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NEUTRALITY OF
ECCENTRICALLY COATED ELASTIC INCLUSIONS

XU WANG AND PETER SCHIAVONE

In the analysis of neutral coated circular holes in an isotropic medium, it is well-
known that neutrality to a general class of applied uniform fields can be realized
only by the concentrically coated circle construction. It is of interest to examine
to what degree eccentric circular coatings can be used to achieve effective or
near-neutrality in the presence of a wider and more general class of applied fields.
To this end, we consider the neutrality of a circular elastic inclusion bonded to its
surrounding matrix through N − 2 eccentric circular coatings (N ≥ 3) when the
matrix is subjected to remote nonuniform antiplane shear stresses characterized
by arbitrary polynomials of order M ≤ N − 2. In our design, the first N −M − 1
generalized polarization tensors associated with the N -phase structure vanish.
Our results demonstrate conclusively that for arbitrary applied nonuniform fields,
the stress disturbance in the matrix becomes negligible as N becomes sufficiently
large, indicating that the inclusion can be made “near-neutral” for a given N and
completely neutral as N approaches infinity.

1. Introduction

The idea of a “neutral hole” was initiated by Mansfield [1953] who found that
certain reinforced holes in a uniformly stressed plate do not alter the original stress
field in the uncut body. In other words, the hole shape and corresponding rein-
forcing layer could be designed to make the hole “invisible” to the surrounding
stress field. This idea was later extended to the concept of a “neutral inclusion” in
which the insertion of certain shapes of inclusion into an elastic body causes no
disturbance in the body’s original stress field. In this case, “neutrality” is achieved
by adding one or more specifically designed coatings between the inclusion and
the surrounding body (see [Milton and Serkov 2001; Chen et al. 2002; Schiavone
2003; Mahboob and Schiavone 2005; Vasudevan and Schiavone 2006; Bertoldi
et al. 2007; Benveniste and Miloh 2007; Jarczyk and Mityushev 2012; Wang and
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Schiavone 2012a; 2012b] for a comprehensive account of fundamental investiga-
tions in this area). This concept of “neutrality” finds significant application in
the design of advanced composite materials and structures (for example, in the
design of implants in biomechanics) but is also topical in that it is often taken to
be equivalent to the modern ideas of “cloaking”, “invisibility” or “stealth” [Milton
et al. 2006; Liu 2010; Ammari et al. 2013a; 2013b] in that the inclusion becomes
“invisible” to the original stress distribution.

Milton and Serkov [2001] showed that, for an isotropic medium, neutrality to
multiple applied uniform fields can be realized only by the concentrically coated
circle construction. This fact has also been observed by Ru [1998]. In the present
paper we intend to show that a circular elastic inclusion with N − 2 eccentric
coatings can be made “almost neutral” to multiple applied nonuniform fields. In
fact, we show that when the matrix surrounding the inclusion is subjected to remote
nonuniform stresses characterized by arbitrary polynomials of order M ≤ N − 2
in the complex variable z, the generalized polarization tensors (GPTs) [Ammari
et al. 2013a] of up to order N − M − 1 vanish on the introduction of the N − 2
eccentric coatings. For a sufficiently large value of N and a relatively low value
of M , the disturbance in the matrix is minimal since only GPTs of orders higher
than N −M−1 exist. As N approaches infinity, there will be no stress disturbance
in the matrix as a result of the cancellation of all GPTs.

2. Design of neutral circular inclusions with multiple eccentric coatings

Let (x1, x2, x3) describe a Cartesian coordinate system in R3. In the theory of
antiplane shear deformations, the out-of-plane displacement w(x1, x2), the stress
function φ(x1, x2), and the stress components σ32(x1, x2) and σ31(x1, x2), can be
expressed more conveniently in terms of an analytic function f (z) of the complex
variable z = x1+ i x2 = r exp(iθ) where r =

√

x2
1 + x2

2 and tan θ = x2/x1, as

µ−1φ+ iw = f (z), σ32+ iσ31 = µ f ′(z), (1)

where µ is the shear modulus of the material. The two stress components can be
expressed in terms of the stress function φ as [Ting 1996]

σ32 = φ,1, σ31 =−φ,2, (2)

where the notation ( · ),s denotes differentiation with respect to xs, s = 1, 2.
We consider a circular elastic inclusion bonded to the surrounding matrix through

N − 2 eccentric circular coatings (Figure 1). Let S1 denote the unbounded matrix,
S2, . . . , SN−1 the N − 2 intermediate coatings, and SN the inner circular inclu-
sion. We assume perfect bonding across the N − 1 eccentric circles L1, . . . , L N−1.
Clearly, the interface Lk is formed by the outer Sk and the inner Sk+1. The center
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Figure 1. A circular elastic inclusion with (N − 2) eccentric cir-
cular coatings.

of the unit circle L1 is at the origin, so that L1, . . . , L N−1 are Apollonius circles
in the sense that, if we introduce the conformal map

z = ω(ξ)=
ξ − a

aξ − 1
, ξ = ω−1(z)=

z− a
az− 1

(a > 1), (3)

then the eccentric circles L1, . . . , L N−1 in the z-plane are mapped onto the N − 1
concentric circles |ξ | = R1, . . . , |ξ | = RN−1 in the ξ -plane, respectively, where
RN−1 > RN−2 > · · ·> R2 > R1 = 1, as shown in Figure 2. It follows from (3) that
(i) the Apollonius circles Lk can be described by

|z− a|
|az− 1|

= Rk,

which implies that the centers of these eccentric circles are all on the real axis;
(ii) z = a in S1 is mapped to ξ = 0, and z = 1/a in SN is mapped to ξ =∞. In
addition, we first assume that the matrix is subjected to remote uniform antiplane
stresses σ∞32 and σ∞31 (it will be seen in the following analysis that the remote
applied stresses can be nonuniform). Throughout the remainder of this paper, the
subscript j or the superscript ( j) will denote the corresponding quantities associ-
ated with S j . For convenience and without loss of generality, we adopt the notation
f (z)= f (ω(ξ))= f (ξ).
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Figure 2. The mapped ξ -plane.

The analytic function f j (ξ) defined in phase j can be expanded into the conver-
gent Laurent series

f j (ξ)=

∞∑
n=1

[A( j)
n ξ−n

+ B( j)
n ξ n
], (4)

where A( j)
n and B( j)

n are complex constants to be determined (note that we do
not include the constant term (n = 0) in the Laurent expansion since this term
corresponds to a rigid body translation and does not affect the corresponding stress
field). It should be pointed out that this expansion of f j (ξ) for j = 1 is convergent
only for 1/a < |ξ |< 1, and the convergent expression for f1(ξ) in |ξ |< 1 is

f1(ξ)=
C

aξ − 1
+

∞∑
n=1

B(1)n ξ n, |ξ |< 1, (5)

where the complex constant C is determined from the remote uniform stresses as

C =
(a−1
− a)(σ∞32 + iσ∞31 )

µ1
. (6)

Remark 1. Our reasoning in obtaining (5) is as follows. In the physical z-plane,

f1(z)=
σ∞32 + iσ∞31

µ1
z+ f0(z), |z|> 1,
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where f0(z) is analytic everywhere in the matrix, including the point at infinity.
Thus, in the mapped ξ -plane,

f1(ξ)=
C

aξ − 1
+ f0(ξ), |ξ |< 1,

where f0(ξ) is analytic in |ξ |< 1 and can be expanded in a Taylor series. Conse-
quently, (5) can be obtained with the constant term disregarded.

By enforcing the continuity condition of displacement and traction across the
(perfect) interface |ξ | = R j (i.e., φ j = φ j+1, w j = w j+1 on |ξ | = R j ), we arrive at
the recurrence relation[

A( j+1)
n

B( j+1)
n

]
= P ( j)

n

[
A( j)

n

B( j)
n

]
, n = 1, 2, . . . , (7)

where the transfer matrix P ( j)
n is given by

P ( j)
n =

1
1− λ j

[
1 R2n

j λ j

R−2n
j λ j 1

]
, (8)

with λ j being the mismatch parameter defined by

λ j =
µ j −µ j+1

µ j +µ j+1
(|λ j |< 1). (9)

It follows from (7) that[
A(N )n

B(N )n

]
= Sn

[
A(1)n

B(1)n

]
, n = 1, 2, . . . , (10)

where

Sn =

[
S11

n S12
n

S21
n S22

n

]
= P (N−1)

n P (N−2)
n · · · P (2)n P (1)n . (11)

In order to ensure that fN (ξ) is analytic in the region RN−1< |ξ |<∞, including
the point at infinity, we must have B(N )n = 0 (n = 1, 2, . . .). In addition, it can be
easily deduced from (4) and (5) that

A(1)n = Ca−n, n = 1, 2, . . . . (12)

By imposing the above additional conditions on (10), we arrive at

B(1)n =−
C
an

S21
n

S22
n
, n = 1, 2, . . . . (13)
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Thus f1(ξ) defined in the matrix can be uniquely determined as

f1(ξ)=
C

aξ − 1
−C

∞∑
n=1

(
a−n ξ n S21

n

S22
n

)
, (|ξ |< 1). (14)

In order to arrive at a GPT-vanishing structure of order N − 2, the following
N − 2 conditions should be satisfied:

g(k)(a−1)= 0, k = 1, 2, . . . , N−2, (15)

where the superscript (k) denotes the k-th order derivative, and

g(ξ)= f1(ξ)−
C

aξ − 1
. (16)

Remark 2. The conditions given by (15) result in the following asymptotic behav-
ior of f1(z) at infinity:

f1(z)∼=
σ∞32 + iσ∞31

µ1
z+ O(1/zN−1) as |z| →∞,

which indicates that the GPTs up to order N − 2 all vanish.
In view of (14), (15) can be written explicitly as

∞∑
n=1

[
na−2n S21

n

S22
n

]
= 0,

∞∑
n=1

[
n(n− 1)a−2n S21

n

S22
n

]
= 0,

...

∞∑
n=1

[
n(n− 1) · · · (n+ 3− N )a−2n S21

n

S22
n

]
= 0,

(17)

which are independent of the remote uniform stresses characterized by the complex
constant C . In addition, we have the following more general result.

Theorem 1. Equation (17) is also the condition leading to a GPT-vanishing struc-
ture of order N −M − 1 with M ≤ N − 2 when the matrix is subjected to remote
nonuniform stresses characterized by

f1(z)∼=
M∑

n=1

Dnzn
+ O(1/zN−M), M ≤ N − 2, as |z| →∞, (18)

where Dn (n = 1, 2, . . . ,M) are complex constants.



NEUTRALITY OF ECCENTRICALLY COATED ELASTIC INCLUSIONS 169

Remark 3. In writing (18), it has been implied that the GPTs up to the order
N −M − 1 vanish. As N approaches infinity, keeping M finite, the inclusion will
become ideally neutral to arbitrary remote nonuniform stresses.

Proof of Theorem 1. In the region |ξ |< 1, f1(ξ) can be written in the convergent
form

f1(ξ)=

M∑
n=1

Cn

(aξ − 1)n
+

∞∑
n=1

B(1)n ξ n, |ξ |< 1, (19)

where the complex constants Cn can be determined from the nonuniform remote
loading characterized by (18).

Through satisfaction of the continuity conditions of traction and displacement
across all the existing interfaces, f1(ξ) can be finally determined as

f1(ξ)=

M∑
n=1

Cn

(aξ − 1)n

−

∞∑
n=1

[
C1+

M∑
m=2

Cm
(n− 1)(n− 2) · · · (n−m+ 1)

(m− 1)!

]
S21

n

S22
n

ξ n

an , |ξ |< 1. (20)

If we define the function

h(ξ)= f1(ξ)−

M∑
n=1

Cn

(aξ − 1)n
, (21)

the N −2 conditions in (17) will lead to h(k)(a−1)= 0, (k = 1, 2, . . . , N −M−1).
This fact implies that the GPTs up to order N −M − 1 vanish. This completes the
proof. �

If the N − 1 geometric parameters a and R2, R3, . . . , RN−1 are given, (17) can
be considered as a set of N − 2 nonlinear equations for the N − 1 mismatch param-
eters λ1, λ2, . . . , λN−1, which can be solved through iteration. In addition, it can be
shown that if (λ1, λ2, . . . , λN−1) is a solution to (17), then (−λ1,−λ2, . . . ,−λN−1)

is also a solution.
For example, when N = 4, (17) becomes

∞∑
n=1

[
na−2n λ1+ R−2n

2 λ2+ R−2n
3 λ3+ R2n

2 R−2n
3 λ1λ2λ3

1+ R−2n
2 λ1λ2+ R−2n

3 λ1λ3+ R2n
2 R−2n

3 λ2λ3

]
= 0,

∞∑
n=1

[
n(n− 1)a−2n λ1+ R−2n

2 λ2+ R−2n
3 λ3+ R2n

2 R−2n
3 λ1λ2λ3

1+ R−2n
2 λ1λ2+ R−2n

3 λ1λ3+ R2n
2 R−2n

3 λ2λ3

]
= 0.

(22)
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3. Results and discussions

In this section, we will present numerical results for the cases N = 3, N = 4 and
N ≥ 5. It is of interest to note that very simple approximate closed-form solutions
for N = 3 and N = 4 can be obtained which, in turn, can be used to quickly (albeit
roughly) determine the values of the mismatch parameters. For simplicity it is
assumed that the matrix is subjected to only remote uniform stresses (M = 1).

3.1. GPT-vanishing structures of order 1 (N = 3). In the case of N = 3, the
following single nonlinear equation should be solved:

∞∑
n=1

[
na−2n λ1+ R−2n

2 λ2

1+ R−2n
2 λ1λ2

]
= 0. (23)

In view of the fact that R2> 1 and |λ1|, |λ2|< 1, the denominator on the left-hand
side of (23) can be taken as approximately equal to one (i.e., 1+ R−2n

2 λ1λ2 ≈ 1).
Consequently, the following approximate closed-form solution is obtained:

λ1

λ2
≈−

R2
2(a

2
− 1)2

(a2 R2
2 − 1)2

=−R2
0, (24)

where R0 is the radius of the inner circular inclusion. We recall that this is just the
condition for the existence of a neutral three-phase inclusion with two concentric
circular interfaces with radii R0 and 1 (R0 < 1) [Ammari et al. 2013a; Ru 1999].
This implies that if a concentrically single-coated inclusion is neutral to a remote
uniform stress field, the GPT of order 1 of the shifted structure nearly vanishes.
We illustrate in Figure 3 the values of (λ1, λ2) found for four different values of a,
namely a = 1.2, 1.5, 2, 10, with R2 = 1.5. The solid lines are obtained by itera-
tively solving (23), whilst the dashed lines are obtained by using the approximate
solution (24). It is observed that the approximate results are very close to the exact
ones. As a→∞ (i.e., the eccentricity becomes minimal), (24) simply recovers
the exact solution.

3.2. GPT-vanishing structures of order 2 (N = 4). In the case of N = 4, the
equation (22) should be solved iteratively. In addition, the following approximate
closed-form solution can be derived:

If R3 6= R2
2 , we have the approximate solution

λ2 ≈
−c1+

√

c2
1− 4c0c2

2c2
,

λ1 ≈−
(a2
− 1)2(a2 R2

3 − R2
2)

2
[
R2

2(a
2 R2

3 − 1)2λ2+ R2
3(a

2 R2
2 − 1)2λ3

]
(a2 R2

2 − 1)2(a2 R2
3 − 1)2

[
(a2 R2

3 − R2
2)

2+ R2
2 R2

3(a
2− 1)2λ2λ3

] , (25)
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Figure 3. Obtained values of (λ1, λ2) for a = 1.2, 1.5, 2, 10, with
R2 = 1.5.

where

c2 = R4
2 R2

3(a
2
− 1)3(a2 R2

3 − 1)3(R4
2 − R2

3)λ3,

c1 = R2
2(R

2
2 − 1)

[
R6

3(a
2
− 1)3(a2 R2

2 − 1)3λ2
3+ (a

2 R2
3 − 1)3(a2 R2

3 − R2
2)

3],
c0 = R2

3(R
2
3 − 1)(a2 R2

3 − R2
2)

3(a2 R2
2 − 1)3λ3.

(26)
On the other hand, if R3 = R2

2 , we have the approximate solution

λ2 ≈−
λ3 R3(R3+ 1)(a2 R3− 1)3

R3
3(a

2− 1)3λ2
3+ (a

2 R2
3 − 1)3

,

λ1 ≈
λ3 R3

3(a
2
− 1)3

[
R3(a2

− 1)3λ2
3+ (a

2 R2
3 − 1)3

]
(a2 R2

3 − 1)3
[
R3

3(a
2− 1)3λ2

3+ (a
2 R2

3 − 1)3
]

×
R2

3(a
2
− 1)2λ2

3− (a
2 R2

3 − 1)2

(a2− 1)2λ2
3− (a

2 R2
3 − 1)2

.

(27)

We illustrate in Figure 4 the variations of λ1 and λ2 as functions of λ3 for three
values of a, namely a = 1.01, 1.5, 3, with R2 = 1.5, R3 = 2. The solid lines are
the exact results obtained by iteratively solving (22), whereas the dashed lines are
the approximate results found from (25). It is observed from Figure 4 that the
approximate results are quite satisfactory, especially when λ3 < 0.7.
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Figure 4. Variations of λ1 and λ2 as functions of λ3 for a =
1.01, 1.5, 3, with R2 = 1.5, R3 = 2.

3.3. GPT-vanishing structures of order 3 or higher (N ≥ 5). When N ≥ 5, the
solutions can be obtained only by solving (17) iteratively. Listed in Table 1 are
typical results. In performing the calculations, we set the N − 1 geometric param-
eters to a = 1.2 and Rk+1 = 1+ k/(N − 2), (k = 1, 2, . . . , N − 2). It is observed
that λk and λk+1 always have opposite signs.

3.4. Stress disturbance in the matrix. The concept of neutral holes and inclusions
was originally proposed to completely eliminate stress concentrations in the matrix
[Mansfield 1953; Milton and Serkov 2001; Ru 1998]. In our design, however, the
stress disturbance in the matrix cannot be completely avoided due to the existence
of GPTs of orders higher than N −2 when the remote loading is uniform. However,

N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

λ1 5.464× 10−4 4.203× 10−5 4.42 × 10−6 4.289× 10−7 3.613× 10−8 2.221× 10−9

−λ2 0.1075 0.0147 0.0024 3.197× 10−4 3.573× 10−5 2.800× 10−6

λ3 0.6415 0.2041 0.0592 0.0131 0.0022 2.471× 10−4

−λ4 0.8 0.5751 0.3239 0.1225 0.0323 0.0053
λ5 0.5 0.5868 0.3964 0.1720 0.0430
−λ6 0.4 0.5437 0.3979 0.1594
λ7 0.3 0.4445 0.2939
−λ8 0.2 0.2728
λ9 0.1

Table 1. Obtained mismatch parameters for N = 5, 6, 7, 8, 9, 10.
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Figure 5. The stress disturbance σ32/σ
∞

31 along the coating/matrix
interface |z| = 1 on the matrix side for N = 3, 4, 5, 6 when the
matrix is subjected to σ31 6= 0, σ∞32 = 0.

the stress disturbance is expected to be insignificant as N becomes sufficiently
large. In fact, we illustrate in Figures 5 and 6 the stress disturbance along the
coating/matrix interface |z| = 1 on the matrix side for N = 3, 4, 5, 6 when the
matrix is subjected to the loading given by σ∞31 6= 0, σ∞32 = 0. It is observed
from the two figures that, as N increases, the most significant stress disturbance
occurs in a more localized region of θ : θ < 60◦, 40◦ and 20◦ for N = 4, 5 and 6,
respectively. Clearly, when N = 6, the stress disturbance along the whole interface
|z| = 1 is minimal.

4. Conclusions

By adopting the GPT cancellation method proposed in [Ammari et al. 2013a], we
design “near-neutral” circular elastic inclusions with multiple eccentric circular
coatings. When the matrix is subjected to remote nonuniform stress characterized
by (18), the GPTs up to the (N−M−1)-th order are canceled by appropriately
adding N − 2 eccentric coatings between the inclusion and the matrix. Condi-
tion (17) is, in fact, independent of the remote applied nonuniform loading given
by (18). Consequently, our design of an N -phase circular inclusion is “almost
neutral” to the remote nonuniform stresses characterized by any polynomials in z
of order M no greater than N − 2. In order to make the analysis tractable, we
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Figure 6. The stress disturbance σ31/σ
∞

31 − 1 along the coat-
ing/matrix interface |z| = 1 on the matrix side for N = 3, 4, 5, 6
when the matrix is subjected to σ∞31 6= 0, σ∞32 = 0.

assume that all the eccentric circular interfaces Lk (k = 1, 2, . . . , N − 1) are Apol-
lonius circles. Approximate closed-form solutions (24) for N = 3 and (25)–(27)
for N = 4 are obtained. One consequence and potential application of the results
here arises from the finding that multiple closely spaced and eccentrically coated
inclusions can be inserted into a nonuniformly stressed finite matrix with minimal
stress disturbance in the matrix.
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