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DERIVATION OF NONLINEAR SHELL MODELS
COMBINING SHEAR AND FLEXURE:

APPLICATION TO BIOLOGICAL MEMBRANES

OLIVIER PANTZ AND KARIM TRABELSI

Biological membranes are often idealized as incompressible elastic surfaces whose
strain energy only depends on their mean curvature and possibly on their shear.
We show that this type of model can be derived using a formal asymptotic
method by considering biological membranes to be thin, strongly anisotropic,
elastic, locally homogeneous bodies.

1. Introduction

Shells, plates and membranes are solid deformable bodies having one characteristic
dimension small by comparison with the other two dimensions. Their behavior
is fully described by standard three-dimensional laws of continuum mechanics.
Nevertheless, it is tempting, at least from the modeling viewpoint, to consider them
as two-dimensional structures and to replace the genuine mechanical laws by two-
dimensional reduced versions. This immediately raises two questions: (1) What
is the correct model? and (2) How can it be mathematically justified? To this
end, we consider the thickness ε of the plate/shell/membrane as a parameter and
identify the limit behavior of the structure as ε goes to zero. According to the
dependence of the elasticity moduli on the thickness of the shell, a full zoology of
models may be derived. Membrane, isometric bending and von Kármán theories
have been justified (amongst others), first formally (see Fox, Raoult and Simo [Fox
et al. 1993]), then by means of 0-convergence (see [Le Dret and Raoult 1995; 1996;
Pantz 2003], Müller, Friesecke and James [Friesecke et al. 2002], Friesecke, James
and Mora [Friesecke et al. 2003]; see also [Conti et al. 2006]). In those works,
elasticity coefficients are assumed to scale like a power of the thickness ε of the
plate or shell, that is, like ε−α. Membrane theory corresponds to the case α = 1,
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isometric bending to the case α = 3 and von Kármán to α = 4. Intermediate values
of α have also been considered, and an almost exhaustive hierarchy of models
has thus been produced (see Müller, Friesecke and James [Friesecke et al. 2006]).
Some cases remain to be treated; Conti and Maggi [2008], for instance, investigate
the scaling of the energy corresponding to folds. The initial motivation for this
article was the study of the mechanical behavior of red blood cells (RBCs), and
our aim was to determine whether the classical RBC model could be derived by
the above procedure.

Mature anucleate RBCs1 are made of two mechanical structures: the cytoskeleton
— a two-dimensional network of protein filaments that extends throughout the in-
terior of the cell — and a lipid bilayer. Both are bound together by proteins linking
the nodes of the mesh of the cytoskeleton to the lipid bilayer via transmembrane
proteins. Lipid bilayers are self-assembled structures of phospholipids, which are
small molecules containing a negatively charged phosphate group (called the head),
and two highly hydrophobic fatty acid chains (called the tails). In an aqueous en-
vironment, phospholipids spontaneously form a double layer whose configuration
isolates the hydrophobic tails from the surrounding water molecules. Modifying
the area of such a lipid bilayer is energy-costly because it exposes some of the tails
to the environment.

A bilayer that supports no other mechanical structure, is connected and has no
boundary is called a vesicle. Vesicles are massively studied because they are easy
to obtain experimentally. Moreover, they partially mimic the behavior of RBCs.
Roughly speaking, they are RBCs without cytoskeleton (even if the RBC bilayer
does embed a lot of different proteins responsible for different functions of the
cell). They similarly resist bending. However, vesicles show no resistance to shear
stress, while RBCs do, owing to their cytoskeletons.

A widely used model consists in considering that a lipid bilayer may be endowed
with an elastic energy depending solely on the mean curvature of the vesicle. This
energy is usually known as the Helfrich functional (named after Willmore in other
contexts). It was introduced independently, as far as we know, by Canham [1970]
and Helfrich [1973] some forty years ago. Evans [1974] has shown that the Helfrich
functional can be derived by assuming a vesicle to be made of two interconnected
elastic fluid membranes, each of them resistant to change of local area but not to
bending itself. Jenkins [1977a] has extended the analysis of Helfrich to general two-
dimensional liquid crystals [Singer and Nicolson 1972]. In particular, he derives
the Euler–Lagrange equations satisfied by the equilibrium states, and examines the
consequences of fluidity on the form of the strain energy (see also [Steigmann

1Every mention to RBCs in this article will implicitly refer to anucleate mature RBCs without
further notice.
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1999]). As a means to take into account the various vesicle shapes observed, it
is common to presume that the vesicle is endowed with a nonzero spontaneous
curvature. The origin of this spontaneous curvature is usually attributed to differ-
ent compositions of the outer and inner layers. Several refinements to this basic
model have since been proposed as the so-called bilayer-couple model [Svetina and
Žekš 1989], that consists in allowing the two lipid layers to slip on one another,
and imposing that the total area of each layer remains constant (see also [Seifert
et al. 1991] for a comparison between the two models). Miao, Seifert, Wortis
and Döbereiner [Miao et al. 1994] proposed an intermediate model, called the
area-difference elasticity model, where slight total area changes of each layer are
allowed but still penalized.

As previously mentioned, the mechanical structure of the RBC is not only im-
putable to its bilayers. Their cytoskeleton endows them with resistance to shear
stress. In most models, only the deformation of the RBC membrane is considered
(that is, of the bilayer). To take into account the presence of the cytoskeleton an
additional term is added to the total energy depending on the change of the metric
of the membrane. Krishnaswamy [1996] proposed another model for which the
deformations of the cytoskeleton and the fluid bilayer may differ.

The aforementioned models for vesicles and RBCs are backed up by numerous
numerical studies that reproduce various shapes observed experimentally. Amongst
others, Deuling and Helfrich [1976] (see also [Jenkins 1977b; Luke 1982; Luke
and Kaplan 1979]) have computed axisymmetric vesicle shapes of minimum en-
ergy with respect to the values of the reduced volume and spontaneous curvature.
Seifert, Berndl and Lipowsky [Seifert et al. 1991] have compared the axisymmetric
solutions obtained using the spontaneous curvature model and the bilayer-couple
model, whereas Agrawal and Steigmann [2009] have included contact conditions
between the vesicle and a substrate. Full three-dimensional simulations have been
performed by Feng and Klug [2006], Bonito, Nochetto and Pauletti [Bonito et al.
2010; 2011], Dziuk [2008] using a finite element method. Peng et al. [2013] use
a dissipative particle dynamic approach and focus on the interaction between the
lipid bilayer and the cytoskeleton. Du, Chun and Xiaoqiang perform numerical
computations based on a phase field method [Du et al. 2006; 2004; Du and Zhang
2008]. Boundary integral methods have been used by Veerapaneni, Gueyffier and
Zorin [Veerapaneni et al. 2009], Sohn, Tseng, Li, Voigt and Lowengrub [Sohn
et al. 2010]. Another approach based on the immersed boundary method has been
investigated by Kim and Lai [2010], Liu et al. [2004; 2006] and, together with a
lattice Boltzmann approach, by Crowl and Fogelson [2010]. Finally, level set meth-
ods have also been implemented in this context by Salac and Miksis [2011], and
Maitre, Milcent, Cottet, Raoult and Usson [Maitre et al. 2009] (see also [Doyeux
et al. 2013]).
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We prove in this article that the classical mechanical model of the RBCs can
be recovered by means of a formal asymptotic analysis assuming that the RBC’s
membrane is made of a locally homogeneous, albeit strongly anisotropic, nonlin-
early elastic material. The main difference with previous works on the justification
of thin structures is that we assume different scalings for the elastic moduli in the
tangential and normal directions to the midsection. Let us underline that our work
cannot be considered as a justification of the classical RBC mechanical model.
Indeed, the RBC is not a locally homogeneous elastic membrane, firstly because it
is made of two different structures: the lipid bilayer (responsible for the resistance
to bending) and a cytoskeleton (responsible for resistance to shear). Even the lipid
bilayer could hardly be considered as made of a homogeneous material, the scale
of the phospholipids it contains being of the same order as the thickness of the
membrane. The cytoskeleton, being a two-dimensional spectrin network, is no
more a homogeneous elastic body. Even if it is not overt at first glance, our work is
strongly related to the justification, already mentioned, proposed in [Evans 1974].

We have chosen to consider a rather general setting (presented in Section 2) for
which the modeling of the RBCs is obtained as a particular case (see Section 6).
The asymptotic analysis is performed in Section 3. Assuming that the minimiz-
ers of the energy admit an asymptotic expansion with respect to the thickness
(Section 3.2), they converge toward the solutions of a two-dimensional problem
(see Section 3.3). The limit energy, computed in Section 3, contains membrane
and flexural terms. In Section 4, we prove that, under invariance assumptions on
the stored energy of the material, the flexural term depends only upon the second
fundamental form, or even only upon the mean curvature of the shell. The isometric
bending shell, RBC and vesicle models are obtained as particular applications in
Section 6. The last section is devoted to some general remarks, in particular on the
relaxation of the formal energy limit.

Finally, let us specify some notation. If M is a differentiable manifold, we
denote by TM and T ∗M its tangent and cotangent bundles. Moreover, T ∗(M;R3)

will stand for the triple Whitney sum T ∗M ⊕ T ∗M ⊕ T ∗M . The tangent spaces of
a product of manifolds will be implicitly identified with the product of the tangent
spaces, so that if M1 and M2 are differentiable manifolds and M = M1×M2, the
bundle TM will be implicitly identified with TM1× TM2. If M is an open subset
of RN , TM will be identified with M ×RN . The corresponding identifications will
also be made for T ∗M and T ∗(M;R3). The set of reals R and its dual R′ will also
be often implicitly identified. Sets will always be displayed with capital letters (for
instance, the set of deformations ψε will be denoted 9ε). Sequences of terms of
an asymptotic expansion are denoted using bold letters (for instance, ψ = (ψk)k∈N

stands for the asymptotic expansion of ψε). Accordingly, the sets of asymptotic
expansions use both bold and capitalized letters (for instance, ψ ∈9). Moreover,
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calligraphic letters will be exclusively used for fiber spaces. Two different reference
configurations are used throughout our article; one is qualified to be abstract and
the other geometrical. The same notations are used for both configurations, the
only distinction being that a tilde is added over variables, sets and functionals
defined on the geometric configuration (for instance, ψ̃ε is the deformation defined
on the geometric configuration, whereas ψε stands for the deformation over the
abstract one). All of the notation introduced is recalled at the end of the article
for convenience.

2. Elastic shells — three-dimensional modeling

We consider a thin nonlinearly elastic shell of midsurface S′ and constant half-
thickness ε > 0, and choose Sε = S′ × (−ε, ε) to be the reference configuration
of this elastic body. We assume S′ to be a regular two-dimensional orientable
submanifold of R3 with or without boundary. In the following, S′ is implicitly
endowed with the metric induced by the Euclidean metric in R3. Let ψε be the
deformation of the shell, that is, a map from Sε into R3. The differential Dψε(xε)
of ψε at xε is a linear map from Txε Sε into Tψε(xε)R3. Since Tψε(xε)R3 is canon-
ically isomorphic to R3, Dψε(xε) is identified with an element of the Whitney
sum T ∗Sε⊕ T ∗Sε⊕ T ∗Sε denoted by T ∗(Sε;R3). We denote by Jε(ψε) the elastic
energy of the shell under the deformation ψε. We assume that the elastic energy is
local and depends only on the first derivatives of the deformation. In other words,
there exists a map W ε from T ∗(Sε;R3) into R+ such that

Jε(ψε) :=
∫

Sε
W ε(Dψε) dxε,

where dxε = dx ′∧dxε3 and dx ′ is the two-dimensional Hausdorff measure restricted
to S′, whereas Dψε(xε) stands for the differential of ψε at xε ∈ Sε. Note that this
representation enables us to consider inhomogeneous shells. The shell is assumed
to be subjected to volumic dead-body loads fε ∈ L2(Sε)3, and we set

Lε(ψε) :=
∫

Sε
fε ·ψε dxε.

The total energy of the system is accordingly given by

Iε(ψε) := Jε(ψε)− Lε(ψε).

Finally, boundary conditions may also be added. We set 0ε = γ × (−ε, ε), where
γ ⊂ ∂S′ is the — possibly empty — part of the boundary where the shell is clamped,
and we denote by φε the imposed deformation on this set. Our aim is to determine
the behavior of the minimizers ϕε of Iε over

9ε
:= {ψε ∈W 1,∞(Sε)3 : ψε(xε)= φε(xε) for every xε ∈ 0ε}



106 OLIVIER PANTZ AND KARIM TRABELSI

as ε goes to zero. Note that the minimization problem of Iε over 9ε without any
growth and polyconvex or quasiconvex assumptions on the stored energy function
is generally not well posed. Here, we implicitly assume this problem to have a
regular solution. Various assumptions have to be made regarding the dependence
of the energy on the thickness for the needs of our analysis. These mainly concern
the stored energy W ε (see Section 2.1), but also the applied loads (see Section 2.2).

2.1. Dependence of the stored energy functions with respect to the thickness.
We set S = S1, and assume the stored energy W ε to be of the form

W ε(F)= ε−1(ε−2W2(F)+W0(F)) (1)

for every F ∈ T ∗(Sε;R3) and ε ≤ 1, where W0 and W2 are continuous nonnegative
maps from T ∗(S;R3) into R+. Note that we implicitly use the injection of

T ∗(Sε;R3)= T ∗(S′× (−ε, ε);R3)= T ∗(S′;R3)× T ∗((−ε, ε);R3)

into

T ∗(S;R3)= T ∗(S′× (−1, 1);R3)= T ∗(S′;R3)× T ∗((−1, 1);R3)

in the definition (1) of W ε. Standard analysis focuses on the case where only
one element of this expansion is not zero. For instance, if W2 = 0, we recover a
nonlinear membrane model [Le Dret and Raoult 1996], and if W0 = 0 we obtain
the isometric bending one [Friesecke et al. 2003].

Behavior of strongly extended fibers. We assume that the stored energy W2 is
bounded from below by a positive constant for strongly extended fibers, namely,
there exist δ, c > 0 such that

W2(F ′, F3)≥ c

for all F ′ ∈ T ∗(S′;R3), F3 ∈ T ∗((−1, 1);R3) such that |F3| ≥ δ. (2)

Note that for every element F of a vector bundle endowed with a Riemann metric,
the notation |F | should be understood as the norm of the vectorial part of F . In
particular, in (2), |F3| = |v| if F3 = (x3, v) ∈ (−1, 1)×R3

= T ∗((−1, 1);R3).

Regularity and zero set of W2. We assume that W2 is a nonnegative C2 function
and denote by M the restriction of its zero set to the midsection, that is,

M := {F ∈ T ∗(S′;R3)× T ∗0 ((−1, 1);R3) :W2(F)= 0}.

Let M′ be the projection of M onto T ∗(S′;R3), that is,

M′ := {F ′ ∈ T ∗(S′;R3) : there exists n0 ∈ T ∗0 ((−1, 1);R3) with (F ′, n0) ∈M}.
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We assume that the projection of M onto M′ is one-to-one. We denote by n0 :M
′
→

T ∗0 ((−1, 1);R3) the function that maps every element F ′ of M′ to the correspond-
ing element F3 of T ∗0 ((−1, 1);R3), so that

M= {(F ′, n0(F ′)) ∈ T ∗(S;R3) : F ′ ∈M′}. (3)

We recall that S = S′× (−1, 1) and that T ∗(S;R3) is identified with T ∗(S′;R3)×

T ∗((−1, 1);R3). The vectorial part of n0(F ′) ∈ T ∗0 ((−1, 1);R3)= {0}×R′3 will
be denoted n(F ′), so that n0(F ′)= (0, n(F ′)).

Local interpenetration. To avoid local interpenetration of matter, it is geometric
to expect Dψε to be invertible. To this end, we require that W0(F)=∞ for every
F ∈M such that det F < 0, and that

W0(F)→∞ if F ∈M and det(F)→ 0. (4)

2.2. Dependence of the applied loads on the thickness. The volumic loads are
assumed to scale as the inverse of the thickness of the shell; more precisely, we
assume that there exists f : S→ R3 such that, for every ε ≤ 1,

fε(x)= ε−1 f (x) for every x ∈ Sε. (5)

3. From 3D to 2D: a formal asymptotic analysis

3.1. Rescaling. We set ψ(ε)(x ′, x3)= ψ
ε(x ′, εx3), and define rescaled energies

J (ε)(ψ(ε)) := Jε(ψε) and I (ε)(ψ(ε)) := Iε(ψε).

The minimization problem of Iε over 9ε is then equivalent to the minimization
problem of I (ε) over

9(ε) := {ψ(ε) ∈W 1,∞(S)3 : ψ(ε)(x)= φ(ε)(x) for every x ∈ 0},

where φ(ε)(x)= φε(x ′, εx3).
For every map ψε : Sε→ R3, we denote by (D′ψε, D3ψ

ε) the decomposition
of the differential ψε along the sections of the cylinder Sε and along its fibers,
respectively. In other words, for every xε = (x ′, x3) ∈ Sε, D′ψε(xε) and D3ψ

ε(xε)
stand for the elements of T ∗x ′(S

′
;R3) and T ∗x3

((−1, 1);R3) such that Dψε(xε) =
(D′ψε(xε), D3ψ

ε(xε)).
For every deformation ψ(ε) of S, we define its partial derivative ∂3ψ(ε) with

respect to the normal direction as

∂3ψ(ε)(x ′, x3)= lim
t→0

ψ(ε)(x ′, x3+ t)−ψ(ε)(x ′, x3)

t
.
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Performing a simple change of variable, we get

J (ε)(ψ(ε))= ε−1
∫

Sε
(ε−2W2+W0)

(
D′ψε(xε), D3ψ

ε(xε)
)

dxε

= ε−1
∫

Sε
(ε−2W2+W0)

(
D′ψε(xε), (xε3, ∂3ψ

ε(xε))
)

dxε

=

∫
S
(ε−2W2+W0)

(
D′ψ(ε)(x), (εx3, ε

−1∂3ψ(ε)(x))
)

dx .

3.2. Ansatz. In order to perform our formal analysis, we assume that the minimiz-
ers ϕ(ε)(x ′, x3)= ϕ

ε(x ′, εx3) of the energy admit an asymptotic expansion

ϕ(ε)(x)=
∑
k≥0

εkϕk(x) for every x ∈ S, (6)

with (ϕk) ∈ `
1(W 1,∞(S)3). Obviously, the same assumption has to be made on

the applied Dirichlet boundary condition, and we let φ = (φk) ∈ `
1(W 1,∞(S)3) be

the terms of the asymptotic expansion of the deformation φ(ε)(x) = φε(x ′, εx3)

imposed on 0 := γ × (−1, 1), that is

φ(ε)(x)=
∑
k≥0

εkφk(x) for every x ∈ S. (7)

The condition ϕε ∈9ε reads as ϕk(x)= φk(x) for every x ∈ 0. Consequently, we
introduce the admissible set

9 := {ψ = (ψk) ∈ `
1(W 1,∞(S)3) : ψk = φk for every x ∈ 0},

and the rescaled energies J(ε) and I(ε) from 9 into R defined by

J(ε)(ψ) := J (ε)
(∑

k≥0

εkψk

)
and I(ε)(ψ) := I (ε)

(∑
k≥0

εkψk

)
. (8)

3.3. Limit of the total energy. The first step of our analysis consists in computing
the limit of J(ε)(ψ) as ε goes to zero for ψ ∈9. As we shall see in Proposition 1,
the limit of J(ε) contains two terms. Roughly speaking, one term measures the
elastic energy due to the change of the metric of the midsection of the shell. It
depends only on W0. The second term measures the elastic energy due to the
variations of the orientation of its fibers. It depends on the second derivative of the
stored energy function W2 through a quadratic form Q D′ψ0 .

In order to enhance the readability of the sequel, we introduce a practical nota-
tion. We recall that a section F of a vector bundle F is a map from its base into F

such that πB(F) is the identity, where πB stands for the projection of F onto its
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base B. Given such a section, we define the bundle map

F→ T F, G 7→ G F =
d
dt
(F(πB(G))+ tG)|t=0. (9)

Roughly speaking, G F is the element G of TF(πB(G))F. Similarly, for every (x, v)∈
RN
×RN , we will sometimes denote (x, v) ∈ Tx RN by vx . For a section F ′ of M′,

for every (G ′, s, v) ∈ T ∗(S′;R3)×R× (R′)3 we set

QF ′(G ′, s, v) := D2W2[G ′F ′, s0, vn(F ′)]
2, (10)

where (G ′F ′, s0, vn(F ′)) is the element of T(F ′, n0(F ′))(T
∗(S;R3)) defined in (9) based

on the decomposition of T ∗(S;R3)= T ∗(S′;R3)× (−1, 1)× (R′)3, while D2W2

stands for the Hessian of W2. Namely, we have

(G ′F ′, s0, vn(F ′))=
dγ
dt
(0), where γ (t)= (F ′πS′ (G ′)

+ tG ′, ts, n(F ′)+ tv). (11)

At first glance, the meaning of D2W2[γ̇ (0)]2 is unclear, considering that the Hes-
sian of a map defined on a manifold is not, in general, intrinsically defined. Nev-
ertheless, it is well known that this is consistent on the set of critical points, which
is precisely what is considered here. Indeed, γ (0) is equal to the value of the sec-
tion (F ′, n0(F ′)) at πS′(G). Yet F ′ is a section of M′, hence W2(F ′, n0(F)) = 0,
W2(γ (0)) = 0 and DW2(γ (0)) = 0. As a result, D2W2[γ̇ (0)]2 is well defined,
and, accordingly,

D2W2[γ̇ (0)]2 = 2 lim
t→0

t−2W2(γ (t)). (12)

Note that the right-hand side of (12) only depends on γ̇ (0), so that the particular
choice of the representative γ (t) of γ̇ (0) is irrelevant, as already mentioned.

We are now in a position to state the main result of this section.

Proposition 1. Let 8 be the subset of the admissible set 9 defined by

8 := {ψ ∈9 : ∂3ψ0 = 0, D′ψ0(x) ∈M′, and ∂3ψ1(x)= n(D′ψ0(x))

for every x ∈ S}. (13)

Let ψ ∈9. Then

lim
ε→0

I(ε)(ψ)=
{

I0
(
ψ0,

1
2

∫ 1
−1 ψ1 dx3, ∂3ψ2

)
if ψ ∈8,

+∞ if ψ /∈8,

where

I0(ψ0, u, v) := J0(ψ0, u, v)− 2
∫

S′
f0 ·ψ0 dx,

J0(ψ0, u, v) := 1
2

∫
S

Q D′ψ0(D
′u+ x3 D′n, x3, v) dx + 2

∫
S′

W0(D′ψ0, n0) dx ′,
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where n and n0 stand for n(D′ψ0) and n0(D′ψ0), Q D′ψ0 is defined by (10), and
f0(x ′)= f (x ′, 0).

Proof. We proceed in two steps. First, we prove that every sequence of deforma-
tions ψ ∈9 of finite elastic energy, that is, those that satisfy

lim inf
ε→0

J(ε)(ψ) <+∞,

belongs to 8. In particular, this implies that J(ε)(ψ) converges to infinity as ε
goes to zero, for every ψ that is not in 8. In a second step, we compute the limit
of J(ε)(ψ) for every ψ in 8.

Let ψ ∈9 be the asymptotic expansion of a deformation of finite elastic energy.
From Fatou’s lemma, we deduce∫

S
lim inf
ε→0

(ε−2W2)

(∑
k≥0

εk(D′ψk, (εx3, ε
−1∂3ψk))

)
dx

≤ lim inf
ε→0

∫
S
(ε−2W2+W0)

(∑
k≥0

εk(D′ψk, (εx3, ε
−1∂3ψk))

)
dx

= lim inf
ε→0

J(ε)(ψ) <∞.

Hence, we have

lim inf
ε→0

W2

(∑
k≥0

εk(D′ψk, (εx3, ε
−1∂3ψk))

)
= 0 a.e.

From the assumption (2) made on the behavior of strongly extended fibers, it
follows that, for almost every x ∈ S,

∑
k≥0 ε

k−1∂3ψk remains bounded (up to a
subsequence), that is, ∂3ψ0 = 0. Now, since∑

k≥0

εk(D′ψk, (εx3, ε
−1∂3ψk))

L∞
−−→
ε→0

(D′ψ0, (0, ∂3ψ1)), (14)

and W2 is assumed to be continuous, we have W2(D′ψ0, (0, ∂3ψ1)) = 0 almost
everywhere. From the hypothesis (3), we get D′ψ0 ∈M′ and ∂3ψ1 = n(D′ψ0). As
a conclusion, every sequence of deformations of finite elastic energy belongs to 8,
as announced.

For the next step, let us consider an element ψ ∈8 and its associated energy

lim
ε→0

J(ε)(ψ)= lim
ε→0

ε−2
∫

S
W2

(∑
k≥0

εk(D′ψk, (εx3, ε
−1∂3ψk))

)
dx

+

∫
S

W0(D′ψ0, (0, ∂3ψ1)) dx .



NONLINEAR SHELL MODELS COMBINING SHEAR AND FLEXURE 111

Since W2 is a C2 function and W2(D′ψ0, (0, ∂3ψ1)) = 0, using (12) with γ (t) =
(D′ψ0+ t D′ψ1, t x3, ∂3ψ1+ t∂3ψ2), Lebesgue’s theorem implies

lim
ε→0

ε−2
∫

S
W2

(∑
k≥0

εk(D′ψk, (εx3, ε
−1∂3ψk)

))
dx

=
1
2

∫
S

D2W2
[
(D′ψ1 D′ψ0(x), x30, ∂3ψ2∂3ψ1

)
]2 dx

=
1
2

∫
S

D2W2
[
(D′ψ1 D′ψ0(x), x30, ∂3ψ2n(D′ψ0)

)
]2 dx

=
1
2

∫
S

Q D′ψ0(D
′ψ1, x3, ∂3ψ2) dx .

The limit of the elastic energy J(ε) falls out from the fact that ψ1 may be written as

ψ1 =
1
2

∫ 1

−1
ψ1 dx3+ x3n(D′ψ0).

Finally, according to the definition (5) of f , we have

I(ε)(ψ)= J(ε)(ψ)−
∫

S
f (x ′, εx3) ·

(∑
k≥0

εkψk

)
dx .

The second term on the right-hand side converges to 2
∫

S′ f ·ψ0 dx as ε→ 0. �

Since the limit energy is finite only for elements ψ in 8, φ has to be equal
to an element of 8 on the subset 0 of the boundary where clamping conditions
are imposed.

Corollary 2. If the minimizers ϕ(ε) of the total rescaled energy I (ε) over 9(ε)
admit an asymptotic expansion as in (6), and if their total energy I (ε)(ϕ(ε)) re-
mains bounded, then φ0(x ′, x3) depends only on x ′ ∈ 0. In addition, there exist
uγ , nγ ∈W 1,∞(γ )3 such that

φ1(x ′, x3)= uγ (x ′)+ x3nγ (x ′) for x ∈ 0.

Note: since φ0 depends only on x ′, we shall write φ0(x ′) instead of φ0(x ′, x3)

henceforth.

3.4. Convergence of the minimizers.

Lemma 3. If the minimizers ϕ(ε) of the total rescaled energy I (ε) over9(ε) admit
an asymptotic expansion as in (6), and if their total energy I (ε)(ϕ(ε)) remains
bounded, then

I0

(
ϕ0,

1
2

∫ 1

−1
ϕ1 dx3, ∂3ϕ2

)
≤ inf
(ψ0,u,v)∈80

I0(ψ0, u, v),
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where 80 is the set of all

(ψ0, u, v) ∈W 1,∞(S′)3×W 1,∞(S′)3×W 1,∞(S′; L∞(−1, 1)3)

such that D′ψ0 ∈M′ a.e., n(D′ψ0) ∈W 1,∞(S′)3, ψ0(x ′)= φ0(x ′), u(x ′)= uγ (x ′),
n(D′ψ0(x ′))= nγ (x ′) for every x ′ ∈ γ , and v(x)= ∂3φ2(x) for x ∈ 0.

Proof. Let (ϕk) be the asymptotic expansion of a minimizer ϕ(ε) of the total
energy I (ε). For every (ψ0, u, v) ∈80, we set

ψ1 = u+ x3n(D′ψ0),

ψ2(x)= φ2(x ′, 0)+
∫ x3

0
v(x ′, s) ds,

ψk = φk for all k ≥ 3.

Using the Leibniz integral rule, we get that D′ψ2 = D′φ2+
∫ x3

0 D′v(x ′, s) ds and
∂3ψ2 = v. It follows that ψ2 belongs to W 1,∞(S)3. As u and n(D′ψ0) are assumed
to be Lipschitzian, so is ψ1, and ψ ∈ `1(W 1,∞(S)3). From Corollary 2, φ0 depends
only on x ′ and φ1(x ′, x3)= uγ (x ′)+ x3nγ (x ′) on 0. As (ψ0, u, v) ∈80, we infer
that ψ0 = φ0 and ψ1 = φ1 on 0. Similarly, ψ2 = φ2 on 0. Thus, ψ belongs to 8
and I(ε)(ϕ)≤ I(ε)(ψ). Letting ε goes to zero, we get from Proposition 1 that

I0

(
ϕ0,

1
2

∫ 1

−1
ϕ1 dx3, ∂3ϕ2

)
≤ I0(ψ0, u, v). (15)

This completes the proof. �

Lemma 4. If the minimizers ϕ(ε) of the total rescaled energy I (ε) over9(ε) admit
an asymptotic expansion as in (6), and if their total energy I (ε)(ϕ(ε)) remains
bounded, then (

ϕ0,
1
2

∫ 1

−1
ϕ1 dx3

)
= arg min

(ψ0,u)∈81
I1(ψ0, u),

where81 is the set of all (ψ0, u) in W 1,∞(S′)3×W 1,∞(S′)3 such that D′ψ0∈M′ a.e.,
n(D′ψ0)∈W 1,∞(S′)3, ψ0(x ′)=φ0(x ′), u(x ′)= uγ (x ′), and n(D′ψ0(x ′))= nγ (x ′)
for x ′ ∈ γ , I1 is given by

I1(ψ0, u) :=
∫

S′
Q0

D′ψ0
(D′u, 0) dx ′+ 1

3

∫
S′

Q0
D′ψ0

(D′n, 1) dx ′

+ 2
∫

S′
W0(D′ψ0, n0(D′ψ0)) dx ′− 2

∫
S′

f0 ·ψ0 dx ′,

f0(x ′)= f (x ′, 0) for every x ′ ∈ S′, and

Q0
F ′(G

′, x3)= inf
v∈R3

QF ′(G ′, x3, v). (16)
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Proof. From Lemma 3, we have

I0

(
ϕ0,

1
2

∫ 1

−1
ϕ1 dx3, ∂3ϕ2

)
≤ inf
(ψ0,u,v)∈80

I0(ψ0, u, v).

Moreover, from Proposition 1, we have ϕ ∈8, which implies that(
ϕ0,

1
2

∫ 1

−1
ϕ1 dx3

)
∈81.

Since 80 =81× V with

V := {v ∈W 1,∞(S′; L∞(−1, 1)3) : v(x)= ∂3φ2(x) for x ∈ 0},

it follows that

I1

(
ϕ0,

1
2

∫ 1

−1
ϕ1 dx3

)
= inf
(ψ0,u)∈81

inf
v∈V

I0(ψ0, u, v).

To complete the proof, we need to show that, for every (ψ0, u) ∈81, we have

inf
v∈V

I0(ψ0, u, v)= I1(ψ0, u). (17)

We recall that for every (ψ0, u) ∈81 and every v ∈ V , we have

I0(ψ0, u, v)= 1
2

∫
S

Q D′ψ0(D
′u+ x3 D′n, x3, v) dx

+ 2
∫

S′
W0(D′ψ0, n0(D′ψ0)) dx ′− 2

∫
S′

f0 ·ψ0 dx ′.

Next, the definition of Q0
D′ψ0

entails that

I0(ψ0, u, v)≥ 1
2

∫
S

Q0
D′ψ0

((D′u, 0)+ x3(D′n, 1)) dx

+ 2
∫

S′
W0(D′ψ0, n0(D′ψ0)) dx ′− 2

∫
S′

f0 ·ψ0 dx ′.

Furthermore, for every x ′ ∈ S′ and every F ∈ T ∗(x ′,0)(S;R
3), the quadratic form Q0

F ′

derives from a bilinear form. Hence,∫ 1

−1
Q0

D′ψ0

(
(D′u, 0)+ x3(D′n, 1)

)
dx3

=

∫ 1

−1

(
Q0

D′ψ0
(D′u, 0)+ x2

3 Q0
D′ψ0

(D′n, 1)
)

dx3

= 2Q0
D′ψ0

(D′u, 0)+ 2
3 Q0

D′ψ0
(D′n, 1).
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Accordingly, we obtain that I0(ψ0, u, v)≥ I1(ψ0, u), so that infv∈V I0(ψ0, u, v)≥
I1(ψ0, u). It remains to prove the reverse inequality to establish (17). For every
δ ≥ 0, we have

I0(ψ0, u, v)≤ I0(ψ0, u, v)+
∫

S
δ|v|2 dx .

As a consequence,

inf
v∈V

I0(ψ0, u, v)≤ inf
v∈V

(
I0(ψ0, u, v)+

∫
S
δ|v|2 dx

)
.

From the assumptions made on W2, it follows that the quadratic form Q D′ψ0 is
positive semidefinite almost everywhere. As a consequence, the map

v 7→ Q D′ψ0(D
′u+ x3 D′n, x3, v)+ δ|v|

2

admits a unique minimizer for almost every x ∈ S. Let vδ : S→ R3 be the map
such that vδ = arg minv Q D′ψ0(D

′u+ x3 D′n, x3, v)+ δ|v|
2.

Since W2 is assumed to be of class C2 and D′ψ0 is bounded, the norm of the
quadratic form Q D′ψ0 is uniformly bounded. As a result, vδ is measurable and
belongs to L∞(S)3. Also, there exists a sequence vk

δ in V converging to vδ in
L2(S)3 as k goes to infinity, due to the density of V in L2(S)3. For every k, we have

inf
v∈V

I0(ψ0, u, v)≤ 1
2

∫
S

(
Q D′ψ0(D

′u+ x3 D′n, x3, v
k
δ )+ δ|v

k
δ |

2) dx

+ 2
∫

S′
W0(D′ψ0, n0(D′ψ0)) dx ′− 2

∫
S′

f0 ·ψ0 dx ′.

Taking the limit with respect to k, we infer that

inf
v∈V

I0(ψ0, u, v)≤ 1
2

∫
S

(
Q D′ψ0(D

′u+ x3 D′n, x3, vδ)+ δ|vδ|
2) dx

+ 2
∫

S′
W0(D′ψ0, n0(D′ψ0)) dx ′− 2

∫
S′

f0 ·ψ0 dx ′.

Note that Q D′ψ0(D
′u+ x3 D′n, x3, vδ)+ δ|vδ|

2 is a decreasing sequence (as δ goes
to zero) of nonnegative functions. Therefore, its integral over S converges to its
pointwise limit Q0

D′ψ0
(D′u+ x3 D′n, x3), and the intended inequality follows:

inf
v∈V

I0(ψ0, u, v)≤ 1
2

∫
S

Q0
D′ψ0

(D′u+ x3 D′n, x3) dx

+ 2
∫

S′
W0(D′ψ0, n) dx ′− 2

∫
S′

f0 ·ψ0 dx ′ = I1(ψ0, u). �
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3.5. Boundary conditions. An interesting feature of the limit energy is that it de-
pends on both ψ0 and u = 1

2

∫
ψ1 dx3. For general boundary conditions, it im-

plies a coupling between both quantities through the term
∫

S′ Q0
D′ψ0

(D′u, 0) dx ′

of I1(ψ0, u). Hence, small perturbations scaling as the thickness of the shell may
have an influence on the deformation ψ0 of the midsection. In the literature, the
boundary conditions are usually chosen to satisfy uγ = 0, that is,

φ0(x)= φ0(x ′) and φ1(x)= x3nγ (x ′) for every (x ′, x3) ∈ 0
ε, (18)

where nγ is a unit vector. In this case, the minimization of I1(ψ0, u) with respect
to u is trivial and the limit energy can be expressed solely in terms of ψ0.

Proposition 5. If the minimizers ϕ(ε) of the total rescaled energy I (ε) over 9(ε)
admit an asymptotic expansion as in (6), and if their total energy I (ε)(ϕ(ε)) re-
mains bounded with uγ = 0 on γ , then

ϕ0 = arg min
ψ0∈90

I0(ψ0),

where

I0(ψ0) :=
1
3

∫
S′

Q0
D′ψ0

(D′n, 1) dx ′

+ 2
∫

S′
W0(D′ψ0, n0(D′ψ0)) dx ′− 2

∫
S′

f0 ·ψ0 dx ′, (19)

f0(x ′)= f (x ′, 0) for every x ′ ∈ S′, and

90 := {ψ0 ∈W 1,∞(S′)3 : n = n(D′ψ0) ∈W 1,∞(S′)3, D′ψ0 ∈M′,

ψ0(x ′)= φ0(x ′), and n = nγ (x ′) for every x ′ ∈ γ }.

4. Invariance and flexural energy

Under several assumptions on the stored energy function W2, the expression of the
flexural part

Iflex(ψ0) :=
1
3

∫
S′

Q0
D′ψ0

(D′n, 1) dx (20)

of the total limit energy I0(ψ0) may be reduced. More precisely, we shall consider
the implications of homogeneity along the fibers, frame-indifference (left invari-
ance under SO(3)), planar isotropy (right invariance under in-plane rotations), and
finally right invariance of the stored energy under the special linear group of TS′.

4.1. Homogeneity along the fibers. We say that the shell is homogeneous along
the fibers if, for every

(F ′, x3, v) ∈ T ∗(S;R3)= T ∗(S′;R3)× (−1, 1)× (R′)3,
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we have W2(F ′, x3, v)=W2(F ′, 0, v). In this case, for every

(G ′, s, v) ∈ T ∗(S′;R3)×R× (R′)3

and every section F ′ of M′, we have D2W2[G ′F ′,s0,vn(F ′)]
2
=D2W2[G ′F ′,0,vn(F ′)]

2.
It follows that Q0

F ′(G
′, s) is independent of s, and hence we denote it by Q0

F ′(G
′),

so that

Iflex(ψ0)=
1
3

∫
S′

Q0
D′ψ0

(D′n) dx .

4.2. Frame-indifference. The principle of frame-indifference states that the space
is invariant under rotation, which translates in our case to the following condition
on the stored energy function W ε:

W ε(F)=W ε(RF) for every rotation R ∈ SO(3).

This is assumed in the sequel. Accordingly, W2 satisfies the same property, i.e.,
W2(F)=W2(RF) for every R ∈ SO(3).

In the following, we denote by ES′ the set of symmetric bilinear forms on TS′,
that is, the fiber bundle with base space S′ whose fiber (ES′)x ′ at x ′ ∈ S′ is the set of
symmetric bilinear forms on Tx ′S′. The fiber bundle ES is defined in a similar way,
and E′S stands for its restriction to S′. Moreover, if F ∈ T ∗x (S;R

3), FT F stands
for the element of (ES′)x that maps every element (u, v) of (Tx S)2 to the scalar
product between Fu and Fv. A similar notation is used to define (F ′)T F ′ ∈ ES′

for every F ′ ∈ T ∗(S′;R3).

Lemma 6. If the stored energy W2 is frame-indifferent, then for every F ′ ∈M′ of
maximum rank and every R ∈ SO(3), we have

RF ′ ∈M′ and n(RF ′)= Rn(F ′).

Moreover, there exists a bundle map τ ′ :M′→ TS′ and a map τ3 :M
′
→ R such

that, for every F ′ ∈M′ of maximal rank,

n(F ′)= F ′τ ′(F ′)+ nF ′τ3(F ′),

where both τ ′(F ′) and τ3(F ′) depend only on C ′ = (F ′)T F ′, and nF ′ ∈ R3 is
defined by

nF ′ ·w = det(F ′, w) for every w ∈ R3. (21)

Lastly, C = (F ′, n0(F ′))T (F ′, n0(F ′)) depends only on C ′.

Proof. The first part of the proposition is obvious. Next, since F ′ is of maximum
rank, (F ′, nF ′) is invertible, so we can set (τ ′(F ′), τ3(F ′)) = (F ′, nF ′)

−1n(F ′).
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Moreover, we can check that

(τ ′(RF ′), τ3(RF ′))= (RF ′, nRF ′)
−1n(RF)

= (RF ′, R(nF ′))
−1 Rn(F)= (R(F ′, nF ′))

−1 Rn(F)

= (F ′, nF ′)
−1n(F ′)= (τ ′(F ′), τ3(F ′)),

whence both τ ′ and τ3 only depend on (F ′)T F ′. Finally, it is readily verified that
both n(F ′)T n(F ′) and n(F ′)T F ′ are invariant under rotations of F ′. As a result,
C = (F ′, n0(F ′))T (F ′, n0(F ′)) depends only on (F ′)T F ′ as well. �

Since T(x ′,x3)S= Tx ′S′×Tx3(−1, 1)= Tx ′S′×R, every element C ∈ (ES)x can be
decomposed uniquely into (C ′,C3,C33) ∈ (ES′)x ′ × T ∗x ′S

′
×R such that, for every

(u′, u3) and every (v′, v3) in Tx ′S′×R= Tx S,

C((u′, u3), (v
′, v3))= C ′(u′, v′)+ u3C3(v

′)+ v3C3(u′)+C33u3v3.

In addition, we write this decomposition as

C =
(

C ′ CT
3

C3 C33

)
.

Let us introduce the fiber bundle P with base space S′ whose fiber at x ′ ∈ S′ is
the set of polynomials of degree less than or equal to two on (ES′)x ′ .

Proposition 7. If the stored energy function W2 is frame-indifferent, then there
exists a bundle map P : C ′ 7→ PC ′ over S′ from ES′ into P such that, for every
deformation ψ0 of finite limit energy I0(ψ0) and every G ′ ∈ T ∗(S′;R3), we have

Q0
D′ψ0

(G ′, 1)= PC ′(D′ψ0
T G ′+G ′T D′ψ0),

where C ′ = D′ψ0
T D′ψ0 for short. Moreover, if W2 is homogeneous along the

fibers, then PC ′ is homogeneous of degree two.

Proof. Let M+ = {F ∈M : det F > 0}. Since W2 is assumed to be frame-indifferent,
there exists a map WS : ES→ R such that, for every F in a neighborhood of M+,

W2(F)=WS ◦m(F), (22)

where m : T ∗(S;R3)→ ES is the bundle map defined by m(G)= GT G. Let F ′ be
a section of M′, s ∈ R and G ′ ∈ T ∗(S′;R3) such that (F ′, n0(F ′)) ∈M+ a.e. Then
definition (10) combined with (22) gives

Q0
F ′(G

′, s)= inf
v∈R3

D2W2[G ′F ′, s0, vn(F ′)]
2
= inf
v∈R3

D2WS[Dm(G ′F ′, s0, vn(F ′))]
2.
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Since ES = (−1, 1)× E′S , we can identify TES with T(−1, 1)× TE′S . Doing so,
we obtain that

Dm(G ′F ′, s0, vn(F ′))=
d
dt
(ts,C + t E)(t = 0)= (s0, EC),

where

E =
(
(F ′)T G ′+ (G ′)T F ′ (F ′)T v+ (G ′)T n
vT F ′+ nT G ′ nT v+ vT n

)
,

n(F ′) is denoted by n for short, and C = m(F). Since (F ′, n(F ′))(x ′) is assumed
to be invertible for every x ′ ∈ S′, setting w′ = F ′T v+G ′T n and w3 = nT v+ vT n,
we get

Q0
F ′(G

′, 1)= PC ′((F ′)T G ′+ (G ′)T F ′), (23)

where PC ′ is the section of P defined by

PC ′(M)= inf
w∈R3

D2WS

[
10,

(
M w′

(w′)T w3

)
C

]2

(24)

for every M ∈ ES′ , and C = (F ′, n0(F ′))T (F ′, n0(F ′)), which depends only on C ′,
according to Lemma 6. Finally, if ψ0 is a deformation satisfying I0(ψ0) < ∞,
owing to the noninterpenetration assumptions made, we know that Dψ0 ∈M+ a.e.
As a result, Q0

D′ψ0
(D′n, 1)= PC ′(M) a.e. on S′, with M = FT D′n+ D′nT F ′, as

claimed. Moreover, if the shell is homogeneous along its fibers, (24) reduces to

PC ′(M)= inf
w∈R3

D2WS

[
0,
(

M w′

(w′)T w3

)
C

]2

, (25)

which is homogeneous of degree two with respect to M . �

Remark. Note that D′ψ0
T D′n+ D′nT D′ψ0 is not, in general, the second funda-

mental form of the deformation, except in the case where n(D′ψ0) is the normal
vector to D′ψ0.

4.3. Planar isotropy. We say that the material is isotropic along the midsection
of the shell if, for every planar rotation R in the set SO(Tx ′S′) of rotations of Tx ′S′

and every F = (F ′, F3) ∈ T ∗x ′(S
ε
;R3), we have

W ε(F ′, F3)=W ε(F ′R, F3). (26)

As a consequence, for deformations of finite energy, the fibers of the shell remain
normal to its section.

Lemma 8. Assume that the shell is isotropic along its midsection. Then there exists
a map τ3 :M

′
→ R such that

n(F ′)= nF ′τ3(F ′)
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for every F ′ ∈M′ of maximal rank, where nF ′ is defined by (21). Moreover, τ3(F ′)
depends only on the metric C ′ = F ′T F ′.

Proof. Let F ′ be an element of M′ of maximal rank. By definition, we have

n0(F ′)= arg min
F3∈T ∗0 ((−1,1);R3)

W2(F ′, F3).

For every rotation R ∈ SO(TS′), the isotropy property yields

n0(F ′R)= arg min
F3∈T ∗0 ((−1,1);R3)

W2(F ′R, F3)

= arg min
F3∈T ∗0 ((−1,1);R3)

W2(F ′, F3)= n0(F ′).

In particular, this entails that n(−F ′)= n(F ′). What is more, by frame-indifference,
we have from Lemma 6 that

n(F ′)= F ′τ ′(F ′)+ nF ′τ3(F ′),

where τ ′ is a bundle map from M′ into TS′ and τ3 is a map from M′ into R, both
of them depending only on the metric C ′ = F ′T F ′. Thus,

F ′τ ′(F ′)+ nF ′τ3(F ′)= n(F ′)= n(−F ′)=−F ′τ ′(−F ′)+ n−F ′τ3(−F ′)

=−F ′τ ′(F ′)+ nF ′τ3(F ′).

Consequently, F ′τ ′(F ′)= 0 and n(F ′)= nF ′τ3(F ′), as claimed. �

Proposition 9. Assume that the shell is isotropic along its midsection. Then the
flexural energy Iflex(ψ0) depends only on the metric and the second fundamental
form of the deformed surface. Namely, we have

Iflex(ψ0)=
1
3

∫
S′

PC ′(|n(D′ψ0)|bD′ψ0) dx ′,

where bD′ψ0 is the second fundamental form of ψ0, i.e.,

bF ′ = D′N T F ′+ F ′T D′N , (27)

where N = nF ′/|nF ′ |, and PC ′ is defined by Proposition 7.

Proof. Since n(D′ψ0) (denoted n for short) is normal collinear to nD′ψ0 and thus
to the normal N to the deformed surface, we get

D′nT D′ψ0+ D′ψ0
T D′n = (n · N )(D′N T D′ψ0+ D′ψ0

T D′N ). �
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4.4. Right invariance under the special linear group. We denote by SL(TS′) the
special linear group over TS′, that is the fiber bundle over S′ whose fiber at x ′ is
the linear diffeomorphisms of Tx ′S′ with determinant equal to one. In this section,
we consider the case where the energy W2 is right invariant under the special linear
group, that is, W2(F ′, F3) = W2(F ′U, F3) for every x ′ ∈ S′, U ∈ SL(Tx ′S′) and
(F ′, F3) ∈ T ∗x ′(S

′
;R3)× T ∗((−1, 1);R3).

Proposition 10. Assume that W2 is right invariant under SL(TS′). Then the flexu-
ral energy Iflex(ψ0) depends only on the metric and on the mean curvature

H = Tr(C ′−1/2bD′ψC ′−1/2
)

of the deformation. More precisely, we have

Iflex(ψ0)=
1
3

∫
S′

Kx ′,det(C ′)(H) dx ′, (28)

where K : S′×R→52; here 52 is the set of polynomials of degree at most two.
Moreover, if the shell is homogeneous along its fibers, then

Iflex(ψ0)=
1
3

∫
S′
κx ′,det(C ′)|H |2 dx ′, (29)

where κ is a map from S′×R+ into R+.

Proof. Let O be the fiber bundle over S′ whose fibers are the maps from Tx ′S′ into
itself of zero trace. For every O ∈ O and x ′ = πS′(O), there exists a regular map
U : (0, 1)→ SL(Tx ′S′) such that U̇ (0)= O and U (0)= Id. Let F be a section of
M, (G ′, s, v) ∈ T ∗x ′(S

′
;R3)×R× (R′)3, and let γ (t)= (γ ′(t), γ3(t)) be a curve in

T ∗(S;R3) such that γ̇ (0)= (G ′F ′, s0, vn(F ′)), as in (11). From the right invariance
under the special linear group, for every U0 ∈ SL(Tx ′S′), we have

W2(γ (t))=W2(γ
′(t)U0U (t), γ3(t)).

As a consequence,

D2W2[γ̇ (0)]2 = D2W2

[
d
dt
(γ ′U0U, γ3)|t=0

]2

. (30)

Then a simple computation yields

d
dt
(γ ′U0U, γ3)|t=0 = ((G ′U0+ F ′U0O)F ′U0, s0, vn(F ′)),
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which, owing to (30) and (10), leads to Q0
F ′(G

′, s) = Q0
F ′U0

(G ′U0 + F ′U0O, s).
From (23), recalling that C ′ = F ′T F ′, we get

PC ′(F ′T G ′+G ′T F ′)= Q0
F ′(G

′, 1)= Q0
F ′U0

(G ′U0+ F ′U0O, 1)

= PU T
0 F ′T F ′U0

((F ′U0)
T (G ′U0+ F ′U0O)+ (G ′U0+ F ′U0O)T (F ′U0))

= PU T
0 C ′U0

(U T
0 (F

′T G ′+G ′T F ′)U0+U T
0 C ′U0O + OT U T

0 C ′U0)

= PC ′0

(
(C ′0)

1/2
[C ′−1/2

0 U T
0 (F

′T G ′+G ′T F ′)U0C ′−1/2
0

+C ′1/20 OC ′−1/2
0 +C ′−1/2

0 OT C ′1/20 ]C
′1/2
0

)
,

where C ′ = F ′T F ′ and C ′0 =U T
0 C ′U0. Since the map

O 7→ C ′1/20 OC ′−1/2
0 +C ′−1/2

0 OT C ′1/20

is a diffeomorphism over the set of symmetric trace-free matrices, the above ex-
pression leads to

PC ′(F ′T G ′+G ′T F ′)= PC ′0

( 1
2 Tr

(
C ′−1/2

0 U T
0 (F

′T G ′+G ′T F ′)U0C ′−1/2
0

)
C ′0
)
.

In addition,

Tr
(
C ′−1/2

0 U T
0 (F

′T G ′+G ′T F ′)U0C ′−1/2
0

)
= Tr

(
C ′−1/2(F ′T G ′+G ′T F ′)C ′−1/2),

so that we may write

PC ′(F ′T G ′+G ′T F ′)= PC ′0

(1
2 Tr

(
C ′−1/2(F ′T G ′+G ′T F ′)C ′−1/2)C ′0).

Since C ′ is symmetric and nonnegative, there exists a rotation R ∈ SO(Tx ′S′) and
nonnegative reals λ1, λ2 such that

C ′ = RT
(
λ1 0
0 λ2

)
R.

Let us choose U0 ∈ SL(Tx ′S′) such that

U0 = (det C ′)1/4 RT
(
λ−1/2

1 0
0 λ−1/2

2

)
.

Hence, C ′0 =U T
0 C ′U0 = (det C ′)1/2 Id, so that

PC ′(F ′T G ′+G ′T F ′)=

P(det C ′)1/2 Id
( 1

2 Tr
(
C ′−1/2(F ′T G ′+G ′T F ′)C ′−1/2)(det C ′)1/2 Id

)
. (31)
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Using the definition of Iflex and D′ψ0
T D′n + D′nT D′ψ0 = |n(D′ψ0)|bD′ψ0 , we

infer that

Iflex(ψ0)=
1
2

∫
S′

P(det C ′)1/2 Id
( 1

2 |n(D
′ψ0)|Tr(C ′−1/2bD′ψC−1/2)(det C ′)1/2 Id

)
dx ′

=
1
2

∫
S′

P(det C ′)1/2 Id
( 1

2 |n(D
′ψ0)|H(det C ′)1/2Id

)
dx ′.

Finally, the right invariance of W2 with respect to SL(TS′) implies that |n(F ′)|
depends only on det C ′. Setting

Kx ′,det C ′(H)= P(det C ′)1/2 Id
( 1

2 |n(F
′)|H(det C ′)1/2 Id

)
,

we get (28). Moreover, if the shell is homogeneous along its fibers, then P(det C ′)1/2 Id
is homogeneous of degree two and, accordingly, Kx ′,det C ′(H) is a monomial. �

5. Geometric configuration

Classically, the energy of an elastic body is not written in terms of the deforma-
tion ψε of Sε, but in terms of the deformation ψ̃ε of the geometric configuration
S̃ε := gε(Sε), where

gε : S′× (−ε, ε)→ R3

(x ′, x3) 7→ x ′+ x3n′(x ′),

n′ : S′→R3 being the normal to S′. We set S̃ := S̃ε0 , for a small enough ε0 such that
gε0 is one-to-one. In the following, we will always assume that ε≤ ε0. We intend to
recast our results in this geometric configuration. This is easily achieved by a mere
change of variables. To begin with, we have to recast our initial three-dimensional
problem in the geometric configuration.

5.1. Recast of the problem. We denote by J̃ε(ψ̃ε) the elastic energy of a deforma-
tion ψ̃ε of S̃ε, and assume that it has the form

J̃ε(ψ̃ε) :=
∫

S̃ε
W̃ ε(x̃,∇ψ̃ε(x̃)) dx̃,

where W̃ ε stands for the stored energy function of the solid. Furthermore, we
assume the shell to be subjected to dead-body loads f̃ε, so that the total energy of
the system is given by

Ĩε(ψ̃ε) := J̃ε(ψ̃ε)−
∫

S̃ε
f̃ε · ψ̃ε dx̃ . (32)

Finally, clamping boundary conditions are added on a part of the boundary: gε(0ε)=
gε(γ × (−ε, ε)), where γ ⊂ ∂S′.
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Our aim is to determine the behavior of the minimizers ϕ̃ε of Ĩε over

9̃ε
:= {ψ̃ε ∈W 1,∞(S̃ε)3 : ψ̃ε ◦ gε(xε)= φε(xε), xε ∈ 0ε}

as ε goes to zero, under the assumptions on the stored energy and the applied loads
made hereunder.

In order to apply our results, several assumptions, similar to the ones we made
on W ε and ϕε, have to be imposed on W̃ ε and on the minimization sequences ϕ̃ε.

Dependence of the stored energy on the thickness. We assume that there exist con-
tinuous nonnegative maps W̃2 and W̃0 such that, for every (x̃, F) ∈ S̃ × R3×3,
we have

W̃ ε(x̃, F)= ε−1(ε−2W̃2(x̃, F)+ W̃0(x̃, F)
)
.

Behavior of strongly extended fibers. We assume that the stored energy W̃2 is
bounded from below by a positive constant for strongly extended fibers, that is,
there exist δ, c > 0 such that

W̃2
(
x̃, F ′ ◦π ′x ′ + F3⊗ n′(x ′)

)
≥ c

for all x̃ ∈ S̃, F ′ ∈ T ∗x ′(S
′
;R3), F3 ∈ R3 such that |F3| ≥ δ, (33)

where x ′ is the projection of x̃ onto S′ and π ′x ′ is the projection of R3 onto Tx ′(S′;R3).

Regularity and zero set of W̃2. We assume that W̃2 is a nonnegative C2 function,
and denote by M̃ the restriction of its zero set to S′×R3×3, that is,

M̃ := {(x ′, F) ∈ S′×R3×3
: W̃2(x ′, F)= 0}.

Let M′ be the projection of M̃ onto T ∗(S′;R3), that is,

M′ :=
⋃

x ′∈S′
{F ′∈T ∗x ′(S

′
;R3) : there exists n∈R3 with (x ′, F ′◦π ′x ′+n⊗n′(x ′))∈ M̃}.

Once again, we assume that the projection of M̃ onto M′ is one-to-one, that is, there
exists a map n :M′→ R3 such that

M̃= {(x ′, F ′ ◦π ′x ′ + n(F ′)⊗ n′(x ′)) ∈ S′×R3×3
: F ′ ∈M′}. (34)

Interpenetration. To avoid interpenetration of matter, it is geometric to expect
Dψ̃ε to be invertible. To this end, we require that W̃0(x ′, F) = ∞ for every
(x ′, F) ∈ M̃ such that det F < 0, and that

W̃0(x ′, F)→∞ if (x ′, F) ∈ M̃ and det F→ 0.

Applied loads. The volumic loads are assumed to scale as the inverse of the thick-
ness of the shell; more precisely, we assume that there exists f̃ : S̃→ R3 such that

f̃ε(x̃)= ε−1 f̃ (x̃) for every x̃ ∈ S̃.
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Ansatz. We assume that the minimizers of the energy admit an asymptotic expan-
sion in the form

ϕ̃ε(x ′+ εx3n′)=
∑
k≥0

εkϕk(x ′, x3). (35)

5.2. Change of variable. In order to apply our result, we first have to rewrite the
energy in terms of the associated deformation ψε = ψ̃ε ◦ gε of Sε. We have

J̃ (ψ̃ε)= J (ψε)=
∫

Sε
W ε(Dψε) dx, (36)

with W ε
= ε−1(ε−2W2+W0), and for every F ∈ T ∗x (S;R

3),

Wk(F)= W̃k(F ◦ (Dgε(x))−1) det(Dgε(x)), k = 0, 2. (37)

Note that W2 and W0 are independent of ε since Dgε = (Id′, n′) + x3(D′n′, 0)
(which is denoted by Dg hereafter). In addition, these energies satisfy the as-
sumptions made in Section 2.1. Finally, the minimizers ϕε = ϕ̃ε ◦ gε admit the
same asymptotic expansion as ϕ̃ε. Thus, all of the results of Sections 3 and 4
apply and may be expressed in terms of W̃0 and W̃2 up to a change of variable.
Moreover, the definitions of M′ and of the map n :M′→ R3 are independent of the
chosen approach.

Lemma 11. If the function W2 is defined by (37), and F ′ is a section of M′, then,
for every G ′ ∈ T ∗x ′(S

′
;R3) and s ∈ R, we have

Q0
F ′(G

′, s)= Q̃0
F ′(G

′
− s F ′D′n′, s),

where
Q̃0

F ′(G
′, s) := inf

v∈R3
D2W̃2(x ′, F)[sn′,G ′π ′x ′ + v⊗ n′]2,

where π ′x ′ is the projection of R3 onto Tx ′S′ and F= F ′(x ′)◦π ′x ′+n(F ′(x ′))⊗n′(x ′).

Proof. Let F ′ be a section of M′, x ′ be an element of S′ and G ′ ∈ T ∗x ′(S
′
;R3). From

the definition of Q0
F ′ , we have

Q0
F ′(G

′, s)= inf
v∈R3

D2W2[G ′F ′, s0, vn(F ′)]
2,

where (G ′F ′, s0, vn(F ′))= γ̇ (0), and

γ (t)= (F ′(x ′)+ tG ′, ts, n(F ′(x ′))+ vt)

is an element of

T ∗(S′;R3)× (−1, 1)× (R′)3 = T ∗(S′;R3)× T ∗((−1, 1);R3)= T ∗(S;R3).
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From (37), we deduce

Q0
F ′(G

′, s)= det(Dg(x ′, 0)) inf
v∈R3

D2W̃2[ ˙̃γ (0)]2 = inf
v∈R3

D2W̃2[ ˙̃γ (0)]2, (38)

where γ̃ (t)= γ (t)◦ Dg(x ′, ts)−1. On the other hand, Dg = (Id′, n′)+ x3(D′n′, 0),
and hence

(Dg)−1
= ((Id′, n′)+ x3(D′n′, 0))−1

=
(
(Id′, n′)(Id+x3(Id′, n′)−1(D′n′, 0))

)−1

=
(
Id−x3(Id′, n′)−1(D′n′, 0)

)
(Id′, n′)−1

+ o(x3).

Since (Id′+n′⊗ e3)
−1
=

(
π ′

n′T
)

, the above identity reads

(Dg)−1
=

(
π ′

n′T
)
− x3

(
π ′

n′T
)
(D′n′, 0)

(
π ′

n′T
)
+ o(x3)

=

(
π ′

n′T
)
− x3

(
π ′D′n′π ′

0

)
+ o(x3).

It follows that γ̃ (t) = (x(t), F(t))+ o(t) with x(t) = x ′ + tsn′, and, using the
notation F ′ for F ′(x ′) for short,

F(t)= ((F ′, n(F ′))+ t (G ′, v))
((
π ′

n′T
)
− ts

(
π ′D′n′π ′

0

))
= (F ′, n(F ′))

(
π ′

n′T
)
+ t (G ′π ′+ v⊗ n′)− ts F ′D′n′π ′.

Consequently,

˙̃γ (0)=
[(

x ′, (F ′, n(F ′))
(
π ′

n′T
))
, (sn′,G ′π ′+ v⊗ n′− s(F ′D′n′π ′))

]
=
[
(x ′, F ′π ′+ n(F ′)⊗ n′), (sn′, (G ′− s F ′D′n′)π ′+ v⊗ n′)

]
=
[
(x ′, F), (sn′, (G ′− s F ′D′n′)π ′+ v⊗ n′)

]
The conclusion follows from (38). �

From now on, we limit our analysis to the case where standard boundary condi-
tions (18) are applied. From Proposition 5, we immediately infer the next result.

Proposition 12. Assume that the standard boundary conditions (18) apply to the
shell. Let ϕ̃ε be the minimizer of the total energy Ĩε(ϕ̃ε) over the space of admissi-
ble deformations. If ϕ̃ε admits an asymptotic expansion as in (35), and if the total
energy Ĩε(ϕ̃ε) remains bounded, then

ϕ0 = arg min
ψ0∈90

Ĩ0(ψ0),
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where

Ĩ0(ψ0)=
1
3

∫
S′

Q̃0
D′ψ0

(D′n− D′ψ0 D′n′, 1) dx ′

+ 2
∫

S′
W̃0(x ′, (D′ψ0, n)) dx ′− 2

∫
S′

f̃0 ·ψ0 dx ′,

f̃0(x ′)= f̃ (x ′, 0) for every x ′ ∈ S′, n = n(D′ψ0), and

90 := {ψ0 ∈W 1,∞(S′)3 : D′ψ0 ∈M′, n = n(D′ψ0) ∈W 1,∞(S′)3

such that ψ0(x ′)= φ0(x ′) and n(x ′)= nγ (x ′) for every x ′ ∈ γ }.

Note that more general Dirichlet conditions could have been considered in the same
fashion as in Lemma 4.

5.3. Homogeneity along the fibers. We say that the shell is homogeneous along
its fibers in the geometric configuration if, for every x ′ ∈ S′, s ∈ (−1, 1) and
F ∈ R3×3, we have W̃2(x ′+ sn′, F)= W̃2(x ′, F).

Proposition 13. If the shell is homogeneous along its fibers in the geometric con-
figuration, then Q̃0

F ′(G
′, s) is independent of s, and is denoted by Q̃0

F ′(G
′).

5.4. Frame-indifference. In the following, we assume the stored energy to be
frame-indifferent, that is, W̃ ε(x̃, RF) = W̃ ε(x̃, F) for every (x̃, F) ∈ S̃ε ×R3×3

(with ε> 0 small enough), and every rotation R ∈SO(3). Note that this is equivalent
to the frame-indifference of W ε.

Proposition 14. If the stored energy function W̃2 is frame-indifferent, then there
exists a bundle map P̃ : C ′ 7→ P̃C ′ over S′ from ES′ into P such that, for every
deformation ψ0 of finite energy Ĩ0(ψ0) and for every G ′ ∈ T ∗(S′;R3), we have

Q̃0
D′ψ0

(G ′, 1)= P̃C ′(D′ψ0
T G ′+G ′T D′ψ0),

with C ′ = D′ψ0
T D′ψ0 and n = n(D′ψ0). Moreover, if the shell is homogeneous

along its fibers in the geometric configuration, then P̃C ′ is homogeneous of de-
gree two.

Proof. The proof is similar to the one devised for the abstract configuration. Once
again, there exists a map W̃S such that, at least in a neighborhood of M̃

+
= {F ∈

M̃ : det F > 0}, we may write W̃2(x, F)= W̃S(x, FT F). After some computations,
we derive the claimed result with

P̃C ′(M)=

inf
w′∈Tx ′ S

′

w3∈R

D2W̃S(x ′, C̃)
[
n′, π ′T Mπ ′+ n′w′Tπ ′+π ′Tw′n′T + n′w3n′T

]2
, (39)
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where C̃ = (D′ψ0π
′
+ n(F) ⊗ n′)T (D′ψ0π

′
+ n(F) ⊗ n′). Moreover, frame-

indifference implies also that C̃ depends only on C ′. Finally, if the shell is ho-
mogeneous along its fibers in the geometric configuration, we have

P̃C ′(M)=

inf
w′∈Tx ′ S

′

w3∈R

∂2W̃S

∂C̃2
(x ′, C̃)

[
π ′T Mπ ′+ n′w′Tπ ′+π ′Tw′n′T + n′w3n′T

]2
. (40)

This completes the proof. �

5.5. Planar isotropy. We say the shell is isotropic along its midsection if, for every
x ′ ∈ S′ and (F ′, F3) ∈ T ∗x ′(S

′
;R3)×R3, we have

W̃ ε(x ′, F ′Rπ ′x ′ + F3⊗ n′)= W̃ ε(x ′, F ′π ′x ′ + F3⊗ n′)

for every R ∈ SO(Tx ′S′). This is equivalent to the definition used in the abstract
configuration. We investigate the consequences of planar isotropy on the flexural
part of the energy

Ĩflex(ψ0) :=
1
3

∫
S′

Q̃0
D′ψ0

(D′n− D′ψ0 D′n′, 1) dx ′.

Proposition 15. If the shell is isotropic along its midsection, then

Ĩflex(ψ0)=
1
3

∫
S′

P̃C ′
(
|n(D′ψ0)|bD′ψ0 − (C

′D′n′+ (D′n′)T C ′)
)

dx ′,

where bD′ψ0 is the second fundamental form of the deformed surface, given by (27).

Proof. The proof is similar to Proposition 9. �

5.6. Right invariance under the special linear group. We say that the stored en-
ergy W̃2 is invariant under the special linear group if, for every x̃ = x ′+ x3n′ and
(F ′, F3) ∈ T ∗x ′(S

′
;R3)×R3, we have

W̃2(x̃, F ′Uπ ′x ′ + F3⊗ n′)= W̃2(x̃, F ′π ′x ′ + F3⊗ n′)

for every U ∈ SL(Tx ′S′). Note that this definition is equivalent to the one given in
the abstract configuration.

Proposition 16. If W̃2 is right invariant under the special linear group, then

Ĩflex(ψ0)=
1
3

∫
S′

K̃x ′,det(C ′)
(
|n(D′ψ0)|H − H0

)
dx ′, (41)

where H and H0 are the mean curvatures of the deformed shell ψ0(S′) and unde-
formed shell S′, respectively. Moreover, if the shell is homogeneous along its fibers,
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then

Ĩflex(ψ)=
1
3

∫
S′
κ̃x ′,det(C ′)(|n(D′ψ0)|H − H0)

2 dx ′.

Proof. For all sections F ′ of T ∗(S′;R3) and G ′ ∈ T ∗x ′(S
′
;R3), we have

P̃C ′(F ′T (G ′− F ′D′n′)+ (G ′− F ′D′n′)T F ′)= PC ′(F ′T G ′+G ′T F ′).

From Proposition 10 and (31), we deduce that

P̃C ′(F ′T (G ′− F ′D′n′)+ (G ′− F ′D′n′)T F ′)= P̃(det C ′)1/2 Id
( 1

2α(det C ′)1/2 Id
)
,

with

α = Tr
(
C ′−1/2(F ′T (G ′− F ′D′n′)+ (G ′− F ′D′n′)T F ′)C ′−1/2).

We thus obtain (41) with

K̃x ′,det(C ′)(H)= P̃det(C ′) Id
( 1

2 H(det C ′)1/2 Id
)
. (42)

If the shell is homogeneous along its fibers, then the P̃(det C ′) Id is homogeneous of
degree two, whence the conclusion in this case. �

6. Examples

We are now in position to apply our formal convergence result to derive different
models for isometric bending shells, vesicles and RBCs. Note that, in our setting,
we do not derive the nonlinear membrane shell model (see [Le Dret and Raoult
1996]) since W2 cannot be chosen to be equal to zero. Throughout this section, we
assume that W ε and W̃ ε satisfy the assumptions (2), (3) and (33), (34), respectively,
that the Dirichlet boundary conditions on 0ε are given by (7) and (18) and that the
minimizers ϕε and ϕ̃ε of the total energy admit asymptotic expansions as in (6)
and (35), respectively, while their total energies Iε(ϕε) and Ĩε(ϕ̃ε) remain bounded.
Moreover, the stored energies are assumed to be frame-indifferent.

6.1. Isometric bending shells. In this section, we recover the isometric bending
shell model by choosing W̃0 = 0 and the set M̃ of the zeros of W̃2 restricted to the
midsection to be equal to

M̃iso := S′×SO(3). (43)

The sequence of minimizers of the energy converges toward the minimizer of an
energy whose elastic part depends only on the difference between the second fun-
damental form of the deformed shell and that of its reference configuration.

Proposition 17. If W̃ ε
= ε−3W̃2 and if W̃2 is such that M̃= M̃iso, given by (43), then

ϕ0 = arg min
ψ0∈90

Ĩ0(ψ0),
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where

Ĩ0(ψ0)=
1
3

∫
S′

P̃x ′,Id
(
(D′ψ0)

T D′n+ D′nT D′ψ0− (D′n′+ D′n′T )
)

dx ′

− 2
∫

S′
f0 ·ψ0 dx ′, (44)

f0(x ′)= f (x ′, 0) for every x ′ ∈ S′, n = n(D′ψ0), P̃x ′,Id is a polynomial of degree
at most two given by (39), and

90 = {ψ0 ∈W 1,∞(S′)3 : (D′ψ0)
T D′ψ0 = Id, n = n(D′ψ0) ∈W 1,∞(S′)3,

ψ0(x ′)= φ0(x ′) and n(x ′)= nγ (x ′) for every x ′ ∈ γ }.

Moreover, if the shell is homogeneous along its fibers, then P̃x ′,Id is homogeneous
of degree two.

Proof. It is a straightforward application of Proposition 12 and Proposition 14. �

Example. Let us give a practical example. For instance, one can choose the Saint
Venant–Kirchhoff nonlinearly elastic stored energy function

W̃2(F)= µTr((FT F − Id)2)+ λ
2

Tr(FT F − Id)2.

A simple computation leads to the energy

Ĩ0(ψ0)=
1
3

∫
S′

2µTr((b− bref)
2)+

λµ

2µ+ λ
Tr(b− bref)

2
− f0 ·ψ0 dx ′,

where b = (D′ψ0)
T D′n + (D′n)T D′ψ0 is the second fundamental form of the

deformed shell and bref = (D′n′)T + D′n′ is the second fundamental form of the
undeformed shell.

6.2. Vesicles. In this section we derive Helfrich functionals, with or without spon-
taneous curvature, from three-dimensional elasticity. The main difference with the
isometric case lies in the fact that we assume the energy to be right invariant under
the special linear group SL(TS′). Note that this readily implies that it may not be
chosen to be isotropic. The Helfrich functional without spontaneous curvature is
derived using the abstract configuration S, while the one with spontaneous curva-
ture is obtained using the geometric configuration S̃ of the shell.

6.2.1. Without spontaneous curvature. In this section we consider the case where
the zero set of W2 restricted to the midsection is given by

MH := {(F ′, F3) ∈ T ∗(S′;R3)× T ∗0 ((−1, 1);R3) :

det(F)= 1, F3 · v = det(F ′, v) for every v ∈ T ∗0 ((−1, 1);R3)}. (45)
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From Propositions 5 and 10, we obtain that the minimizers of the energy formally
converge to the Helfrich functional with no spontaneous curvature.

Proposition 18. Suppose that W ε
= ε−3W2, W2 is right invariant under SL(TS′),

and that M=MH as given by (45). If the shell is homogeneous along its fibers in
the abstract configuration, then

ϕ0 = arg min
ψ0∈90

I0(ψ0),

where

I0(ψ0)=
1
3

∫
S′
κ|H |2 dx ′− 2

∫
S′

f0 ·ψ0 dx ′, (46)

f0(x ′)= f (x ′, 0) for every x ′ ∈ S′, H is the mean curvature of the deformed shell
ψ0(S′), κ(x ′)= PId

( 1
2 Id

)
, where PId is given by (25), and

90 = {ψ0 ∈W 1,∞(S′)3 : n ∈W 1,∞(S′)3 and det((D′ψ0)
T D′ψ0)= 1,

ψ0(x ′)= φ0(x ′) and n(x ′)= nγ (x ′) for x ′ ∈ γ },

where n is the normal to the deformed surface ψ0(S′).

Example. Proposition 18 can be applied with

W2(F)=WS(C)= α(det(C)− 1)2+β|Ce3− e3|
2, (47)

where C = FT F and α and β are positive real constants. A simple computation
leads to

D2WS

[
0,
(1

2 Id w′

w′ w3

)
Id

]2

= 2α(1+w3)
2
+ 2β|(w′, w3)|

2.

Then, from the expression (25) of PId, we get

κ = PId(
1
2 Id

)
= inf

w
2α(1+w3)

2
+ 2β|(w′, w3)|

2
= 2(α−1

+β−1)−1.

Hence, the limit energy in this case is

I0(ψ0)=
2
3

∫
S′
(α−1
+β−1)−1

|H |2 dx ′− 2
∫

S′
f0 ·ψ0 dx ′.

6.2.2. With spontaneous curvature. Here we derive from three-dimensional elas-
ticity a model of shells whose limit energy is the Helfrich functional with nonzero
spontaneous curvature. Basically, such a model is obtained by using the same
assumptions as in the previous case but cast in the geometric configuration, with a
set of zeros restricted to the midsection for W̃2 given by

M̃H := {(x ′, F) ∈ S′×R3×3
: det(F)= 1 and (Cof F − F)n′ = 0}. (48)

The following proposition is a direct application of Propositions 12 and 16.
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Proposition 19. Suppose that W̃ ε
= ε−3W̃2, W̃2 is right invariant under SL(TS′),

and such that M̃= M̃H as given by (48). If the shell is homogeneous along its fibers
in the geometric configuration, then

ϕ0 = arg min
ψ0∈90

Ĩ0(ψ0),

where

Ĩ0(ψ0)=
1
3

∫
S′
κ̃|H − H0|

2 dx ′− 2
∫

S′
f0 ·ψ0 dx ′, (49)

f0(x ′)= f̃ (x ′, 0) for every x ′ ∈ S′, where H is the mean curvature of the deformed
shell ψ0(S′) and H0 is the mean curvature of S′, with

κ̃(x ′)= P̃Id
( 1

2 Id
)
,

where P̃Id is given by (40) and

90 = {ψ0 ∈W 1,∞(S′)3 : n ∈W 1,∞(S′)3 and det(D′ψ0
T D′ψ0)= 1,

ψ0(x ′)= φ0(x ′) and n(x ′)= nγ (x ′) for every x ′ ∈ γ }, (50)

where n is the normal to the deformed surface ψ0(S′).

Example. The stored energy function

W̃2(x ′, F)= W̃Sx ′C̃ = α(det(FT F)− 1)2+β|FT Fn′− n′|2

satisfies the assumptions of Proposition 19, and we have

κ̃ = inf
w′∈Tx ′ S

′

w3∈R

∂W̃S

∂C̃2
(x ′, Id)

[1
2π
′Tπ ′+ n′w′Tπ ′+π ′Tw′n′T + n′w3n′T

]2
.

Furthermore, we have

∂W̃S

∂C̃2
(x ′, Id)[δC]2 = 2(α Tr(δC)2+β|δCn′|2),

so that

κ̃ = inf
w′∈Tx ′ S

′

w3∈R

2
(
α(1+w3)

2
+β(|w′|2+w2

3)
)
= 2(α−1

+β−1)−1.

For such a choice of W̃2, and under the assumptions made in Proposition 19, the
sequence of minimizers ϕ̃ε formally converges toward a minimizer of

Ĩ0(ψ0)=
2
3

∫
S′
(α−1
+β−1)−1

|H − H0|
2 dx ′− 2

∫
S′

f̃0 ·ψ0 dx ′
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over 90 given by (50). Note that this is the set of deformations that preserve
the local area of the shell supplemented with boundary conditions on a subset of
the boundary.

6.3. Red blood cells. The mechanical behavior of a red blood cell (RBC) is driven
by the nature of its membrane, which is mainly made of a lipid bilayer. Note that in
addition to the lipid bilayer, RBCs are also composed of a protein skeleton. This
skeleton ensures a small resistance of the RBCs to shear stress. Such a model
may be obtained as the limit of the three-dimensional elasticity. In this section,
we derive a model of the mechanical behavior of RBCs as the limit of genuine
three-dimensional elasticity. To this end, we consider a stored energy W ε whose
asymptotic assumption reads as

W ε
= ε−1(ε−2W2+W0),

where W2 satisfies the same assumption as in the study of vesicles without sponta-
neous curvature (see Section 6.2.1), namely, its zero set restricted to the midsection
is given by (45). We get that the sequence ϕε of minimizers formally converges to

ϕ0 = arg min
ψ0∈90

I0(ψ0),

where

I0(ψ0)=
1
3

∫
S′

k|H |2 dx ′+ 2
∫

S′
W0(D′ψ0, n) dx ′− 2

∫
S′

f0 ·ψ0 dx ′,

f0(x ′)= f (x ′, 0), n is the normal to the deformed shell ψ0(S′) and 90 is the set
of deformations that preserve the local area of the shell and satisfy the boundary
conditions

ψ0(x ′)= φ0(x ′) and n(x ′)= nγ (x ′) for every x ′ ∈ γ.

Example. As an example, we can choose the nonlinearly elastic Saint Venant–
Kirchhoff stored energy function

W0(F)= µTr((C − Id)2)+ λ
2

Tr(C − Id)2 with C = FT F,

and W2(F) as in (47). This leads to a limit energy

I0(ψ0)=
2
3

∫
S′
(α−1
+β−1)−1

|H |2 dx ′+ 2
∫

S′

(
µTr((D′ψ0

T D′ψ0− Id′)2)

+
λ

2
Tr(D′ψ0

T D′ψ0− Id′)2
)

dx ′− 2
∫

S′
f0 ·ψ0 dx ′.
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7. Conclusion

In this article we prove, using a formal approach, that new nonlinearly elastic shell
models may be derived assuming the shell to be highly anisotropic. Notably, it
enables us to derive some models used in the study of vesicles and RBCs. Part
of the results presented in this article have since been proved by a 0-convergence
approach in an Eulerian setting for the justification of the modeling of vesicles
by Merlet [2013a; 2013b]. Finally, let us recall and emphasize the fact that the
computation of the limit energy should include a relaxation step that is not taken
into account in our formal framework. The only interesting case being the one
where the flexural term Q0

F ′(G, s) is not fully degenerate, that is not independent
of G. In such a case, a relaxation of the membrane term of the limit energy is
expected to take place. The correct limit energy in Proposition 5 should read

I0
′(ψ0)=

1
3

∫
S′

Q0
D′ψ0

(D′n, 1) dx ′+ 2
∫

S′
Q′W0(D′ψ0, n) dx ′− 2

∫
S′

f0 ·ψ0 dx ′,

where Q′W0 is the in-plane quasiconvexification of W0, defined for every element F ′

of T ∗(S′;R3) by

Q′W0(F ′, n)= inf
ϕ∈C∞0 (ω;Tx ′ S′)

|ω|−1
∫
ω

W0(F ′(Id′+D′ϕ), n) dy′,

where x ′ = πS′(F ′) and ω is a bounded regular open set of Tx ′S′.

Notation

• R, set of reals

• R′, dual set of reals

• N, set of nonnegative integers

• S′, midsurface of the shell in the reference configuration

• ε, thickness of the shell

• Sε := S′× (−ε, ε), abstract reference configuration of the shell

• S := S1, rescaled abstract reference configuration of the shell

• S̃ε, geometric reference configuration

• S̃, geometric reference configuration of maximum thickness

• xε, element of Sε

• x̃ , element of S̃

• x ′, element of S′

• TM , tangent space to M
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• Tx M , tangent fiber to M at x

• T ∗M , cotangent space to M

• T ∗x M , cotangent space to M at x

• T (M;R3) := TM ⊕ TM ⊕ TM , Whitney triple sum of TM

• Tx(M;R3) := Tx M ⊕ Tx M ⊕ Tx M , Whitney triple sum of Tx M

• T ∗(M;R3) := T ∗M ⊕ T ∗M ⊕ T ∗M , Whitney triple sum of T ∗M

• T ∗x (M;R
3) := T ∗x M ⊕ T ∗x M ⊕ T ∗x M , Whitney triple sum of T ∗x M

• πB : F→ B, projection of a fiber bundle F onto its base B

• π ′x ′ : R
3
→ Tx ′S′, projection onto Tx ′S′

• ψε, deformation of Sε

• ψ(ε) : S→ R3, rescaled map of the deformation ψε

• ψ = (ψk), expansion of the deformation ψ(ε)=
∑

k ε
kψk with respect to the

thickness

• ϕ = (ϕk), expansion of the minimizers ϕ(ε) =
∑

k ε
kϕk with respect to the

thickness

• Dψε, differential of ψε : Sε→ R3

• Dψε(xε), differential of ψε : Sε→ R3 at xε

• (D′ψε, D3ψ
ε), decomposition of Dψε ∈ T ∗(Sε;R3) with respect to the prod-

uct T ∗(S′;R3)× T ∗((−ε, ε);R3), where ψε : Sε→ R3

• (D′ψε(x), D3ψ
ε(x)), decomposition of Dψε(x) ∈ T ∗x (S

ε
;R3) with respect

to the product T ∗x ′(S
′
;R3)× T ∗x3

((−ε, ε);R3), where ψε : Sε→ R3

• ∂3, partial differentiation along the fibers

• Jε(ψε), elastic energy of a deformation ψε : Sε→ R3

• Iε(ψε), total energy of a deformation ψε : Sε→ R3

• Lε(ψε), work of the external loads

• J (ε)(ψ(ε)), rescaled elastic energy of the deformation ψε

• I (ε)(ψ(ε)), rescaled total energy of the deformation ψε

• J(ε)(ψ), elastic energy of the deformation of asymptotic expansion ψ

• I(ε)(ψ), total energy of the deformation of asymptotic expansion ψ

• I0(ψ0), limit of the total energy (for standard boundary conditions)

• fε, external loads

• W ε
: T ∗(Sε;R3)→ R+, stored energy

• 9ε, set of admissible deformations of Sε
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• 9, set of admissible asymptotic expansions for the deformations of Sε

• Wk : T ∗(S;R3)→ R+, k-th term of the asymptotic expansion of the stored
energy

• M⊂ T ∗(S;R3), the restriction of the zero set of W2 to the midsection S′

• M′ ⊂ T ∗(S′;R3), projection of M on T ∗(S′;R3)

• n0 : M
′
→ T ∗0 ((−1, 1);R3), orientation of the normal fiber in the deformed

configuration

• n : M′→ R3, orientation of the normal fiber in the deformed configuration
(only the vectorial part)

• n′, normal to the midsection S′ of the reference configuration

• D2W2, second derivative of W2 on M

• a[ · ]2 = a( · , · ), where a is a bilinear form

• QF : T ∗(S′;R3)× R3
→ R, quadratic form associated to the flexural limit

energy, where F is a section of M′

• Q0
F := infv QF ( · , v) : T ∗(S′;R3)→ R

• Iflex(ψ), flexural limit energy of a deformation ψ

• dx ′, 2-dimensional Hausdorff measure restricted to S′

• Tr(A), the trace of the matrix A

• ψ̃ε, W̃ ε, W̃k, M̃, L̃ε, f̃ε, . . . , variables with tildes are defined on the geometric
configuration

• SO(TM), rotations of TM , that is, the fiber bundle made of all rotations of
Tx M (with x ∈ M), where M is a Riemannian manifold

• SO(n), rotations of Rn

• SL(TM), special group of TM , that is, the fiber bundle made of all linear
diffeomorphisms of Tx M with determinant one (with x ∈ M), where M is a
Riemannian manifold

• EM , set of symmetric bilinear forms on the tangent space of M

• O, fiber bundle over S′ whose fibers are the traceless maps from Tx ′S′ into itself

• P, set of polynomials of degree at most two on ES′
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CANONICAL DUALITY THEORY AND TRIALITY
FOR SOLVING GENERAL GLOBAL OPTIMIZATION

PROBLEMS IN COMPLEX SYSTEMS

DANIEL MORALES-SILVA AND DAVID Y. GAO

General nonconvex optimization problems are studied by using the canonical
duality-triality theory. The triality theory is proved for sums of exponentials and
quartic polynomials, which solved an open problem left in 2003. This theory
can be used to find the global minimum and local extrema, which bridges a gap
between global optimization and nonconvex mechanics. Detailed applications
are illustrated by several examples.

1. Introduction and motivation

This paper intends to solve the following nonconvex optimization problem ((P) in
short):

(P) : ext
{
5(x)=W (x)+ 1

2 xt Ax− f t x : x ∈ Rn}, (1)

where ext{ · } denotes finding extremum points of a function given in { · }, f ∈ Rn

is a given (input) vector, A∈Rn×n is a given symmetric matrix, and W :Rn
→R is

a combination of fourth-order polynomials (double-well functions) and quadratic-
exponential functions, namely

W (x) :=
∑
i∈Im

exp
(1

2 xt Bi x−αi
)
+

∑
j∈Ip

1
2 b j

( 1
2 xt C j x− θ j

)2
,

where Im = {1, . . . ,m} and Ip = {1, . . . , p} are two integer sets with m and p that
are fixed integers; all the coefficients b j with j ∈ Ip are positive constants, and
αi , θ j ∈ R for all i ∈ Im and j ∈ Ip are given parameters; the matrices {Bi }i∈Im

and {C j } j∈Ip are assumed to be symmetric, positive semidefinite such that the cone
generated by them contains a positive-definite matrix.

The nonconvex optimization problem (P) arises naturally in complex systems
with a wide range of applications, including chaotic dynamical systems [Gao 2003a;
Gao and Ogden 2008a; Gao and Ruan 2008], computational biology [Zhang et al.
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2011], chemical-database analysis [Xie and Schlick 2000], large-deformation com-
putational mechanics [Gao 1996; Santos and Gao 2012], population growing [Ruan
and Gao 2014a], location/allocation, network communication [Gao et al. 2012],
and transitions of solids [Gao and Ogden 2008a; 2008b; Gao and Yu 2008], etc.

For example, the popular sensor-network location problem is to solve the follow-
ing system of nonlinear equations (see [Aspnes et al. 2004; Moré and Wu 1997]):

‖ui − u j‖
2
2 = d2

i j ∀(i, j) ∈ Ip, uk = ak ∀k ∈ Ib, (2)

where the vectors ui = {uαi } ∈ Rd (i = 1, . . . , p) represent the locations of the
unknown sensors, Ip = {(i, j) : i < j, di j is specified} and Ib = {k : uk = ak is
specified} are two given index sets, di j are given distances for (i, j) ∈ Ip, and the
given vectors a1, a2, . . . , aq ∈Rd are the so-called anchors. The notation ‖ui−u j‖2

denotes the Euclidean distance between ui and u j ; i.e.,

‖ui − u j‖2 =

√
d∑
α=1
(uαi − uαj )2.

By using the least-squares method, the quadratic equations (2) of the sensor-localiz-
ation problem can be reformulated as an optimization problem:

min
{

P(u)=
∑

(i, j)∈Ip

1
2

(
‖ui − u j‖

2
2− d2

i j
)2
: ui ∈Ua

}
, (3)

where Ua={u∈Rd×p
: uk = ak ∀k ∈Ib} is a feasible space. Let x={{u1

1, . . . , ud
1},

. . . , {u1
p, . . . , ud

p}} ∈ Rn (n = d × p) denote an extended vector. By using the
Lagrange-multiplier method to relax the boundary conditions in Ua , the least-
squares method for the sensor-localization problem (3) can be written in the prob-
lem (1) for certain properly defined matrices {C j }, which are the so-called deforma-
tion matrices in structural mechanics. The sensor-network-localization-type prob-
lems also appear in computational biology, Euclidean ball packing, molecular con-
firmation, recently wireless network communication, etc. [Ruan and Gao 2014b;
Zhang et al. 2011]. Due to the nonconvexity, the sensor-network localization prob-
lem is considered to be NP-hard even for the simplest case d = 1 [Moré and Wu
1997; Saxe 1979]. A recent result of Aspnes et al. [2004] shows that the problem
of computing a realization of the sensors on the plane is NP-complete in general.

Mathematics and mechanics have been complementary partners since Newton.
Many fundamental ideas, concepts, and mathematical methods extensively used in
calculus of variations and optimization originated from mechanics. For example,
the Lagrange-multiplier method was first proposed by Lagrange from the classical
analytic mechanics while the concepts of superpotential and subdifferential in mod-
ern convex analysis were introduced in [Moreau 1968; Moreau et al. 1988] from
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frictional mechanics. From the point of view of computational large-deformation
mechanics, both the fourth-order polynomial-minimization problem (P) and the
sensor-localization problem (3) are actually two special cases of discretized finite-
deformation problems [Gao 1996]. It is known that, in continuum mechanics and
differential geometry, the deformation u(x) :�→ Rr is a vector field over an open
domain �⊂ Rr , and the minimal-potential variational problem is defined by

min
{

P(u)=
∫
�

[W (∇u)− uT f ] d� : u ∈Ua

}
, (4)

where W (F) is the so-called stored strain energy, which is usually a nonconvex
function of the deformation gradient F =∇u, the feasible set Ua in this nonconvex
variational problem is called the kinematically admissible space, where certain
boundary conditions are prescribed. According to the hyperelasticity law (see [Gao
2000b, Chapter 6.1.2] or [Marsden and Hughes 1983]), the stored strain energy
should be an objective function of the deformation gradient F; i.e., there exists an
objective strain measure E(F) and a convex function V (E) such that

W (∇u)= V (E(∇u)). (5)

One of the most simple objective strain measures is the well known Green–Saint-
Venant strain tensor E = 1

2 [F
T F − I ]. Clearly, this strain measure satisfies the

objectivity condition; i.e., E(Q F) = E(F) for any given orthonormal (rotation)
matrix Q. For the most simple Saint-Venant–Kirchhoff material, V (E) is a qua-
dratic function of E; i.e.,

V (E)= 1
2λ(tr E)2+µ tr(E)2, (6)

where λ,µ > 0 are the classical Lamé constants and tr E represents the trace of E.
Therefore, the stored energy W (F) is a fourth-order polynomial tensor function
of F = ∇u while for biomaterials the stored energy could be the combination
of the polynomial and exponential functions of the Cauchy–Green strain tensor.
By using a finite-difference method (FDM), the deformation gradient ∇u can be
directly approximated by the difference Du = u(xi )− u(x j ) = ui − u j while,
in a finite-element method (FEM), the domain � =

⋃m
e �

e is discretized by a
finite number of elements �e

⊂ � and, in each element, the deformation field
u(x)=

∑
i Ni (x)ui is numerically represented by the nodal vectors ui via piece-

wise interpolation (polynomial) function Ni (x) [Gao 1996]. Therefore, by either
FDM or FEM, the minimal potential variational problem (4) can be eventually re-
duced to a very complicated large-scale fourth-order polynomial/exponential mini-
mization problem with the problems (P) as its the most simple case. In the contact
mechanics and elastoplastic design of large deformed structures, the nonconvex
problems are usually subjected to inequality constraints. In these cases, the global



142 DANIEL MORALES-SILVA AND DAVID Y. GAO

optimal solution could be local minima (see [Cai et al. 2014]), and to solve such
problems is fundamentally difficult by using traditional direct methods.

Canonical duality theory was developed originally by Gao and Strang [1989]
for solving general variational problem (4) in finite-deformation theory, where the
stored energy W (F) is nonconvex and even nonsmooth. By introducing a so-called
complementary gap function, they recovered the complementary energy principle
in large deformation (geometrically nonlinear) systems. They proved that the non-
negative gap function can be used to identify the global minimizer of the nonconvex
potential variational problems. Seven years later, it was discovered that the nega-
tive gap function can be used to identify the largest local minimum and maximum.
Therefore, a so-called triality theory was first proposed in nonconvex mechanics
[Gao 1997] and then generalized to global optimization [Gao 2000a]. This triality
theory is composed of a canonical min-max duality and two pairs of double-min,
double-max dualities, which reveals an intrinsic duality pattern in complex systems
and has been used successfully for solving a wide class of challenging problems
in complex systems [Gao 1998; 1999; 2009; Gao and Sherali 2009]. However, it
was realized [Gao 2003a; 2003b] that the double-min duality holds under certain
additional conditions. Recently, this problem is partly solved for a class of fourth-
order polynomial optimization problems [Gao and Wu 2012]. Based on these
results, this paper intends to solve the more challenging problem (P). We will
show that, by the canonical dual transformation, all critical solutions of (P) can
be analytically presented in terms of the canonical dual solutions. The extremality
of these solutions can be identified by the triality theory. Several solved examples
are listed in the last section.

2. Canonical dual problem and analytical solutions

Following the standard procedure of the canonical dual transformation (e.g., [Gao
2003b]), first we need to choose a geometric operator 3= (31(x),32(x)) : Rn

→

Rm+p, where

31(x)=
{1

2 xt Bi x−αi
}
: Rn
→ Rm,

32(x)=
{1

2 xt C j x− θ j
}
: Rn
→ Rp.

Therefore, the nonconvex function W (x) can be written in the canonical form

W (x)= V (3(x))= V1(31(x))+ V2(32(x)) (7)

with

V1(ε)=
∑
i∈Im

exp(εi ) and V2(γ )=
∑
j∈Ip

1
2 b jγ

2
j . (8)
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Clearly, the canonical function V (ε) is convex on

Va ={ε= (ε, γ )∈Rm+p
: εi ∈ [−αi ,+∞), γ j ∈ [−θ j ,+∞) ∀i ∈ Im, j ∈ Ip} (9)

such that the canonical dual variable ς = (τ , σ ) of ε = (ε, γ ) can be uniquely
defined by

ς =∇V (ε) =⇒ τ =∇V1(ε)= {exp(εi )}, σ =∇V2(γ )= {b jγ j }, (10)

and on the canonical dual space

V∗a={ς= (τ , σ )∈Rm+p
: τi ∈[exp(−αi ),∞), σ j ∈[−b jθ j ,∞), ∀i ∈ Im, j ∈ Ip},

the Legendre conjugate of V (ε) can be defined by

V c(ς)= sta{εtς − V (ε) : ε ∈ Va} = V c
1 (τ )+ V c

2 (σ ), (11)

where sta{∗} denotes finding stationary points of the function given in {∗} and

V c
1 (τ )=

∑
i∈Im

(τi ln τi − τi ) and V c
2 (σ )=

∑
j∈Ip

1
2b j

σ 2
j . (12)

By using the canonical dual transformation W (x)= V (3(x))=3(x)Tς − V c(ς),
the Gao–Strang total complementary function 4 : Rn

×V∗a → R associated with
the problem (P) can be given by

4(x, ς)= 〈3(x), ς〉− V c(ς)+ 1
2 xt Ax− f t x

=
1
2 xt G(ς)x−αtτ − θ tσ − V c

1 (τ )− V c
2 (σ )− f t x, (13)

where
G(ς)= A+

∑
i∈Im

τi Bi +
∑
j∈Ip

σ j C j . (14)

Via this 4(x, ς), the canonical dual function 5d
: V∗a→ R can be defined by

5d(ς) := sta{4(x, ς) : x ∈ Rn
} = {4(x(ς), ς) :∇x4(x(ς), ς)= 0}.

Notice that ∇x4(x, ς)= G(ς)x− f = 0 if and only if

G(ς)x = f . (15)

Let Col(G(ς)) be the space generated by the columns of the matrix G(ς). Then
on the dual feasible space

Sa = {ς ∈ V∗a : f ∈ Col(G(ς))},

the primal solution x = (G(ς))−1 f is well defined (if G(ς) is singular, (G(ς))−1

denotes its pseudoinverse; see [Desoer and Whalen 1963; Peters and Wilkinson
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1970] and references therein), and we have 5d
: Sa→ R, where

5d(ς)=− 1
2 f t(G(ς))−1 f − V c

1 (τ )− V c
2 (σ )−α

tτ − θ tσ . (16)

Therefore, the canonical dual problem is proposed in the form

(Pd) : ext{5d(ς) : ς ∈ Sa}. (17)

By the canonical duality theory, it is not difficult to show that

5(x)= sta{4(x, ς) : ς ∈ Sa} =4(x, ς(x)), (18)

where ς(x)= (τ (x), σ (x)) and

(τ (x))i = exp((31(x))i ), i ∈ Im,

(σ (x)) j = b j (32(x)) j , j ∈ Ip.

According to the general theory presented in [Gao 2003b], we have:

Theorem 1 (analytical solutions). Suppose that for a given f ∈ Rn the canonical
dual space Sa is not empty. If ς ∈ Sa is a stationary point of 5d , then

x = (G(ς))−1 f (19)

is a stationary point of 5 and

5(x)=5d(ς). (20)

Proof. Let us calculate ∇5d(ς) and ∇25d(ς). We know that

∇5d(ς)=

[
∇τ5

d(ς)

∇σ5
d(ς)

]
∈ Rm+p

;

then

(∇τ5
d(ς))i =

1
2 f t(G(ς))−1 Bi (G(ς))−1 f − ln τi −αi , i ∈ Im, (21)

(∇σ5
d(ς)) j =

1
2 f t(G(ς))−1C j (G(ς))−1 f −

σ j

b j
− θ j , j ∈ Ip. (22)

On the other hand,

∇
25d(ς)=

[
∇

2
ττ5

d(ς) ∇2
τσ5

d(ς)

∇
2
στ5

d(ς) ∇2
σσ5

d(ς)

]
∈ Rm+p

×Rm+p,
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where ∇2
τσ5

d(ς) := (∇τ (∇σ5
d(ς))t). Let δi j be the Kronecker delta. Then

(∇2
ττ5

d(ς))i j =− f t(G(ς))−1 Bi (G(ς))−1 B j (G(ς))−1 f −
δi j

τ j
, i, j ∈ Im,

(∇2
τσ5

d(ς))i j =− f t(G(ς))−1 Bi (G(ς))−1C j (G(ς))−1 f , i ∈ Im, j ∈ Ip,

(∇2
στ5

d(ς))i j =− f t(G(ς))−1Ci (G(ς))−1 B j (G(ς))−1 f , i ∈ Im, j ∈ Ip,

(∇2
σσ5

d(ς))i j =− f t(G(ς))−1Ci (G(ς))−1C j (G(ς))−1 f −
δi j

b j
, i, j ∈ Ip.

By making x = (G(ς))−1 f and F(x) ∈ Rn×(m+p) be F(x)= [B1x, . . . , Bm x,
C1x, . . . ,Cp x], we have

∇
25d(ς)=−F(x)t(G(ς))−1 F(x)−Diag

( 1
τ1
, . . . ,

1
τm
,

1
b1
, . . . ,

1
bp

)
. (23)

Let D = Diag(τ1, . . . , τm, b1, . . . , bp); then ∇25d(ς) can be written as

∇
25d(ς)=−F(x)t(G(ς))−1 F(x)− D−1. (24)

Calculating ∇5(x) and ∇25(x), we have respectively

∇5(x)=
∑
i∈Im

exp
( 1

2 xt Bi x−αi
)
Bi x+

∑
j∈Ip

b j
( 1

2 xt C j x− θ j
)
C j x+ Ax− f ,

(25)

∇
25(x)= A+

∑
i∈Im

exp
( 1

2 xt Bi x−αi
)
(Bi x(Bi x)t + Bi )

+

∑
j∈Ip

b j
(
C j x(C j x)t +

( 1
2 xt C j x− θ j

)
C j
)
. (26)

Since ς = (τ , σ ) is a stationary point of 5d , then by (21) and (22),

(31(x))i = ln τ i , i ∈ Im, (27)

(32(x)) j =
σ j

b j
, j ∈ Ip. (28)

Using (27) and (28) in (25), we obtain

∇5(x)= G(ς)x− f = G(ς)(G(ς))−1 f − f = 0.

Notice that (27) and (28) together with (16) and (18) imply that

5(x)=4(x, ς)=4((G(ς))−1 f , ς)=5d(ς). (29)

And this finishes the proof. �

Remark 1. This theorem shows that the problem (Pd) is canonical dual to the
nonconvex primal problem (P) in the sense that5(x)=5d(ς) at each critical point
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of 4(x, ς). By the criticality condition (15), we know that, if G(ς) is singular at ς ,
the canonical equilibrium equation (15) may have an infinite number of solutions:
x = G(ς)† f + N xo, where G† represents the Moore–Penrose generalized inverse,
N is a basis matrix of the null space of G(ς), and xo is a free vector. In this case,
Theorem 1 still holds, but the canonical dual function 5d will have the additional
parametric vector xo. In order to avoid this case, a quadratic perturbation method is
introduced in [Ruan and Gao 2014b]; i.e., in the case that G(ς) is singular, replace
it by the perturbed form

Gα(ς)= G(ς)+αD, (30)

where α > 0 is a perturbation parameter and D is a given positive-definite matrix.
Very often, D = I . A detailed study on this quadratic perturbation method is given
in [Ruan and Gao 2014b].

In the next section, we will show that the extremality of some of these solutions
can be identified by a refined triality theory.

3. Triality theory

Before presenting the refined triality theory, we need the sets

S+a := {ς ∈ Sa : G(ς)� 0} and S−a := {ς ∈ Sa : G(ς)≺ 0}.

Lemma 1. Suppose that m + p < n, ς ∈ S−a is a stationary point and a local
minimizer of 5d , and x = (G(ς))−1 f . Then there exists a matrix L ∈ Rn×(m+p)

with Rank(L)= m+ p such that

Lt
∇

25(x)L � 0. (31)

Proof. Since ς ∈ S−a is a local minimizer of 5d , we have that ∇25d(ς) � 0. It
follows from (24) that

−F(x)t(G(ς))−1 F(x)� D−1
� 0.

Thus, Rank(F(x)) = m + p. Since ς ∈ S−a and F(x)DF(x)t � 0, there exists a
nonsingular matrix T ∈ Rn×n such that

T t G(ς)T = Diag(−λ1, . . . ,−λn), (32)

T t F(x)DF(x)t T = Diag(a1, . . . , am1+m2, 0, . . . , 0), (33)

where λi > 0 for every i = 1, . . . , n and a j > 0 for every j = 1, . . . ,m + p
(see [Feng et al. 2012; Horn and Johnson 1985] and references therein). Accord-
ing to Lemma A1 in the Appendix, we know that there exist orthogonal matrices
U ∈ Rn×n and E ∈ R(m+p)×(m+p) such that

T t F(x)D1/2
= U RE, (34)
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where R ∈ Rn×(m+p) and

Ri j =

{√
ai if i = j and i = 1, . . . ,m+ p,

0 otherwise.

According to the singular value decomposition theory, we know that U is the iden-
tity matrix. Then

∇
25d(ς)=−F(x)t(G(ς))−1 F(x)− D−1

=−(F(x)t T )[T t G(ς)T ]−1(T t F(x))− D−1

=−D−1/2 Et Rt Diag
(
−

1
λ1
, . . . ,−

1
λn

)
RE D−1/2

− D−1
� 0.

Multiplying by D1/2 from the left and the right,

D1/2
∇

25d(ς)D1/2
=−Et Rt Diag

(
−

1
λ1
, . . . ,−

1
λn

)
RE− I(m+p)×(m+p) � 0.

If we multiply the right side of the last equation by E from the left and Et from
the right, we have

0�−Rt Diag
(
−

1
λ1
, . . . ,−

1
λn

)
R− I(m+p)×(m+p)

� Diag
(a1

λ1
− 1, . . . ,

am+p

λm+p
− 1

)
; (35)

thus, ai ≥ λi for every i = 1, . . . ,m+ p. On the other hand,

T t
∇

25(x)T = T t G(ς)T + T t F(x)DF(x)t T

= Diag(−λ1, . . . ,−λn)+Diag(a1, . . . , am+p, 0, . . . , 0)

= Diag(a1− λ1, . . . , am+p − λm+p,−λm+p+1, . . . ,−λn).

Let J ∈ Rn×n be defined by

Ji j =

{
1 if i = j and i = 1, . . . ,m+ p,
0 otherwise.

Then we have

J t T t
∇

25(x)T J = Diag(a1− λ1, . . . , am+p − λm+p)� 0. (36)

Let L = T J ; clearly Rank(L)= m+ p and Lt∇25(x)L � 0. �

In a similar way, we can prove the following lemma:

Lemma 2. Suppose that m + p > n, ς ∈ S−a is a stationary point 5d , and x =
(G(ς))−1 f is a local minimizer of 5. Then there exists a matrix Q ∈ R(m+p)×n

with Rank(Q)= n such that

Qt
∇

25d(ς)Q � 0. (37)
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Let the m + p column vectors of L be l1, . . . , lm+p, respectively, and the n
column vectors of Q be q1, . . . , qn , respectively. Clearly, l1, . . . , lm+p are m+ p
independent vectors and q1, . . . , qn are n independent vectors. Now the subspaces
Xb and Sb are defined as

Xb =

{
x ∈ Rn

: x = x+
m+p∑
i=1

υi li , {υi }
m+p
i=1 ⊂ R

}
, (38)

Sb =

{
ς ∈ Rm+p

: ς = ς +

n∑
j=1

ϑ j q j , {ϑ j }
n
j=1 ⊂ R

}
. (39)

Now we are ready to present the refined triality theory.

Theorem 2 (triality theory). Let ς be a stationary point of5d and x = (G(ς))−1 f .
Assume that det(∇25(x)) 6= 0.

(i) If ς ∈ S+a , then ς is the only global maximizer of 5d in S+a and x is the only
global minimizer of 5.

(ii) If ς ∈ S−a , then ς is a local maximizer of 5d in S−a if and only if x is a local
maximizer of 5.

(iii) If ς ∈ S−a and:

(a) If n = m+ p, then ς is a local minimizer of 5d if and only if x is a local
minimizer of 5; i.e., there exist neighborhoods X,S ⊂ Rn of x and ς ,
respectively, such that

5(x)=min
x∈X

5(x)=min
ς∈S

5d(ς)=5d(ς). (40)

(b) If m + p < n and ς is a local minimizer of 5d , then x is a saddle point
of 5 and there exist neighborhoods X,S ⊂ Rn of x and ς , respectively,
such that

5(x)= min
x∈X∩Xb

5(x)=min
ς∈S

5d(ς)=5d(ς). (41)

(c) If n < m + p and x is a local minimizer of 5, then ς is a saddle point
of 5d and there exist neighborhoods X,S⊂ Rn of x and ς , respectively,
such that

5(x)=min
x∈X

5(x)= min
ς∈S∩Sb

5d(ς)=5d(ς). (42)

Proof. (i) Since ς ∈ S+a , from (24), it is not difficult to show that 5d is strictly
concave in S+a and 4( · , ς) is strictly convex in Rn and therefore ς must be the
only global maximizer of 5d in S+a and x is the only global minimizer of 4( · , ς).
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By the definition of 4 given in (13) and the convexity of V , the Fenchel inequality
leads to

4(x, ς)≤5(x) ∀(x, ς) ∈ Rn
×Sa.

Let us assume now that there exists a vector x′ ∈Rn
\{x} such that5(x′)≤5(x);

then
5(x)≥5(x′)≥4(x′, ς) > 4(x, ς)=5(x),

where the last equality comes from (29). This contradiction proves that x must be
the only global minimizer of 5.

(ii) Notice first that using (27) and (28) in (26) we have

∇
25(x)= G(ς)+ F(x)DF(x)t , (43)

where F(x) and D are defined in (24). If ς is a local maximizer of 5d in S−a , we
must have that ∇25d(ς)� 0 from (24), which is equivalent to

D−1
+ F(x)t(G(ς))−1 F(x)� 0. (44)

• If m + p = n and F is invertible, multiplying (44) by (F(x)t)−1 from the left
and (F(x))−1 from the right, we have

(F(x)t)−1 D−1(F(x))−1
+ (G(ς))−1

� 0. (45)

This is equivalent to

(F(x)t)−1 D−1(F(x))−1
�−(G(ς))−1

� 0,

which in turn is equivalent to (Lemma A2 in the Appendix)

−G(ς)� F(x)DF(x)t ⇐⇒ ∇25(x)� 0.

By assumption, det(∇25(x̄)) 6= 0; then x is a local maximum of 5.

• If m+ p 6= n or F is not invertible, then by Lemma A1, there exist orthogonal
matrices E ∈ Rn×n and K ∈ R(m+p)×(m+p) and a matrix R ∈ Rn×(m+p) such that

Ri j =

{
si if i = j and i = 1, . . . , r ,
0 otherwise,

where si > 0 for every i , r = Rank(F(x)), and

F(x)D1/2
= E RK . (46)

Using (46), (44) can be rewritten as

D−1
+ D−1/2 K t Rt Et(G(ς))−1 E RK D−1/2

� 0.
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After multiplying this equation by K D1/2 from the left and D1/2 K t from the right,
we have

I(m+p)×(m+p)+ Rt(Et G(ς)E)−1 R � 0.

This equation is equivalent to

−I(m+p)×(m+p)− Rt(Et G(ς)E)−1 R � 0.

By Lemma A3 in the Appendix, the last equation is equivalent to

0� Et G(ς)E+ RRt
= Et G(ς)E+ R(K D−1/2 D D−1/2 K t)Rt .

Multiplying by E from the left and Et from the right, we can obtain that

0� G(ς)+ (E RK D−1/2)D(D−1/2 K t Rt Et)= G(ς)+ F(x)DF(x)t =∇25(x).

By the assumption det(∇25(x)) 6= 0, x is a local maximum of 5.

Notice that every step of the proof is equivalent, so if x is a local maximum
of 5, then ς must be a local maximum of 5d .

(iii) Let us consider the three cases:

(a) Assume n = m+ p. If ς is a local minimizer of 5d , then

∇
25d(ς)=−F(x)t(G(ς))−1 F(x)−D−1

�0⇐⇒ −F(x)t(G(ς))−1 F(x)� D−1.

This implies that Rank(F(x))= n. By multiplying the last inequality by (F(x)t)−1

from the left and by (F(x))−1 from the right, we have

−(G(ς))−1
� (F(x)t)−1 D−1(F(x))−1.

By Lemma A2, this is equivalent to

−G(ς)� F(x)DF(x)t ⇐⇒ ∇25(x)� 0.

And since det(∇25(x)) 6= 0, x is a local minimizer of 5. In a similar way, we can
prove the converse.

(b) From (24), we know that

−F(x)t(G(ς))−1 F(x)� D−1.

Then−F(x)t(G(ς))−1 F(x) is a nonsingular matrix, and Rank(F(x))=m+ p< n.
We claim now that x is not a local minimizer of 5. This is because, if x were also
a local minimizer, we would have

∇
25(x)= G(ς)+ F(x)DF(x)t � 0.

Thus,
F(x)DF(x)t �−G(ς).
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This implies that

n = Rank(−G(ς))= Rank(F(x)DF(x)t)= m+ p,

which is a contradiction. Therefore, x is a saddle point of 5.
To prove (41), we let L be the matrix as given in Lemma 1 and {li }

m+p
i=1 be the

column vectors of L. Define

ϕ(t1, . . . , tm+p) :=5(x+ t1l1+ · · ·+ tm+p lm+p).

We need to show that (0, . . . , 0) ∈ Rm+p is a local minimizer of the function ϕ.
Notice that

∇ϕ(0, . . . , 0)= Lt
∇5(x)= 0

and
∇

2ϕ(0, . . . , 0)= Lt
∇

25(x)L � 0,

which is a consequence of Lemma 1. Furthermore, from (36) we have that

∇
2ϕ(0, . . . , 0)= Diag(a1− λ1, . . . , am+p − λm+p),

and since det(∇25(x)) 6= 0, it can be proven that ai > λi for every i .

(c) The proof is similar to that of part (b). �

Remark 2. Theorem 2 shows that, in order to solve the problem (P) by means of
the canonical duality theory, a necessary condition is that the problem (P) should
have a unique solution. It was indicated in [Ruan and Gao 2014b] that, if the
nonconvex minimization problem has more than one global minimizer, it could be
NP-hard. In order to solve this type of problems, the perturbation methods should
be used.

Remark 3. The triality theory states precisely that, if ς is a global maximizer
of 5d on a certain set, then x is a global minimizer for 5. This is known from the
general result by Gao and Strang [1989]. If ς is a local maximizer for 5d , then x
is also a local maximizer for 5. This is the so-called double-max duality statement.
If ς is a local minimizer for 5d , then x is also a local minimizer for 5 in certain
directions. This is the so-called double-min duality in the standard triality form
proposed in [Gao 2000b]. The triality theory was first discovered in nonconvex
mechanics [Gao 1997]. Gao [2003a; 2003b] realized that the double-min dual-
ity holds under certain additional condition, which was left as an open problem.
Recently, this open problem was solved for the quartic polynomial optimization
problem [Gao and Wu 2012]. This result is now generalized to the general non-
convex problem (P). Part (iii) of Theorem 2 shows that, if m+ p = n, then ς is a
local minimizer if and only if x is also a local minimizer. In other cases, either x
is a saddle point of 5 or ς is a saddle point of 5d .
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Remark 4. The canonical duality-triality theory has been challenged recently by
C. Zălinescu and his coworkers R. Strugariu and M. D. Voisei in several papers (see
[Strugariu et al. 2011]). By listing some simple “counterexamples”, they claimed
that this theory is false. Unfortunately, most of these counterexamples are not new
and were first discovered by Gao [2003a; 2003b], who was never cited. Some
of their “counterexamples” are fundamentally wrong; i.e. they incorrectly choose
linear functions as the stored energy and nonlinear functions as external energy (see
[Voisei and Zălinescu 2011]). These conceptual mistakes show a big gap between
mathematics and mechanics.

4. Numerical examples

In the following examples, m = p = 1 and b1 = 1. The graphs provided and the
numerical results were obtained using MAXIMA [2010].

4.1. One stationary point in S+a . First, we consider the case that the primal func-
tion has a unique solution. We let α1 = θ1 = 1 and

A=
[

1 0
0 −1

]
, B1 =

[
1 0
0 2

]
, C1 =

[
1 0
0 1

]
, and f =

[
1
1

]
.

Clearly, the function 5 : R2
→ R is given by

5(x, y)= exp
( 1

2(x
2
+ 2y2)− 1

)
+

1
2

( 1
2(x

2
+ y2)− 1

)2
+

1
2(x

2
− y2)− x − y,

and the dual function has the form of

5d(τ, σ )=−
1
2

( 1
1+τ+σ

+
1

2τ+σ−1

)
− τ · ln(τ )− 1

2σ
2
− σ.

It can be shown that 5d has only one critical point in S+a and it is given (ap-
proximately) by

ς = (1.171057661103504,−0.34599084656216).
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Figure 1. Contours and graph of the primal function 5 of Section 4.1.
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Figure 2. Contours and graph of the dual function 5d of Section 4.1.

By the triality theory, the vector

x = G(ς)−1 f = (0.54792514555217, 1.003890602479819)

is the only global minimizer of the primal problem.

4.2. One stationary point in S+a and one in S−a . Let α1 = 1, θ1 = 50, and

A=
[

1 0
0 −16

]
, B1 =

[
1 0
0 1

]
, C1 =

[
1 0
0 2

]
, and f =

[
−25

9

]
.

The primal function 5 : R2
→ R is then given by

5(x, y)= exp
( 1

2(x
2
+ y2)−1

)
+

1
2

( 1
2(x

2
+2y2)−50

)2
+

1
2(x

2
−16y2)+25x−9y,

and its canonical dual is

5d(τ, σ )=−
1
2

( 81
−16+τ+2σ

+
625

1+τ+σ

)
− τ · ln(τ )− 1

2σ
2
− 50σ,

which has two critical points:

ς1 = (96.61711963278241,−38.94928057661689) ∈ S+a ,

ς2 = ( 0.42157060067968,−49.86072154366873) ∈ S−a .
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Figure 3. Contours and graph of the primal function 5 of Section 4.2.



154 DANIEL MORALES-SILVA AND DAVID Y. GAO

720
700
680
660
640
620
600
580
560
540
520

80 85 90 95 100 105 110

-50

-45

-40

-35

-30

-25

720
700
680
660
640
620
600
580
560
540
520

80
85

90
95

100
105

110
-50

-45
-40

-35
-30

-25

500

550

600

650

700

1.26e+003

1.25e+003

1.25e+003

1.25e+003

1.25e+003

1.25e+003

1.24e+003

1.24e+003

1.24e+003

 1
 2

 3
 4

 5
 6

 7
 8

 9
 10-60

-55

-50

-45

-40

 1160

 1180

 1200

 1220

 1240

 1260

1.26e+003

1.25e+003

1.25e+003

1.25e+003

1.25e+003

1.25e+003

1.24e+003

1.24e+003

1.24e+003

 1
 2

 3
 4

 5
 6

 7
 8

 9
 10-60

-55

-50

-45

-40

 1160

 1180

 1200

 1220

 1240

 1260

Figure 4. Contours and graph of the dual function 5d of Section 4.2
in S+a (top) and in S−a (bottom).

Therefore, by the triality theory, the associated vector

x1 = G(ς1)
−1 f = (−0.42612784793499, 3.310578038951848)

is the only global minimizer of 5(x), and

x2 = (0.51611144112381,−0.078057328303129)

is a local maximizer (see Figure 3) since ς2 is a local maximum of 5d in S−a (see
Figure 4, bottom).

4.3. One stationary point in S+a and two in S−a . In order to illustrate the triality
theory, we let α1 = θ1 = 2 and

A=
[
−16 0

0 −4

]
, B1 =

[
1 0
0 0

]
, C1 =

[
0 0
0 1

]
, and f =

[
2
2

]
.

Accordingly, we have

5(x, y)= exp
( 1

2 x2
− 2

)
+

1
2

( 1
2 y2
− 2

)2
+

1
2(−16x2

− 4y2)− 2x − 2y,

5d(τ, σ )=−
1
2

( 4
σ−4

+
4

τ − 16

)
− τ · ln(τ )− τ − 1

2σ
2
− 2σ.

In this case, 5d has in total six critical points but only one in S+a ,

ς1 = (16.64468576727409, 4.552474610531074) ∈ S+a
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Figure 5. Contours and graph of the primal function 5 of Section 4.3.

(see Figure 6, top), and two in S−a :

ς2 = (0.13641513779858,−1.943380912562619) ∈ S−a ,

ς3 = (15.34981976568548, 3.390906302031545) ∈ S−a .

From Figure 6, bottom, we can see that ς2 is a local maximizer and ς3 is a local
minimizer of 5d . Therefore, by the triality theory, we know that

x1 = G(ς1)
−1 f = (3.102286573591542, 3.620075858467906)
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Figure 6. Contours and graph of the dual function 5d of Section 4.3
in S+a (top) and in S−a (bottom).
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is the only global minimizer,

x2 = (−0.12607490787063,−0.33650880356205)

is a local maximizer, and

x3 = (−3.076070133243102,−3.283567054905852)

is a local minimizer of 5(x) (see Figure 5).

4.4. Nonunique global minima. In the case that no stationary point can be found
in S+a , the primal problem could have more than one global minima. To see this,
we let f ≡ 0, α1 = θ1 = 2, and

A≡ 0, B1 =

[
1 0
0 0

]
, and C1 =

[
0 0
0 1

]
.

In this case, the primal function

5(x, y)= exp
( 1

2 x2
− 2

)
+

1
2

( 1
2 y2
− 2

)2

has two global minimums at (0,−2) and (0, 2) and a local maximum at (0, 0).
While the dual function

5d(τ, σ )=−τ ln τ − τ − 1
2σ

2
− 2σ

does not have a stationary point in S+a . There is however a critical point in the
boundary of S+a , namely ς = (exp(−2), 0). By defining x = G(ς)−1 f , we have
that x = (0, 0).

In order to find a global minimum of 5, we need to introduce the perturbations

An =

[
−

16
n 0
0 − 4

n

]
and fn =

[
2
n
2
n

]
for every n ∈ N.

Then the associated primal and dual functions are

5n(x, y)= exp
( 1

2 x2
− 2

)
+

1
2

( 1
2 y2
− 2

)2
+

1
2

(
−

16
n x2
−

4
n y2)
−

2
n x − 2

n y,

5d
n(τ, σ )=−

1
2

(
4

n2
(
τ − 16

n

) + 4

n2
(
σ − 4

n

))− τ ln τ + τ − 1
2σ

2
− 2τ − 2σ.

Notice that if n= 1 we are in the case presented in Section 4.3. Let us show that for
sufficiently large values of n we can find a stationary point for5d

n in S+a , namely ςn .
Furthermore, by defining xn = G(ςn)

−1 fn , we will have a convergent sequence.
Let us calculate the gradient of 5d

n :

∇5d
n(τ, σ )=

[
−2− ln τ + 2

(nτ−16)2

−σ − 2+ 2
(nσ−4)2

]
.
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Let h(τ ) =−2− ln τ + 2/(nτ − 16)2 and g(σ ) =−σ − 2+ 2/(nσ − 4)2. It is
not difficult to show that there exists a sufficiently large N ∈N such that, if n > N ,

• n · exp
(
−2+ 1

n

)
− 16 and n · exp(−2)− 16 are positive numbers,

• h
(
exp

(
−2+ 1

n

))
=

2(
n · exp

(
−2+ 1

n

)
− 16

)2 −
1
n < 0< h(exp(−2))

=
2

(n · exp(−2)− 16)2
,

• g
( 5.1

n

)
≈−

5.1
n − 0.34710743801< 0< g

( 4.9
n

)
≈ 0.46913580247− 4.9

n .

Based on these results, we know that, for every n > N , ∇5d
n has a station-

ary point ςn = (τ n, σ n) ∈
[
exp(−2), exp

(
−2+ 1

n

)]
×
[ 4.9

n ,
5.1
n

]
. Moreover, since

g(σ n)= 0, it is easy to obtain lim
n→+∞

n · σ n = 5.
Notice also that

G(ςn)=

[
τ n −

16
n 0

0 σ n −
4
n

]
is positive definite. Therefore, the perturbed solution can be obtained as

xn = G(ςn)
−1 fn =

[
2/(n · τ n − 16)

2/(n · σ n − 4)

]
.

Since τ n ∈
[
exp(−2), exp

(
−2+ 1

n

)]
, we have lim

n→+∞
τn = exp(−2). From the fact

that lim
n→+∞

n · σ n = 5, we get

lim
n→+∞

xn =

[
0
2

]
,

which is a solution of 5.
Canonical perturbation method was originally introduced in [Ruan et al. 2010]

for solving nonconvex polynomial minimization problems. This method has been
used successfully in integer programming and network communication (see [Gao
et al. 2012; Wang et al. 2012]).

5. Future research

Some open questions that will be studied in the future are the following:
• As stated in Remark 1, in order to use the canonical dual transformation, a neces-
sary condition is that (P) has a unique solution. Is this also a sufficient condition?
In other words, given (P) such that it has a unique solution, can we find a stationary
point of 5d in S+a ?

• Section 4.4 shows an interesting perturbation method that allows us to solve
a problem when the necessary condition of Remark 1 is not satisfied. Can we
generalize this method and develop an algorithm?
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Appendix A: Some lemmas in matrix analysis

The following results are needed in the proofs of Section 2:

Lemma A1 (singular-value decomposition [Horn and Johnson 1985]). For any
given matrix M ⊂ Rm×n with Rank(M) = r , there exist U ⊂ Rm×m , R ⊂ Rm×n ,
and E ⊂ Rn×n such that

M = URE,

where U and E are orthogonal matrices, and

Ri j =

{
si if i = j and i = 1, . . . , r ,
0 if i 6= j,

where si > 0 for every i = 1, . . . , r .

Lemma A2 [Horn and Johnson 1985]. If G and U are positive-definite matrices
in Rn×n , then G � U if and only if U−1

� G−1.

Lemma A3 [Gao and Wu 2012]. Suppose P , U , and D are three matrices in Rn×n

such that

D =
[

D11 0m×(n−m)

0(n−m)×n 0(n−m)×(n−m)

]
,

where D11 ∈ Rm×m is nonsingular and

P =
[

P11 P12

P21 P22

]
≺ 0 and U =

[
U11 0m×(n−m)

0(n−m)×m U22

]
� 0,

where Pi j and Ui i are appropriate-dimensional matrices for i, j = 1, 2. Then

P + DU Dt
� 0 ⇐⇒ −Dt P−1 D−U−1

� 0.
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NEUTRALITY OF
ECCENTRICALLY COATED ELASTIC INCLUSIONS

XU WANG AND PETER SCHIAVONE

In the analysis of neutral coated circular holes in an isotropic medium, it is well-
known that neutrality to a general class of applied uniform fields can be realized
only by the concentrically coated circle construction. It is of interest to examine
to what degree eccentric circular coatings can be used to achieve effective or
near-neutrality in the presence of a wider and more general class of applied fields.
To this end, we consider the neutrality of a circular elastic inclusion bonded to its
surrounding matrix through N − 2 eccentric circular coatings (N ≥ 3) when the
matrix is subjected to remote nonuniform antiplane shear stresses characterized
by arbitrary polynomials of order M ≤ N − 2. In our design, the first N −M − 1
generalized polarization tensors associated with the N -phase structure vanish.
Our results demonstrate conclusively that for arbitrary applied nonuniform fields,
the stress disturbance in the matrix becomes negligible as N becomes sufficiently
large, indicating that the inclusion can be made “near-neutral” for a given N and
completely neutral as N approaches infinity.

1. Introduction

The idea of a “neutral hole” was initiated by Mansfield [1953] who found that
certain reinforced holes in a uniformly stressed plate do not alter the original stress
field in the uncut body. In other words, the hole shape and corresponding rein-
forcing layer could be designed to make the hole “invisible” to the surrounding
stress field. This idea was later extended to the concept of a “neutral inclusion” in
which the insertion of certain shapes of inclusion into an elastic body causes no
disturbance in the body’s original stress field. In this case, “neutrality” is achieved
by adding one or more specifically designed coatings between the inclusion and
the surrounding body (see [Milton and Serkov 2001; Chen et al. 2002; Schiavone
2003; Mahboob and Schiavone 2005; Vasudevan and Schiavone 2006; Bertoldi
et al. 2007; Benveniste and Miloh 2007; Jarczyk and Mityushev 2012; Wang and

Communicated by Francesco dell’Isola.
MSC2010: primary 74B05; secondary 74M25.
Keywords: neutral inclusion, remote nonuniform loading, multiple coating, Apollonius circles,

generalized polarization tensor.
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Schiavone 2012a; 2012b] for a comprehensive account of fundamental investiga-
tions in this area). This concept of “neutrality” finds significant application in
the design of advanced composite materials and structures (for example, in the
design of implants in biomechanics) but is also topical in that it is often taken to
be equivalent to the modern ideas of “cloaking”, “invisibility” or “stealth” [Milton
et al. 2006; Liu 2010; Ammari et al. 2013a; 2013b] in that the inclusion becomes
“invisible” to the original stress distribution.

Milton and Serkov [2001] showed that, for an isotropic medium, neutrality to
multiple applied uniform fields can be realized only by the concentrically coated
circle construction. This fact has also been observed by Ru [1998]. In the present
paper we intend to show that a circular elastic inclusion with N − 2 eccentric
coatings can be made “almost neutral” to multiple applied nonuniform fields. In
fact, we show that when the matrix surrounding the inclusion is subjected to remote
nonuniform stresses characterized by arbitrary polynomials of order M ≤ N − 2
in the complex variable z, the generalized polarization tensors (GPTs) [Ammari
et al. 2013a] of up to order N − M − 1 vanish on the introduction of the N − 2
eccentric coatings. For a sufficiently large value of N and a relatively low value
of M , the disturbance in the matrix is minimal since only GPTs of orders higher
than N −M−1 exist. As N approaches infinity, there will be no stress disturbance
in the matrix as a result of the cancellation of all GPTs.

2. Design of neutral circular inclusions with multiple eccentric coatings

Let (x1, x2, x3) describe a Cartesian coordinate system in R3. In the theory of
antiplane shear deformations, the out-of-plane displacement w(x1, x2), the stress
function φ(x1, x2), and the stress components σ32(x1, x2) and σ31(x1, x2), can be
expressed more conveniently in terms of an analytic function f (z) of the complex
variable z = x1+ i x2 = r exp(iθ) where r =

√

x2
1 + x2

2 and tan θ = x2/x1, as

µ−1φ+ iw = f (z), σ32+ iσ31 = µ f ′(z), (1)

where µ is the shear modulus of the material. The two stress components can be
expressed in terms of the stress function φ as [Ting 1996]

σ32 = φ,1, σ31 =−φ,2, (2)

where the notation ( · ),s denotes differentiation with respect to xs, s = 1, 2.
We consider a circular elastic inclusion bonded to the surrounding matrix through

N − 2 eccentric circular coatings (Figure 1). Let S1 denote the unbounded matrix,
S2, . . . , SN−1 the N − 2 intermediate coatings, and SN the inner circular inclu-
sion. We assume perfect bonding across the N − 1 eccentric circles L1, . . . , L N−1.
Clearly, the interface Lk is formed by the outer Sk and the inner Sk+1. The center
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Matrix S1

Coating S2 Coating SN−1

Inclusion SN x1L2 LN−2 LN−1L1

x2

Figure 1. A circular elastic inclusion with (N − 2) eccentric cir-
cular coatings.

of the unit circle L1 is at the origin, so that L1, . . . , L N−1 are Apollonius circles
in the sense that, if we introduce the conformal map

z = ω(ξ)=
ξ − a

aξ − 1
, ξ = ω−1(z)=

z− a
az− 1

(a > 1), (3)

then the eccentric circles L1, . . . , L N−1 in the z-plane are mapped onto the N − 1
concentric circles |ξ | = R1, . . . , |ξ | = RN−1 in the ξ -plane, respectively, where
RN−1 > RN−2 > · · ·> R2 > R1 = 1, as shown in Figure 2. It follows from (3) that
(i) the Apollonius circles Lk can be described by

|z− a|
|az− 1|

= Rk,

which implies that the centers of these eccentric circles are all on the real axis;
(ii) z = a in S1 is mapped to ξ = 0, and z = 1/a in SN is mapped to ξ =∞. In
addition, we first assume that the matrix is subjected to remote uniform antiplane
stresses σ∞32 and σ∞31 (it will be seen in the following analysis that the remote
applied stresses can be nonuniform). Throughout the remainder of this paper, the
subscript j or the superscript ( j) will denote the corresponding quantities associ-
ated with S j . For convenience and without loss of generality, we adopt the notation
f (z)= f (ω(ξ))= f (ξ).
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Im

RN−1RN−2R1 2

ξ

Reξ

Figure 2. The mapped ξ -plane.

The analytic function f j (ξ) defined in phase j can be expanded into the conver-
gent Laurent series

f j (ξ)=

∞∑
n=1

[A( j)
n ξ−n

+ B( j)
n ξ n
], (4)

where A( j)
n and B( j)

n are complex constants to be determined (note that we do
not include the constant term (n = 0) in the Laurent expansion since this term
corresponds to a rigid body translation and does not affect the corresponding stress
field). It should be pointed out that this expansion of f j (ξ) for j = 1 is convergent
only for 1/a < |ξ |< 1, and the convergent expression for f1(ξ) in |ξ |< 1 is

f1(ξ)=
C

aξ − 1
+

∞∑
n=1

B(1)n ξ n, |ξ |< 1, (5)

where the complex constant C is determined from the remote uniform stresses as

C =
(a−1
− a)(σ∞32 + iσ∞31 )

µ1
. (6)

Remark 1. Our reasoning in obtaining (5) is as follows. In the physical z-plane,

f1(z)=
σ∞32 + iσ∞31

µ1
z+ f0(z), |z|> 1,



NEUTRALITY OF ECCENTRICALLY COATED ELASTIC INCLUSIONS 167

where f0(z) is analytic everywhere in the matrix, including the point at infinity.
Thus, in the mapped ξ -plane,

f1(ξ)=
C

aξ − 1
+ f0(ξ), |ξ |< 1,

where f0(ξ) is analytic in |ξ |< 1 and can be expanded in a Taylor series. Conse-
quently, (5) can be obtained with the constant term disregarded.

By enforcing the continuity condition of displacement and traction across the
(perfect) interface |ξ | = R j (i.e., φ j = φ j+1, w j = w j+1 on |ξ | = R j ), we arrive at
the recurrence relation[

A( j+1)
n

B( j+1)
n

]
= P ( j)

n

[
A( j)

n

B( j)
n

]
, n = 1, 2, . . . , (7)

where the transfer matrix P ( j)
n is given by

P ( j)
n =

1
1− λ j

[
1 R2n

j λ j

R−2n
j λ j 1

]
, (8)

with λ j being the mismatch parameter defined by

λ j =
µ j −µ j+1

µ j +µ j+1
(|λ j |< 1). (9)

It follows from (7) that[
A(N )n

B(N )n

]
= Sn

[
A(1)n

B(1)n

]
, n = 1, 2, . . . , (10)

where

Sn =

[
S11

n S12
n

S21
n S22

n

]
= P (N−1)

n P (N−2)
n · · · P (2)n P (1)n . (11)

In order to ensure that fN (ξ) is analytic in the region RN−1< |ξ |<∞, including
the point at infinity, we must have B(N )n = 0 (n = 1, 2, . . .). In addition, it can be
easily deduced from (4) and (5) that

A(1)n = Ca−n, n = 1, 2, . . . . (12)

By imposing the above additional conditions on (10), we arrive at

B(1)n =−
C
an

S21
n

S22
n
, n = 1, 2, . . . . (13)
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Thus f1(ξ) defined in the matrix can be uniquely determined as

f1(ξ)=
C

aξ − 1
−C

∞∑
n=1

(
a−n ξ n S21

n

S22
n

)
, (|ξ |< 1). (14)

In order to arrive at a GPT-vanishing structure of order N − 2, the following
N − 2 conditions should be satisfied:

g(k)(a−1)= 0, k = 1, 2, . . . , N−2, (15)

where the superscript (k) denotes the k-th order derivative, and

g(ξ)= f1(ξ)−
C

aξ − 1
. (16)

Remark 2. The conditions given by (15) result in the following asymptotic behav-
ior of f1(z) at infinity:

f1(z)∼=
σ∞32 + iσ∞31

µ1
z+ O(1/zN−1) as |z| →∞,

which indicates that the GPTs up to order N − 2 all vanish.
In view of (14), (15) can be written explicitly as

∞∑
n=1

[
na−2n S21

n

S22
n

]
= 0,

∞∑
n=1

[
n(n− 1)a−2n S21

n

S22
n

]
= 0,

...

∞∑
n=1

[
n(n− 1) · · · (n+ 3− N )a−2n S21

n

S22
n

]
= 0,

(17)

which are independent of the remote uniform stresses characterized by the complex
constant C . In addition, we have the following more general result.

Theorem 1. Equation (17) is also the condition leading to a GPT-vanishing struc-
ture of order N −M − 1 with M ≤ N − 2 when the matrix is subjected to remote
nonuniform stresses characterized by

f1(z)∼=
M∑

n=1

Dnzn
+ O(1/zN−M), M ≤ N − 2, as |z| →∞, (18)

where Dn (n = 1, 2, . . . ,M) are complex constants.
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Remark 3. In writing (18), it has been implied that the GPTs up to the order
N −M − 1 vanish. As N approaches infinity, keeping M finite, the inclusion will
become ideally neutral to arbitrary remote nonuniform stresses.

Proof of Theorem 1. In the region |ξ |< 1, f1(ξ) can be written in the convergent
form

f1(ξ)=

M∑
n=1

Cn

(aξ − 1)n
+

∞∑
n=1

B(1)n ξ n, |ξ |< 1, (19)

where the complex constants Cn can be determined from the nonuniform remote
loading characterized by (18).

Through satisfaction of the continuity conditions of traction and displacement
across all the existing interfaces, f1(ξ) can be finally determined as

f1(ξ)=

M∑
n=1

Cn

(aξ − 1)n

−

∞∑
n=1

[
C1+

M∑
m=2

Cm
(n− 1)(n− 2) · · · (n−m+ 1)

(m− 1)!

]
S21

n

S22
n

ξ n

an , |ξ |< 1. (20)

If we define the function

h(ξ)= f1(ξ)−

M∑
n=1

Cn

(aξ − 1)n
, (21)

the N −2 conditions in (17) will lead to h(k)(a−1)= 0, (k = 1, 2, . . . , N −M−1).
This fact implies that the GPTs up to order N −M − 1 vanish. This completes the
proof. �

If the N − 1 geometric parameters a and R2, R3, . . . , RN−1 are given, (17) can
be considered as a set of N − 2 nonlinear equations for the N − 1 mismatch param-
eters λ1, λ2, . . . , λN−1, which can be solved through iteration. In addition, it can be
shown that if (λ1, λ2, . . . , λN−1) is a solution to (17), then (−λ1,−λ2, . . . ,−λN−1)

is also a solution.
For example, when N = 4, (17) becomes

∞∑
n=1

[
na−2n λ1+ R−2n

2 λ2+ R−2n
3 λ3+ R2n

2 R−2n
3 λ1λ2λ3

1+ R−2n
2 λ1λ2+ R−2n

3 λ1λ3+ R2n
2 R−2n

3 λ2λ3

]
= 0,

∞∑
n=1

[
n(n− 1)a−2n λ1+ R−2n

2 λ2+ R−2n
3 λ3+ R2n

2 R−2n
3 λ1λ2λ3

1+ R−2n
2 λ1λ2+ R−2n

3 λ1λ3+ R2n
2 R−2n

3 λ2λ3

]
= 0.

(22)
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3. Results and discussions

In this section, we will present numerical results for the cases N = 3, N = 4 and
N ≥ 5. It is of interest to note that very simple approximate closed-form solutions
for N = 3 and N = 4 can be obtained which, in turn, can be used to quickly (albeit
roughly) determine the values of the mismatch parameters. For simplicity it is
assumed that the matrix is subjected to only remote uniform stresses (M = 1).

3.1. GPT-vanishing structures of order 1 (N = 3). In the case of N = 3, the
following single nonlinear equation should be solved:

∞∑
n=1

[
na−2n λ1+ R−2n

2 λ2

1+ R−2n
2 λ1λ2

]
= 0. (23)

In view of the fact that R2> 1 and |λ1|, |λ2|< 1, the denominator on the left-hand
side of (23) can be taken as approximately equal to one (i.e., 1+ R−2n

2 λ1λ2 ≈ 1).
Consequently, the following approximate closed-form solution is obtained:

λ1

λ2
≈−

R2
2(a

2
− 1)2

(a2 R2
2 − 1)2

=−R2
0, (24)

where R0 is the radius of the inner circular inclusion. We recall that this is just the
condition for the existence of a neutral three-phase inclusion with two concentric
circular interfaces with radii R0 and 1 (R0 < 1) [Ammari et al. 2013a; Ru 1999].
This implies that if a concentrically single-coated inclusion is neutral to a remote
uniform stress field, the GPT of order 1 of the shifted structure nearly vanishes.
We illustrate in Figure 3 the values of (λ1, λ2) found for four different values of a,
namely a = 1.2, 1.5, 2, 10, with R2 = 1.5. The solid lines are obtained by itera-
tively solving (23), whilst the dashed lines are obtained by using the approximate
solution (24). It is observed that the approximate results are very close to the exact
ones. As a→∞ (i.e., the eccentricity becomes minimal), (24) simply recovers
the exact solution.

3.2. GPT-vanishing structures of order 2 (N = 4). In the case of N = 4, the
equation (22) should be solved iteratively. In addition, the following approximate
closed-form solution can be derived:

If R3 6= R2
2 , we have the approximate solution

λ2 ≈
−c1+

√

c2
1− 4c0c2

2c2
,

λ1 ≈−
(a2
− 1)2(a2 R2

3 − R2
2)

2
[
R2

2(a
2 R2

3 − 1)2λ2+ R2
3(a

2 R2
2 − 1)2λ3

]
(a2 R2

2 − 1)2(a2 R2
3 − 1)2

[
(a2 R2

3 − R2
2)

2+ R2
2 R2

3(a
2− 1)2λ2λ3

] , (25)
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Figure 3. Obtained values of (λ1, λ2) for a = 1.2, 1.5, 2, 10, with
R2 = 1.5.

where

c2 = R4
2 R2

3(a
2
− 1)3(a2 R2

3 − 1)3(R4
2 − R2

3)λ3,

c1 = R2
2(R

2
2 − 1)

[
R6

3(a
2
− 1)3(a2 R2

2 − 1)3λ2
3+ (a

2 R2
3 − 1)3(a2 R2

3 − R2
2)

3],
c0 = R2

3(R
2
3 − 1)(a2 R2

3 − R2
2)

3(a2 R2
2 − 1)3λ3.

(26)
On the other hand, if R3 = R2

2 , we have the approximate solution

λ2 ≈−
λ3 R3(R3+ 1)(a2 R3− 1)3

R3
3(a

2− 1)3λ2
3+ (a

2 R2
3 − 1)3

,

λ1 ≈
λ3 R3

3(a
2
− 1)3

[
R3(a2

− 1)3λ2
3+ (a

2 R2
3 − 1)3

]
(a2 R2

3 − 1)3
[
R3

3(a
2− 1)3λ2

3+ (a
2 R2

3 − 1)3
]

×
R2

3(a
2
− 1)2λ2

3− (a
2 R2

3 − 1)2

(a2− 1)2λ2
3− (a

2 R2
3 − 1)2

.

(27)

We illustrate in Figure 4 the variations of λ1 and λ2 as functions of λ3 for three
values of a, namely a = 1.01, 1.5, 3, with R2 = 1.5, R3 = 2. The solid lines are
the exact results obtained by iteratively solving (22), whereas the dashed lines are
the approximate results found from (25). It is observed from Figure 4 that the
approximate results are quite satisfactory, especially when λ3 < 0.7.
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Figure 4. Variations of λ1 and λ2 as functions of λ3 for a =
1.01, 1.5, 3, with R2 = 1.5, R3 = 2.

3.3. GPT-vanishing structures of order 3 or higher (N ≥ 5). When N ≥ 5, the
solutions can be obtained only by solving (17) iteratively. Listed in Table 1 are
typical results. In performing the calculations, we set the N − 1 geometric param-
eters to a = 1.2 and Rk+1 = 1+ k/(N − 2), (k = 1, 2, . . . , N − 2). It is observed
that λk and λk+1 always have opposite signs.

3.4. Stress disturbance in the matrix. The concept of neutral holes and inclusions
was originally proposed to completely eliminate stress concentrations in the matrix
[Mansfield 1953; Milton and Serkov 2001; Ru 1998]. In our design, however, the
stress disturbance in the matrix cannot be completely avoided due to the existence
of GPTs of orders higher than N −2 when the remote loading is uniform. However,

N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

λ1 5.464× 10−4 4.203× 10−5 4.42 × 10−6 4.289× 10−7 3.613× 10−8 2.221× 10−9

−λ2 0.1075 0.0147 0.0024 3.197× 10−4 3.573× 10−5 2.800× 10−6

λ3 0.6415 0.2041 0.0592 0.0131 0.0022 2.471× 10−4

−λ4 0.8 0.5751 0.3239 0.1225 0.0323 0.0053
λ5 0.5 0.5868 0.3964 0.1720 0.0430
−λ6 0.4 0.5437 0.3979 0.1594
λ7 0.3 0.4445 0.2939
−λ8 0.2 0.2728
λ9 0.1

Table 1. Obtained mismatch parameters for N = 5, 6, 7, 8, 9, 10.
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Figure 5. The stress disturbance σ32/σ
∞

31 along the coating/matrix
interface |z| = 1 on the matrix side for N = 3, 4, 5, 6 when the
matrix is subjected to σ31 6= 0, σ∞32 = 0.

the stress disturbance is expected to be insignificant as N becomes sufficiently
large. In fact, we illustrate in Figures 5 and 6 the stress disturbance along the
coating/matrix interface |z| = 1 on the matrix side for N = 3, 4, 5, 6 when the
matrix is subjected to the loading given by σ∞31 6= 0, σ∞32 = 0. It is observed
from the two figures that, as N increases, the most significant stress disturbance
occurs in a more localized region of θ : θ < 60◦, 40◦ and 20◦ for N = 4, 5 and 6,
respectively. Clearly, when N = 6, the stress disturbance along the whole interface
|z| = 1 is minimal.

4. Conclusions

By adopting the GPT cancellation method proposed in [Ammari et al. 2013a], we
design “near-neutral” circular elastic inclusions with multiple eccentric circular
coatings. When the matrix is subjected to remote nonuniform stress characterized
by (18), the GPTs up to the (N−M−1)-th order are canceled by appropriately
adding N − 2 eccentric coatings between the inclusion and the matrix. Condi-
tion (17) is, in fact, independent of the remote applied nonuniform loading given
by (18). Consequently, our design of an N -phase circular inclusion is “almost
neutral” to the remote nonuniform stresses characterized by any polynomials in z
of order M no greater than N − 2. In order to make the analysis tractable, we
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Figure 6. The stress disturbance σ31/σ
∞

31 − 1 along the coat-
ing/matrix interface |z| = 1 on the matrix side for N = 3, 4, 5, 6
when the matrix is subjected to σ∞31 6= 0, σ∞32 = 0.

assume that all the eccentric circular interfaces Lk (k = 1, 2, . . . , N − 1) are Apol-
lonius circles. Approximate closed-form solutions (24) for N = 3 and (25)–(27)
for N = 4 are obtained. One consequence and potential application of the results
here arises from the finding that multiple closely spaced and eccentrically coated
inclusions can be inserted into a nonuniformly stressed finite matrix with minimal
stress disturbance in the matrix.
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RELATIVE CAUCHY EVOLUTION FOR THE VECTOR
POTENTIAL ON GLOBALLY HYPERBOLIC SPACETIMES

MARCO BENINI

The dynamics of the electromagnetic vector potential is analyzed in full detail
in view of the principle of general local covariance of Brunetti, Fredenhagen
and Verch. Exploiting this result, the relative Cauchy evolution for the vector
potential is introduced and its relation with the energy-momentum tensor is es-
tablished, extending the well known results for Klein–Gordon and Dirac fields.

1. Introduction

The principle of general local covariance of Brunetti, Fredenhagen and Verch
[Brunetti et al. 2003] provides a very satisfactory framework to deal with quantum
field theory on curved spacetimes. The success of the axiomatic approach of gen-
eral local covariance relies on its capability to establish how a quantum field theory
is expected to behave on different spacetimes and in particular what kind of relation
one should expect between the observables defined on two spacetimes when one of
them is isometrically embedded into the other. An effective way being available to
relate via embeddings quantum field theories on different curved spacetimes, the
way is paved to tackle the question of the sensitivity of the model under small fluc-
tuations of the background geometry. This is what the relative Cauchy evolution is
meant for, namely to provide information about the modification induced on any
observable by a small change in the metric of the background spacetime where the
dynamics of the quantum field takes place.

The core idea of the relative Cauchy evolution can be traced back to the fact that
a normally hyperbolic equation which rules the dynamics of a field on a globally
hyperbolic spacetime admits a well-posed initial value problem; see for example
[Bär et al. 2007, Section 3.2]. This means that all information about the field is
determined by suitable initial data specified on a Cauchy surface, thus enabling us
to sketch the behavior of the relative Cauchy evolution in terms of initial data only.
One can consider a perturbation of the spacetime metric supported in a compact
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region, say K , and a set of initial data on a Cauchy surface lying in the past of K .
Propagating such initial data to a Cauchy surface in the future of K both in the
presence of the metric perturbation and without it, one is able to compare the two
different outcomes of the dynamical evolution (one when the background geometry
is perturbed and the other when this is not the case). This procedure allows one to
quantify the effect induced on the dynamics of the field by suitable modifications
of the background geometry.

The aim of the present paper is to study the relative Cauchy evolution for the
gauge field theory of the electromagnetic vector potential. Given a globally hyper-
bolic spacetime, the dynamics of the field A ∈�1(M) is ruled by the nonhyperbolic
equation δ d A= 0, d and δ being respectively the differential and the codifferential
defined for forms over M . The gauge symmetry of the vector potential is specified
by the equivalence relation

A ∼ A′ ⇐⇒ ∃χ ∈ C∞(M) : A′ = A+ dχ .

Although the sketch of the relative Cauchy evolution presented above cannot be
directly applied to the case of interest, the dynamics being nonhyperbolic, we can,
following [Dimock 1992; Fewster and Pfenning 2003; Pfenning 2009; Dappiaggi
2011; Sanders et al. 2014], exploit the gauge symmetry to recover hyperbolicity
in the gauge-fixed dynamics. This eventually leads us to the fulfillment of (almost
all) requirements of the generally covariant locality principle. In particular, we are
allowed to introduce the relative Cauchy evolution for the vector potential A and
analyze its properties, the main result consisting of the extension of a fact which
is known to hold for Klein–Gordon and Dirac fields [Brunetti et al. 2003; Sanders
2010], namely the relation between the relative Cauchy evolution of a field and its
quantized energy-momentum tensor.

Such a relation between the relative Cauchy evolution and the quantized energy-
momentum tensor is relevant when one is dealing with the semiclassical Einstein
equation (see [Wald 1994, Section 4.6] for an introduction to this topic) in the
presence of a quantized electromagnetic vector potential. As a matter of fact, in
this case one is supposed to equal the Einstein tensor with the expectation value of
the quantized energy-momentum tensor of electromagnetism in order to account
for the back reaction effect on the spacetime metric induced by the presence of a
quantized electromagnetic field, whose dynamics is in turn affected by the space-
time geometry. Fortunately, one can access the behavior of the quantized energy-
momentum tensor in relation to suitable changes of the background metric by
means of the relative Cauchy evolution. Therefore an important step towards a
consistent approach to the solution of the semiclassical Einstein equation in the
presence of a quantized electromagnetic field consists of a detailed analysis of the
relative Cauchy evolution for the electromagnetic field as well as of its relation
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with the quantized energy-momentum tensor. This fact motivates our interest in
analyzing the relative Cauchy evolution of the vector potential.

The paper is organized in the following way: Section 2 is intended to provide
the background information and notation which are needed in the rest of the paper.
Some aspects of Lorentzian geometry are briefly discussed in Section 2A, focus-
ing on global hyperbolicity in particular. A short collection of the most relevant
properties of Green-hyperbolic linear differential operators follows in Section 2B.
We recall the notion of a locally covariant quantum field theory and of its relative
Cauchy evolution in Section 2C. Section 2 is completed with the description of a
quantization procedure based on the Borchers–Uhlmann construction and recalling
the notion of an algebraic state. In Section 3 we analyze the dynamics of the vector
potential providing a convenient characterization of the space of solutions for the
equation δdA = 0. This leads in Section 4 to the assignment of a suitable space of
observables for the vector potential and its quantization. This section ends recalling
the definition of a Hadamard state for the vector potential, together with references
to the literature where positive results about the existence of such a state can be
found. The core of the paper is Section 5, where the relative Cauchy evolution
for the vector potential is computed and its relation with the quantized energy-
momentum tensor is established, thus extending a result which was already known
to hold for Klein–Gordon [Brunetti et al. 2003] and Dirac fields [Sanders 2010].

2. Preliminaries

In this section we collect the background material and, at the same time, we intro-
duce some notation needed later. First, we will briefly recall few notions about
Lorentzian geometry focusing the attention on globally hyperbolic spacetimes,
whose physical relevance is related to initial value problems for hyperbolic linear
partial differential equations. As a matter of fact, globally hyperbolic spacetimes
provide a sufficiently general setting for proving existence and uniqueness theo-
rems for solutions of partial differential equations of hyperbolic type once proper
initial data are given; see [Bär et al. 2007, Chapter 3]. This leads us to the second
part of the present section, which is devoted to differential operators. We will focus
the attention on the class of Green-hyperbolic operators, being characterized by the
existence of retarded and advanced Green functions. We will take the chance to
recollect from the literature few fundamental results, which will turn out to be
useful throughout the rest of the paper. In the third part of this section, we first
provide the framework for the relative Cauchy evolution, namely we introduce
general local covariance following [Brunetti et al. 2003] and in particular the
time slice axiom, and then we define it using a simple geometrical construction.
Since in the end we are interested in the quantization of our model, we recall an
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algebraic procedure to assign canonical commutation relations, we define states
from an algebraic perspective and we make contact with the usual Hilbert space
representation of quantum field theory via the Gelfand–Naimark–Segal theorem.

2A. Lorentzian geometry. We recall here few basic notions of Lorentzian geom-
etry, global hyperbolicity in particular, and we take the chance to introduce some
notation. For a detailed analysis of these topics, the reader should refer to the
literature; see, e.g.,[Beem et al. 1996; Bär et al. 2007; Waldmann 2012].

In the following all manifolds and functions between manifolds are considered
to be smooth, unless otherwise stated. Sometimes we will also restrict ourselves to
manifolds of finite type, namely manifolds admitting a finite good cover. This will
enable us to fully recover full Poincaré duality; see [Bott and Tu 1982, Chapter 1,
Section 5].

A Lorentzian manifold (M,g,o) is a d-dimensional, orientable, connected, second-
countable, Hausdorff manifold endowed with a Lorentzian metric g and a choice
of orientation o. We adopt the convention −+ · · ·+ for the signature of g. This
structure already enables us to distinguish among timelike, lightlike (all together
causal) and spacelike tangent vectors 0 6= v ∈ Tx M at a point x ∈M according to the
negative, null or positive value of g(v, v). Moreover, the choice of an orientation
o, together with the metric g, uniquely identifies a volume form vol on M , which
is used to integrate functions defined M .

In order to account for the dynamical evolution of a physical system, proper
notions of future and past are required. This is achieved taking a time-orientable
Lorentzian manifold and fixing a time-orientation specified by a timelike vector
field t, which is used as a reference to distinguish between future- and past-directed
causal tangent vectors v according to the sign of g(t, v) (future for negative val-
ues). The quadruple (M, g, o, t) defines a spacetime, where the notion of causal
future/past of O ⊆ M , J±M(O), is available. J±M(O) is defined as the set of points
in M that can be reached via a future-/past-directed causal curve in M emanating
from O , namely a curve whose tangent vector field is everywhere causal and future-
/past-directed. If we take into account only timelike curves in the last definition, we
obtain the chronological future/past of O , I±M(O). With the notion of causal future
and past at hand, we can characterize subregions of M which are compatible with
the causal structure of (M, g, o, t), as well as maps between spacetimes preserving
causal structures. Specifically, a region S ⊆ M is called causally compatible pro-
vided that J±S (x)= J±M(x)∩ S regardless of the choice of x ∈ S.1 Furthermore, a
causal embedding f between the spacetimes (M1, g1, o1, t1) and (M2, g2, o2, t2)

is defined as an embedding f : M1→ M2 such that f ∗g2 = g1, which preserves

1Note that in the definition of J±S (x) only curves which never leave S are taken into account.
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both the orientations and the time-orientations, whose image f (M1) is open and
causally compatible as a subset of M2.

In order to provide appropriate initial data for Cauchy problems a Cauchy sur-
face is needed; see, for example, [Bär et al. 2007, Section 3.2]. This is a subset 6 of
a spacetime (M, g, o, t) which meets exactly once each inextensible future-directed
timelike curve. Cauchy surfaces provide a definition of globally hyperbolic space-
times. As a matter of fact, a spacetime (M, g, o, t) is called globally hyperbolic
when it admits a Cauchy surface. In the following we will denote globally hyper-
bolic spacetimes with M , the metric g, the orientation o, and the time-orientation t

being understood.
For later purposes, we introduce here some nomenclature for spacetime sub-

regions. Following [Bär 2013; Sanders 2013], we call a subset S of a globally
hyperbolic spacetime M :

• spacelike-compact (sc) if it is closed and there exists K ⊆ M compact such
that S ⊆ JM(K )= J+M(K )∪ J−M(K );

• past-compact / future-compact (pc / fc) if S ∩ J∓M(K ) is compact for each com-
pact subset K of M .

If a region S ⊆ M is both pc and fc, we call it timelike-compact (tc). If it is
both pc / fc and sc, we say that it is strictly past-compact / strictly future-compact
(spc / sfc).

2B. Green-hyperbolic differential operators. Following the definitions in [Bär
and Ginoux 2012a; 2012b; Bär 2013], this is a class of linear differential operators
admitting retarded and advanced Green functions on globally hyperbolic space-
times. This class includes, of course, all wave operators, such as the d’Alembert
operator �∇ = gµν∇µ∇ν defined out of any connection ∇ on a vector bundle, but
from a physical perspective it has the advantage of encompassing other relevant
cases, such as the Dirac and Proca equations.

Here we briefly review the definitions of retarded and advanced Green functions.
At the same time we recall few fundamental results for the so-called causal prop-
agator. For a detailed discussion, as well as proofs of the forthcoming statements,
the reader may refer to the papers just cited, as well as [Bär et al. 2007]. A review,
with some physically relevant examples, is available in [Benini et al. 2013].

Definition 2.1. Let V and W be vector bundles over a globally hyperbolic space-
time M and consider a linear differential operator P : 0(V ) → 0(W ) defined
between the corresponding spaces of sections. We call retarded/advanced Green
operator for P a linear map G± :0c(W )→0(V ) such that the following conditions
hold for each σ ∈ 0c(W ) and τ ∈ 0c(V ):

PG±σ = σ , G±Pτ = τ , supp(G±σ)⊆ J±M(supp(σ )). (2-1)
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If we endow V with a nondegenerate inner product on the fibers, denoted by
〈 · , · 〉V : V × V → M × R, and taking into account the volume form vol of M ,
we can introduce an inner product ( · , · )V on the corresponding space of sections.
This is defined according to

(σ, τ )V =

∫
M
〈σ, τ 〉V vol, (2-2)

for each σ, τ ∈0(V )with compact overlapping supports, namely such that supp(σ )∩
supp(τ ) is compact.

Given a linear differential operator P : 0(V )→ 0(W ) as in Definition 2.1 and
assuming that both V and W are endowed with nondegenerate inner products, we
can introduce the formal adjoint P∗ : 0(W )→ 0(V ) of P by setting

(P∗σ, τ)V = (σ, Pτ)W , (2-3)

for each σ ∈ 0(W ) and τ ∈ 0(V ) with compact overlapping support. We are now
ready to define linear differential operators of Green-hyperbolic type.

Definition 2.2. Let V,W be vector bundles over a globally hyperbolic spacetime
M endowed with nondegenerate inner products. A linear differential operator
P : 0(V )→ 0(W ) is of Green-hyperbolic type if it admits retarded and advanced
Green operators, together with its formal adjoint P∗ : 0(W )→ 0(V ).

The fact that P∗ is the formal adjoint of P entails a relation between the corre-
sponding Green functions:

(G∗
±
σ, τ)W = (σ,G∓τ)V , (2-4)

for each σ ∈ 0c(V ) and τ ∈ 0c(W ). As a consequence, retarded and advanced
Green operators for both P and P∗ are unique.

Moreover, Green functions for Green-hyperbolic operators admit unique contin-
uous extensions to larger spaces of sections; see [Bär 2013, Section 3] and [Sanders
2013, Section 5]. With a slight abuse of notation, we denote with G± also the
extended Green operators for P:

G+ : 0pc(W )→ 0(V ), G− : 0fc(W )→ 0(V ), (2-5)

the subscripts “pc” and “fc” referring to the supports of sections, which are past-
compact in the first case and future-compact in the second; see Section 2A. Ex-
tended Green operators share the same properties of the original ones, but in a
broader sense: For each σ ∈ 0pc(W ) and τ ∈ 0pc(V ), we have

PG+σ = σ , G+Pτ = τ , supp(G+σ)⊆ J+M(supp(σ )). (2-6)
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Replacing pc and + with fc and −, we get the properties of the extended Green
function G−. Similarly, the Green operators G∗

±
for the formal adjoint P∗ admit

unique extensions.
Introducing the causal propagator G = G+−G− : 0c(W )→ 0(V ) for a Green-

hyperbolic operator P : 0(V )→ 0(W ) as the difference between the retarded and
the advanced Green operators and taking into account the support properties of
Green operators (see Definition 2.1), we realize that G maps to 0sc(V ), the space
of sections with spacelike-compact support. We get the following exact sequence
of vector spaces:

0−→ 0c(V )
P
−→ 0c(W )

G
−→ 0sc(V )

P
−→ 0sc(W )−→ 0 . (2-7)

The proof of this fact easily follows from (2-6) and can be found, e.g., in [Bär
et al. 2007, Section 3.4], except for surjectivity of P : 0sc(V )→ 0sc(W ), which
is shown by the following argument; see also [Khavkine 2014b, Proposition 2.1].
Given τ ∈ 0sc(W ) and taking a partition of unity {χ+, χ−} on M such that χ+ = 1
in a past-compact region, while χ− = 1 in a future-compact one, we deduce that
supp(χ+τ) is strictly past-compact, while supp(χ−τ) is strictly future-compact.
Exploiting the extended Green operators, we are able to introduce a section

σ = G+(χ+τ)+G−(χ−τ) ∈ 0sc(V )

such that Pσ = τ . This is a direct consequence of (2-6).
An exact sequence similar to (2-7) holds true for the causal propagator G∗ of

the formal adjoint P∗ as well.
Extended Green operators provide also an extension of the causal propagator

G : 0tc(W )→ 0(V ). Minor modifications to the proof of (2-7) give the following
exact sequence:

0−→ 0tc(V )
P
−→ 0tc(W )

G
−→ 0(V )

P
−→ 0(W )−→ 0 . (2-8)

This sequence is particularly useful to characterize the space of solutions to the
equation Pσ = 0 for σ ∈ 0(V ), that is to say ker(P), the kernel of P . As a matter
of fact, (2-8) entails that G induces an isomorphism from 0tc(W )/P(0tc(V )) to
ker(P).

Following [Bär et al. 2007, Section 4.3], one can also relate Green operators over
different globally hyperbolic spacetimes provided that the corresponding differen-
tial operators are related by vector bundle maps covering a causal embedding be-
tween the bases. Specifically, suppose we are given vector bundle maps C : V1→ V2

and D : W1 → W2 preserving the inner products of the relevant vector bundles
and which cover a causal embedding f : M1→ M2 between globally hyperbolic
spacetimes. Exploiting invertibility of vector bundle maps when restricted to a
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fiber, we can define maps between spaces of sections:

C0
: 0(V2)→ 0(V1) , σ2 7→ C−1

◦ σ2 ◦ f , (2-9)

C0c : 0c(V1)→ 0c(V2) , τ1 7→ C ◦ τ1 ◦ f −1 , (2-10)

and similarly for D. Furthermore, consider Green-hyperbolic differential operators
Pi :0(Vi )→0(Wi ), i ∈ {1, 2}, such that P1C0

= D0P2. This simply means that C
and D are compatible with the differential operators P1 over M1 and P2 over M2.
Denoting the retarded/advanced Green operators for Pi with Gi ± :0c(Wi )→0(Vi ),
we can introduce H1± = C0G2±D0c : 0c(W1)→ 0(V1) and compare it with G1±.
Exploiting the fact that f is a causal embedding, it is easy to check that H1±

fulfills the requirements in Definition 2.1, hence it is a retarded/advanced Green
operator for P1. By uniqueness, we conclude that H1± = G1±. Therefore, we have
established a relation between G1± and G2±, namely

C0G2±D0c = G1± . (2-11)

2C. General local covariance. We recall here the definition of a locally covariant
quantum field theory according to [Brunetti et al. 2003] and briefly provide some
motivation for this axiomatic approach to quantum field theory on curved space-
times. This requires some basic notions coming from category theory, which can
be found, e.g., in [MacLane 1971, Chapter 1].

We first introduce the relevant categories. As a source, we take a category
GHyp having globally hyperbolic spacetimes M as objects and causal embeddings
f : M → N as morphisms; see Section 2A. This category provides the physical
background where it is possible to sensibly discuss field theory, essentially be-
cause objects in this category possess a structure which is rich enough to make
sense of initial value problems for hyperbolic partial differential equations, while
morphisms are sufficiently well-behaved to allow us to relate Cauchy problems
defined on different objects; see the end of Section 2B. The target category Alg is
an algebraic one. Objects are unital ∗-algebras and morphisms are unit-preserving
∗-homomorphisms. Originally, morphisms in Alg where required to be injective,
however we give up this assumption for reasons which will be clear later on. Ob-
jects in Alg are interpreted as the algebras of observables of a quantum field theory,
while morphisms provide relations between different algebras arising from causal
embeddings between globally hyperbolic spacetimes.

Definition 2.3. A locally covariant quantum field theory (LCQFT) is a functor
A : GHyp→ Alg fulfilling both causality and the time slice axiom.

Causality axiom: For each f1 : M1 → N and f2 : M2 → N in GHyp such that
f1(M1) ∩ JN ( f2(M2)) = ∅, we have [A( f1)a1,A( f2)a2] = 0 for each a1 ∈

A(M1) and a2 ∈A(M2).
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Time slice axiom: For each f : M→ N in GHyp such that f (M) includes a space-
like Cauchy surface for N , A( f ) :A(M)→A(N ) is an isomorphism in Alg.

The functor A is interpreted in the following way: for each spacetime M , A

assigns an algebra of observables A(M) defining the quantum field theory on M .
Furthermore, whenever we have a causal embedding f : M → N , A provides a
∗-homomorphism A( f ) relating observables on the spacetime M to their counter-
parts on N .

The original restriction to injective morphisms in Alg (not considered here) was
meant to interpret globally hyperbolic subregions of a given spacetime as subsys-
tems at the algebraic level (this property is often called isotony). Actually, even
for those examples where the requirement of injectivity is violated [Dappiaggi
and Lang 2012; Sanders et al. 2014; Benini et al. 2014a], one can recover the
Haag–Kastler axioms [Haag and Kastler 1964; Dimock 1980; Benini et al. 2013]
(and their interpretation in terms of subsystems) regarding a fixed spacetime as the
full system and regions of this spacetime as subsystems; see [Benini et al. 2014a,
Section 5].

As we will see later, injectivity does not hold in the case of the vector potential
too. For this reason in the present context we refrain from requiring injectivity for
the morphisms in Alg.

Causality entails that observables in causally disjoint regions can be tested inde-
pendently. This condition implements the requirement that no physical information
can propagate faster than light, hence a measurement localized in some region
cannot affect other measurements which are localized in causally disjoint regions.

To conclude, the time slice axiom can be interpreted as a statement about the
content of the algebra of observables on a given spacetime. It means that all observ-
ables on a given spacetime N can be equivalently described by taking a globally
hyperbolic neighborhood M of any spacelike Cauchy surface in N . This behavior
mimics the one of an initial value problem, where each solution is completely
determined by its values in the vicinity of some spacelike Cauchy surface.

For the last part of this subsection we focus the attention on the relative Cauchy
evolution. For a locally covariant quantum field theory, such a construction is
made possible by the time slice axiom. The notion was introduced in [Brunetti
et al. 2003, Section 4], where its relation with the quantized energy-momentum
tensor was explicitly computed in the case of the Klein–Gordon field.

Suppose a locally covariant quantum field theory A : GHyp → Alg is given.
Exploiting the time slice axiom, one can define the relative Cauchy evolution. We
follow here the approach of [Fewster and Verch 2012, §3.4], where the construction
presented below is described in full detail.

Given a globally hyperbolic spacetime (M, g, o, t), we introduce the set of hy-
perbolic perturbations hp(M) of M as the set of compactly supported symmetric
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covariant 2-tensors h on M such that gh = g+ h is a time-orientable Lorentzian
metric on M and (M, gh, o, th) is a globally hyperbolic spacetime, where th is the
unique time-orientation for gh agreeing with the original time-orientation t outside
supp(h).

Remark 2.4. As shown in [Beem et al. 1996, Section 7.1], hp(M) contains an
open neighborhood of the zero section in the space of compactly supported covari-
ant symmetric 2-tensors endowed with the test function topology. In particular it
makes sense to endow hp(M) with the topology induced as a subset of the space
of compactly supported covariant symmetric 2-tensors.

Given a globally hyperbolic spacetime M and a perturbation h ∈ hp(M), we
indicate with M̃ the globally hyperbolic spacetime obtained perturbing the metric
of M as above. Denoting with K the support of h, we introduce two globally
hyperbolic spacetimes M± = M \ J∓M(K ), which will act as intermediaries between
M and M̃ at the algebraic level, making it possible to account for the effect of the
metric perturbation h on the space of observables A(M) associated to the original
spacetime.

The construction proceeds observing that M± can be causally embedded in both
M and M̃ according to the following diagram:

M

M−

i−
==

j−   

M+

i+
aa

j+~~

M̃

(2-12)

This construction is pictorially represented in Figure 1. Spacelike Cauchy surfaces
for M± are spacelike Cauchy surfaces for M and M̃ too, as it can be checked
directly from the definition of a Cauchy surface. Therefore the causal embeddings
i± and j± fulfill the hypotheses in the statement of the time slice axiom, hence,
applying the functor A to the diagram in (2-12), we get isomorphisms in Alg. This
fact gives us the opportunity to define a special automorphism of A(M), namely
the relative Cauchy evolution associated to the perturbation h ∈ hp(M):

Rh =A(i−)A( j−)−1A( j+)A(i+)−1
:A(M)→A(M). (2-13)

Rh is interpreted as the automorphic action induced by the metric perturbation h
on the space of observables A(M), which is assigned to the globally hyperbolic
spacetime M .

In some sense, the relative Cauchy evolution provides the feedback at the level of
observables induced by a modification of the metric localized in a compact region.
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M Σ+

Σ′

+

Σ′

−

Σ−

M̃

K

Σ+

Σ′

+

Σ′

−

Σ−

M+

J−

M
(K)

Σ+

Σ′

+

M−

J+

M
(K)

Σ′

−

Σ−

i+i−

j+j−

Figure 1. Pictorial representation of the globally hyperbolic space-
times involved in the definition of the relative Cauchy evolution.

This is realized via M± in the following way. An observable on M is mapped to M̃
via M+ exploiting the time slice axiom. In M̃ the observable is propagated through
the region where the metric is perturbed, hence it is affected by the perturbation
itself. This operation is performed in order to go back to the original spacetime
M via M−, instead of following the same path in the opposite direction via M+
(which leads to a trivial result). Once back to the unperturbed spacetime M , one
can compare the original observable with the one given by the relative Cauchy
evolution in order to evaluate the effect of the metric perturbation.

2D. ∗-algebras and states. As stated in the previous subsection, locally covariant
quantum field theories are functors taking values in an appropriate category of
∗-algebras.

However, as we will see in the case of the vector potential, such a functor can
be obtained quantizing a classical analogue of a locally covariant quantum field
theory. This operation is performed introducing a quantization functor.

For the case we are interested in, we use a Alg-valued quantization functor Q

defined on the category PSym of presymplectic spaces. Objects of this category are
pairs (V, σ ), where V is a vector space and σ is a presymplectic form on V , that is
to say a (possibly degenerate) antisymmetric bilinear form on V ; while morphisms
L : (V1, σ1)→ (V2, σ2) are linear maps L : V1→ V2 preserving the presymplectic
structures σ1 and σ2, namely such that σ2(Lv, Lv′)= σ1(v, v

′) for each v, v′ ∈ V1.
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Given a presymplectic space (V, σ ), we define a unital ∗-algebra Q(V, σ ) using
the Borchers–Uhlmann construction ([Borchers 1962; Uhlmann 1962]; see also
[Brunetti et al. 2003, §2.6] or [Benini et al. 2014c, Appendix A]). To each element
v ∈ V , we assign a hermitian symbol φ(v) = φ(v)∗. Then we take the unital ∗-
algebra F freely generated over the field C by the symbols φ(v), v ∈ V , and 1, the
unit of the resulting algebra F . Singling out the ∗-ideal generated by elements of
the form

φ(av+ bw)− aφ(v)− bφ(w) , v,w ∈ V , a, b ∈ C , (2-14)

φ(v)φ(w)−φ(w)φ(v)− iσ(v,w)1 , v, w ∈ V , (2-15)

from the freely generated ∗-algebra F , we get Q(V, σ ), the algebra of canonical
commutation relations associated to the presymplectic space (V, σ ).

Remark 2.5. Note that (2-14) entails linearity of the implicitly defined quantiza-
tion map

φ : (V, σ )→ Q(V, σ ) , v 7→ φ(v), (2-16)

while (2-15) is used to enforce the usual canonical commutation relations for
bosonic field theories, which is also the case for the vector potential of electro-
magnetism.

A morphism L : (V1, σ1)→ (V2, σ2) induces a unit-preserving ∗-homomorphism
at the level of the freely generated ∗-algebras. This is specified on generators by
setting φ(v1) 7→ φ(Lv1) for v1 ∈ V1, and 11 7→ 12. The obtained ∗-homomorphism
naturally descends to the quotients by the ∗-ideals generated by (2-14) and (2-15);
therefore we get a morphism Q(L) : Q(V1, σ1)→ Q(V2, σ2) in Alg.

One can easily check that Q : PSym → Alg is a covariant functor, namely
Q(id(V,σ )) = idQ(V,σ ) for each object (V, σ ) in PSym and Q(L ′L) = Q(L ′)Q(L)
for each pair of composable morphisms L , L ′ in PSym.

Remark 2.6. No topological information has been taken into account in the present
construction. Actually, endowing a presymplectic space (V, σ ) with a topology
(coherently, the presymplectic form σ has to be continuous), one can consider on
the ∗-algebra Q(V, σ ) the topology induced by the construction above. The freely
generated algebra F is a direct limit; therefore it carries the topology canonically
induced from that of V , thus becoming a topological ∗-algebra. That done, one
should consider the quotient by the topological closure of the ∗-ideal generated by
(2-14) and (2-15) in order to get a topological ∗-algebra Q(V, σ ).

Let us mention that one might also adopt other quantization procedures, leading
to much more regular algebras such as C∗-algebras. This works even in the case
of arbitrary presymplectic groups; see [Manuceau et al. 1973].
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A ∗-algebra is not enough for the physical description of a quantum field theory.
One needs also an algebraic notion of state in order to evaluate the expectation
value of an observable.

Definition 2.7. A state ω on a unital ∗-algebra A is a normalized positive linear
functional on A, namely ω : A→ C is a linear map such that ω(a∗a)≥ 0 for each
a ∈ A and ω(1)= 1.

A detailed analysis about algebraic states and their properties in relation to quantum
field theory can be found, e.g., in [Bratteli and Robinson 1987; Bär et al. 2007; Bär
and Becker 2009]. We would like to stress only one feature of algebraic states, that
is the capability of reconstructing the usual Hilbert space representation of a quan-
tum field theory exploiting the Gelfand–Naimark–Segal (GNS) theorem. Here we
briefly recall this construction for a ∗-algebra without paying attention to topology.
Some details for the case of topological ∗-algebras can be found in [Benini et al.
2013], while for the richer case of C∗-algebras see the references mentioned above.

Theorem 2.8. Let A be a ∗-algebra and consider a state ω on A. Then there exist
a Hilbert space H , a dense subspace D ⊆ H , a vector � ∈ D with norm 1 and
a ∗-representation π of A by (possibly unbounded) linear maps on H such that
π(A)� = D and 〈�,π(·)�〉 = ω, where 〈 · , · 〉 denotes the inner product on H.
Moreover, the triple (D, π,�) with the properties mentioned above, called a GNS
triple, is unique up to unitary equivalence.

Proof. It is possible to define a positive semidefinite sesquilinear form on A (here
regarded as a vector space only) exploiting positivity of the state:

〈 · , · 〉 : A× A→ C , (a, b) 7→ ω(b∗a).

Yet, 〈 · , · 〉 is degenerate if N = {a ∈ A : ω(a∗a) = 0} 6= {0}. Hermiticity follows
from the fact that ω((a + λb)∗(a + λb)) ≥ 0 is a real number for each a, b ∈ A
and λ ∈ C (choose λ= 1 and λ= i). In particular, a Cauchy–Schwarz inequality
for 〈 · , · 〉 can be established, namely |〈a, b〉|2 ≤ 〈a, a〉〈b, b〉 for each a, b ∈ A. We
deduce that 〈a, a〉 = 0 entails 〈a, b〉 = 0 for each b ∈ A. Therefore,

N = {a ∈ A : 〈a, b〉 = 0, ∀b ∈ A}

is a vector subspace of A and we can consider the vector space D = A/N . By
definition of N , the form 〈 · , · 〉 descends to the quotient D as a positive definite
sesquilinear form. Thus D becomes a pre-Hilbert space. We denote its completion
with H , which is a Hilbert space.

Notice that N is left-invariant, namely aN ⊆ N for each a ∈ A. This follows
from 〈an, b〉 = ω(b∗an) = 〈n, a∗b〉 = 0 for each a, b ∈ A and n ∈ N . This fact
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makes it possible to represent elements of A by linear maps on H :

π : A→ L(H) , π(a)[b] = [ab] , ∀a, b ∈ A .

It is easy to check the identities π(1)= idH and π(ab)= π(a)π(b). Furthermore,
〈[a∗b], [c]〉 = 〈[b], [ac]〉 entails that π(a∗) defines the adjoint of π(a), thus proving
that π is a ∗-representation of A on H .

The unit 1 ∈ A defines a distinguished vector � = [1] ∈ H of norm 1, which
allows us to reconstruct the algebraic state, 〈�,π(a)�〉 = ω(a) for each a ∈ A.
Moreover, π(A)�= D by definition.

Suppose that another triple (D′, π ′, �′) satisfying the same properties is given.
We define U : D → D′ by Uπ(a)� = π ′(a)�′ for each a ∈ A. The following
identity, which holds true for each a, b ∈ A, entails that U is well-defined as a
linear map and preserves the scalar product:

〈π ′(a)�′, π ′(b)�′〉′ = ω(b∗a)= 〈π(a)�, π(b)�〉 .

In particular, this entails that U is bounded and thus it has a unique extension to the
completions. In this way, we obtain U : H → H ′, which is linear and continuous.
Similarly, one can define V : D′→ D as Vπ ′(a)�′ = π(a)� for each a ∈ A. Then,
V has the same properties as U . In particular, it preserves the scalar products and it
admits a unique linear and continuous extension V : H ′→ H . From the definitions
of U and V , it is easy to check that V is the inverse of U on the dense subspaces
D and D′; hence the same is true everywhere on H and H ′. We conclude that
U : H → H ′ is a unitary equivalence such that Uπ(·)= π ′(·)U . �

Remark 2.9. Even though the GNS construction can be carried out for ∗-algebras
without any topology or taking into account a noncontinuous state, it turns out that
operators representing elements of the ∗-algebra might be unbounded. This is not
the case for more regular algebras (such as C∗-algebras) and continuous states.

Algebraic states provide the correct tool to evaluate expectation values of quan-
tum observables. A quite large number of states is available for the algebra of
a quantum field theory, yet not all of them exhibit a reasonable behavior from a
physical perspective. A good criterion to select physically sensible states might be
to mimic the properties shared by states for quantum field theories on Minkowski
spacetime. Just to mention the most prominent states in this context, one encoun-
ters the vacuum, associated multi-particle states, coherent states and thermal equi-
librium states as well. All these states share a peculiar behavior at very short
distances, which plays a central role in the construction of Wick polynomials
(which, in turn, provide an essential tool both to define physical quantities such
as the quantized energy-momentum tensor and to discuss interacting models in a
perturbative fashion). Therefore such short distance behavior seems to be vital for
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quantum field theory on Minkowski spacetime. An ultraviolet behavior of this kind
is mathematically described by the so-called Hadamard condition. Fortunately, this
condition on the high frequency part of the 2-point correlation function associated
to a state has a natural counterpart on curved spacetimes, even though there is
no coordinate independent notion of the Fourier transform. Seminal papers about
this topic are [Radzikowski 1996a; 1996b], where tools from microlocal analysis
[Hörmander 2003, Chapter 8] were employed in order to circumvent the lack of
a good notion of Fourier transform. Since then, several techniques to construct
Hadamard states on globally hyperbolic spacetimes for various field theoretical
models were developed. We refer the reader to the very rich literature cited in
[Benini et al. 2013, §4.3], where a concise review of the Hadamard condition, as
well as a rich collection of distinguished examples of Hadamard states, can be
found.

3. Dynamics for the vector potential

In this section we describe the classical field theory of the electromagnetic vector
potential over a d-dimensional globally hyperbolic spacetime M . An approach
similar to the one presented below can be found in [Fewster and Pfenning 2003;
Dappiaggi 2011; Benini 2014].

The relevant vector bundles for this model are the exterior tensor powers
∧k T ∗M

of the cotangent bundle T ∗M . For each k ∈N,
∧k T ∗M can be canonically endowed

with a nondegenerate inner product induced by the metric and the orientation of
M . Denoting the exterior product with ∧ :

∧k T ∗M ×
∧k′T ∗M→

∧k+k′T ∗M and
introducing the Hodge dual ∗ :

∧k T ∗M→
∧d−k T ∗M using the background metric

g and the orientation o, we get a nondegenerate inner product 〈 · , · 〉 = ∗−1( · ∧ ∗·)

on
∧k T ∗M .
As is customary, we denote the space of sections of

∧k T ∗M (i.e., k-forms
over M) by �k(M)= 0(

∧k T ∗M), The inner product 〈 · , · 〉 on the vector bundle∧k T ∗M , together with the volume form vol= ∗1, defines an inner product ( · , · )
on k-forms. Explicitly, we have

(α, β)=

∫
M
α∧∗β , (3-1)

for α, β ∈�k(M) with compact overlapping supports.
On k-forms one has the differential d :�k(M)→�k+1(M) and the codifferential

δ= (−1)k ∗−1 d ∗ :�k(M)→�k−1(M). It is important to notice that dd= 0, hence
δδ = 0, too. Moreover, one can directly check that δ is the formal adjoint of d with
respect to ( · , · ).

Using d and δ, one can introduce the Laplace–de Rham operator �= δd+ dδ
on k-forms, which is a differential operator of Green-hyperbolic type. It is easy
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to check that � is formally self-adjoint with respect to ( · , · ) on account of the
properties of d and δ. This means that �∗ = �, hence a similar relation holds
true for the corresponding retarded/advanced Green operators, namely G∗

±
= G±.

Therefore one also has

(G+α, β)= (α,G−β), (3-2)

for each k-form α with past-compact support and each k-form β with strictly future-
compact support. A similar result can be obtained by interchanging future and past.
From dd= 0 and δδ = 0, the identities for the Laplace–de Rham operator � and
the Green operators G± follow:

�d= d�, �δ = δ�, (3-3)

dG± = G±d, δG± = G±δ , (3-4)

where we use the same symbols to denote the operators acting on forms of different
rank. As an example, we show how to prove the first identity involving Green
operators. Take any α ∈�k

pc(M) and any β ∈�k+1
c (M) and compute (dG+α, β),

exploiting the properties of the Green operators, formal self-adjointness of � as
well as the identity �d= d�:

(dG+α, β)= (dG+α,�G−β)= (�dG+α,G−β)

= (d�G+α,G−β)= (dα,G−β)= (G+dα, β).

Hence dG+ = G+d, since α ∈�k
pc(M) and β ∈�k+1

c (M) are arbitrary.
The Lagrangian density of electromagnetism L is expressed in terms of the

Faraday tensor, F ∈�2(M):

L= ∗〈F, F〉 = F ∧∗F . (3-5)

The Euler–Lagrange equations derived from L state that F is a closed and coclosed
2-form; that is to say, dF = 0 and δF = 0. In the following we consider only exact
Faraday tensors, namely we assume there exists a vector potential A ∈�1(M) such
that dA = F . As a consequence, the first equation dF = 0 automatically holds
true. The second equation remains to be checked, thus providing the dynamics
of the vector potential, namely δdA = 0. Nevertheless, since the relevant object
in electromagnetism is the Faraday tensor, we are forced to consider equivalence
classes of vector potentials. As a matter of fact, two vector potentials A and A′

differing by dϕ, ϕ ∈ C∞(M), give rise to the same Faraday tensor F = dA. For
this reason, we consider gauge classes of vector potentials defined according to the
equivalence relation

A ∼ A′ ⇐⇒ ∃ϕ ∈ C∞(M) such that A′ = A+ dϕ ; (3-6)
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that is, A, A′ ∈�1(M) are considered the same whenever they differ by an exact
1-form.

Let us mention that there are several other approaches to electromagnetism on
curved spacetimes. This model was analyzed directly from the perspective of the
Faraday tensor in [Dappiaggi and Lang 2012]. In [Dappiaggi and Siemssen 2013]
and [Fewster and Lang 2014] the approaches are similar to the present one, except
for the notion of gauge equivalence, which is provided there by closed 1-forms
instead of exact ones. The present setting is adopted in [Sanders et al. 2014], where
also external source currents are dealt with. Some arguments can be found there
to motivate our choice of gauge symmetry (3-6). A more geometrical perspective,
much in the spirit of Yang–Mills theory, can be found in [Benini et al. 2014b],
subsequently refined in [Benini et al. 2014a], in order to correctly address the
Aharonov–Bohm effect as well as magnetic monopoles.

In Section 2B we collected much of the material needed to characterize spaces
of solutions for Green-hyperbolic equations in terms of Green operators. However
this is not enough in the present setting for two reasons. First, the linear differen-
tial operator δd ruling the dynamics of the vector potential is not Green-hyperbolic.
Second, we have to deal with gauge equivalence too. To overcome such hindrances,
we are going to exploit gauge symmetry in order to show that equivalence classes
of vector potentials satisfying the dynamics, δdA = 0, can be represented adopting
the Lorenz gauge, that is to say δA= 0. Later, exploiting the fact that �= δd+dδ is
Green-hyperbolic and realizing that on-shell vector potentials in the Lorenz gauge
satisfy �A = 0, we provide a characterization of the space of gauge equivalence
classes of solutions via the causal propagator G = G+−G− for �, slightly extend-
ing a result in [Dappiaggi 2011]. A more systematic treatment of gauge theories
can be found in [Hack and Schenkel 2013].

Lemma 3.1. Let M be a globally hyperbolic spacetime. Denote the space of solu-
tions to the equation ruling the dynamics of the vector potential by

S= ker(δd :�1(M)→�1(M)).

Moreover, use G= dC∞(M) to denote the space of gauge transformations. Then
for each gauge class of solutions [A] ∈ S/G, there exists a representative Â ∈ [A]
in the Lorenz gauge; that is to say δ Â = 0.

Proof. Let A ∈ [A] be any representative and consider the equation �ϕ+ δA = 0
for ϕ ∈ C∞(M). We can easily write down a solution of this equation by fixing a
partition of unity {χ+, χ−} such that χ± = 1 in a past- or future-compact region.
With such a partition of unity, we get a solution ϕ =−G+(χ+δA)−G−(χ−δA).
Introducing Â = A+ dϕ, we conclude that δd Â = 0 and δ Â = δA+�ϕ = 0 since
�= δd on C∞(M). �
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Since δG± = G±δ and taking into account (2-8) too, we realize that each co-
closed α ∈�1

tc(M) gives rise to a solution A = Gα ∈ S in the Lorenz gauge. This
gives us a hint how to represent the space S/G of gauge classes of solutions. Note
that in the next proof we will extensively make use of the exact sequence (2-8).

Theorem 3.2. Let M be a globally hyperbolic spacetime and set

kerk
tc δ = ker(δ :�k

tc(M)→�k−1
tc (M)).

Then the causal propagator G for �= δd+ dδ induces the following isomorphism
of vector spaces:

I :
ker1

tc(δ)

δd(�1
tc(M))

→
S

G
, [α] 7→ [Gα] .

Proof. As mentioned before the statement of the theorem, G maps ker1
tc(δ) to S.

Given β ∈�1
tc(M), Gδdβ = G(�− dδ)β = dG(−δβ) ∈ G. Therefore G induces a

linear map from ker1
tc(δ)/δd(�

1
tc(M)) to S/G.

This map is surjective on account of Lemma 3.1. Given [A] ∈ S/G, we find
Â ∈ [A] such that δ Â= 0. Since � Â= 0, using (2-8) we find α̂ ∈�1

tc(M) such that
Gα̂= Â. From δ Â= 0, (2-8) entails there exists ψ ∈C∞tc (M) such that δα̂=�ψ =
δdψ . We deduce that α = α̂−dψ ∈ ker1

tc(δ). Moreover, [Gα] = [ Â−dGψ] = [A].
Given α∈ker1

tc(δ), it remains only to check that [Gα]=0 entails α∈ δd(�1
tc(M)).

By definition, we find ϕ ∈ C∞(M) such that dϕ = Gα, which entails �ϕ = 0.
Therefore there exists ψ ∈ C∞tc (M) such that Gψ = ϕ. Hence (2-8) ensures the
existence of β ∈ �1

tc(M) such that �β = α − dψ . Applying δ to both sides of
the last identity, we get �δβ = −�ψ , hence δβ = −ψ . From this we conclude
α = δdβ ∈ δd(�1

tc(M)). �

Remark 3.3. One might be interested to solutions supported inside a spacelike
compact region, namely consider Ssc = {A ∈�1

sc(M) : δdA = 0}. In this case the
corresponding notion of gauge symmetry is specified by Gsc= d�1

sc(M). Following
the same arguments used above, but using the exact sequence (2-7) in place of
(2-8), one gets an isomorphism of vector spaces similar to the one presented in
Theorem 3.2:

Isc :
ker1

c(δ)

δd(�1
c(M))

→
Ssc

Gsc
, [α] 7→ [Gα], (3-7)

where kerk
c (δ)= ker(δ :�k

c(M)→�k−1
c (M)). In the next section we will encounter

ker1
c(δ)/δd(�

1
c(M)) (enriched with more structure) as the space of classical ob-

servables for the vector potential. Hence, via Isc, one can interpret Ssc/Gsc as the
space of observables of the theory. This approach was adopted in [Dimock 1992;
Pfenning 2009].
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4. Observables and quantization

In this section we first introduce a suitable observables for the vector potential at
a classical level. Then we quantize the obtained space of observables adopting the
scheme presented in Section 2D.

In order to define observables for the vector potential, we follow the spirit of
[Brunetti et al. 2012], where observables are defined as functionals on field con-
figurations. In the case under analysis it is sufficient to take into account only
linear functionals, the dynamics being linear. For this reason our approach mimics
the one in [Benini et al. 2014c], even though the situation is even simpler, the
underlying bundle being a vector bundle. For the first part of this section it is
enough to consider M to be a spacetime. When needed, we will also explicitly
introduce the assumption of global hyperbolicity.

We start introducing a special class of linear functionals defined on the space of
kinematically allowed field configurations, that is to say �1(M):

Oα :�
1(M)→ R , Oα(A)= (α, A),

where α ∈ �1
c(M). We denote the space of such functionals with Ekin

' �1
c(M).

The isomorphism α 7→ Oα will be often used as an identification of Ekin with
�1

c(M). Since vector potentials differing by a gauge transformation are regarded
to be equivalent, only gauge invariant functionals are relevant. For this reason we
consider

Einv
= {Oα ∈ Ekin

: Oα(dϕ)= 0, ∀ϕ ∈ C∞(M)} .

Since (α, dϕ) = (δα, ϕ) for each α ∈ �1
c(M) and ϕ ∈ C∞(M), we conclude that

Einv
= ker1

c(δ). Up to now, no dynamical information is encoded in the space
of gauge invariant functionals. As a matter of fact, Einv provides gauge invariant
functionals defined on all kinematically allowed field configurations, regardless
of the equation of motion δdA = 0. In order to the encode dynamics in a dual
fashion on gauge invariant functionals, we proceed as follows. First, we consider
the formal adjoint of the equation of motion operator δd, which is formally self-
adjoint since (δdα, A)= (α, δdA) for each A ∈�1(M) and each α ∈�1

c(M). Then,
we take the quotient of Einv by the image of (δd)∗ = δd :�1

c(M)→�1
c(M). In this

way we obtain the vector space

E=
Einv

δd(�1
c(M))

,

which is interpreted as a space of classical observables for the vector potential,
the interpretation being motivated by the fact that E comprises gauge invariant
functionals which can be evaluated only on on-shell field configurations [A] ∈ S/G.
In fact, the evaluation of [α] ∈E on [A] ∈S/G can be performed choosing arbitrary
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representatives in the equivalence classes. Such evaluation is well-defined because
each A ∈ [A] is on-shell, namely such that δdA = 0, and each α ∈ [α] is gauge
invariant.

The following theorem shows that E contains sufficiently many elements in order
to distinguish vector potentials up to gauge. Moreover, if M admits a finite good
cover, there are no redundant elements of E, namely two different elements cannot
take the same values on all field configurations. Therefore E is optimal in the
sense of [Benini 2014] as a space of linear classical observables for the model we
are considering (under the assumption of existence of a finite good cover for the
spacetime M). This result is a special case of [Benini 2014, Theorem 7.6]. For a
different, yet equivalent, approach to causally restricted de Rham cohomology, see
[Khavkine 2014a].

Theorem 4.1. Let M be a spacetime and let [α], [α′] ∈ E and [A], [A′] ∈ S/G.

(1) If O[β]([A])= O[β]([A′]) for each [β] ∈ E, then [A] = [A′].

(2) If M admits a finite good cover and O[α]([B])= O[α′]([B]) for each [B] ∈S/G,
then [α] = [α′].

In view of our quantization prescription (see Section 2D) we want to endow E

with a presymplectic structure. Assuming the spacetime M to be globally hyper-
bolic and denoting the causal propagator for � with G, we define

τ : E×E→ R, τ ([α], [β])= (α,Gβ), (4-1)

where α and β are representatives of [α] and respectively [β]. The bilinear map
( · ,G · ) :�1

c(M)×�
1
c(M)→ R is antisymmetric:

(α,Gβ)=−(Gα, β)=−(β,Gα), ∀α, β ∈�1
c(M).

Moreover, for each α ∈ ker1
c(δ) and ω ∈�1

c(M), one has

(α,Gδdω)= (α,G(�− dδ)ω)=−(δα,Gδω)= 0 .

This shows that τ is well-defined by (4-1), thus providing a presymplectic form on
E.

Remark 4.2. The presymplectic form τ is actually degenerate on certain globally
hyperbolic spacetimes. Suppose that β lies in δ(�2

c(M)∩ d�1
tc(M)) \ δd�

1
c(M).

This means that there exists γ ∈�1
tc(M) such that δdγ = β and dγ has compact

support, but there is no ω ∈ �1
c(M) such that δdω = β. Hence [β] 6= 0 in E;

however, by also exploiting (2-8), for each [α] ∈ E we have

τ([α], [β])= (α,Gδdγ )= (α,G(�− dδ)γ )=−(δα,Gδγ )= 0,

where the last equality follows from δα = 0.
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Obviously, for a globally hyperbolic spacetime with compact Cauchy surfaces
such an α cannot exist, timelike compact regions being compact too. However,
it is relatively easy to cook up examples of globally hyperbolic spacetimes with
noncompact Cauchy surfaces where δ(�2

c(M)∩d�1
tc(M))\δd�

1
c(M) is not empty;

see [Benini et al. 2014b, Remark 3.9].

Now we want to show that general local covariance (without injectivity) holds
true for the field theoretical model considered here. This result will be achieved in
two steps. First, we will construct a classical counterpart of a (noninjective) gener-
ally covariant quantum field theory for the vector potential. Then our quantization
scheme will automatically provide a LCQFT according to Definition 2.3.

To each globally hyperbolic spacetime M we assign the presymplectic space
F(M) = (EM , τM) as defined above (note that we included a subscript to keep
track of the underlying spacetime). Given a causal embedding f : M → N , we
consider the pullback f ∗ :�k(N )→�k(M) for k-forms and the pushforward f∗ :
�k

c(M)→�k
c(N ) for compactly supported k-forms. f∗ intertwines the differential

dM for forms on M with the differential dN for forms on N , namely f∗dM =

dN f∗. Moreover, since f is an isometry, f∗δM = δN f∗ as well. Therefore f∗
induces a map F( f ) : EM → EN between the spaces of observables associated
to M and N . It remains only to check that F( f ) preserves the corresponding
presymplectic structures τM and τN . This follows from the last part of Section 2B.
Taking into account the present setting, from Section 2B we deduce f ∗G N ± f∗ =
G M ±, where G M ± and G N ± denote the retarded/advanced Green operators for
�M and respectively �N . Given [α], [β] ∈ EM , we compute

τN (F( f )[α],F( f )[β])= ( f∗α,G N f∗β)N = (α, f ∗G N f∗β)M

= (α,G Mβ)M = τM([α], [β]).

This shows that F( f ) : F(M)→ F(N ) is a morphism in PSym. One can easily
check that F(idM) = idF(M) for each object M in GHyp and that F( f ◦ f ′) =
F( f ) ◦F( f ′) for each pair of composable morphisms f, f ′ in GHyp. Therefore
we conclude that F : GHyp→ PSym is a functor.

Theorem 4.3. The functor F : GHyp→ PSym fulfills the classical counterparts
of the causality and time slice axioms that are stated below. Yet injectivity of
morphisms fails, namely there are morphisms f in GHyp for which F( f ) is not
injective.

Causality axiom: For each f1 : M1 → N and f2 : M2 → N in GHyp such that
f1(M1) ∩ JN ( f2(M2)) = ∅, we have τN (F( f1)[α1],F( f2)[α2]) = 0 for each
[α1] ∈ F(M1) and [α2] ∈ F(M2).

Time slice axiom: For each f : M→ N in GHyp such that f (M) includes a space-
like Cauchy surface for N , F( f ) : F(M)→ F(N ) is an isomorphism in PSym.
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Proof. A counterexample to injectivity is provided in Remark 5.6 of [Benini et al.
2014b]. In fact, taking into account only the linear part of the classical observables
defined in the reference just cited for the case G = R as structure group, one gets
the same space of classical observables which is considered here.

The causality property is a trivial consequence of the support properties of the
causal propagator. Under the assumptions of the statement, we have the inclusion

supp( f1 ∗α1)∩ JN (supp( f2 ∗α2))⊆ f1(M1)∩ JN ( f2(M2))=∅;

hence the supports of f1 ∗α1 and G N f2 ∗α2 do not overlap. This shows that τN

vanishes when evaluated on the pair (F( f1)[α1],F( f2)[α2]) ∈ EM ×EM .
To prove the time slice axiom we take f : M→ N as in the statement and we

look for an inverse of F( f ).
As a preparatory step, we introduce a special partition of unity. Let 6 be a

spacelike Cauchy surface for N included in f (M). Since f is a causal embedding,
f (M) is a globally hyperbolic spacetime with 6 as a spacelike Cauchy surface.

According to [Bernal and Sánchez 2005], we can foliate N as R×6 and regard
f (M) as an open neighborhood of {0}×6 in N . In particular, there are spacelike
Cauchy surfaces 6+, 6− for N of the form {t}×6 which are contained in f (M)
and lie respectively inside the chronological future I+M(6) and the chronological
past I−M(6) of 6. We take a partition of unity {χ+, χ−} on N such that χ± = 1 in
J±N (6±).

Using {χ+, χ−}, we define a map I : EN → EM according to the following
procedure. Given [β] ∈ EN and fixing a representative β ∈ [β], we can consider
the 1-form δd(χ±G±β) = β − δd(χ∓G±β) and realize its support is compact.
Here we exploited the compact support of β and the past-compact/future-compact
support of χ±, together with δβ = 0 and Definition 2.1. Moreover, note that the
left side vanishes in J∓N (6∓). We can also consider the 1-form β̂ = δd(χ+Gβ)=
−δd(χ−Gβ) (the second equality follows from δβ = 0 and �Gβ = 0). As it can be
easily checked, β̂ has compact support inside the time slab J+N (6−)∩ J−N (6+)⊆
f (M). Setting ω = (χ−G+β + χ+G−β) ∈ �1

c(N ), by a direct computation we
find β̂ + δdω = β. Hence β̂ is a representative of [β] and, as we already proved,
its support lies inside f (M) allowing us to introduce α = f ∗β̂ ∈�1

c(M) such that
δα = 0. The same argument for another representative β+ δdγ of [β], γ ∈�1

c(M),
would give β̂ + δd(χ+Gδdγ ). Taking into account G�γ = 0, one gets

δd(χ+Gδdγ )=−δd(χ+dδGγ )=−δ(dχ+ ∧ dδGγ )= δd(dχ+ ∧ δGγ ),

where γ̂ = dχ+ ∧ δGγ has compact support in J+N (6−)∩ J−N (6+)⊆ f (M). This
fact follows from dχ+ =−dχ− being supported inside a timelike compact region
and supp(Gω) being spacelike compact. Introducing θ = f ∗γ̂ ∈�1

c(M), we con-
clude that, when starting from β + δdγ , the procedure above provides α + δdθ .
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Since [α+ δdθ ] = [α] in EM , we can define the linear map

I : EN → EM , [β] 7→ [ f ∗δd(χ+Gβ)] . (4-2)

One can directly check that I is actually the inverse of F( f ) taking [α] ∈ EM

and [β] ∈ EN and computing I F( f )[α] and F( f )I [β]. In the first formula below
we introduce subscripts on G to stress that both the causal propagators for � on
M and for � on N are involved.

I F( f )[α] = I [ f∗α] = [ f ∗δd(χ+G N f∗α)] = [δd(( f ∗χ+)G Mα)]

= [δd(( f ∗χ+)G Mα)+ δd(( f ∗χ+)G M −α)+ δd(( f ∗χ−)G M +α)]

= [δd(G M +α)] = [α],

F( f )I [β] = F( f )[ f ∗δd(χ+Gβ)] = [δd(χ+Gβ)] = [β] .

For the first computation we exploited the fact that ( f ∗χ±)G M ∓α is a compactly
supported 1-form on M , while the second follows from the fact that δd(χ+Gβ) is
a representative of [β] with support inside f (M), as already shown above. Auto-
matically I preserves the relevant presymplectic forms:

τM(I [β], I [β ′])= τN (F( f )I [β],F( f )I [β ′])= τN ([β], [β
′
]),

for each [β], [β ′] ∈ EN . This shows that I : F(N ) → F(M) is the inverse of
F( f ) : F(M)→ F(N ) in PSym; therefore F( f ) is an isomorphism in PSym. �

The last part of this section is devoted to the quantization of the functor F

describing the classical field theory of the vector potential. This result is achieved
composing F : GHyp→ PSym with the quantization functor Q : PSym→ Alg for
canonical commutation relations presented in Section 2D.

Theorem 4.4. The functor A= Q◦F : GHyp→ Alg is a locally covariant quantum
field theory according to Definition 2.3.

Proof. A is defined by the composition of the covariant functors Q : PSym→

Alg and F : GHyp→ PSym; therefore it is a covariant functor from GHyp to Alg.
Causality holds true on account of its classical counterpart fulfilled by F and the
canonical commutation relations implemented by Q. The time slice axiom for A

follows from the corresponding property of F and the fact that Q is a functor, thus
sending isomorphisms of PSym to isomorphisms of Alg. �

Remark 4.5. Up to now, neither F(M) nor A(M) were intended as topological
spaces. Actually, one can endow F(M) with the topology induced by the test func-
tion topology on �1

c(M), F(M) being the quotient by δd(�1
c(M)) of the closed

subspace Einv of �1
c(M). At least whenever M admits a finite good cover, the

second statement of Theorem 4.1 means that the image of δd :�1
c(M)→�1

c(M)
coincides with the intersection of the kernels of the maps

∫
M( · )∧∗A :�1

c(M)→R,
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A ∈ ker1(δd). Since these maps are continuous, δd(�1
c(M)) is a closed subspace of

�1
c(M). This entails that the topology induced on F(M) by the quotient is Haus-

dorff at least when M admits a finite good cover. Continuity of the push-forward
along a smooth map and of the Green functions (see [Bär et al. 2007, Section 3.4])
entails that all our conclusions up to this point are compatible with the topological
structure presented above, in particular F is a functor taking values in the category
of topological presymplectic spaces. Therefore, Remark 2.6 entails that the functor
A can be regarded as taking values in the category of unital topological ∗-algebras.

Theorem 4.4 provides a satisfactory description of the quantum field theory
of the vector potential on each globally hyperbolic spacetime. One still needs
Hadamard states for this model. A constructive result in this direction can be
found in [Dappiaggi and Siemssen 2013] for asymptotically flat globally hyperbolic
spacetimes at future null infinity. Furthermore, the existence of Hadamard states
can be argued exploiting a deformation arguments involving ultrastatic spacetimes
[Fulling et al. 1978; Fulling et al. 1981], where a complete timelike Killing vector
field makes it possible to cook up Hadamard states by means of Fourier transform
techniques. This approach was followed in [Fewster and Pfenning 2003]. An
extension of the Gupta–Bleuler formalism to curved spacetimes is available too;
see [Finster and Strohmaier 2013].

We recall the notion of a quasifree Hadamard state for the vector potential ac-
cording to [Fewster and Pfenning 2003].

Definition 4.6. For a globally hyperbolic spacetime M , a state ω on the field al-
gebra A(M) is quasifree and Hadamard if there exists a distribution w ∈�1

c(M
2)′

fulfilling the requirements listed below.

(1) w is a �-bisolution, i.e., w(�α, β)= 0= w(α,�β) for each α, β ∈�1
c(M).

(2) w(α, β)−w(β, α)= iτ([α], [β]) for each α, β ∈ Einv.

(3) The wavefront set of w has the form

W F(w)=
{
(x, k; x ′,−k ′) ∈ Ṫ ∗M2

: (x, k)∼ (x ′, k ′), k ∈ V+x
}
,

where Ṫ ∗ denotes the cotangent bundle with the zero section removed, V+x is
the closed cone of lightlike covectors at x and (x, k)∼ (x ′, k ′) means that x
is joined to x ′ by a lightlike geodesic γ , k is the cotangent vector at x of γ
and k ′ is the parallel transport of k along γ .

(4) The two-point function of the state ω is given by w, that is to say, for each
α, β ∈ Einv,

ω(φ([α])φ([β]))= w(α, β).
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(5) All n-point functions vanish for n odd, while for n even they are completely
determined by two-point function, namely, for α1, . . . , αn ∈ Einv,

ω
(
φ([α1]) · · ·φ([αn])

)
=

∑
π∈Pn

n/2∏
i=1

ω
(
φ([απ(2i−1)])φ([απ(2i)])

)
,

where Pn denotes the set of permutations π of {1, . . . , n} such that π(2i−1)<
π(2i + 1) and π(2i − 1) < π(2i) for each i ∈ {1, . . . , n/2}.

5. Relative Cauchy evolution

In this section we relate the relative Cauchy evolution to the energy-momentum
tensor of the vector potential, thus extending a result which was originally estab-
lished for the Klein–Gordon field in [Brunetti et al. 2003] and later shown to hold
in the Dirac case as well; see [Sanders 2010].

As a starting point, we fix a globally hyperbolic spacetime M and we consider
a representation π of the field algebra A(M) (meant here as a unital topological
∗-algebra according to Remark 4.5) on a Hilbert space H such that it makes sense to
consider the functional derivative of the relative Cauchy evolution Rh with respect
to the perturbation h. This is to be intended in the following sense: there exists a
dense subspace S of H and a dense unital ∗-subalgebra B of A(M) such that, for
each θ ∈ S and b ∈ B, there exists a symmetric contravariant 2-tensor t satisfying
the following condition:∫

M

( d
ds

∣∣∣
0
hs µν

)
tµν vol= d

ds

∣∣∣
0

〈
θ, π(Rsb)θ

〉
, (5-1)

for each compact set K ⊆ M and each smooth 1-parameter family s ∈ (−1, 1) 7→
hs ∈ hp(M) of globally hyperbolic perturbations of M with support inside K , where
Rs stands for Rhs .

2 Uniqueness of t follows from Remark 2.4. This allows us to
introduce

(θ, b) ∈ S× B 7→
〈
θ,
(
δ

δh
π(Rhb)

)
θ
〉
.
= t ,

which implicitly defines, for each b ∈ B, the functional derivative δπ(Rhb)/δh of
the relative Cauchy evolution as a quadratic form on V via the representation π .

As noted in [Brunetti et al. 2003], the GNS representation πω induced by a
quasifree Hadamard state ω on the field algebra A(M) fulfills all requirements
listed above for defining the functional derivative of the relative Cauchy evolution.

Remark 5.1. Using general arguments, in [Brunetti et al. 2003, Theorem 4.2]
it is shown that δπ(Rhb)/δh is divergence-free with respect to the Levi–Civita

2We will use this notation whenever it is clear from the context which family of perturbations is
being taken into account.
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connection for the unperturbed metric g. This is a consistency check for the main
theorem of this section since the final result consists of an equality between the
functional derivative of the relative Cauchy evolution and a term involving the
energy-momentum tensor of the electromagnetic field, which is divergence-free.

For convenience, we first state the final result and then we proceed step by step
preparing the tools needed later for the proof.

Theorem 5.2. Let M be a globally hyperbolic spacetime and consider a quasifree
Hadamard state ω for the field algebra A(M) of the vector potential. Consider the
GNS triple (Dω, πω, �ω) associated to ω. Then the equality stated below holds
true for each [α] ∈ F(M) in the sense of quadratic forms on Dω:

δ

δhµν
πω
(
Rhφ([α])

)
=

i
2
[
T̂ µν, φω([α])

]
, (5-2)

where φω([α])= πω
(
φ([α])

)
is a generator of the field algebra A(M) represented

via πω and T̂ µν is the quantized energy-momentum tensor (indices are raised us-
ing the background metric) obtained via point-splitting in the GNS representation
induced by ω.

Remark 5.3. Instead of using the point-splitting prescription in order to quantize
the classical energy-momentum tensor Tµν of the electromagnetic field, defined
as the functional derivative of the action with respect to the background metric,
one could consider more refined quantization procedures, but the conclusions of
Theorem 5.2 would not be affected. For details see the remarks after [Brunetti et al.
2003, Theorem 4.3].

5A. Energy-momentum tensor and point-splitting. As a starting point, we write
down the classical energy-momentum tensor as the functional derivative with re-
spect to the spacetime metric of the action S for the vector potential A, which is
defined out of the Lagrangian (3-5):

Tµν =
2√
|det g|

δS
δgµν

= FµρF ρ
ν −

1
4 gµνFρσ Fρσ , (5-3)

where indices are raised with respect to the spacetime metric g. The result is a
divergence-free symmetric covariant 2-tensor T , as one can easily check taking
into account the identities F = dA and δdA = 0.

In Theorem 5.2 the quantized energy-momentum tensor T̂ appears. This is ob-
tained from the classical one, namely T , applying the point-splitting prescription
[Wald 1994, Section 4.6]:

(1) Separate products of classical fields at the same spacetime point p ∈ M in-
troducing an auxiliary base point q ∈ M . This is to be intended in the limit
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where the two points are close enough. To be more precise, one should con-
sider a point q 6= p in a normal neighborhood of p. This way there exists a
unique geodesic connecting p to q . The product at different spacetime points
is then properly defined in terms of the parallel transport operator Y along
such geodesic;

(2) Replace products of classical fields with matrix elements of products of quan-
tum fields in a Hilbert space representation;

(3) Deal with all computations in the point-split form. Only in the end take the
coincidence limit, provided no singularity arises.

To start with, one has to define matrix elements for products of quantum fields in
the GNS representation πω induced by a quasifree Hadamard state ω. According
to Definition 4.6, we note that, given ξ, η ∈ Dω and α1, . . . , αn ∈ Einv, the matrix
element of a product of n fields 〈ξ, φω([α1]) · · ·φω([αn])η〉 can be written as a
sum of products of a suitable bidistribution w evaluated on some test-sections in
Einv, among which one finds α1, . . . , αn . Therefore, using w, one can define a n-
distribution 〈ξ, Â(p1) · · · Â(pn)η〉∈�

1
c(M

n)′ satisfying, for each α1, . . . , αn ∈Einv,
the identity∫

Mn

〈
ξ, Âµ1(p1) · · · Âµn (pn)η

〉
α
µ1
1 (p1) · · ·α

µn
n (pn) vol

=
〈
ξ, φω([α1]) · · ·φω([αn])η

〉
, (5-4)

where the integral denotes evaluation of a distribution on a test section and indices
are raised with respect to g.

However,
〈
ξ, Â(p1) · · · Â(pn)η

〉
is not the only distribution satisfying (5-4). Since

only elements of Einv
⊆�1

c(M) can enter
〈
ξ, φω([α1]) · · ·φω([αn])η

〉
, one can add

exact n-distributions to
〈
ξ, Â(p1) · · · Â(pn)η

〉
without affecting the identity (5-4).

This ambiguity does not affect the quantization of T since only F = dA enters
(5-3), and therefore Theorem 5.2 is not affected as well.

Remark 5.4. For n = 1, 〈ξ, Âµ(p)η〉 is a distribution generated by a smooth func-
tion, as observed in [Brunetti et al. 2003, p. 60].

Using (5-4), from items (1)–(2) above we get matrix elements for the quantized
energy-momentum tensor:

〈ξ, T̂µν(p, q)η〉

= gρσ (p)Y ν
′σ ′

νσ (p, q)

×
[
∇

p
µ∇

q
ν′

〈
ξ, Âρ(p) Âσ ′(q)η

〉
− (ν ′↔σ ′)− (µ↔ρ)+ (µ↔ρ and ν ′↔σ ′)

]
−

1
2 gµν(p)gρσ (p)gτυ(p)Y σ

′υ ′

συ (p, q)

×
[
∇

p
ρ∇

q
σ ′

〈
ξ, Âτ (p) Âυ ′(q)η

〉
− (σ ′↔υ ′)

]
. (5-5)
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Here the superscript on a covariant derivative indicates the spacetime dependence
of the section upon which the covariant derivative is applied; µ↔ρ stands for a
term equal to the one explicitly written before, with indices µ and ρ interchanged.
Setting η = φω([α])θ, ξ = θ and then ξ = θ, η = φω([α])θ in (5-5) and taking the
difference between the two outcomes, one gets

〈
θ,
[
T̂µν(p, q), φω([α])

]
θ
〉
, which

is the relevant term for Theorem 5.2. A closer look at (5-5) shows that this term can
be evaluated once

〈
θ,
[
Âµ(p) Âν′(q), φω([α])

]
θ
〉

is known. This can be obtained
from the term

〈
θ,
[
φω([β])φω([γ ]), φω([α])

]
θ
〉

by extracting a (nonunique) bidis-
tribution as above. Using the canonical commutation relations (2-15), we obtain〈
θ,
[
Âµ(p) Âν′(q), φω([α])

]
θ
〉
= i(Gα)µ(p)〈θ, Âν′(q)θ〉+ i(Gα)ν′(q)〈θ, Âµ(p)θ〉 .

As above, the one on the right side is not the only possible choice of a bidistribution
representing the left side, yet this ambiguity amounts to an exact bidistribution, and
therefore it disappears as soon as we take the appropriate derivatives in order to
evaluate

〈
θ,
[
T̂µν(p, q), φω([α])

]
θ
〉
. Already at this stage one realizes no singular-

ity appears in the coincidence limit p→ q . Defining A=Gα, F = dA, Ã=〈θ, Âθ〉
and F̃ = d Ã, one is led to〈
θ,
[
T̂µν(p), φω([α])

]
θ
〉
= igρσ(p)

(
Fµρ(p)F̃νσ(p)+ F̃µρ(p)Fνσ(p)

)
−

i
2 gµν(p)gρσ(p)gτυ(p)Fρτ(p)F̃συ(p). (5-6)

5B. Classical relative Cauchy evolution. This subsection is devoted to finding a
convenient formula for the relative Cauchy evolution at the classical level. This is
defined replacing A in (2-13) with F, the functor describing the classical field
theory of the vector potential. This can be done on account of the time slice
axiom Theorem 4.3. In view of the proof of Theorem 5.2, given a globally hy-
perbolic spacetime M , we fix a compact region K ⊆ M and a 1-parameter family
s ∈ (−1, 1) 7→ hs ∈ hp(M) supported inside K . For each s ∈ (−1, 1), recall-
ing the construction of Section 2C, we consider the globally hyperbolic space-
time M̃ s , obtained perturbing M with hs . Moreover, we take spacelike Cauchy
surfaces 6+, 6′+ for M+ = M \ J−M(K ) and 6′

−
, 6− for M− = M \ J+M(K )

such that 6′
+
⊆ I−M+(6+) and 6′

−
⊆ I+M−(6−); see Figure 1. Consider now

the diagram in (2-12). For each causal embedding in this diagram, the functor
F provides a morphism in PSym, which can be inverted according to the time
slice axiom. In particular, we are interested in F(i+)−1

: F(M)→ F(M+) and
F( j−)−1

: F(M̃ s) → F(M−). These maps can be explicitly defined following
the proof of the time slice axiom in Theorem 4.3; see (4-2). For i+ consider the
spacelike Cauchy surfaces 6+, 6′+ and a partition of unity {χ+, χ ′+} on M such
that χ+ = 1 in J+M(6+), while χ ′

+
= 1 in J−M(6

′
+
). To define j− consider instead

6′
−
, 6−, together with a partition of unity {χ ′

−
, χ−} on M̃ s such that χ ′

−
= 1 in
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J+
M̃s
(6′
−
) and χ−= 1 in J−

M̃s
(6−). Explicit formulas for F( j+) :F(M+)→F(M̃ s)

and F(i−) : F(M−)→ F(M) are obtained simply via pushforward on compactly
supported 1-forms as it is explained before Theorem 4.3.

We recall here the explicit form of the maps involved in the definition of the
classical relative Cauchy evolution rs : F(M)→ F(M) for the perturbation hs :

F(i+)−1
: F(M)→ F(M+), [α] 7→ [i∗

+
δd(χ+Gα)],

F( j+) : F(M+)→ F(M̃ s), [α] 7→ [ j+∗α],

F( j−)−1
: F(M̃ s)→ F(M−), [α] 7→ [− j∗

−
δsd(χ−Gsα)],

F(i−) : F(M−)→ F(M), [α] 7→ [i−∗α],

where the subscript s means that the perturbation hs plays a role. For example Gs

is the causal propagator for �s = δsd+ dδs , where hs enters δs via the Hodge dual
on M̃ s , which is defined out of the perturbed metric gs = g+hs and the orientation
of the underlying manifold. Composing the maps above, one gets a formula for
the classical relative Cauchy evolution:

rs : F(M)→ F(M) , [α] 7→ [−δsd(χ−Gsδd(χ+Gα))] (5-7)

Remark 5.5. We are dealing with a family hs of perturbations; therefore the above
construction should be performed for each s. In particular, for each value of s, one
should consider appropriate spacelike Cauchy surfaces. However, supp(hs)⊆ K
for each s. Having under control the support of the whole family of perturbations
hs , it is possible to choose spacelike Cauchy surfaces and partitions of unity which
do the job for each s. 6±, 6′± were chosen exactly in this spirit.

For the proof of Theorem 5.2 we are interested in the functional derivative of
Rs = Q(rs). Having this in mind, we compute drs[α]/ds

∣∣
0 for an arbitrary, but

fixed, [α] ∈ F(M). This makes sense at least whenever the topology on F(M) is
Hausdorff;3 see Remark 4.5. Equation (5-7) and the Leibniz rule entail that

d
ds

rs[α]
∣∣
0 =

[
−

d
ds
δsd
(
χ−Gδd(χ+Gα)

)∣∣
0−

d
ds
δd
(
χ−Gsδd(χ+Gα)

)∣∣
0

]
.

Since supp(hs) ∩ supp(χ−) ⊆ K ∩ M− = ∅, the argument of the first derivative
is constant in s. We deduce that the first contribution vanishes. Decomposing
Gs in Gs+−Gs− and noting that χ−Gs+δd(χ+Gα) and χ ′

−
Gs−δd(χ+Gα) have

compact supports, we get

3This property ensures uniqueness of limits; therefore drs [α]/ds|0 is uniquely defined as the limit
for s→ 0 of

(
rs [α] − [α]

)
/s.
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d
ds

rs[α]
∣∣
0 =

[
−

d
ds
δd
(
χ−Gs+δd(χ+Gα)

)∣∣
0+

d
ds
δd
(
χ−Gs−δd(χ+Gα)

)∣∣
0

]
=

[ d
ds
δdGs−δd(χ+Gα)

∣∣
0

]
=

[
−

d
ds
δdGs−�(χ

′

+
Gα)

∣∣
0

]
, (5-8)

due to the fact that δd�1
c(M) is identified with 0 in F(M), dGs− = Gs−d on

�k
c(M) and �(χ+Gα)=−�(χ ′

+
Gα). On account of the properties of the Green

operators (2-6), and exploiting the Leibniz rule, one obtains the identity

d
ds

Gs−�(χ
′

+
Gα)

∣∣
0+G−

d
ds

�s(χ
′

+
Gα)

∣∣
0 =

d
ds

Gs−�s(χ
′

+
Gα)

∣∣
0 = 0,

which can be plugged into (5-8). Keeping in mind that supp(hs) does not meet
supp(χ+), one concludes that �s(χ+Gα) = �(χ+Gα) for each s. Thus, taking
into account also that �(χ+Gα)=−�(χ−Gα) has compact support, we get the
equality

d
ds

rs[α]
∣∣
0 =

[
δdG−

d
ds

�s(χ
′

+
Gα)

∣∣
0

]
=

[
δdG−

d
ds
δsdGα

∣∣
0

]
. (5-9)

From δsδs = 0, the Leibniz rule and δα = 0 we deduce that

δ
d
ds
δsdGα

∣∣
0 =

d
ds
δδsdGα

∣∣
0+

d
ds
δsδdGα

∣∣
0 =

d
ds
δsδsdGα

∣∣
0 = 0 .

Taking into account this information, from (5-9) we come to the conclusion:

d
ds

rs[α]
∣∣
0 =

[
�G−

d
ds
δsdGα

∣∣
0

]
=

[ d
ds
δsdGα

∣∣
0

]
. (5-10)

Explicitly, introducing F = dGα, one reads( d
ds
δs F

∣∣
0

)
ρ
=−

d
ds

gµνs ∇s µFνρ
∣∣
0 (5-11)

= ḣµν∇µFνρ +
1
2(F

µ
ρ∇

ν ḣµν − Fµν∇
ν ḣµρ) ,

where ∇ and ∇s are the Levi–Civita connections respectively for the unperturbed
metric g and the perturbed one gs . All indices in the result are raised using g
and ḣ denotes dhs/ds|0. This result follows from the subsequent identities, which
are trivial consequences of gµνs being the inverse of gs µν and ∇ (∇s) being the
Levi–Civita connection for g (respectively gs):

d
ds

gµνs

∣∣
0 =−gµρgνσ ḣρσ , (5-12)

d
ds
(∇s µXρ

−∇µXρ)
∣∣
0 =

1
2 Xνgρσ∇µḣνσ , (5-13)

for each vector field X on M .
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5C. Proof of Theorem 5.2. According to the hypotheses, let us consider a glob-
ally hyperbolic spacetime M and a quasifree Hadamard state ω on A(M) with
associated GNS triple (Dω, πω, �ω). Fixing [α] ∈ F(M), θ ∈ Dω, K compact in
M , a 1-parameter family s ∈ (−1, 1) 7→ hs ∈ hp(M) supported inside K and taking
into account Section 5A and Section 5B, the claim of the theorem boils down to
the identity below:〈

θ, φω

( d
ds

rs[α]
∣∣
0

)
θ
〉
=

i
2

∫
M

〈
θ,
[
T̂ µν, φω([α])

]
θ
〉
ḣµν vol, (5-14)

where ḣ stands for dhs/ds|0. We rewrite the left side using (5-4) for n = 1, together
with eqs. (5-10) and (5-11), and introducing the notation A = Gα, F = dA and
Ã = 〈θ, Âθ〉. For the right side we consider (5-6), keeping in mind that ḣµν = ḣνµ
and defining F̃ = d Ã. This turns (5-14) into the following identity:

L .
=

∫
M

Ãρ
[
ḣµν∇µFνρ

1
2(F

µ
ρ∇

ν ḣµν − Fµν∇
ν ḣµρ)

]
vol

=−
1
2

∫
M

ḣµν(2Fµρ F̃νρ −
1
2 gµνFρσ F̃ρσ ) vol .= R . (5-15)

The proof will be complete as soon as one manages to check this identity.
We start by considering the right side. Here we integrate by parts all covariant

derivatives acting on Ã. Note that several terms arising from partial integration
vanish on account of δF = δdGα = 0. On account of the symmetry of ḣ and the
antisymmetry of F , the result is

R =
∫

M
ḣµν Ãρ∇νFµρ vol+

∫
M

Fµρ( Ãρ∇ν ḣµν − Ãν∇ρ ḣµν) vol

+
1
2

∫
M

gµνFρσ Ãρ∇σ ḣµν vol .

Comparing R with the left side of (5-15), one reads

R = L + 1
2

∫
M

Fµρ( Ãρ∇ν ḣµν − Ãν∇ρ ḣµν) vol + 1
2

∫
M

gµνFρσ Ãρ∇σ ḣµν vol

= L + 1
2

∫
M

Fρσ Ãρ(gµν∇σ ḣµν −∇ν ḣσν) vol − 1
2

∫
M

ÃνFµρ∇ρ ḣµν vol

.
= L + 1

2

∫
M

Fρσ ÃρXσ vol − 1
2

∫
M

ÃνYν vol,

X and Y being defined by

Xσ = gµν∇σ ḣµν −∇ν ḣσν , Yν = Fµρ∇ρ ḣµν .

The rest of the proof is devoted to showing that both X and Y vanish everywhere
on M . (5-13) entails that
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d
ds
0ρs µν

∣∣
0 =

1
2 gρσ∇µḣνσ ,

0s being the Christoffel symbols for the connection ∇s . As a consequence, ∇µḣνσ
is symmetric upon the interchange of µ and ν. Taking into account that F is
antisymmetric, we get X = 0 and Y = 0, thus concluding the proof.
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