 0, where µ∞ is the
large-time limit of the chemical potential. Indeed, the alternative implies, via (23),
that there is some x̄ ∈ κ where Dµ∞ ·M(F∞, σ∞)Dµ∞ < 0. By continuity, the
latter inequality obtains in a subvolume of non-zero measure, and a contradiction
then follows from the fact that D→ 0 as t→∞.

In practice the diffusive balance (2) is integrated in time using Euler forward
differencing, for example, to generate the concentration c(x, tn) at time tn , say. One
then seeks a deformation χ(x, tn) that minimizes the energy under the constraint
JF (x, tn)= 1+ c(x, tn). This procedure motivates a definition, in Section 2.4, of a
kinematic decomposition of the deformation gradient into elastic and swelling parts
in which the latter is associated with an unstressed state at an assigned value of c. It
also suggests a framework whereby an extension of Ball’s theory [1977], in which
polyconvexity figures prominently, may be explored to establish the existence of
an energy minimizing deformation χ(x, tn).

2.3. Polyconvex energies for isotropic materials. If the free-energy function is
frame invariant and isotropic relative to κ then it is expressible as a function of the
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list {i1, i2, i3, c}, where

i1 = tr U, i2 = tr U∗, i3 = JF (27)

are the principal invariants of the right-stretch tensor U ∈ Sym+ in the polar de-
composition

F = RU (28)

of the deformation gradient, with R ∈ Orth+. These are related to the more fre-
quently used invariants

I1 = tr C, I2 = tr C∗, I3 = JC (29)

of the Cauchy–Green deformation tensor C = Ft F by the invertible transformation
[Steigmann 2002]

I1 = i2
1 − 2i2, I2 = i2

2 − 2i1i3, I3 = i2
3 . (30)

However, grounds for using the ik in the formulation of constitutive equations,
rather than Ik , are given below.

Because of the swelling constraint, any constitutive dependence of the energy
on i3 is induced by its dependence on c, provided that c is strictly positive. The
invariant i3 is therefore redundant whenever the swelling constraint is operative,
and the free-energy function is then expressible in the form

9(F, c)= ψ(i1, i2, c). (31)

Technically this function is defined on the manifold M in R10 defined by the
swelling constraint JF − c = 1. However, the same function is well defined for
states (F, c) ∈ R10 that do not satisfy the constraint. Thus (31) may also serve as
an extension of the free-energy function into R10, for purposes of differentiation
in (19). The associated Piola stress is given by [Steigmann 2002]

P = Rσ , (32)

where
σ =

(∂ψ
∂i1
+ i1

∂ψ

∂i2

)
I −

∂ψ

∂i2
U − qU∗ (33)

is the (symmetric) Biot stress, and the chemical potential is

µ=
∂ψ

∂c
+ q. (34)

We remark that any alternative extension must, of course, reduce to (31) on the
constraint manifold. Accordingly, because any trajectory (F(t), c(t)) ∈M has a
derivative with respect to t that lies in the tangent space to M at the considered
instant, it follows that the part of the derivative (9F, 9c) of the extended function,
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in the direction (F∗,−1) orthogonal to M, cannot be determined by inequality (18).
Therefore, the use of an alternative extension affects only the as-yet-undetermined
scalar field q . The extension (31) may therefore be used without loss of generality.

We may also use the swelling constraint to eliminate the concentration in favor
of i3 and thus express the energy as a function of {i1, i2, i3}, in the manner of a
conventional compressible solid [Treloar 1975; Pence and Tsai 2005; Pence and
Tsai 2006; Deng and Pence 2010], albeit subject to the requirement i3 > 1. In this
interpretation we write (31) in the form

9 ′(F)= ϕ(i1, i2, i3), (35)

where 9 ′(F)=9(F, JF − 1) and, of course,

ϕ(i1, i2, i3)= ψ(i1, i2, i3− 1). (36)

The minimum-energy argument of Section 2.2 applies to this surrogate compress-
ible material.

In view of this it is natural to investigate constitutive functions that satisfy the
well-known polyconvexity condition of Ball’s existence theory for energy minimiz-
ers [1977]. Polyconvexity of 9 ′ is the requirement that there exists a function

8(F, F∗, JF )=9
′(F), (37)

in general non-unique [Podio-Guidugli 1991; Podio-Guidugli and Vergara-Caffarelli
1991], which is jointly convex in its arguments; we make the obvious choice

8(F, F∗, JF )= ϕ
{
tr(
√

Ft F), tr(
√
(F∗)t F∗), JF

}
. (38)

If 8 is differentiable, then [Ball 1977]

9 ′(F)−9 ′(F)≥8F(F, F∗, JF ) · (F− F)+8F∗(F, F∗, JF ) · (F∗− F∗)
+8JF (F, F∗, JF )(JF − JF ) (39)

for all deformation gradients F and F. Here we use

(i1)F = (i2)F∗ = R (40)

[Steigmann 2003] to conclude that

8F =
∂ϕ

∂i1
R and 8F∗ =

∂ϕ

∂i2
R. (41)

Polyconvexity ensures that the pointwise values of the free energy fulfill the
(non-local) quasiconvexity condition, which is always satisfied by energy minimiz-
ers [Ball 1977]. Further, it guarantees the sequential weak lower semi-continuity of
the potential energy functional which, together with coercivity of the free-energy
function, ensures the existence of energy-minimizing deformations belonging to
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an appropriate Sobolev space. Here, coercivity refers to the restriction [Ball 1977;
Steigmann 2003]

ϕ(i1, i2, i3)≥ k1(i
p
1 + iq

2 + ir
3)+ k2, (42)

where p ≥ 2, q ≥ p/(p− 1), r > 1 and k1, k2 are constants with k1 > 0. Moreover,
polyconvexity is free from the well-known objections [Ball 1977] raised against
ordinary convexity of the free energy with respect to the deformation gradient, a
condition which also implies quasiconvexity. However, Ball’s existence theory is
not immediately applicable here because of inequality (17); whereas that theory
relies on a hypothesis about the behavior of the free-energy function in the limit
JF → 0.

Thus our restriction to polyconvex energies is motivated by the fact that quasi-
convexity, which is necessary for energy minimizers, is thereby assured. Further,
the coercivity condition, while an integral part of Ball’s theory, is evidently restric-
tive as a number of explicit solutions to equilibrium boundary-value problems have
been obtained using non-coercive free energies [Carroll 1988]. Therefore we do
not impose coercivity.

By [Steigmann 2003], the function 9 ′(F) defined by (37) and (38) is polyconvex
if and only if

ϕ is a convex function of all three arguments jointly, and
ϕ is a nondecreasing function of i1 and i2;

(43)

that is, if and only if

ϕ(ı̄1, ı̄2, ı̄3)−ϕ(i1, i2, i3)≥ (ı̄1− i1)
∂ϕ

∂i1
+ (ı̄2− i2)

∂ϕ

∂i2
+ (ı̄3− i3)

∂ϕ

∂i3
(44)

together with
∂ϕ

∂i1
≥ 0 and

∂ϕ

∂i2
≥ 0, (45)

in which ik and ı̄k , respectively, are the invariants associated with F and F and the
derivatives are evaluated at ik . Sufficiency follows from (41) and the fact that i1

and i2 are convex functions of F and F∗, respectively [Steigmann 2003], i.e.,

i1(F)−i1(F)≥ R(F)·(F−F) and i2(F∗)−i2(F∗)≥ R(F∗)·(F∗−F∗). (46)

A proof of the necessity of (44) and (45) for polyconvexity is given here in the Ap-
pendix. In this regard it is important to note that (43) is equivalent to polyconvexity
in respect of the function defined by (38), but may not be if alternative choices are
adopted. This is due to the fact that the function 8 defined by (37) is not unique.

The simplicity of the polyconvexity criteria (43) supports our preference for a
constitutive formulation based on the stretch tensor.
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Of particular relevance to the present work is the free-energy function

9(c)(F; x)=9(F, c(x)), (47)

obtained by fixing the concentration field at c(x), say, which may be specified
as an arbitrary function taking non-negative values. We expect that Ball’s theory
for incompressible materials, adapted to accommodate the assignment of JF (x) in
accordance with the swelling constraint, may yield the existence of minimizers in
this case.

Remark. This free-energy function pertains to a gel in which diffusion has ceased
and the volumetric deformation JF (x) is fixed. Equation (2), with (19)2, (22) and
ċ = 0, then becomes a restriction on the function q(x). The associated flux m
is divergence-free and the net (integrated) flux through the boundary ∂κ vanishes.
The argument in Section 2.2 about minimum-energy states is applicable under the
slightly stronger condition that m · n and µ vanish pointwise on complementary
parts of the boundary; these yield data for the determination of q(x), if desired.

The function 9(c) is polyconvex at x∗ ∈ κ if and only if there exists a convex
function

8(c∗)(F, F∗)=9(F, c∗), (48)

where c∗ = c(x∗); that is, if and only if

9(c)(F; x∗)−9(c)(F; x∗)
≥8(c∗)F(F, F∗) · (F− F)+8(c∗)F∗(F, F∗) · (F∗− F∗). (49)

In the present circumstances we take this function to be

8(c)(F, F∗)= ψ
{
tr(
√

Ft F), tr(
√
(F∗)t F∗), c

}
. (50)

The inequality does not involve the determinant of the deformation gradient; this
is fixed at the value 1+ c∗ by the swelling constraint. Necessary and sufficient
conditions in this case are [Steigmann 2003]:

ψ is a convex function of i1 and i2 jointly, and
ψ is a nondecreasing function of i1 and i2;

(51)

that is,

ψ(ı̄1, ı̄2, c∗)−ψ(i1, i2, c∗)≥ (ı̄1− i1)
∂ψ

∂i1
+ (ı̄2− i2)

∂ψ

∂i2
, (52)

together with
∂ψ

∂i1
≥ 0 and

∂ψ

∂i2
≥ 0, (53)
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in which ik and ı̄k , respectively, are the invariants associated with F and F and
the derivatives are again evaluated at ik . Sufficiency is proved in [Steigmann 2003]
whereas the proof of necessity given in the Appendix applies here as well.

2.4. Local free swelling. Consider a subvolume π ⊂κ with p and µm·n vanishing
everywhere on ∂π . The foregoing argument about the decay of energy is thus
applicable to π with the load potential equal to a constant. This is the free-swelling
problem, and plays a central role in [Treloar 1975; Pence and Tsai 2005; Hong
et al. 2008; Duda et al. 2010; Chester and Anand 2011], where it is used to specify
constitutive information; i.e., restrictions on the response of the gel at points in κ .
To make contact with these ideas, we make repeated use of the following simple
result: If F(x) is continuous and MV (F) is the mean value of F in π , then there
is a point x∗ ∈ π such that F(x∗)= MV (F). Further, if d(π)→ 0, where d(π)=
supx1,x2∈π

|x1 − x2| is the diameter of π , then |x − x∗| → 0 for all x ∈ π and
the continuity of F implies that F(x)→ F(x∗). For example, the well-known
mean-stress theorem, following from (4) and (6), yields

MV (P)=
∫
∂π

p⊗ x da, (54)

which vanishes in the free-swelling problem. Accordingly, P(x)→ 0 as d(π)→ 0,
implying that the pointwise values of the stress field may be brought arbitrarily
close to zero by making the diameter of π correspondingly small against any avail-
able length scale. In the same way, by integrating µm · n(= 0) over ∂π , we find,
using the divergence theorem and the diffusive balance, that

MV (µċ)= MV (m · Dµ)≤ 0. (55)

Therefore, if d(π)→ 0 it follows that

µċ ≤ 0, (56)

pointwise in π .
In the present setting, the condition on stress reduces to σ = 0; i.e.,(∂ψ

∂i1
+ i1

∂ψ

∂i2

)
I −

∂ψ

∂i2
U = qU∗. (57)

The trace yields

qi2 = 3
∂ψ

∂i1
+ 2i1

∂ψ

∂i2
, (58)

which furnishes q in terms of i1, i2 and c. If this state is at least asymptotically
stable then it minimizes the energy; i.e.,

MV [9(F, c̄)−9(F, c)] ≥ 0, (59)
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where F(x) and c̄(x) are any deformation and concentration fields consistent with
the balance laws and boundary conditions. Accordingly, if d(π)→ 0 then

9(F, c̄)≥9(F, c), (60)

again pointwise.
Two definitions of the free-swelling problem are evident:

(a) In the first, which is tacitly adopted in [Pence and Tsai 2005; Chester and
Anand 2011], the flux m · n is unrestricted on ∂π ; this requires µ to vanish there,
and the local inequality (56) is satisfied if d(π)→ 0, with ċ unrestricted. This in
turn requires that µ= 0 pointwise, ensuring that the condition on the boundary is
satisfied. Equation (34) gives q =−∂ψ/∂c, while (58) reduces to

3
∂ϕ

∂i1
+ 2

∂ϕ

∂i2
+ i2

∂ϕ

∂i3
= 0, (61)

where we have used the connection (36) pertaining to the equivalent compressible
material, in which the stress is given by (33) with ψ replaced by ϕ and c by i3− 1.
This is effectively the free-swelling condition given in Equation (7) of [Deng and
Pence 2010], yielding an equation for c. We note that our polyconvexity criteria
(43)2 then require that ∂ϕ/∂i3 ≤ 0, which is compatible with (43)1.

(b) In the second definition of free swelling, proposed here, the diffusive flux m · n
vanishes pointwise on ∂π and the argument leading to (55), with µm replaced
by m, yields

d
dt

MV (c)= 0, so that MV (c)= c∗, (62)

a constant. Accordingly, if d(π)→ 0 then

c = c∗, (63)

pointwise. This implies ċ = 0, ensuring that (56) is satisfied. Inequality (60)
reduces to

9(c∗)(F)≥9(c∗)(F); JF = JF = 1+ c∗, (64)

where 9(c) is defined by (47).
In the literature on isotropic elastomers [Treloar 1975; Pence and Tsai 2005;

Hong et al. 2008; Duda et al. 2010; Chester and Anand 2011] we find the universal
assumption that the free-swelling deformation is a pure equi-triaxial stretch; i.e.,
that

F = λI (65)
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for some λ > 0, yielding U = F. Then, Equation (58) reduces to

∂ψ

∂i1
+ 2λ

∂ψ

∂i2
= λ2q, (66)

in which the derivatives are evaluated at

i1 = 3λ and i2 = 3λ2. (67)

The swelling constraint yields

λ3
= 1+ c∗ (68)

and (66) and (34) yield unique values of q and µ. We have thus established the exis-
tence of a state that satisfies the local free-swelling problem in which concentration
is assigned.

If the solution described by (65)–(68) is to be stable, it must satisfy (64). To
investigate this we follow [Ogden 1984, p. 110] and decompose the deformation
F of the comparison state in the form

F = RU, (69)

in which R ∈ Orth+ and

U =
∑

λ̄i ui⊗ui

= (λ̄I)(su1⊗u1+s−1u2⊗u2+u3⊗u3)[t−1/2(u1⊗u1+u2⊗u2)+ tu3⊗u3],

(70)

where λ̄i (> 0) are the principal stretches, {ui } are the orthonormal principal axes
of U and the factors correspond to a pure equi-triaxial stretch of amount λ̄(> 0), a
pure shear of amount s(> 0) and an isochoric uniaxial extension of amount t (> 0)
with accompanying lateral contraction. These are coaxial and so may be composed
in any order. The principal stretches are

λ̄1 = λ̄st−1/2, λ̄2 = λ̄s−1t−1/2, λ̄3 = λ̄t, (71)

which may be inverted to yield

λ̄= (λ̄1λ̄2λ̄3)
1/3, t = λ̄2/3

3 (λ̄1λ̄2)
−1/3, s = (λ̄1/λ̄2)

1/2. (72)

Accordingly, (71) affords a general representation of any state of stretch and the
decomposition (70) entails no loss of generality [Ogden 1984]. The corresponding
invariants are

ı̄1 = λ̄[(s+ s−1)t−1/2
+ t], ı̄2 = λ̄

2
[(s+ s−1)t1/2

+ t−1
], ı̄3 = λ̄

3. (73)
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It is instructive to insert these expressions into the polyconvexity criteria. Be-
cause c is fixed at the value c∗ in inequality (64), the relevant polyconvexity con-
dition is (49), in which λ̄= λ. Accordingly, (52) yields

9(c∗)(F)−9(c∗)(F)≥ λ f (s, t)
∂ψ

∂i1
+ λ2 f (s, u)

∂ψ

∂i2
, (74)

where u = t−1, and, for x and y positive,

f (x, y)= (x + x−1)y−1/2
+ y− 3. (75)

The derivatives in (74) are evaluated at the invariants given in (67), with (68).
The function f is stationary at (x, y)= (1, 1). Its Hessian matrix there is easily

shown to be positive definite, so that f has a local minimum, equal to zero, at
(1, 1). At this point both the pure shear and uniaxial extension of (70) reduce to
the identity, and U = U ( = λI). It then follows from (74) that 9(c∗) has a local
minimum at the equi-triaxial stretch defined by (67) and (68). In fact the minimum
is global, as f ≥ 0 for all values of its arguments. This claim is easily proved by
observing that it is equivalent to the inequality x + x−1

≥ (3− y)y1/2, the truth
of which follows from the fact that the left-hand side has a strict global minimum,
equal to 2, at x = 1; whereas the right-hand side has a strict global maximum, also
equal to 2, at y = 1. Thus, f (1, 1)= 0 and f (x, y) > 0 for all (x, y) 6= (1, 1) with
x and y positive. In particular, inequality (74) and the strict versions of (53) then
imply that (64) holds in the strict sense for all U 6= U such that JF = JF .

We have shown that the polyconvexity criteria (51) imply that a state defined
by (57) and (65) furnishes an optimal solution to the free swelling problem asso-
ciated with a given concentration. This result is perhaps surprising. For, although
polyconvexity implies quasiconvexity, the latter is not known to imply (64). In fact
the optimality of the solution (65) follows from the weaker restriction of rank-one
convexity. This is demonstrated in the Appendix.

Our result justifies the local decomposition [Chester and Anand 2011]

F = H G, (76)

in which
G = (1+ c)1/3 I with c ≥ 0, (77)

is the free-swelling deformation associated with c, yielding a swollen stress-free
local configuration κc followed by an elastic deformation H that gives rise to stress.
Indeed, if such G were not energetically optimal, then theories based on (76) might
well yield predictions that are sub-optimal and perhaps even unstable. We observe
that (76) and (77) are consistent with the swelling constraint (16) if and only if

JH = 1. (78)
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Using the foregoing procedure, the free-swelling state can be achieved at all
points of the gel provided that κ is divided into an arbitrarily large number of
subvolumes, each of which satisfies the free-swelling problem. In general, the
local configurations resulting from this operation cannot be made congruent in
three-dimensional space in the absence of strain; that is, they do not necessarily fit
together to form a connected whole in Euclidean space. Instead, the union of such
states is to be regarded as a smooth three-dimensional manifold, whose tangent
space at a given value of c is identified with κc. The fact that this manifold is
generally non-Euclidean implies that G is not the gradient of any position field.
Accordingly, it does not satisfy the compatibility condition which follows from
the existence of such a field. Of course, F, being the gradient of the map χ , is
necessarily compatible. The incompatibility of G then implies that H is likewise
incompatible. That such a formalism is necessary follows from the fact that G
is compatible if and only if the field c(x, t) is uniform. In this case the equilib-
rium equation, diffusive balance and boundary/initial conditions yield an overde-
termined problem for the fields χ(x, t) and q(x, t), having no solution except in
special circumstances.

2.5. Using κc as reference. The decomposition (76) suggests the use of κc as ref-
erence when formulating constitutive equations [Chester and Anand 2011]. For
example, given a deformation field χ(x, t) the free-energy function per unit volume
of κc is W (F K , c)= JK9(F, c), where K = G−1. Accordingly,

9(F, c)= (1+ c)W (H, c), where H = (1+ c)−1/3 F. (79)

This decomposition shows that the present model is subsumed, at fixed c, under
Noll’s theory of materially uniform bodies [Noll 1967], which has dramatically
advanced the development of theories of plasticity and continuously distributed
defects. Here, because the local change of reference from κ to κc entails a pure
dilation (cf. (77)), it does not affect the symmetry group of the gel. This is a simple
consequence of Noll’s rule [Truesdell 1977] connecting the symmetry groups as-
sociated with local references. Accordingly, the material is isotropic with respect
to both κ and κc. This fact, the constraint (16) and the invariance of W under
superposed rotations — a property inherited from 9— imply that the strain energy
W depends on H via the list {h1, h2}, where

h1 = tr UH and h2 = tr U∗H . (80)

Here UH is the symmetric, positive right-stretch tensor in the polar factorization of
H . From (79)2, the rotation in this factorization is simply R, the rotation associated
with F. It follows that UH = (1+ c)−1/3U ; therefore,

h1 = (1+ c)−1/3i1 and h2 = (1+ c)−2/3i2. (81)
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These in turn yield W (H, c) = w(h1, h2, c) for some function w, which may be
used to write (79) in the form

ψ(i1, i2, c)= (1+ c)w(h1, h2, c). (82)

Using this with (81), it is straightforward to show that the polyconvexity criteria
(51) are satisfied if and only if

w is a convex function of h1 and h2 jointly, and
w is a nondecreasing function of h1 and h2,

(83)

and this in turn implies that the function W(c)(H) = W (H, c), associated with
fixed c, is polyconvex [Steigmann 2003]. Thus, there is a function G(c)(H, H∗)=
W(c)(H) such that

W(c)(H)−W(c)(H)
≥ G(c)H(H, H∗) · (H − H)+G(c)H∗(H, H∗) · (H∗− H∗). (84)

In the present circumstances we take G(c)(H, H∗)= w(h1, h2, c) (cf. (50)), yield-
ing G(c)H = (∂w/∂h1)R and G(c)H∗ = (∂w/∂h2)R. Indeed, using (81), (82) and
(41) it is straightforward to show that (84) is equivalent to inequality (49). This
furnishes an explicit example of the general fact that polyconvexity is preserved
under any fixed change of reference [Neff 2003, Lemma 6.5, p. 260]. Using the
results of the previous subsection, we conclude that any distortion; i.e., any UH 6= I
with JH = 1, entails an energetic cost if w satisfies (83).

2.6. Constitutive specification of the diffusive flux. A well-known representation
theorem for isotropic functions [Noll 1970] furnishes the canonical form of the
mobility tensor for materials exhibiting holohedral (as distinct from hemihedral)
isotropy. Here, we combine this theorem with the Cayley–Hamilton formula to
conclude that

M = α0 I +α1U +α2U2, (85)

where α0,1,2 are functions of i1,2 and c, arranged to ensure that the mobility is
negative definite. The swelling constraint implies that i3 is redundant. This repre-
sentation furnishes the referential diffusive flux m defined by (22).

In [Chester and Anand 2011] the diffusive flux is expressed in terms of variables
pertaining to the local stress-free swollen configuration κc. The operative diffusive
flux is the push-forward

mc = J−1
G Gm (86)

of the referential flux m. Using (22) and (77), this is easily shown to yield

mc = (γ0 I + γ1UH + γ2U2
H )H

t(gradµ), (87)
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where grad is the spatial gradient based on position y and γ0,1,2 are functions of
the invariants h1,2 and c. This is an isotropic function jointly of UH and the push-
forward to κc of the referential chemical-potential gradient, namely, H t(gradµ)=
G−t Dµ.

Chester and Anand [2011] state that isotropy of the constitutive equation for
a single diffusive flux vector should be imposed relative to both κ and κc. This
restriction implies that the mobility tensor is purely spherical; i.e., that it is pro-
portional to the identity, as they point out. However, we have shown that isotropy
is preserved under the transformation κ→ κc, provided that the appropriate flux
vector is used. Thus we conclude that the imposition in [Chester and Anand 2011]
of the dual requirement on the constitutive equation for a single diffusive flux vector
is not appropriate. Instead, we observe that the preservation of isotropy is due to
the fact that the transformation κ → κc is a pure dilation. According to Noll’s
theorem [Truesdell 1977], these do not alter the symmetry group. When using this
theorem it is essential to account for the induced change in the referential variables
(cf. (86)).

3. Two-dimensional theory

The two-dimensional version of the foregoing theory, applicable to plane-strain
deformations, is substantially simpler. Here we use the same notation as before
with the stipulation that all tensors are regarded as linear maps from E2 to itself.
Thus the model discussed is inherently two dimensional. We present a synopsis
of the main results in this case, emphasizing those features that differ from the
corresponding three-dimensional theory.

The arguments leading to (19) and (32) remain unaltered, and thus yield

P = Rσ , with σ =
∂ϕ

∂i
I − qU∗, (88)

where
i = tr U (89)

is one of the two independent isotropic invariants. The other, det U , is fixed by the
swelling constraint, which carries over without modification, except of course that
all reference to volume is replaced here by area. The relation (34) connecting the
chemical potential, free energy and Lagrange multiplier is also unaltered.

In two dimensions we have [Steigmann 2002]

i R = F+ F∗, (90)

and therefore
P = i−1

(∂ψ
∂i

)
(F+ F∗)− q F∗, (91)
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which is required to satisfy div P = 0 in κ together with any traction data on ∂κ ,
where div is the two-dimensional divergence on κ .

The diffusive balance (2) takes the form

ċ+ div[M(U, c)∇µ] = 0, (92)

in which ∇ is the two-dimensional gradient and, by the two-dimensional represen-
tation theorem for isotropic functions,

M(U, c)= β0(i, c)I +β1(i, c)U, (93)

in which I is the identity for 2-space and the functions β0,1 are restricted by the re-
quirement that M be negative definite. To obtain U from the deformation gradient
we use the two-dimensional Cayley–Hamilton formula

U = i−1
[(1+ c)I +C], where C = Ft F, (94)

in which the swelling constraint has been imposed.
The operative polyconvexity condition, replacing (51), is

ψ(i, c) is a convex, nondecreasing function of i. (95)

This is necessary and sufficient for 9(c)(F)= ψ(i(F), c) to be polyconvex [Steig-
mann 2003].

The free-swelling problem, in which c is assigned, is again solved by deforma-
tions of the form F = λI , but now with

λ2
= 1+ c. (96)

Equation (66) is replaced by

q = λ−1 ∂ψ

∂i
, (97)

in which the derivative is evaluated at i = 2λ, and (34) then furnishes a unique
value of µ.

Polyconvexity again ensures the optimality of this solution to the free-swelling
problem. To see this we use (95) to obtain

9(c)(F)−9(c)(F)≥ (ı̄ − i)
∂ψ

∂i
, (98)

in which the derivative is evaluated at i = 2λ. The gradient F may, without loss
of generality, be decomposed in the form (69), where

U = (λ̄I)(su1⊗ u1+ s−1u2⊗ u2) (99)
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is the composition of an areal dilation of amount λ̄ and a pure shear of amount
s(> 0). The associated principal stretches are λ̄1 = λ̄s and λ̄2 = λ̄s−1, yielding

λ̄= λ̄1λ̄2 and s = (λ̄1/λ̄2)
1/2.

Here we impose λ̄= λ in accordance with the swelling constraint, obtaining ı̄ =
λ(s+ s−1). Inequality (98) reduces to

9(c)(F)−9(c)(F)≥ λ(s+ s−1
− 2)

∂ψ

∂i
, (100)

which is non-negative by virtue of (95) and the fact that s + s−1 has an isolated
minimum, equal to 2, at s = 1, corresponding to U = U .

This result justifies the decomposition (cf. (76))

F = H G, (101)

in which
G = (1+ c)1/2 I with c ≥ 0, (102)

and
JH = 1, (103)

by virtue of the swelling constraint.
The free energy, per unit reference area, is then expressible in the form

ψ(i, c)= (1+ c)w(h, c), where h = i/
√

1+ c, (104)

is the trace of UH , the stretch factor in the polar decomposition of H , and w is
the free energy per unit area of the swollen elastomer. It is easy to show that the
polyconvexity criterion (95) holds if and only if the same restriction applies to w;
that is, w(h, c) is a convex, nondecreasing function of h.

Appendix

In [Steigmann 2003] the conditions (43) are shown to be sufficient for polyconvex-
ity. The proof of necessity is given here.

The necessity of (44) follows immediately from (39), (40) and (41) by selecting
a deformation F for which R(F)= R(F), and hence R(F∗)= R(F∗); these yield
R · (F− F)= ı̄1− i1 and R · (F∗− F∗)= ı̄2− i2, respectively, thereby reducing
(39) to (44).

To demonstrate the necessity of (45) we use the fact that polyconvexity implies
rank-one convexity [Ball 1977], which is equivalent to the inequality

9 ′(F)−9 ′(F)≥ P(F) · (F− F), with F− F = a⊗ b, (A1)



DIFFUSION AND SWELLING IN FINITELY DEFORMING ELASTOMERS 125

for arbitrary a and b. For isotropic materials, (32), (33), (34) and (36) may be used
to express this in the form

9 ′(F)−9 ′(F)≥
[( ∂ϕ
∂i1
+ i1

∂ϕ

∂i2

)
R−

∂ϕ

∂i2
F+

∂ϕ

∂i3
F∗
]
· a⊗ b. (A2)

Consider a and b such that F−1a · b= 0. For this choice (A2) reduces to

9 ′(F)−9 ′(F)≥
( ∂ϕ
∂i1
+ i1

∂ϕ

∂i2

)
a · Rb−

∂ϕ

∂i2
a · Fb, with JF = JF . (A3)

If b is an eigenvector of U with eigenvalue λ, then we have the further reduction

9 ′(F)−9 ′(F)≥
[ ∂ϕ
∂i1
+ (i1− λ)

∂ϕ

∂i2

]
a · Rb. (A4)

Because U and U∗ have the same eigenvectors, the restrictions on a and b imply
that a · Rb= 0, yielding

9 ′(F)−9 ′(F)≥ 0, with JF = JF . (A5)

To interpret this result in the present context, we use F − F = a ⊗ b, with
F−1a ·b= 0, in the convexity conditions (46), obtaining F∗−F∗=−F∗b⊗F−1a
and

i1(F)− i1(F)≥ a · R(F)b and i2(F∗)− i2(F∗)≥−U∗b · F−1a, (A6)

where the rotation invariance of the inner product has been used in the second
inequality. The right-hand sides of these inequalities vanish for the choice of b
leading to (A5). Thus, (A5) is equivalent to the restriction

ϕ(ı̄1, ı̄2, i3)≥ ϕ(i1, i2, i3) for all ı̄1 ≥ i1 and ı̄2 ≥ i2. (A7)

We observe that the restrictions ı̄1 ≥ i1 and ı̄2 ≥ i2 are satisfied in the formulas
(73) pertaining to the free-swelling problem. Consequently the optimality of the
solution (65) to that problem is a consequence of rank-one convexity, which of
course is weaker than polyconvexity.

In a general deformation, the stretch invariants satisfy the restrictions i2
1 ≥ 3i2

and i2
2 ≥ 3i1i3 [Podio-Guidugli and Vergara-Caffarelli 1991], with equality if and

only if U is purely spherical. These impose the limits√
3i2 ≤ i1 ≤

i2
2

3i3
and

√
3i1i3 ≤ i2 ≤

i2
1

3
(A8)

on the invariants; the first applying when i2 and i3 are specified and the second
when i1 and i3 are specified. Fixing ı̄2 = i2 and choosing ı̄1 > i1 in the first interval,
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we write (A7) in the form

ε
( ∂ϕ
∂i1
+ ε−1o(ε)

)
≥ 0, with ε = ı̄1− i1, (A9)

which yields (45)1 on dividing by ε(> 0) and passing to the limit. In the same way
(A7) is seen to imply (45)2. Thus the necessity of (45) for polyconvexity has been
demonstrated. A discussion of necessary and sufficient conditions for polyconvex-
ity in isotropic elasticity in terms of principal stretches is given in [Mielke 2005].
The idea for the present proof of necessity may be found in [Steigmann and Pipkin
1988], where it is applied to a special class of materials.

We note that if the free-energy function is strictly polyconvex, then the strict
inequalities (44) and (45) follow. Moreover, if inequality (44) is strict and at least
one of inequalities (45) is strict, then the free-energy function is strictly polycon-
vex. These statements are valid despite the fact that inequalities (46) are non-
strict [Steigmann 2003]. Finally, all of the foregoing remarks remain valid in the
presence of a constraint on JF , exemplified here by the swelling constraint.
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