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STATIONARY SOLUTIONS OF KELLER–SEGEL-TYPE
CROWD MOTION AND HERDING MODELS:

MULTIPLICITY AND DYNAMICAL STABILITY

JEAN DOLBEAULT, GASPARD JANKOWIAK AND PETER MARKOWICH

In this paper we study two models for crowd motion and herding. Each of the
models is of Keller–Segel type and involves two parabolic equations, one for the
evolution of the density and one for the evolution of a mean field potential. We
classify all radial stationary solutions, prove multiplicity results, and establish
some qualitative properties of these solutions, which are characterized as critical
points of an energy functional. A notion of variational stability is associated with
such solutions.

Dynamical stability in the neighborhood of a stationary solution is also stud-
ied in terms of the spectral properties of the linearized evolution operator. For
one of the two models, we exhibit a Lyapunov functional which allows us to
make the link between the two notions of stability. Even in that case, for certain
values of the mass parameter, with all other parameters taken in an appropriate
range, we find that two dynamically stable stationary solutions exist. We further
discuss the qualitative properties of the solutions using theoretical methods and
numerical computations.

1. Introduction

The Keller–Segel model in chemotaxis has attracted lots of attention over recent
years. However, most of the theoretical results have been obtained either in a
parabolic-elliptic setting or when the coefficients, such as the chemosensitivity co-
efficient, are independent of the solution. Models used in biology usually involve
coefficients which depend on the solution itself, thus making the problems far more
nonlinear, and also far less understood. The crowd motion and herding models
considered here are two problems in the same class, where the main additional
features, compared to the standard version of the Keller–Segel model, are the
limitation (the prevention of overcrowding) of drift for the mass density in both
models, and the limitation of the source in the equation for the chemoattractant
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in one of the two models. Such limitations have important consequences: there
are multiple solutions for a given mass, in certain regimes; plateau-like solutions
have an interesting pattern for modeling issues; and the flux limitation forbids
concentration and guarantees nice solution properties, but also raises nontrivial
stability issues concerning the set of stationary solutions, which we investigate
numerically. The two models can be considered as test cases for the understanding
of a very large class of parabolic-parabolic systems with the property of having
several attractors. The fact that radial solutions are bounded and can be fully
parametrized in relatively simple terms makes the study tractable. Most of the
difficulties come from the complicated dependence of the solutions on the total
mass, which is the crucial parameter in the two cases. Numerically, the difficulty
comes from the parameters of the model, which have to be chosen in ranges that
make the problem rather stiff.

1.1. Description of the models. We consider herding and crowd motion models
describing the evolution of a density ρ of individuals subject to a drift ∇D and
confined to a bounded, open set �⊂ Rd . The evolution equation for ρ is given by

∂tρ =1ρ−∇ · (ρ(1− ρ)∇D), (1)

where ρt stands for the derivative of ρ with respect to time t and ρ(1−ρ) includes
the term for the prevention of overcrowding. For an isolated system, it makes sense
to introduce a no-flux boundary condition, that is,

(∇ρ− ρ(1− ρ)∇D) · ν = 0 on ∂�, (2)

which guarantees the conservation of the number of individuals (or conservation
of mass), namely that ∫

�

ρ dx = M (3)

is independent of t . In the models considered in this paper, we shall assume that
the potential D solves a parabolic equation

∂t D = κ1D− δD+ g(ρ) (4)

and is subject to homogeneous Neumann boundary conditions

∇D · ν = 0 on ∂�. (5)

We restrict our purpose either to model (I), when

g(ρ)= ρ(1− ρ), (6)

or to model (II), when
g(ρ)= ρ. (7)
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In this paper, our purpose is to characterize stationary solutions and determine their
qualitative properties.

1.2. Motivations. Human crowd motion models are motivated by the desire to pre-
vent stampedes in public places, mainly by implementing better walkway design.
Most crowd motion models do not convey herding effects well enough, that is,
loosely speaking, when people bunch up and try to move in the same direction, as
typically occurs in emergency situations.

In an effort to improve herding and crowd motion models, Burger et al. [2011]
have derived models (I) and (II) as the continuous limits of a microscopic cellular
automaton model introduced in [Kirchner and Schadschneider 2002]. This takes
the form a parabolic-parabolic system for a density of people ρ and for field D,
where D is a mean field potential which carries the herding effects. Basically,
people are subject to random motion, with a preference for moving in the direction
others are following. Random effects are taken into account by a diffusion, while
a drift is created by the potential D, which accounts for locations that are or were
previously occupied. To account for the packing of the people, empty spaces are
preferred, which explains the role of the (1− ρ) term in front of the drift, with
1 being the maximal density. Such a correction is referred to as prevention of
overcrowding in the mathematical literature.

Both quantities ρ and D undergo diffusion, which happens much faster for ρ,
this point being reflected by the fact that the constant κ is assumed to be small.
The potential D decays over time with rate δ > 0 and increases proportionally to
the density ρ, but only if the density is not too high in the case of model (I); this is
taken into account by the source term g(ρ) given either by (6) or (7). As we shall
see, interesting phenomena also occur when δ is small.

In many aspects, these models are quite similar to the Keller–Segel model used
in chemotaxis. The prevention of overcrowding has already been considered in
several papers, either in the parabolic-elliptic case [Burger et al. 2008; 2010]
or the parabolic-parabolic case [Di Francesco and Rosado 2008] (with diffusion-
dominated large-time asymptotics) and [Burger et al. 2010] (where, additionally,
the case of several species and cross-diffusion was taken in to account). In these
papers the emphasis was put on asymptotic behaviors, with a discussion of the
possible asymptotic states and behaviors depending on nonlinearities in [Burger
et al. 2006] and a study of plateau-like quasistationary solutions and their motion
in [Burger et al. 2008]. This of course makes sense when the domain is the en-
tire space, but a classification of the stationary solutions in bounded domains and
in particular plateau-like solutions is still needed, as it is strongly suggested by
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[Burger et al. 2011] that such solutions have interesting properties, for instance, in
terms of stability.

Because of the (1− ρ) factor in front of the drift, the transport term vanishes in
our models as ρ approaches 1, so that for any initial data bounded by 1 the density
remains bounded by 1. Hence blow-up, which is a major difficulty for the analysis
of the usual Keller–Segel system for masses over 8π (see, for instance, [Blanchet
et al. 2006]), does not occur here. In contrast with the parabolic-elliptic Keller–
Segel model with prevention of overcrowding studied in [Burger et al. 2010], mod-
els (I) and (II) are based on a system of coupled parabolic equations. This has
interesting consequences for the evolution problem as, for example, it introduces
memory effects. It also has various consequences for the dynamical stability of
the stationary states. In model (I), the source term in the equation for D involves
ρ(1−ρ) instead of ρ. This nonlinear source term introduces additional difficulties:
for instance, no Lyapunov functional is known.

1.3. Main results. Let us summarize some of the main results of this paper, in the
cases of models (I) and (II), when � is a ball, as far as radial nonnegative stationary
solutions are concerned. As we shall see below the stationary solutions of interest
are either constants or monotone functions, which are then plateau-like.

Theorem 1. Let � be a ball and consider solutions of models (I) and (II) subject
to boundary conditions (2) and (5). Then the masses of the radial nonnegative
stationary solutions as defined by (3) range between 0 and |�| and we have:

(i) Nonconstant stationary solutions exist only for M in a strict subinterval (0, |�|).

(ii) Constant solutions are variationally and dynamically unstable in a strictly
smaller subinterval.

(iii) There is a range of masses in which only nonconstant stationary solutions are
stable, given by the condition that κλ1+ δ is small enough, where λ1 denotes
the lowest positive eigenvalue of −1 in � subject to Neumann homogeneous
boundary conditions.

(iv) For any given mass, variationally stable stationary solutions with low energy
are either monotone or constant; in the case of model (II), monotone, plateau-
like solutions are then stable and attract all low-energy solutions of the evolu-
tion problem in a certain range of masses.

Much more can be said on stationary solutions, as we shall see below, and some
of our results are not restricted to radial solutions on a ball. The natural parameter
for the solutions of models (I) and (II) is M , but it is much easier to parametrize the
set of solutions by an associated Lagrange multiplier; see Section 2. In particular,
stationary solutions are then critical points of an energy defined in Section 3, and
there is a notion of variational stability associated with this energy. Taking into
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account the mass constraint, as done in Section 4, makes the problem more difficult.
To study the evolution problem, one can rely on a Lyapunov functional introduced
in Section 5, but only in the case of model (II). Dynamical stability is studied
through the spectrum of the linearized evolution operator in Section 6 and the
interplay between notions of variational and dynamical stability is also studied in
detail. How to harmonize the two points of view on stability is a question that
models (I) and (II) share with all parabolic-parabolic models of chemotaxis. In
the case of model (II), results are summarized in Theorem 26. The issue of the
stability of monotone — constant or nonconstant — solutions is a subtle question
and most of this paper is devoted to this point. Precise definitions of variational
and dynamical stability will be given later on.

Numerical results go beyond what can be proved rigorously. Because we use
the parametrization by the Lagrange multiplier, we are able to compute all radial
solutions. In practice, we shall focus on the role of constant and monotone plateau-
like solutions. A list of detailed qualitative results is provided at the beginning of
Section 7. Theoretical and numerical results are discussed in Section 8.

1.4. Some references. The two models considered in this paper have been intro-
duced in [Burger et al. 2011] at the partial differential equation level. Considera-
tions on the stability of constant solutions can be found therein as well. Models (I)
and (II) involve a system of two parabolic equations, like the so-called parabolic-
parabolic Keller–Segel system, for which we primarily refer to [Calvez and Corrias
2008]. In such a model, stationary solutions have to be replaced by self-similar
solutions, which also have multiplicity properties (see [Biler et al. 2011]). How the
parabolic-parabolic model is related to the parabolic-elliptic case has been studied
in [Biler and Brandolese 2009; Calvez and Corrias 2008]. The parabolic-elliptic
counterpart of model (I) is known: for plateau solutions and the coarsening of
the plateaus, we refer to [Burger et al. 2008] (also see [Burger et al. 2006; 2010];
related models can be found in the literature labeled as Keller–Segel models with
logistic sensitivity or congestion models).

One of the technical but crucial issues for a complete classification of all so-
lutions is how to parametrize the set of solutions. Because Lyapunov or energy
functionals are not convex, this is a far more difficult issue than in the repulsive
case, for which we refer to [Dolbeault et al. 2001]. The lack of convexity makes it
difficult to justify but, at a formal level, the evolution equations in model (II) can be
interpreted as gradient flows with respect to some metric involving a Wasserstein
distance (see [Blanchet et al. 2015] in the case of the Keller–Segel model and
[Blanchet and Laurençot 2013] for a more general setting; also see [Laurençot and
Matioc 2013] for an earlier result in the same spirit). To be precise, one has to
consider the Wasserstein distance for ρ and a L2 distance for D as in [Calvez and
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Carrillo 2012]. The difficulty comes from the fact that the Lyapunov functional is
not displacement convex (see, for instance, [Blanchet et al. 2008] and subsequent
papers in the parabolic-elliptic case of the Keller–Segel system). Using methods
introduced in [Matthes et al. 2009] this may eventually be overcome, but it is still
open at the moment, as far as we know.

2. Radial stationary solutions

2.1. A parametrization of all radial stationary solutions. Any stationary solution
of (1) solves

∇ρ− ρ(1− ρ)∇D = 0 on �,

which means
ρ =

1
1+ e−φ

, (8)

where φ = D−φ0 and φ0 ∈ R is an integration constant determined by the mass
constraint (3); φ0 is the unique real number such that∫

�

1
1+ eφ0−D dx = M. (9)

Taking into account boundary conditions (5), (4) now amounts to

−κ1φ+ δ(φ+φ0)− f (φ)= 0 on � (10)

with boundary conditions

∇φ · ν = 0 on ∂�. (11)

The functions f and F are defined by f = F ′ and

F(φ)= ρ =
1

1+ e−φ
and f (φ)= ρ(1− ρ)=

e−φ

(1+ e−φ)2
in the model (I) case,

F(φ)= log(1+ eφ) and f (φ)= ρ =
1

1+ e−φ
in the model (II) case.

The crucial observation for our numerical computation is based on the following
result.

Proposition 2. If � is the unit ball in Rd , d ≥ 2, all radial solutions of (10) and
(11) with f as above are smooth and can be found by solving the shooting problem

−κ
(
ϕ′′a +

d−1
r
ϕ′a

)
+ δ(ϕa +φ0)− f (ϕa)= 0, ϕ′a(0)= 0, ϕa(0)= a,

as a function of the parameter a ∈ R. The shooting criterion is ϕ′a(1)= 0.
If d = 1, all solutions in �= (0, 1) are given by the above ordinary differential

equation (ODE).



TWO CROWD MOTION AND HERDING MODELS 217

Proof. The proof presents no difficulty and is left to the reader. �

2.2. Constant solutions. Determining φ such that δ(φ+φ0)− f (φ)= 0, that is,

k(φ) := 1
δ

f (φ)−φ = φ0, (12)

exactly amounts to determining the (possibly multivalued) function φ0 7→ k−1(φ0).
The following result is not restricted to the special case of f as defined in model (I)
or (II).

Lemma 3. Let δ > 0. Assume that f ∈C1(R) is bounded and limφ→±∞ f ′(φ)= 0.
Then the function φ 7→ k ′(φ)= (1/δ) f ′(φ)−1 has 2` zeros for some `∈N and (12)
has at most 2`+ 1 solutions. Moreover, for |φ0| large enough, (12) has one and
only one solution, which is such that ρ given by (8) converges to 0 as φ0→+∞

and to 1 as φ0→−∞.

If |φ0| is large, we observe that k(φ) ∼ −φ. Other properties are elementary
consequences of the intermediate values theorem and are left to the reader. A plot
is shown in Figure 1.

With f = F ′ and f corresponding either to model (I) or (II), all assumptions of
Lemma 3 are satisfied with `= 0 or 1. For use later, let us define

φ−(φ0) :=min k−1(φ0) and φ+(φ0) :=max k−1(φ0)

−25 −20 −15 −10 −5 0 5 10
φ

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

δ(
φ
+
φ
0
)
−

F
′ (
φ
)

250.0

110.0

8.3

-100.0

Figure 1. Plot of φ 7→ δ(φ+φ0)− f (φ)= δ(φ+φ0)− F ′(φ)=
δ(φ0− k(φ)) for various values of φ0. Each zero of the function
provides a constant stationary solution of (1)–(5). The plot shown
here corresponds to model (I), with δ = 10−3.
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and emphasize that φ± depend on φ0. The set k−1(φ0) is reduced to a point if and
only if φ−(φ0)= φ+(φ0). From Lemma 3, we also know that

φ−0 := inf{φ0 ∈R :φ−(φ0)<φ+(φ0)} and φ+0 := sup{φ0 ∈R :φ−(φ0)<φ+(φ0)}

are both finite.
Instead of parametrizing solutions by φ0, it is interesting to think in terms of

mass. Here is a first result (see Figure 2) in this direction, which follows from the
property that k ′(φ±(φ0)) < 0 for any φ0 ∈ R.

Lemma 4. Under the assumptions of Lemma 3, φ0 7→ φ±(φ0) is monotone de-
creasing, and the corresponding masses are also monotone decreasing as functions
of φ0.

The proof is elementary and left to the reader. If φ is a constant solution, it is
a monotone increasing function of the mass according to (8). Hence the mass of
a constant extremal solution φ = φ±(φ0) is a monotone decreasing function of φ0.
Moreover, we have

f ′(φ)= ρ(1− ρ)h(ρ),

0 50 100 150 200 250
φ0

−30

−20

−10

0

10

20

φ
(0
)

Branch of constant solutions

Branch of monotone
solutions
Branch of monotone
solutions

1

2

3

4

Figure 2. Parametrization by φ0 of the branches of solutions in
the case of model (I), d = 1, with δ = 10−3, κ = 5× 10−4, and
�= (0, 1). There are either one or three constant solutions for a
given value of φ0. Strictly monotone solutions correspond to the
bold curve. Notice that on the upper part of the graph the two
branches are close but distinct.
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with ρ given by (8), h(ρ)= 1− 2ρ in the case of model (I), and h(ρ)= 1 in the
case of model (II). A simple computation shows that m :=maxρ∈[0,1] ρ(1−ρ)h(ρ)
is equal to 1/(6

√
3) and 1/4 in the cases of models (I) and (II), respectively. As a

consequence, with the notation of Lemma 3, ` = 0 if either δ ≥ m or δ < m and
φ0 ∈ R \ (φ−0 , φ

+

0 ). If δ <m we find that `= 1 if φ0 ∈ (φ
−

0 , φ
+

0 ); there are exactly
three constant solutions.

In the case of models (I) and (II), the (unique) constant solution taking values in
(φ−(φ0), φ+(φ0)) is monotone increasing as a function of φ0 (when it exists), thus
defining a range of masses in which Theorem 1(iii) holds, as we shall see below.

3. Unconstrained energy and constant solutions

In this section we consider the problem for fixed φ0. On the space H1(�), let us
define the energy functional by

Eφ0[φ] :=
κ

2

∫
�

|∇φ|2 dx + δ
2

∫
�

|φ+φ0|
2 dx −

∫
�

F(φ) dx . (13)

It is clear from (3) that stationary solutions of models (I) and (II) are critical points
of Eφ0 (see Lemma 5) for some given Lagrange multiplier φ0. Moreover, for a
given φ0, we know how to compute all radial solutions as explained in Section 2.
Hence we shall first fix φ0, study the symmetry of the minimizers of Eφ0 , and
clarify the role of constant solutions.

3.1. Critical points.

Lemma 5. Assume that F is Lipschitz continuous and � is bounded with C1,α

boundary for some α > 0. With φ0 kept constant, φ is a solution of (10) and (11)
if and only if it is a critical point of Eφ0 in H1(�).

It is straightforward to check that Eφ0 has a minimizer for any given φ, but
such a minimizer is actually constant as we shall see in Corollary 8. Nonconstant
solutions are therefore not minimizers of Eφ0 , for fixed φ0. The regularity of the
solution of (10) and (11) depends on the regularity of F , but when it is smooth
as in the case of models (I) and (II), the standard elliptic theory applies and φ is
smooth up to the boundary. We refer, for instance, to [Brezis 2011] as a standard
reference book. Details are left to the reader and we shall assume without further
notice that solutions are smooth from now on.

Notice that our original problem is not set with φ0 fixed, but with mass constraint
(3). Understanding how results for a given φ0 can be recast into problems with M
fixed is a major source of difficulties and will be studied in particular in Section 4.



220 JEAN DOLBEAULT, GASPARD JANKOWIAK AND PETER MARKOWICH

3.2. Linearized energy functional. Consider the linearized energy functional

lim
ε→0

Eφ0[φ+ εψ] −Eφ0[φ]

2ε2 =

∫
�

ψ(Eφψ) dx,

where φ is a stationary solution, ψ ∈ H2(�), and Eφψ := −κ1ψ + δψ − F ′′(φ)ψ .
Notice that with ρ given by (8), we have

Eφψ =−κ1ψ + δψ − ρ(1− ρ)h(ρ)ψ, (14)

with h(ρ)= 1− 2ρ in the case of model (I) and h(ρ)= 1 in the case of model (II).

3.3. Stability and instability of constant solutions. Denote by (λn)n∈N the se-
quence of all eigenvalues of −1 with homogeneous Neumann boundary conditions,
counted with multiplicity. The eigenspace corresponding to λ0 = 0 is generated
by the constants. Three constant solutions coexist when constant solutions φ take
their values in k ◦ (k ′)−1(0,+∞), that is, when

δ− ρ(1− ρ)h(ρ) < 0.

A constant solution (ρ, D = φ+φ0) is variationally unstable if Eφ has a negative
eigenvalue, that is, if

κλ1+ δ− ρ(1− ρ)h(ρ) < 0. (15)

When such a condition is satisfied, the constant solution φ cannot be a local min-
imizer of Eφ0 . Dynamical stability of the constant solutions with respect to the
evolution governed by (1)–(5) will be studied in Section 6; in the case of con-
stant solutions, such an instability is also determined by (15), as we shall see in
Proposition 18.

Condition (15) is never satisfied if κλ1 + δ ≥ m := maxρ∈[0,1] ρ(1− ρ)h(ρ).
Otherwise, this condition determines a strict subinterval of (0, 1) in terms of ρ,
and hence an interval in φ. This proves Theorem 1(ii). A slightly more precise
statement goes as follows.

Lemma 6. Let δ > 0. The set of values of φ0 for which there are constant solutions
of (10) which satisfy (15) with ρ given by (8) is contained in (φ−0 , φ

+

0 ). Moreover, if
there exists a constant, variationally unstable solution, then there is also a constant,
variationally stable solution of (10) for the same value of φ0, but with lower energy.

The proof of Lemma 6 requires some additional observations. It will be com-
pleted in Section 3.6.

3.4. Numerical range. Cases of numerical interest studied in this paper are the
following.
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(1) In dimension d = 1 with �= (0, 1), the first unstable mode is generated by
x 7→ cos(πx) and corresponds to λ1 = π

2
≈ 9.87.

(2) In dimension d = 2, the first positive critical point of the first Bessel function
of the first kind J0, that is, r0 :=min{r > 0 : J ′0(r)= 0}, is such that r0 ≈ 3.83
so that λ0,1 = r2

0 ≈ 14.68 is an eigenvalue associated with the eigenspace
generated by r 7→ J0(rr0). Applied to (15), this determines the range of radial
variational instability. Recall that J0 is the solution of J ′′0 + (1/r)J ′0+ J0 = 0.

Notice that nonradial instability actually occurs in a larger range, since the
first positive critical point of the second Bessel function of the first kind J1,
that is, r1 :=min{r > 0 : J ′1(r)= 0}, is such that r1 ≈ 1.84 so that λ1,0 = r2

1 ≈

3.39 is an eigenvalue associated with the eigenspace generated by r 7→ J1(rr1),
and λ1 = λ1,0 < λ0,1. Applied to (15), this determines the range of variational
instability. Recall that J1 is the solution of J ′′1 + (1/r)J ′1− (1/r2)J ′1+ J1 = 0.

The values of maxρ∈[0,1] ρ(1− ρ)h(ρ) are in practice also rather small, namely
1/(6
√

3)≈ 0.096 and 1/4= 0.25 in the cases of models (I) and (II), respectively,
which in practice, in view of the values of λ1, makes the numerical computations
rather stiff. In this paper we are interested in the qualitative behavior of the solu-
tions and the role of the dimension, but not so much in the role of the surrounding
geometry; hence we shall restrict our study to radial solutions. One of the advan-
tages of dealing only with radial solutions is that we can use accurate numerical
packages for solving ODEs and rely on shooting methods, thus getting a precise
description of the solution set. Taking into account the effects of the geometry is an-
other challenge but is, in our opinion, secondary compared to establishing all qual-
itative properties that can be inferred from our numerical computations. Another
reason for restricting our study to radially symmetric functions is Proposition 2:
using the shooting method, we have the guarantee of the description of all solutions,
with additional information like the knowledge of the range in which to adjust the
shooting parameter, as a consequence of the observations of Section 2.2 (see also
Proposition 9). Within the framework of radial solutions, we can henceforth give a
thorough description of the set of solutions, which is clearly out of reach in more
general geometries. However, inasmuch as we deal with theoretical results, we
will not assume any special symmetry of the solutions unless necessary.

In practice, the numerical computations of this paper are done with δ = 10−3

and κ ranging from 5×10−4 to 10−2. Such small values are dictated by (15). They
are also compatible with the computations and modeling considerations found in
[Burger et al. 2011]. See Figure 2 for a plot corresponding to a rather generic
diagram representing constant solutions for model (I) in dimension d = 1. Numer-
ically, our interest lies in the nonconstant radial solutions that bifurcate from the
constant solutions φ at threshold values for condition (15), that is, for values of φ0
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such that κλ1 + δ − ρ(1− ρ)h(ρ) = 0, with λ1 = π
2, in dimension d = 1, and

λ1 = λ0,1 when d = 2. We shall take φ0 as the bifurcation parameter and compute
the mass of the solution only afterwards, thus arriving at a simple parametrization
of all solutions. Our main results are therefore a complete description of branches
of solutions bifurcating from constant ones and giving rise to plateau solutions. See
Figure 3 for some plots of the solutions. We notice that in the range considered
for the parameters, the transition from high to low values is not too sharp. The
numerical study will be confined to radial monotone solutions, but we will briefly
explain in Section 4.3 (at least when d = 1) what can be expected for a solution
with several plateaus. Concerning stability issues, decomposition on appropriate
basis sets will be required, as will be explained in Section 7.

3.5. Qualitative properties of the stationary solutions.

Lemma 7. Let � be a bounded open set in Rd with C2 boundary and assume that
k : R→ R is Lipschitz continuous with

lim inf
u→−∞

k(u) > 0 and lim sup
u→+∞

k(u) < 0.

Assume that all zeros of k are isolated and denote them by u1 < u2 < · · · < uN

for some N ≥ 1. Then any solution of class C2 of 1u+ k(u) = 0 in � satisfying
∇u · x = 0 on ∂� takes values in [u1, uN ].

Proof. Let x∗ ∈� be a maximum point of u. We know that −1u(x∗)= k(u(x∗))≥
0, even if x∗ ∈ ∂�, because of the boundary conditions. By assumption, we find
that u(x)≤ u(x∗)≤ uN for any x ∈�. Similarly, one can prove that u ≥ u1. �

Applying Lemma 7 to (10) and (11) has straightforward but interesting conse-
quences.
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Figure 3. In the case of model (I), d = 1, δ = 10−3, we consider
various profiles for x 7→ φ(x) with x ∈ (0, 1)=� either (left) as
φ0 varies and κ = 5× 10−4, or (right) as κ varies, with φ(0)= 1.
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Corollary 8. Under the assumptions of Lemma 3, for any given φ0 ∈ R, if φ is a
solution of (10) and (11), then we have that

φ−(φ0)≤ φ(x)≤ φ+(φ0), ∀ x ∈�.

The minimum of Eφ0 is achieved by a constant function. Moreover, if (12) has only
one solution φ, then (10) and (11) also have only one solution, which is constant,
and φ ≡ φ− = φ+.

Proof. We simply observe that, according to the definition (13), we have

Eφ0[φ] ≥
δ

2

∫
�

|φ+φ0|
2 dx −

∫
�

F(φ) dx

and critical points of φ 7→ (δ/2)|φ+φ0|
2
−F(φ) are precisely the constant solutions

of (12) with f = F ′. �

In the cases which are numerically studied in this paper, there is an additional
property which is of particular interest.

Proposition 9. Consider either model (I) or model (II). Then there exists a con-
stant unstable solution only if φ0 ∈ (φ

−

0 , φ
+

0 ).

Proof. This is an easy consequence of the properties of f = F ′. The details are
left to the reader. �

3.6. A monotonicity result. For a given φ0 ∈ R, nonmonotone radial functions
always have higher energy Eφ0 than radial monotone functions. We can state this
observation as a slightly more general result as follows.

Proposition 10. Assume that � is the unit ball in Rd , d ≥ 2, and let G ∈W 1,∞(�).
Then the functional G[φ] := 1

2

∫
�
|∇φ|2 dx −

∫
�

G(φ) dx is bounded from below
and for any radial nonmonotone function φ ∈ C2(�) satisfying (11), with a finite
number of critical points, there exists a radial monotone function φ̃ which satisfies
(11) and coincides with φ on a neighborhood of 0 such that G[φ̃]< G[φ].

Proof. With a slight abuse of notation, we consider φ as a function of r = |x | ∈ [0, 1]
and assume that it is a solution of

φ′′+G ′(φ)=−d−1
r
φ′.

Multiplying by φ′, we find that

d
dr

(1
2
φ′

2
+G(φ)

)
=−

d−1
r
φ′

2
< 0.

Unless φ is constant, assume that for some r0 ∈ (0, 1) we have φ′(r0)= 0, and let
G0 := G(φ(r0)). Integrating on (r0, r), r > r0, we find that

1
2 φ
′2
+G(φ) < G0 on (r0, 1),
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and then 1
2 φ
′2
−G(φ) > φ′2−G0 >−G0 on (r0, R). Hence we have that

G[φ]

|�|
=

∫ r0

0

(1
2
φ′

2
−G(φ)

)
rd−1 dr +

∫ 1

r0

(1
2
φ′

2
−G(φ)

)
rd−1 dr >

G[φ̃]

|�|
,

where φ̃ is defined by φ̃ ≡ φ on (0, r0) and φ̃ ≡ φ(r0) on (r0, 1). �

Proposition 10 shows at the ODE level why radial minimizers of the functional
G have to be monotone. It is also preparation for Lemma 16.

Proof of Lemma 6. A constant solution which satisfies (15) cannot be a global
minimizer for φ0 fixed. According to Corollary 8, there exists another constant so-
lution under the assumptions of Lemma 6, which incidentally proves that φ−(φ0) <

φ+(φ0) with the notation of Section 2.2. The fact that there is a constant stable solu-
tion with an energy lower than the energy of the unstable solution is a consequence
of Proposition 10. �

Summarizing, for a given φ0 ∈ R, only constant solutions are to be considered
for the minimization of Eφ0 . However, the relevant problem in terms of modeling
is the problem with a mass constraint, at least in view of the evolution problem,
and it is not as straightforward as the problem with a fixed Lagrange multiplier.

4. Energy minimizers under mass constraint

4.1. Existence and qualitative properties of minimizers. In this section, we as-
sume that M > 0 is fixed and consider φM

0 [D] = φ0 uniquely determined by (9).
Let us define the functional

D 7→ FM [D] :=
κ

2

∫
�

|∇D|2 dx + δ
2

∫
�

|D|2 dx −
∫
�

F(D−φM
0 [D]) dx .

In such a case, φ0 can be seen as a Lagrange multiplier associated with the mass
constraint and FM [D] = Eφ0[D−φ0].

Proposition 11. Assume that F is a continuous function with a subcritical growth.
If � is bounded with C1,α boundary for some α > 0, then for any M > 0, the
functional FM has at least one minimizer D = φ+φ0 with φ0 = φ

M
0 [D] in H 1(�),

which is such that FM [D] = Eφ0[φ], and D is of class C∞(�) if F is of class C∞.

Proof. It is straightforward to check that FM has at least one minimizer in H 1(�)

because any minimizing sequence converges up to the extraction of subsequences
to a minimum D = φ+ φ0 by compactness and lower semicontinuity. Then φ is
a critical point of Eφ0 and regularity is a standard result of elliptic theory (see, for
example, [Brezis 2011]) and bootstrapping methods. �

In models (I) and (II), we, respectively, have |F(φ)|< 1 and F(φ)∈ [0, log(2)+
max(0, φ)] so the assumptions of Proposition 11 are satisfied. Notice that it is
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not implied anymore that minimizers of FM under mass constraint are constant
functions and hence they might not be minimizers of Eφ0 .

Lemma 12. The mass of the density associated with nonconstant solutions of (10)
and (11) is bounded away from 0 and |�|.

Proof. Any nonconstant solution of (10) and (11) has mass

M =
∫
�

1
1+ e−φ

dx

associated with its density, according to (8) and (9). Corollary 8 gives the bounds

M−(φ0) :=
|�|

1+ e−φ+(φ0)
≤ M ≤

|�|

1+ e−φ−(φ0)
=: M+(φ0).

Let M (−)
:= min{M−(φ0) : φ0 ∈ (φ

−

0 , φ
+

0 )} and M (+)
:= max{M+(φ0) : φ0 ∈

(φ−0 , φ
+

0 )}. Since φ0 7→ M±(φ0) is a continuous function on R, we know from
Lemma 6 that (M (−),M (+)) is compactly included in (0, |�|). From Lemma 4,
we deduce that M (±)

= M±(φ∓0 ). �

Notice that Lemma 12 proves Theorem 1(i).

Corollary 13. With the above notation, we have 0 < M (−)
≤ M (+) < 1 and min-

imizers of FM are constant functions if M ∈ (0,M (−)) ∪ (M (+), 1). There is a
subinterval of (M (−),M (+)) in which minimizers of FM are nonconstant func-
tions.

Whether minimizers of FM are constant solutions or not for some M ∈ (M (−),

M (+)) will be investigated numerically. For small masses, or masses close to the
maximal mass |�| corresponding to the limit density ρ = 1, we can state one more
result.

Corollary 14. Under the assumptions of Lemma 3, with M (±)
∈ (0, |�|) defined as

above, there is one and only one solution φ of (1)–(5), with mass M ∈ (0,M (−))∪

(M (+), |�|). This solution is constant, and given by φ =− log(|�|/M − 1).

4.2. A partial symmetry result.

Lemma 15. Assume that d = 2. If � is a disk, minimizers of FM are symmetric
under reflection with respect to a line which contains the origin.

Proof. The proof of this lemma is inspired by [Lopes 1996]. Assume that � is the
unit disk centered at the origin and denote by (x1, x2) cartesian coordinates in R2.
Let us also define the open upper half-disk �+ := {x ∈ � : x = (x1, x2), x1 > 0}.
If φ is a minimizer of FM , we define φ̃ by φ̃(x1, x2) = φ(|x1|, x2), so that φ̃ is
symmetric with respect to the line x1 = 0. Up to a rotation, we can assume that �+
accounts for exactly half of the mass, that is,

∫
�+
(1+ e−φ)−1 dx = M/2, so that
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�
(1+ e−φ̃)−1 dx = M . Then, up to a reflection, we can assume that �+ accounts

for at most half of the value of FM :

κ

2

∫
�+

|∇φ|2 dx + δ
2

∫
�+

|φ+φ0|
2 dx −

∫
�+

F(φ) dx ≤ 1
2

FM [φ].

It is then clear that φ̃ is a minimizer of FM such that the mass constraint (3) is
satisfied. As such, φ̃ also solves the Euler–Lagrange equations, with the same
Lagrange multiplier φ0 because φ and φ̃ coincide on �+. Then w := φ− φ̃ solves
the equation

−κ1w+ hw = 0, with h :=
δ(φ− φ̃)+ F ′(φ̃)− F ′(φ)

φ− φ̃
,

on �. Since F ∈ C∞ and φ and φ̃ are continuous, h is bounded. According
to [Hörmander 1976, Theorem 8.9.1], Hörmander’s uniqueness principle applies.
Since w≡ 0 on �+, we actually have w≡ 0 on the entire disk �, and so φ = φ̃. �

In higher dimensions, when � is a ball, the method can be extended and shows
the symmetry of the solutions with respect to hyperplanes, thus proving a result of
so-called Schwarz foliated symmetry. The method also applies to the functional
Eφ0 with fixed φ0 and shows that a minimizer is radially symmetric, but this is
useless as we already know that the minimum is achieved among constant solutions.

4.3. One-dimensional minimizers are monotone. A one-dimensional stationary
solution solves an autonomous ODE. This has several interesting consequences.

Lemma 16. Let d = 1 and M > 0. Then minimizers of FM are monotone, either
increasing or decreasing.

Proof. Assume that φ is a minimizer of FM and �= (0, 1). If φ is not monotone,
it has a finite number of extremal points 0 = r0 < r1 < · · · < rN = 1 for some
N > 1. By uniqueness of the solution of the initial value problem, with φ(ri ) given
and φ′(ri ) = 0, we conclude that φ(ri − s) = φ(ri + s) as long as 0 ≤ ri − s and
ri + s ≤ 1, so that ri = i/N , that is, φ is 1/N-periodic. With φ̃(r) := φ(r/N ),
r ∈ (0, 1), we find that∫ 1

0
|φ̃′|2 dr = 1

N

∫ 1/N

0
|φ′|2 dr =

1
N 2

∫ 1

0
|φ′|2 dr <

∫ 1

0
|φ′|2 dr,

thus proving that Eφ0[φ̃] < Eφ0[φ] while
∫ 1

0 (1 + e−φ̃) dr =
∫ 1

0 (1 + e−φ) dr , a
contradiction. �

From the scaling in the above proof, it is now clear that all nonmonotone one-
dimensional solutions can be built from monotone ones by symmetrizing them with
respect to their critical points, duplicating them, and scaling them. The intuitive
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idea is simple but giving detailed statements is unnecessarily complicated, so we
will focus on monotone, or one-plateau, solutions.

5. A Lyapunov functional

In the case of model (II), let us consider the functional

L[ρ, D] :=
∫
�

[ρ log ρ+(1−ρ) log(1−ρ)−ρD] dx+κ
2

∫
�

|∇D|2 dx+ δ
2

∫
�

D2 dx .

Proposition 17. The functional L is a Lyapunov functional for model (II) and if
(ρ, D) is a solution of (1)–(5) and (7), then

d
dt

L[ρ(t, ·), D(t, ·)]=−
∫
�

|∇ρ−ρ(1−ρ)∇D|2

ρ(1−ρ)
dx−

∫
�

|−κ1D+δD−ρ|2 dx≤0.

As a consequence, any critical point of L under the mass constraint (3) is a station-
ary solution of (1)–(5) and (7), and any solution converges to a stationary solution.
If � is a ball and if the initial datum is radial, then the limit is a radial stationary
solution.

Proof. An elementary computation shows that

d
dt

L[ρ(t, ·), D(t, ·)]=−
∫
�

[
log
(
ρ

1−ρ

)
−D

]
Dt dx−

∫
�

(−κ1D+δD−ρ)Dt dx

and the expression of
d
dt

L[ρ(t, ·), D(t, ·)]

follows from (1)–(5). Let ρn(t, x) := ρ(t+n, x) and Dn(t, x) := D(t+n, x). Since
L is bounded from below, we have that

lim
n→∞

∫ 1

0

(∫
�

|∇ρn − ρn(1− ρn)∇Dn|
2

ρn(1− ρn)
dx+

∫
�

|−κ1Dn+δDn−ρn|
2 dx

)
dt = 0,

which proves that (ρn, Dn) strongly converges to a stationary solution. Other de-
tails of the proof are left to the reader. �

Proposition 18. Let M > 0 and consider model (II). For any D ∈ H1(�), let φ0

be the unique real number determined by the mass constraint (9). Then for any
nonnegative ρ ∈ L1(�) satisfying the mass constraint (3), we have

L[ρ, D] ≥ Eφ0[D−φ0],

where equality holds if and only if ρ is given by (8), that is, ρ = 1/(1+ e−φ), with
φ = D − φ0. As a consequence, for any minimizer (ρ, D) of L satisfying (3), ρ
is given by (8) with φ = D− φ0, φ0 satisfying the mass constraint (9), and φ is a
minimizer of Eφ0[φ] = L[ρ, D].
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Proof. We only need to notice that the minimum of L[ρ, D] with respect to ρ
under the mass constraint (3) satisfies

log
(
ρ

1−ρ

)
= D−φ0.

The completion of the proof follows from elementary computations which are left
to the reader. �

6. The linearized evolution operator

6.1. Dynamical instability of constant solutions. Assume that (ρ, D) is a sta-
tionary solution of (1)–(5). Because of (8) and (9), the solution is fully deter-
mined by D. Let us consider a time-dependent perturbed solution of the form
(ρ+ εu, D+ εv). Up to higher-order terms, u and v are solutions of the linearized
system {

ut =∇ · (∇u− (1− 2ρ)u∇D− ρ(1− ρ)∇v),

vt = κ1v− δv+ h(ρ)u,
(16)

with h(ρ)= 1− 2ρ in the case of model (I) and h(ρ)= 1 in the case of model (II).
For later use, we introduce the notation HD for the linear operator corresponding
to the right-hand side, so we write

(u, v)t = HD(u, v)=

(
H(1)

D (u, v)

H(2)
D (u, v)

)
,

with

H(1)
D (u, v)=∇ ·

[
ρ(1− ρ)∇

( u
ρ(1−ρ)

− v
)]
,

H(2)
D (u, v)= κ1v− δv+ h(ρ)u.

Dynamical instability of constant solutions can be studied along the lines of
[Burger et al. 2011]. Let us state a slightly more general result. We are interested
in finding the lowest possible µ in the eigenvalue problem

−HD(u, v)= µ(u, v), (17)

where H(1)
D (u, v) now takes a simplified form, using the fact that ρ is a constant:

H(1)
D (u, v)=1u− ρ(1− ρ)1v.

The condition µ < 0 provides a dynamically unstable mode. As in Section 3.3,
let us denote by (λn)n∈N the sequence of all eigenvalues of −1 with homoge-
neous Neumann boundary conditions, counted with multiplicity, and by (φn)n∈N

an associated sequence of eigenfunctions. If u =
∑

n∈N αnφn and v =
∑

n∈N βnφn ,
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problem (17) can be decomposed into

−λnαn + ρ(1− ρ)λnβn =−µnαn,

−κλnβn − δβn + h(ρ)αn =−µnβn,

for any n ∈ N, that is,

(µn − λn)αn + ρ(1− ρ)λnβn = 0,

h(ρ)αn + (µn − κλn − δ)βn = 0,

which has nontrivial solutions αn and βn if and only if the discriminant condition

(µn − λn)(µn − κλn − δ)− ρ(1− ρ)h(ρ)λn = 0

is satisfied. This determines µn for any n ∈ N, and the spectrum of HD is then
given by (µn)n∈N. Collecting these observations, we can state the following result.

Proposition 19. With the above notation, infn≥1 µn < 0 if and only if (15) holds.

Proof. The discriminant condition can be written as

µ2
n − [(κ + 1)λn + δ]µn + λn[κλn + δ− ρ(1− ρ)h(ρ)] = 0,

so that there is a negative root if λn(κλn+ δ−ρ(1−ρ)h(ρ)) < 0. Since (λn)n∈N is
nondecreasing and λ0 = 0, there is at least one negative eigenvalue for (17) if the
above condition is satisfied with n = 1. �

In other words, the dynamical instability of the constant solutions implies their
variational instability. As we shall see numerically, variational and dynamical in-
stability are not equivalent for plateau-like solutions.

Notice that λ0 = 0 must still be excluded, as it corresponds to the direction gen-
erated by constants. Because of (15) we can ensure that the perturbation has zero
average. This will be discussed further below, in the general case of a stationary
solution.

6.2. Variational criterion. In the case of model (II), we can look at the Lyapunov
functional L and linearize it around a stationary solution (ρ, D). Let

LD[u, v] := lim
ε→0

L[ρ+ εu, D+ εv] −L[ρ, D]
2ε2 .

A simple computation shows that

LD[u, v] =
∫
�

(
u2

2ρ(1− ρ)
− uv

)
dx + κ

2

∫
�

|∇v|2 dx + δ
2

∫
�

v2 dx .
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With Eφ defined by (14), let

3 := inf∫
�
vρ(1−ρ) dx=0

v 6≡0

∫
�
v(Eφv) dx∫
�
v2 dx

, (18)

with φ = D−φ0, and φ0 satisfying (9).

Lemma 20. Let M > 0 and consider model (II) only. If (ρ, D) satisfies (3) and is
such that ρ is given by (8) with φ = D−φ0 and φ0 determined by (9), then

3= 2 inf∫
�
vρ(1−ρ) dx=0∫
�
v2 dx=1

LD[u, v].

As a consequence, if (ρ, D) is a local minimizer of L under the mass constraint
(3), then 3 is nonnegative.

Proof. We notice that LD[u, v] =
∫
�
v(Eφv) dx holds true as soon as u= vρ(1−ρ),

with ρ given by (8). In particular, this is the case if (ρ, D) is a local minimizer of L.
With v fixed, an optimization of LD[u, v] with respect to u shows that u= vρ(1−ρ).
When (ρ, D) is a local minimizer of L, it is straightforward to check that LD[u, v]
cannot be negative. �

6.3. Entropy-entropy production. Along the linearized flow (16), we have

d
dt

LD[u(t, ·), v(t, ·)] = −2ID[u(t, ·), v(t, ·)], (19)

where

ID[u, v] :=
1
2

∫
�

ρ(1− ρ)
∣∣∣∣∇( u

ρ(1− ρ)
− v

)∣∣∣∣2 dx + 1
2

∫
�

|−κ1v+ δv− u|2 dx .

Let us define the bilinear form

〈(u1, v1), (u2, v2)〉D

=

∫
�

(
u1u2

ρ(1− ρ)
− (u1v2+ u2v1)

)
dx + κ

∫
�

∇v1 · ∇v2 dx + δ
∫
�

v1v2 dx,

which is such that
2LD[u, v] = 〈(u, v), (u, v)〉D.

Lemma 21. Consider model (II) only and assume that (ρ, D) is a local minimizer
of L under the mass constraint (3). On the orthogonal of the kernel of Eφ with
φ = D−φ0, φ0 satisfying (9), 〈·, ·〉D is a scalar product and HD is a self-adjoint
operator with respect to 〈·, ·〉D . Moreover, if (u, v) is a solution of (16), then

d
dt

LD[u, v] = −2ID[u, v] = 〈(u, v),HD(u, v)〉D ≤ 0.
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As a consequence, on the orthogonal of the kernel of Eφ , (0, 0) is the unique sta-
tionary solution of (16) and any solution with initial datum in the orthogonal of
the kernel converges to (0, 0).

With a slight abuse of notation, we have denoted by the kernel of Eφ the set
{(u, v) : v ∈ Ker(Eφ)}.

Proof. The positivity of ID is a consequence of the definition and self-adjointness
results from the computation

−〈(u1, v1),HD(u2, v2)〉D=

∫
�

ρ(1−ρ)∇
(

u1

ρ(1− ρ)
−v1

)
·∇

(
u2

ρ(1− ρ)
−v2

)
dx

+

∫
�

(−κ1v1+ δv1− u1)(−κ1v2+ δv2− u2) dx . �

Note that one has to take special care of the kernel of HD. If (ρM , DM) is
a stationary solution of (1)–(4) depending differentiably on the mass parameter
M , it is always possible to differentiate ρM and DM with respect to M and get
a nontrivial element in the kernel of HD. However, it is not guaranteed that this
element generates the kernel of Eφ , and, although not observed numerically, it
cannot be excluded that secondary bifurcations occur on branches of plateau-like
solutions.

If (ρ, D) is a stationary solution of (1)–(5), we can of course still consider
ID[u, v], and its sign determines whether (ρ, D) is dynamically stable or not. In
this paper we are interested in the evolution according to the nonlinear flow given
by (1)–(5). The fundamental property of mass conservation (3) can still be observed
at the level of the linearized equations (16). The reader is invited to check that any
classical solution of (16) is indeed such that

d
dt

∫
�

u(t, x) dx = 0,

and it makes sense to impose
∫
�

u dx = 0 at t = 0. If we linearize the problem
at a stationary solution given by (8), it also makes sense to consider the constraint∫
�
vρ(1− ρ) dx = 0.

6.4. Dynamic criterion. After these preliminary observations, we can define two
notions of stability. We shall say that a critical point φ of Eφ0 is variationally
stable (resp. unstable) if and only if 3 > 0 (resp. 3 < 0), where 3 is defined
by (18). Alternatively, we shall say that a stationary solution (ρ, D) of (1)–(5) is
dynamically stable (resp. unstable) if and only if

inf∫
�

u dx=0∫
�
v2 dx=1

LD[u, v]
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is positive (resp. negative) in the case of model (II). The operator HD being self-
adjoint, dynamical stability means variational stability of L on the product space,
once mass constraints are taken into account. Most of the remainder of this section
is devoted to this issue.

For model (I) we can extend the notion of dynamical stability (resp. instability)
by requiring that inf{Re(λ) : λ ∈ Spectrum(HD)} is positive (resp. negative). How-
ever, in the case of model (I), notions of dynamical and variational instability are
not so well related, as we shall see in Section 7.

Let us start with the following observation. In the cases of models (I) and (II),
the kernel of the operator Eφ associated with the linearized energy functional and
defined by (14) determines a subspace of the kernel of HD .

Lemma 22. Let φ0 ∈ R and assume that φ is a critical point of Eφ0 . Then ρ given
by (8) and D = φ+φ0 provides a stationary solution of (1)–(5). If v is in the kernel
of Eφ , then (u, v) is in the kernel of HD if u = ρ(1− ρ)v.

Proof. Using (14), it is straightforward to check that 0 = Eφv = H(2)
D (u, v) if

v ∈ Ker(Eφ). Then

H(1)
D (u, v)=∇ ·

[
ρ(1− ρ)∇

(
u

ρ(1− ρ)
− v

)]
= 0

because of the special choice u = ρ(1− ρ)v. �

Since (1) preserves the mass, it makes sense to impose
∫
�

u dx = 0. This also
suggests considering the constraint

∫
�
ρ(1− ρ)v dx = 0, which has already been

taken into account in (18). Let us give some more precise statements, in the case
of model (II). First we can state a more precise version of Lemma 20. Let us define

31 := 2 inf∫
�

u dx=0∫
�
v2 dx=1

LD[u, v].

Lemma 23. Let M > 0. Consider model (II) only and assume that (ρ, D) is a
critical point of L under the mass constraint (3). With φ = D−φ0 where φ0 is the
unique real number determined by (9), consider 3 defined by (18). Then we have
31 ≤3. If either 3< δ or 31 < δ, then we have 3=31.

Proof. If (ρ, D) is a critical point of L, the analysis of Section 2.1 shows that
ρ is given by (8) with φ = D− φ0 and φ0 determined by (9). Consider first the
minimization problem

inf∫
�
vρ(1−ρ) dx=0∫
�
v2 dx=1

LD[u, v].

As in Lemma 20, optimization with respect to u shows that u = vρ(1− ρ), and
it is then straightforward to get that 2LD[u, v] =

∫
�
v(Eφv) dx =3. Additionally,
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we know that v solves the Euler–Lagrange equation

Eφv =−κ1v+ δv− vρ(1− ρ)=3v−µρ(1− ρ), (20)

for some Lagrange multiplier µ, and we have
∫
�

u dx =
∫
�
vρ(1−ρ) dx = 0. This

proves that 31 ≤3.
Now, consider a minimizer (u, v) for 31. We find that

u = (v− v̄)ρ(1− ρ), with v̄ :=

∫
�
vρ(1− ρ) dx∫

�
ρ(1− ρ) dx

.

Moreover, v solves the Euler–Lagrange equation

−κ1v+ δv− vρ(1− ρ)=31v− v̄ρ(1− ρ). (21)

Hence we have found that

2LD[u, v] = κ
∫
�

|∇v|2 dx + δ
∫
�

v2 dx −
∫
�

ρ(1− ρ)|v− v̄|2 dx,

so that

31− δ = inf
v 6≡0

κ
∫
�
|∇v|2 dx −

∫
�
ρ(1− ρ)|v− v̄|2 dx∫

�
v2 dx

= inf∫
�
vρ(1−ρ) dx=0
v 6≡0,c∈R

κ
∫
�
|∇v|2 dx −

∫
�
ρ(1− ρ)v2 dx∫

�
v2 dx + c2

= inf∫
�
vρ(1−ρ) dx=0

v 6≡0

κ
∫
�
|∇v|2 dx −

∫
�
ρ(1− ρ)v2 dx∫

�
v2 dx

,

where the last equality holds under the condition that either3<δ or31<δ. Hence
we have shown that 31− δ =3− δ, which concludes the proof. �

Remark 24. With no constraint, it is straightforward to check that δ is an eigen-
value of HD , and (u, v)= (0, 1) an eigenfunction. Hence, as soon as 31 < δ, we
have that

∫
�

u dx = 0 if (u, v) is a minimizer for 31, because of (21). This justifies
why the condition of either 3< δ or 31 < δ enters into the statement of Lemma 23.

In the case of model (II), we can get a bound on the growth of the unstable
mode.

Corollary 25. Consider model (II) only and assume that (ρ, D) is a critical point
of L under the mass constraint (3). If 3 defined by (18) is negative, then we have

inf∫
�

u dx=0∫
�
v2 dx=1

ID[u, v]
LD[u, v]

≤3
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and the growth rate of the most unstable mode of (16) is at least 2|3|.

Proof. Consider a function v given by (20) with
∫
�
vρ(1−ρ) dx = 0,

∫
�
v2 dx = 1,

u = vρ(1− ρ), and (u, v) taken as a test function. Then

ID[u, v]
LD[u, v]

=

∫
�
(Eφv)2 dx∫

�
v(Eφv) dx

=

∫
�
(3v−µρ(1− ρ))2 dx∫

�
(3v−µρ(1− ρ))v dx

=3+
µ2

3

∫
�

ρ2(1− ρ)2 dx ≤3.

Using (19), if LD[u, v] is negative, then we get

d
dt

LD[u, v] ≤ −23LD[u, v],

thus proving that LD[u, v](t)≤ LD[u, v](0)e2|3|t for any t ≥ 0. �

The result of Corollary 25 on the most unstable mode can be rephrased in terms
of standard norms. By definition of LD , we get that∫

�

(u2
+ v2) dx ≥ 2

∫
�

uv dx ≥ 2|LD[u, v]| ≥ 2|LD[u, v](0)|e2|3|t ,

for any t ≥ 0.
Summarizing, we have shown the following result.

Theorem 26. Let M > 0 and consider the case of model (II). Assume that (ρ, D)
is a stationary solution of (1)–(5) such that (3) is satisfied and let φ = D−φ0, with
φ0 satisfying (9). Then the following properties hold true.

(i) Neither dynamical instability nor variational instability can occur if (ρ, D)
is a local minimizer of L under the mass constraint (3) or, equivalently, if φ
is a local minimizer of Eφ0 such that (3) and (8) hold.

(ii) If (ρ, D) is a local minimizer of L under the mass constraint (3), then any
solution (u, v) of (16) converges towards (0, 0) when the initial datum is as-
sumed to be in the orthogonal of the kernel of HD and with sufficiently low
energy.

(iii) Dynamical stability implies variational stability.

(iv) Variational instability and dynamical instability are equivalent and, with the
above notation, 31 =3.

On the contrary, no clear relation between variational and dynamical (in)stability
is known in the case of model (I), except the result of Lemma 22, which is not so
easy to use from a numerical point of view.
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7. Numerical results

Let us summarize our findings on radial stationary solutions of (1)–(5), with pa-
rameters δ and κ in the range discussed in Section 3.4, when � is the unit ball
in Rd , with d = 1 or d = 2. Our results deal with either model (I) or model (II),
defined respectively by (6) and (7), as follows:

(i) We compute the branches of monotone, nonconstant, radial solutions that bi-
furcate from constant solutions for the two models, in dimensions d = 1 and
d = 2.

(ii) We study the variational and dynamical stability of these solutions. The two
notions coincide for model (II), which is partially explained with the help of
the Lyapunov functional.

(iii) Dynamical stability holds up to the turning point of the branch when it is
parametrized by the mass for model (II) in dimensions d = 1 and d = 2. This
is also true in dimension d = 1 for model (I).

(iv) In dimension d = 1, the variational stability of the branch of monotone, non-
constant solutions is more restrictive than the dynamical stability in the case
of model (I).

Before entering into the details, let us observe that bifurcation diagrams are more
complicated in dimension d = 2 than for d = 1, and that the lack of a Lyapunov
functional makes the study of model (I) significantly more difficult.

All computations are based on the shooting method presented in Proposition 2.
This allows us to find all radially symmetric stationary solutions, as the range of
parameter a for which solutions exist is bounded according to Corollary 8. Hence
we are left with a single ordinary differential equation, which can be solved us-
ing standard numerical methods. Because of the smallness of the parameter κ ,
the shooting criterion ϕ′a(1) = 0 has a rather stiff dependence on a. This makes
directly finding all zeros of the criterion for a given φ0 difficult, so in practice
we use perturbation and continuation methods to parametrize the whole branch of
monotone, plateau-like solutions.

The computation of the spectrum of the linearized evolution operator (16) is
done using a basis of cosines, normalized and scaled to meet the boundary condi-
tions. This allows for fast decomposition of the coefficients by FFT. In the case
d = 2, such a basis in not orthogonal, which is taken into account using a mass
matrix during diagonalization. In cases where the constraints cannot be enforced
directly at the basis level, a Rayleigh quotient minimization step is performed, on
the orthogonal of the constrained space.
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Numerical computations have been made entirely using the freely available
NumPy and SciPy Python libraries. These make use of reference numerical li-
braries LAPACK and odepack.

We start by considering constant solutions. We make use of the notation of
Section 2.2.

Let us comment on the plots of Figure 2.�� ��1 The first turning point: φ0 = φ
−

0 , on the branch of constant solutions.
For lower values of φ0, there is only one constant solution φ ≡ φ(0), which
converges to +∞ as φ0→−∞.�� ��2 and

�� ��3 Nonconstant solutions bifurcate from constant solutions, which
are unstable in the corresponding interval for φ0. The solutions of the two
branches correspond to monotone solutions, either increasing or decreasing,
and always bounded from above and below by constant solutions.�� ��4 Second turning point: φ0 = φ

+

0 , on the branch of constant solutions. For
higher values of φ0, there is only one constant solution φ ≡ φ(0), which
converges to −∞ as φ0→+∞.

The dependence of plateau-like solutions on parameters φ0 and κ is shown in
Figure 3.

Next we consider monotone, plateau-like solutions. In Figures 4 and 5, the
shaded region corresponds to masses for which constant solutions are unstable.

Dynamical and variational stability criteria and their interplay are a tricky issue,
especially in the case of model (I), in which we have no theoretical framework to
relate the two notions. See Figure 6.

Figure 4. Model (I), with κ = 5× 10−4 and δ = 10−3. Thin lines
represent constant solutions and bold lines plateau-like solutions.
For readability purposes we use a logarithmic scale for the mass.
The dotted part of each branch shows where solutions are dynam-
ically unstable. For d = 1 (left) and d = 2 (right).

http://scipy.org
http://scipy.org
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Figure 5. Model (II), with κ = 10−2 and δ= 10−3. Thin lines rep-
resent constant solutions and bold lines plateau-like solutions. The
dotted part of each branch shows where solutions are dynamically
unstable. For d = 1 (left) and d = 2 (right).

Stationary solutions are critical points of Eφ0 . It is therefore interesting to de-
termine whether they are minima or not, either for fixed values of φ0 or for fixed
values of M , which makes more sense from the dynamical point of view. However,
it is only in the case of model (II) that minimizers of Eφ0 are also minimizers of
L, and therefore dynamically and variationally stable. See Figures 7 and 8.

Finally in the case of model (II), we can check that dynamical and variational
stability are compatible; see Figure 9.

8. Concluding remarks

Model (II) is the (formal) gradient flow of the Lyapunov functional L with respect
to a distance corresponding to the Wasserstein distance for ρ and an L2 distance for
D (see [Blanchet and Laurençot 2013; Blanchet et al. 2015; Laurençot and Matioc
2013] for further considerations in this direction). Critical points of L are stationary
solutions for the system. They attract all solutions of the evolution equation and
the infimum of L is achieved by a monotone function, which is therefore either a
plateau solution or a constant solution. When d = 1, numerics, at least for the values
of the parameters we have considered, show that plateau solutions exist only in the
range in which constant solutions are unstable and are uniquely defined in terms of
the mass. However, when d = 2, the range for dynamically stable plateau solutions
is larger than the range (in terms of the mass) of constant unstable solutions under
radial perturbation. Infima of L and Eφ0 actually coincide. Consistent with our
analysis, we find that the linearized evolution operator around minimizing solutions
has only positive eigenvalues. Moreover, this operator is self-adjoint in the norm
corresponding to the quadratic form given by the second variation of L around a
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Figure 6. Model (I) with d = 1. We numerically compare the
criteria for variational and dynamical instability along the branch
of monotone, nonconstant solutions. When d M/dφ0 changes sign,
this means that the branch has a turning point when plotted in
terms of M . We observe that this turning point corresponds to
the loss of dynamical stability, while variational stability is lost
for smaller values of φ0 along the branch; see in particular the
enlargement (bottom). Here µ1 corresponds to the lowest value of
Re(〈(u, v),−HD(u, v)〉) under the constraints 〈(u, v), (u, v)〉 = 1
and

∫
�

u dx = 0, where 〈·, ·〉D denotes the standard scalar product.

minimizer. Hence, when d = 2, we observe the existence of multiple stable (under
radial perturbation) stationary solutions.

In the case of model (I), no Lyapunov functional is available, to our knowledge.
Still, all stationary states are characterized as critical points of Eφ0 and obtained
(as long as they are radially symmetric) using our shooting method. In dimension
d = 1, the structure of the set of solutions is not as simple as in model (II), and
this can be explained by the frustration due to the ρ(1− ρ) term in the equation
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Figure 7. Energy is represented as a function of φ0 for constant
and monotone (either increasing or decreasing) solutions. Here
we assume d = 1. For model (I) (upper left), the energy Eφ0 is
shifted by (δ/2)φ2

0 |�|. For model (II) (upper right), nonconstant
solutions (the upper curve) are indistinguishable from a branch of
constant solutions. Details for model (II) (bottom) show the dif-
ference of the energies of the constant and nonconstant solutions
(under appropriate restrictions on φ0).
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Figure 8. For any given mass, there is exactly one constant solu-
tion. Hence minimizers of FM [D]=Eφ0[φ+φ0]with φ0=φ

M
0 [D]

for masses M in a certain range are not constant. Model (I) with
d = 1 (left) and model (II) with d = 1 (right). These minimiz-
ers are also minimizers of the Lyapunov functional and therefore
dynamically stable (φ0 is restricted to an appropriate range).
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Figure 9. Model (II) with d = 2. The solution of M 7→3 (left),
where, for each M , we compute the two monotone plateau-like
solutions, and then 3 according to (18). Hence 3 < 0 means
that the solution is variationally unstable under the mass constraint.
Detail is shown (right). Here µ1 corresponds to the lowest value
of 〈(u, v),−HD(u, v)〉 under the constraints 〈(u, v), (u, v)〉 = 1
and

∫
�

u dx = 0.

for D. Numerically, when d = 1, we observe that monotone plateau solutions
are uniquely defined and dynamically stable in the range where constant solutions
are dynamically unstable. However, when d = 1, we also have a range in which
both types of solutions are dynamically stable, which means that the system has
no global attractor. We do not even know whether stationary solutions attract all
solutions of the evolution problem or not.

To give a simple picture of the physics involved in the two models of crowd
modeling studied in this paper, we may use the following image. The potential
D defines the strategy of the individuals. It takes into account the source term
(the density ρ in the case of model (II) and ρ(1− ρ) in the case of model (I)) to
determine a preferred direction. Because it is governed by a parabolic equation, it
takes the value of the source term into account not only at instant t , but also in the
past, which means that there is a memory effect. Of course, the recent past receives
a larger weight, and actually two mechanisms are at work updating the system: a
local damping, with time scale determined by δ, and a diffusion term (the position
of the source term gets lost over a long time range), with a time scale governed by
κ . Both coefficients being small, the time scale (that is, the memory of the system)
is long compared to the time scale for ρ.

As far as ρ is concerned, the diffusion accounts for random effects while the
drift is tempered by some tactical term, which tries to avoid densely populated
areas, and is taken into account by means of the (1− ρ) term in the drift.

In the case of model (II) the strategy defined by the source term is simple: indi-
viduals want to aggregate in high ρ densities. In the case of model (I) the strategy is
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different, as the system tends to favor regions with intermediate densities, typically
ρ on the order of 1/2. Of course, this is antagonistic to the trend of concentrating
in regions where D is large and introduces some frustration in the system. At a
very qualitative level, this is an explanation for the fact that multiplicity of the
dynamically stable stationary state occurs in model (I) even when d = 1.
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COMPREHENSIVE DESCRIPTION OF DEFORMATION
OF SOLIDS AS WAVE DYNAMICS

SANICHIRO YOSHIDA

Deformation and fracture of solids are discussed as comprehensive dynamics
based on a field theory. Applying the principle of local symmetry to the law of
elasticity and using the Lagrangian formalism, this theory derives field equations
that govern dynamics of all stages of deformation and fracture on the same
theoretical foundation. Formulaically, these field equations are analogous to
the Maxwell equations of electrodynamics, yielding wave solutions. Different
stages of deformation are characterized by differences in the restoring mech-
anisms responsible for the oscillatory nature of the wave dynamics. Elastic
deformation is characterized by normal restoring force generating longitudinal
waves; plastic deformation is characterized by shear restoring force and normal
energy-dissipative force generating transverse, decaying waves. Fracture is char-
acterized by the final stage of plastic deformation where the solid has lost both
restoring and energy-dissipative force mechanisms. In the transitional stage
from the elastic regime to the plastic regime where both restoring and energy-
dissipative normal force mechanisms are active, the wave can take the form of
a solitary wave. Experimental observations of transverse, decaying waves and
solitary waves are presented and discussed based on the field theory.

1. Introduction

Most conventional approaches classify deformation of solids into separate regimes
and discuss its mechanics based on the constitutive relation of each regime. The
elastic and plastic regimes are defined, respectively, as the regimes where the consti-
tutive relation is characterized by linear and nonlinear stress-strain relations, and
fracture is considered as an independent phenomenon where a preexisting crack
grows by itself. For each regime, a specific theory is used: continuum mechanics
[Spencer 1980; Landau and Lifshitz 1986] for the elastic regime, various theories of
plasticity [Hill 1998; Lubliner 2008] for the plastic regime and fracture mechanics
[Griffith 1921; Irwin 1948] for the fracturing regime. When an external load is
applied to a solid object and the resultant deformation is viewed as the response
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Keywords: deformation of solids, plastic deformation transverse-wave, elasto-plastic solitary-wave.
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of the entire object, it is true that the deformation mechanics undergone in these
regimes exhibits the stress-strain characteristics of the respective regimes. If the
same object is analyzed in a local region, however, it is obvious that the deformation
status can be different from other local regions, and hence, on the global level, the
deformation should be characterized by multiple constitutive relations at the same
time. A metal specimen freshly taken out of an annealing oven has a number
of dislocations; as soon as an external load is applied to such a specimen, the
dislocations are activated causing local plastic deformation. These local nonlinear
behaviors are not observed in the stress-strain characteristic of the entire specimen
as most of the specimen undergoes purely elastic deformation at this stage. At the
other extreme, a metal specimen about to fail recovers from the deformed state
if the load is removed. It is unrealistic to rely on a regime-specific theory in any
stage of deformation. It is essential to use a theory that can describe all stages of
deformation comprehensively.

Comprehensive theory of deformation and fracture is not only useful to describe
the situation where elastic and plastic deformations coexist. It is also essential to
formulate the transitions from one regime to another. Generally, the life of solids
under external loads is a progression from elastic deformation to fracture through
plastic deformation. In the tensile or compression mode of deformation where the
stress increases with the passage of time, the deformation exhibits this pattern of
progression as a function of the increasing stress. Even in the fatigue mode of de-
formation where the magnitude of the external load remains the same, most solids
follow the same pattern of progression [Ichinose et al. 2006]. In engineering, often
analysis of the transitional stage from one regime to the next is more important
than analysis within a certain regime. If the remaining life of a machine part is
known, it becomes unnecessary to replace it at an earlier stage, contributing to the
conservation of natural resources. To analyze these transitional stages, the theory
must be regime-independent. Furthermore, these transitions involve multiple scale
levels. Fracture of solids is always initiated at the atomistic scale and evolves
to the microscopic scale and eventually to the macroscopic scale; defects of a
size comparable to several atoms grow to the microscopic level and eventually to
the macroscopic level when the entire specimen fails. A universal approach is
essential.

In this regard, a recent field theory of deformation and fracture has an advan-
tage [Yoshida 2015]. Requesting local symmetry [Aitchison and Hey 1989] in
Hooke’s law, this theory derives field equations that govern the displacement field
of solids under deformation. Formulaically, the field equations are very similar
to Maxwell’s equations of electrodynamics. From a dynamical point of view, the
field equations represent synergetic interaction between the translational and rota-
tional modes of displacement. This interaction can be interpreted as Lenz’s law
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analogous to Faraday’s law in electrodynamics. In the present context, Lenz’s
law represents solids’ response to reduce the disturbance caused by an external
load. The general solution to the field equations is a wave function where the
form of the wave characteristics depends on the regime. The elastic regime can
be characterized by a longitudinal wave known as the wave of compression and a
rotational wave known as the wave of deformation. In this regime, the elasticity
is a longitudinal effect where the solid material responds to the force due to an
external load elastically. The plastic regime is characterized by a transverse wave
that decays due to the irreversibility of plasticity. In this regime, the elasticity is a
transverse effect due to differential rotation; the solid material responds elastically
to the external torque and not to the force. The irreversibility is due to the energy
dissipation associated with irreversible motion of localized normal strain1 in the di-
rection of the local velocity. Thus, the longitudinal effect is energy-dissipative. The
solid material resists the external force energy-dissipatively and the external torque
elastically. Fracture is the stage of deformation where the solid material has lost
all the mechanisms to resist the external load, elastically or energy-dissipatively,
and the only reaction to the load is to create discontinuity. Under some conditions,
the energy-carrying wave takes the form of a solitary wave. In this situation, the
solid material does not exhibit resistive force, and the stress-strain curve plateaus.
A similar phenomenon occurs in the transitional stage from the plastic to fracture
regimes. The material dissipates energy from the external load via propagation of a
solitary wave. When the solitary wave stops moving, the material loses the energy-
dissipative mechanism completely, and it fractures. Thus, the transition from one
regime of deformation to another can be identified as a change in the way the solid
material responds to an external load and characterized as different forms in the
displacement wave.

The similarity between electrodynamics and the present field deformation theory
is not limited to the formulaic resemblance in the field equations. As mentioned
above, the energy dissipation in plastic deformation is caused by motion of lo-
calized normal strain due to the local velocity field. From the field-theoretical
viewpoint, the normal strain can be interpreted as the charge of symmetry associ-
ated with the local symmetry of Hooke’s law. From the viewpoint of Lagrangian
dynamics, the normal strain can be interpreted as representing the Noether current
associated with the invariance of the corresponding Lagrangian density. From this
standpoint, this quantity can be identified as corresponding to the electric charge
and called the deformation charge. Note that the electric charge is proportional to
divergence of the electric field and the normal strain is divergence of the displace-
ment field. With this interpretation, the energy dissipation in plastic deformation

1Strictly speaking, it is the rate of normal strain or the temporal derivative of normal strain. For
simplicity, it is called the normal strain.
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can be understood as a phenomenon analogous to Ohmic loss in electrodynamics
where the electromagnetic field loses energy when a free electric charge is moved
by the electric field. From the perspective of energy flow, the transverse displace-
ment wave carries elastic energy through the material and the charge flow dissipates
the energy. When the transverse wave decays completely and the charge stops mov-
ing, the material loses all mechanisms to transfer the work provided by the external
load from one side of the specimen to the other or dissipate it. This is when the
material fractures. The situation is analogous to electrical breakdown of dielectric
media [Yoshida 2000]. When the level of ionization is low and hence the density
of free charge is low, the propagation of electromagnetic waves is the dominant
mechanism of energy flow. When the conduction current density increases to a
certain level, the Ohmic loss becomes the dominant mechanism to dissipate the
energy provided by the external circuit. Eventually, the current density becomes
infinitely high, and that is when the medium is electrically broken.

A number of authors have formulated nonlinear behavior of deformation. Among
them, the following models have been proposed as useful tools for unified descrip-
tion of elastic and plastic deformations and are worth mentioning here. These
models are based on the framework established by Toupin [1964] and Mindlin
[1965] and known as Toupin–Mindlin strain-gradient theory. This theory postulates
that the strain energy depends both on the symmetric strain tensor and the second
gradient of displacement. By introducing a Lagrangian action both in the material
and the spatial description, Auffray et al. [2015] have formulated a material descrip-
tion for second-gradient continua. Javili et al. [2013] have generalized the work by
Mindlin [1965] and formulated a geometrically nonlinear theory of higher-gradient
elasticity accounting for boundary energies. By means of the least action principle,
Madeo et al. [2013] have derived a general set of equations of motion and dual-
ity conditions to be imposed at macroscopic surfaces of discontinuity in partially
saturated, solid second-gradient porous media. Fleck and Hutchinson [1997] have
applied the Toupin–Mindlin strain-gradient framework to plastic deformation and
proposed phenomenological theories of strain-gradient plasticity.

Connections between these formalisms based on the strain-gradient theory and
the present field theory are not straightforward and are not fully understood at
this point. Nevertheless, it is worth pointing out some similarities and a contrast
between these formalisms and the present theory. As will be discussed in the
next section, the present theory incorporates nonlinearity by allowing the trans-
formation matrix of linear elasticity, known as the displacement gradient tensor,
to be coordinate-dependent. The components of the displacement gradient tensor
are strain, which is essentially the first gradient of displacement. Thus, the fact
that we allow its coordinate dependence means that we automatically consider
the second gradient of displacement. Naively speaking, this corresponds to the
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approach taken by the strain-gradient theory where the second gradient of dis-
placement is included in the expression of the strain energy. Auffray et al. [2015]
and Madeo et al. [2013] apply the Lagrangian formalism to deduce the evolution
equations. This procedure seems analogous to the present theory whereby the field
equations are derived through the application of the Lagrangian formalism to the
gauge potential. Moreover, the use of both the material and spatial descriptions
in the Lagrangian action made by Auffray et al. indicates that the two descrip-
tions interact with each other in the same or similar fashion as the gauge field
and the linear elastic displacement field interact with each other in the present
theory.

As for the contrast, the following point should be noted. In the present field
theory, the nonlinearity is introduced in conjunction with the coordinate depen-
dence of the transformation matrix that describes the local linear elasticity (the
base theory). In other words, the nonlinearity is associated with the curvilinearity
of the coordinate axes and not intrinsic in the base theory. In the case of the
strain-gradient theory, on the other hand, the starting Lagrangian encompasses
nonlinearity as the strain energy expression has the term containing the second
gradient of displacement; thus, the formalism derived from the strain-gradient the-
ory is intrinsically able to describe the nonlinear nature of geometry such as the
inclusion of porosity and layered structures. It may be possible to incorporate these
geometrical nonlinear effects by the use of an appropriate compensation field, but
the possibility is not clear at this time. It is safe to assume, at least for now, that
the present theory is applicable to the cases where the local deformation can be
modeled to obey the law of linear elasticity.

The aim of this paper is to provide an overview of this field-theoretical approach
to dynamics of deformation and fracture. After briefly reviewing the concept of
local symmetry on which the present theory is based, the field equations will be
derived. Through physical interpretations of the field equations, deformation dy-
namics will be discussed from the viewpoint of force acting on a unit volume of
the solid material. It will be shown that the transverse (shear) force is restoring
regardless of the regime whereas the longitudinal (normal) force is restoring in the
elastic regime and energy-dissipative in the plastic regime. It will also be shown
that these restoring forces cause longitudinal and transverse wave nature of elastic
and plastic deformation and solitary wave nature in the transitional stage from
the elastic regime to the plastic regime. The wave equations for the respective
regimes will be derived from the field equations and will be solved analytically
under some conditions. The energy-dissipative nature of the dynamics will be
explained through the concept of deformation charge. Supporting experimental
results will be presented to discuss these wave characteristics and dynamics of the
deformation charge.
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2. Theory

Details of the present field theory can be found elsewhere [Yoshida 2015]. In short,
this field theory formulates deformation dynamics based on two postulates. The
first postulate is that a solid of any deformation status locally obeys the law of
linear elasticity (Hooke’s law). The local region that obeys Hooke’s law is referred
to as the deformation structural element. The second postulate is that, as long as
the solid remains a continuum, all the deformation structural elements of the object
are logically connected by a field known as the gauge field. The first postulate is
rationalized through the consideration that regardless of the stage of deformation it
is always possible to find a local region where the interatomic potential is approxi-
mated by a quadratic function of the displacement of the atom from its equilibrium
position or, equivalently speaking, the field force on the atom is elastic force whose
magnitude is proportional to the displacement. The above-mentioned claim that a
solid object about to fail recovers from the deformed state to a certain extent if the
load is removed is an example. This postulate indicates that each of these local
elastic deformations can be expressed by a transformation that represents Hooke’s
law with the local coordinate system (local frame). If the local frame is oriented to
the principal axis, the corresponding transformation matrix is diagonal as the shear
components of the stress and strain matrices are all zero. Here, it is important
to note that the principal axes of the deformation structural elements within the
same object do not necessarily have the same orientation. In fact, it is usually the
case that in the plastic regime they are oriented randomly, as will be discussed later.
This means that we cannot define a principal axis with the global coordinate system
(global frame) and that therefore we cannot express the local elastic deformations
inclusively. This is where the second postulate comes into the picture.

The second postulate can be argued in various ways based on the principle of
local symmetry. The most intuitive argument will be as follows. The situation
where multiple deformation structural elements undergo linear elastic deformation
with the respective principal axes raises a question: “are the local elastic deforma-
tions expressed in the respective local coordinates independent of one another?” or,
equivalently, “do the deformation structural elements know one another’s elastic
deformation?” The answer must be: “they are not independent of one another”
or “they should know one another’s behavior”. Otherwise, the situation becomes
the same as the same number of independent solid objects (not connected with
one another) as the deformation structural elements experience elastic deformation
independently. Then the next question will be: “how are they connected?” We
can find a short answer to this question by recalling that we try to express all
the local elastic deformations inclusively with the global coordinates under the
situation where the local elastic deformations have their own orientations of the
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Figure 1. Infinitesimal line element changes its length under deformation.

principal axis. In other words, each deformation structural element experiences
stretch and compression along mutually different orientations. In order to express
these behaviors inclusively in the global frame, it is necessary to align all these
axes in the same orientation. This argument indicates that the gauge field has
something to do with rotational dynamics. As will be discussed later in this paper,
indeed the present gauge field is associated with rotational dynamics. From the
field-theoretical viewpoint, the gauge field compensates for the fact that the elastic
deformation expressed in the global coordinate does not consider the nonlinearity
of the dynamics. From this standpoint, this field is referred to as the compensation
field. The portion of the dynamics that we overlook by artificially aligning the
deformation structural elements, which is responsible for the nonlinearity and the
irreversibility of plastic deformation, is crammed into the potential generated by
the gauge field. Naturally, this potential is rotation-like. We say that the gauge
field makes the law of linear elasticity locally symmetric. Mathematically, it can
be stated as follows. Under the situation where deformation structural elements
undergo respective elastic deformation, the transformation matrix is coordinate-
dependent. Consequently, the associated physics law cannot be written with the
global coordinates in the same form as the local coordinates. This is because the
expression of the physics law involves differentiation and the coordinate depen-
dence of the transformation matrix generates the extra term resulting from the
differentiation of the matrix. The gauge field regains the formality in the global
frame by adding an extra term (the gauge term) to the usual derivatives so that
this term cancels out the effect of the differentiation of the transformation matrix.
The derivative with the gauge term is referred to as the covariant derivative. It is
interesting to note that mathematicians call the gauge field the connection field. In
the present case, the gauge field literally connects deformation structural elements
so that they form a single continuum.

2.1. Deformation as linear transformation. Consider in Figure 1 a solid object
under deformation. By this deformation, an infinitesimal line element vector η =
(dx, dy, dz) changes its length and direction by coordinate-dependent displace-
ment vector ξ(x, y, z). Expressing the resultant line element vector as η′, we can
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express the deformation with the linear transformation

η′ = (I +β)≡Uη, (1)

where I is the unit matrix and β is the displacement gradient tensor

β =

(
δi j +

∂ξi

∂x j

)
. (2)

Here, ξ is the displacement vector. In the theory of elasticity, the elastic force is pro-
portional to the stretch or the differential displacement dξ . Therefore, for the theory
to be invariant, the differential displacement vector must be transformed in the same
fashion as the displacement vector itself. Otherwise, after the transformation, the
elastic force law cannot be written in the same form as before the transformation.
This means that, after the transformation, the differential displacement must have
the same form as the transformation of the differential displacement. If we use
the usual differentiation, apparently this is not the case as the following expression
indicates:

d(Uξ)= dUξ +Udξ . (3)

The condition d(Uξ) = Udξ holds only when dU = 0 or the transformation is
coordinate-independent. Thus, it becomes necessary to replace the usual deriva-
tives with covariant derivatives or introduce a gauge term 0i :

Di =
∂

∂xi
−0i ≡ ∂i −0i . (4)

It is easily proved that, if the gauge term transforms as (5), the differential after the
transformation has the same form as the transformation of the differential, that is,
D′i (Uξ)=U (Diξ):

0′i =U0iU−1
+
∂U
∂x i U−1. (5)

Here the prime ′ indicates the quantity after the transformation.
Now consider the physical meaning of the gauge term:

Dξi =

(
∂ξi

∂x
−0xξi

)
dx +

(
∂ξi

∂y
−0yξi

)
dy+

(
∂ξi

∂z
−0zξi

)
dz ≡ dξi − Ai . (6)

In elastic deformation, the rotation matrix represents rigid body rotation of the ma-
terial, which does not involve length change. In (6), the actual change in the length
of the displacement vector is all in dξi . Thus, Ai can be interpreted as representing
a displacement vector that rotates the deformation structural element so that the
differential displacement vector contains only the change due to physically true
deformation and not to the geometrical effect. Figure 2 illustrates this situation
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Figure 2. Vector potential as displacement vector to align defor-
mation structural element.

schematically. Here ωy represents the rotation that must be removed to find out
the true deformation.

The above argument that the vector potential represents material rotation associ-
ated with the covariant derivatives can be justified from the following viewpoint. In
the theory of elasticity, differential displacement (deformation gradient tensor) can
be separated into the symmetric and asymmetric portions referred to as the strain
and rotation matrices, respectively. When the coordinate axes are chosen to be the
principal axes, the strain matrix is diagonal, or its shear components are all zero.
Now consider that different parts of a given solid object undergo their respective
elastic deformations. As an example, when an initially elastic object has a defect,
the four blocks will undergo different elastic deformation as Figure 3 illustrates
schematically. Under this condition, the four blocks have their own principal axes.
It becomes impossible to describe the four elastic deformations with a common
principal axis.

Based on the above interpretation, the explicit form of the spatial parts of vector
potential A can be identified as

A=

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

dx
dy
dz

=
−ωzdy+ωydz

ωzdx −ωx dz
−ωydx +ωx dy

 . (7)

The temporal component of vector potential A can be understood in conjunction
with the temporal differentiation as follows. Suppose deformation dynamics ψ

Figure 3. Local region containing a defect at the center.
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Figure 4. Gauge field strength for nonlinear deformation.

propagates as a wave. In general, the wave function can be put in the form

ψ = f (ω0t − k · r)= f (ω0t − k(αx +βy+ γ z)), (8)

where ω0 is the angular frequency, k is the propagation vector and α, β and γ are
directional cosines. Expressing the derivative of function f as f ′, we find

f ′ =
1
ω0

∂ψ

∂t
=−

1
k
(∇ψ) · k̂, (9)

where k̂ is the unit vector of k. Noting the ratio of the angular frequency to the
propagation vector is the phase velocity c, ω0/k = c, we can rewrite (9) as2

∂ψ

∂t
=−(∇ψ) · ck̂ =−(∇ψ) · c. (10)

The spatial and temporal components of vector potential A are to compensate the
spatial and temporal differentiations. Thus, they can be interpreted as being corre-
sponding to terms (∇ψ) and ∂ψ/∂t in (10). This interpretation leads to the vector
potential expression of A as follows. Intuitively, the temporal component of the
vector potential can be interpreted as representing the same effect as the spatial
component explained in Figure 2; it represents the effect of the compensating po-
tential in the time domain wherein the dynamics is a wave phenomenon traveling
at the phase velocity c:

Aµ = (A0, A1, A2, A3)=

(
φ0

c
, A1, A2, A3

)
. (11)

Now consider how vector potential A acts on the deformation dynamics. We
know that A represents the dynamics that local linear elastic dynamics cannot repre-
sent. In other words, it accounts for the compensation we need to pay as the penalty
for pretending that the dynamics is linear elastic. This effect can be formulated by

2If we repeat the same procedure to find the secondary derivatives, we will obtain the elastic wave
equation where the phase velocity is the square root of the ratio of the elastic modulus to the density.
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comparing clockwise and counterclockwise covariant derivatives. Figure 4 illus-
trates the clockwise and counterclockwise differentiation schematically. Dropping
the second-order differentials, the clockwise case is

Dµ(Dνξsdxν)dxµ = ∂µ∂νξsdxνdxµ− ∂µ(0νξsdν)dxµ+0µ0νξsdxνdxµ. (12)

Here from the definition, 0νξsdxν can be interpreted as Aν , and so

Dµ(Dνξsdxν)dxµ = ∂µ∂νξsdxνdxµ− ∂µAνdxµ+
1
ξs

AµAν . (13)

The counterclockwise case can be expressed with the vector potential in the same
fashion. Thus, the difference between the clockwise and counterclockwise cases is

Dµ(Dνξsdxν)dxµ− Dν(Dµξsdxµ)dxν

= (∂ν Aµdxν − ∂µAνdxµ)+
1
ξs
[Aµ, Aν]. (14)

In the infinitesimal limit, dxν = dxµ = ds, and division of the above equation
by ds leads to

[Dµ, D]sξsds = (∂ν Aµ− ∂µAν)+
1
ξsds
[Aµ, Aν] ≡ Fµν . (15)

Here Fµν is known as the field stress tensor. Each component of vector potential
equation (11) represents a displacement component. It is easily proved that they
are commutable; hence, the [Aµ, Aν] term of (15) is zero. With this, we obtain the
explicit form

Fµν =


0 −v1/c −v2/c −v3/c
v1/c 0 −ω3 ω2

v2/c ω3 0 −ω1

v3/c −ω2 ω1 0

 . (16)

Here vi , i = 1, 2, 3, is the time derivative of Ai and ωi , i = 1, 2, 3, is the rotation
associated with the corresponding components of the displacement due to vector
potential A:

ωk
=
∂A j

∂x i −
∂Ai

∂x j . (17)

2.2. Lagrangian and field equation. The field stress tensor is not invariant under
the transformation U . However, it is easily proved that the trace FµνFµν is invari-
ant [Yoshida 2011]. This indicates that we can construct the Lagrangian of free
particles (without the interaction with the gauge field or vector potential) in the
form proportional to FµνFµν . Knowing that the phase velocity cshear associated
with shear force has the form

cshear =
√

G/ρ, (18)
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where G is the shear modulus and ρ is the density, and that the Lagrangian is
kinetic energy minus potential energy, we can identify the Lagrangian density as

L =−
G
4

FµνFµν =
ρv2

2
−

Gω2

2
. (19)

Here the first term is the kinetic energy of the unit volume and the second term is
the rotational spring potential energy. The Lagrangian in the form of (19) indicates
the phase velocity c in (16) is in fact the shear wave velocity (18). By adding the
interaction term, we can identify the full Lagrangian in the form

L =−
G
4

FµνFµν +G jµAµ =
ρv2

2
−

Gω2

2
+

G
c

j0 A0+G j i Ai . (20)

Here j0 and j i are the temporal and spatial components of the quantity known as
the charge of symmetry, and they are connected with the phase velocity (18) as

jµ =
(

j0

c
, j1, j2, j3

)
. (21)

The four vector jµ describes how the material interacts with the gauge field and is
conserved under the governing transformation (in this case transformation U ).

With this Lagrangian, the Euler–Lagrangian equation of motion associated with
Aµ can be given as

∂ν
∂L

∂(∂ν Aµ)
−
∂L
∂Aµ
= 0. (22)

This leads to the following field equations:

∇ · v =− j0, (23)

∇ × v =
∂ω

∂t
, (24)

∇ ×ω =−
1
c2

∂v

∂t
− j , (25)

∇ ·ω = 0. (26)

Here c appearing on the right-hand side of (25) is the phase velocity (18)

2.3. Deformation charge and comprehensive description. Rearranging the terms,
we can put the field equation (25) in the form [Yoshida 2011; 2008]

1
c2

∂v

∂t
=−∇ ×ω− j . (27)

The spatial component of the charge jµ appearing on the right-hand side of the
third field equation (25) represents the longitudinal effect of the gauge field on the
material and is very important to describe the dynamics. The c appearing in the first
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Figure 5. Shear force due to differential rotational displacement.

term on the right-hand side of the same equation represents the phase velocity (18),
the velocity that the spatial pattern of the displacement field propagates. Using the
phase velocity expression (18) and multiplying both sides of this equation by ρ,
we can put (27) in the form

ρ
∂v

∂t
=−G∇ ×ω−G j . (28)

The left-hand side of (28) is found to have the form of the product of the mass
and acceleration of the unit volume. Thus, according to Newton’s second law, the
right-hand side of (27) is the external force acting on the unit volume. Here the first
term G∇ ×ω represents the shear force exerted by the neighboring blocks of the
material due to their differential rotations, and the second term G j can be identified
as the longitudinal force density. Figure 5 illustrates the shear force schematically.
The form of this second term differentiates different regimes of deformation, as
will be discussed below.

Elastic regime. Take the divergence of both sides of (25) and substitute the resul-
tant ∇ · v with (23). This provides us with an equation of continuity associated
with the conservation of charge j0 =−∇ · v:

ρ
∂(∇ · v)

∂t
=−∇ · (G j). (29)

Using ∂ξ/∂t = v, rewrite the left-hand side of (29) as

ρ
∂2(∇ · ξ)

∂t2 =−∇ · (G j). (30)

The quantity ∇ · ξ appearing on the left-hand side of (30) is known as the volume
expansion in continuum mechanics. With the interpretation that G j represents
the longitudinal force, (30) can be interpreted as the equation of motion of a unit
volume experiencing volume expansion due to differential longitudinal (normal)
force. We can identify the explicit form of G j for an isotropic elastic medium
based on continuum mechanics.
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Recall that the constitutive relation can be written in the following form based
on Cauchy’s formalism:

σxx

σyy

σzz

σxy

σyz

σzx


=



λ+ 2G λ λ 0 0 0
λ λ+ 2G λ 0 0 0
λ λ λ+ 2G 0 0 0
0 0 0 2G 0 0
0 0 0 0 2G 0
0 0 0 0 0 2G





εxx

εyy

εzz

εxy

εyz

εzx


, (31)

where σi j denotes the j-th component of the stress acting on plane i , λ is the first
Lamé coefficient and εi j is the strain defined as

εi j =
1
2

(
∂ξ j

∂xi
+
∂ξi

∂x j

)
. (32)

Considering the x component of the net external force acting on a cube of unit
volume, we obtain the equation of motion

ρ
∂2ξx

∂t2 =
∂σxx

∂x
+
∂σyx

∂y
+
∂σzx

∂z
. (33)

Substituting the corresponding stress tensor components of the constitutive equa-
tion (31) into the right-hand side and using (32), we can rewrite

ρ
∂2ξx

∂t2 = G∇2ξx +
∂

∂x
(λ+G)∇ · ξ . (34)

View G∇2ξx as the x component of G∇2ξ , and use the mathematical identity
∇ ×∇ × = ∇(∇ · )−∇2 to rewrite G∇2ξ as

G∇2ξ =−G∇ ×∇ × ξ +G∇(∇ · ξ). (35)

On the right-hand side of (35), the longitudinal effect is represented by the second
term. Taking only this term and noting that the x component of ∇(∇ · ξ) can be
put as (∇(∇ · ξ))x = ∂(∇ · ξ)/∂x , we can rewrite (34) as

ρ
∂2ξx

∂t2 = G(∇(∇ · ξ))x +
∂

∂x
(λ+G)(∇ · ξ)=

∂

∂x
(λ+ 2G)(∇ · ξ). (36)

Including the y and z components, we can express the longitudinal force vector
appearing on the right-hand side of (28) in the form

G j =−∇(λ+ 2G)(∇ · ξ). (37)

We can identify this form of G j as the longitudinal force in the elastic case. Here
(λ + 2G)(∇ · ξ) is the longitudinal force at a surface of the unit-volume cube
proportional to the strain at that point, and the entire right-hand side represents
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Figure 6. Elastic force proportional to volume expansion.

the differential longitudinal force, the difference of (λ+ 2G)(∇ · ξ) between the
leading and tailing surfaces of the unit-volume cube. Figure 6 illustrates the force
schematically.

Note that the first term on the right-hand side of (35) represents the shear force
and can be written as ∇×∇×ξ =∇×ω. This terms appears as the shear force term
in (28). In the elastic limit, (35), hence field equation (25), reduces to Cauchy’s
constitutive equation.

From the viewpoint of the equation of continuity, (29) indicates that compression
or rarefaction of en elastic material does not appear or disappear by itself but is only
generated by longitudinal force exerted by the neighboring volume. It is interesting
to note that compression and rarefaction occur alternatively.

Plastic regime. Viewing (29) as an equation of continuity, G j can be interpreted
as a flow of charge ρ∇ · v. Thus, we can put

G j =Wdρ∇ · v. (38)

Here Wd is the drift velocity of the charge ρ∇ · v of the unit volume. As will
be discussed below, if the charge is positive, it flows in the same direction as the
local velocity of the material to dissipate the kinetic energy carried by the material
particles. If it is negative, the charge flows in the direction opposite to the local
velocity. Thus, we can put

Wd = σ0v. (39)

Here σ0 is a dimensionless parameter that represents the degree of energy dissipa-
tion; the greater σ0 is, the more energy is dissipated. With (38) and (39), (28) can
be put in the form

ρ
∂v

∂t
=−G∇ ×ω− σ0ρ(∇ · v)v

=−G∇ ×ω− σcv. (40)
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vs effective force
(resistive) G j

Wd

∂vs

∂x
> 0

xs

Figure 7. Positive charge flowing in the direction of local particle velocity.

The first term on the right-hand side of (40) represents recovery force due to shear
deformation. Being proportional to the velocity, the second term can be interpreted
as representing a velocity damping force, where

σc = σ0ρ(∇ · v) (41)

is the damping coefficient. This effect is interpreted as the energy-dissipative nature
of plastic deformation.

Consider the physical meaning of the damping coefficient σc and the dimen-
sionless parameter that represents the degree of energy dissipation σ0. To this end,
rewrite the ∇ · v that appears on the right-hand side of (41) as

∇ · v =
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z

=
∂vs

∂x
α+

∂vs

∂y
β +

∂vs

∂z
γ

=
∂vs

∂x
dx
dxs
+
∂vs

∂y
dy
dxs
+
∂vs

∂z
dz
dxs
=

dvs

dxs
. (42)

Here α, β and γ are direction cosines and vs is the local velocity vector of the
particle. With (39) and (42), we can put the plastic longitudinal force density (38)
in the form

G j = σ0ρ
dvs

dxs
vs v̂s . (43)

Consider the right-hand side of (43) for the case σ0 = 1. Since vs = dxs/dt , it can
be put as

G j = σ0ρ
dvs

dxs
vs v̂s = ρ

dvs

dxs

dxs

dt
v̂s = ρ

dvs

dt
v̂s =

d
dt
(ρvs)v̂s . (44)

The rightmost side of (44) represents the temporal change of momentum density
(the momentum change of the unit volume). Thus, (43) can be interpreted as indi-
cating the effect that the external longitudinal force has to cause the unit volume
to gain momentum. In other words, when σ0 = 1, the external force exerted by
the neighboring volume contributes to the momentum increase of this unit volume
without energy dissipation. From (38), we know that the charge drifts in the same
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ωz > 0 ωz < 0
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ωz > 0 ωz < 0

ωz < 0 ωz > 0

Figure 8. Schematic illustration of shear strain. Four blocks of the
specimen under tensile load experience rotation-like behaviors due
to differential vertical displacement indicated with narrow arrows
at corners of blocks. Thicker arrows indicate resulting displace-
ment along boundaries of the four blocks. The blocks’ rotations
generate tensile strain near the center of the specimen. Left: the
elastic situation where the volumes neighboring this central vol-
ume at the top and bottom resist the tensile strain by exerting elas-
tic force that can be viewed as the shear force represented by ∇×ω.
Right: the plastic situation where the material yields to the shear
force and consequently the central volume drifts upward. This
can be viewed as a positive charge drifts upward causing energy
dissipation due to the friction exerted by surrounding materials.

direction as the longitudinal force at the drift velocity Wd . From (43) when σ0 = 1,
Wd is equal to the particle velocity v. So in this case, the charge dvs/dxs drifts in
the direction of the longitudinal force at the particle velocity vs .

When σ0 > 1, the situation is slightly different. In this case, as Figure 7 schemat-
ically illustrates, the drift velocity Wd defined above can be interpreted as repre-
senting the motion of the pattern of dvs/dxs . Here the example shown in Figure 7
is a case where the particle velocity vs has positive gradient with respect to the
coordinate axis xs . Notice that, if Wd > vs , the particles behind the leading edge
of the pattern dvs/dxs loses their momentum as the pattern passes because their
velocity decreases. Here the rate of the momentum loss is Wdρdvs/dxs . From the
viewpoint of the energy of the total system, this decrease in the momentum can be
viewed as the reduction in the mechanical energy. The faster the motion of the pat-
tern, the more energy the system loses; in the form of Wd = σ0vs , σ0> 0, the greater
the value of σc, the greater the energy loss. For simplicity, the xs dependence of vs

is assumed linear in Figure 7, but the same argument holds for any xs dependence
as far as the pattern dvs/dxs drifts in the direction of the longitudinal force G j .
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The physical meaning of the dimensionless parameter σ0 can be argued based
on microscopic deformation dynamics. According to dislocation theory, plastic
deformation occurs when dislocations propagate in the direction of shear stress.
Here the driving force of the propagation is the local shear force, and these mobile
dislocations are subject to intensive frictional force exerted by the surrounding
atoms [Suzuki et al. 1991]. Based on the present field theory, this process can be
explained with (28) and (40). In this context, the density on the left-hand side of
these equations represents the mass of the unit volume experiencing shear strain.
The first term on the right-hand side, ∇ ×ω, represents the shear force that drives
mobile dislocations. The second term represents the longitudinal force exerted
on the unit volume. When the material responds to the shear force elastically,
as Figure 8, left, illustrates schematically, this longitudinal force is elastic force
exerted by the volume behind and in front of the unit volume along the line of
shear. In this situation, the longitudinal force term G j on the right-hand side
of (28) represents this elastic force. When the local material yields to the shear
force and starts to be deformed plastically, defects (dislocations) are generated
behind or in front of the unit volume and they propagate as the shear force ∇ ×ω
is still effective. Figure 8, right, illustrates the situation schematically. In this case,
the longitudinal force term G j takes the form of (40). As the defects are generated,
the unit volume starts to drift and the dimensionless parameter σ0 indicates how
easily it drifts. The momentum loss discussed in Figure 7 can be interpreted as
representing the energy-dissipative dynamics associated with the frictional force
that the dislocations experience as they propagate. The rate of propagation of
dislocations is a unique quantity of a given solid. Thus, it is natural to assume
that the dimensionless parameter σ0 is a material constant. It should be noted
that the damping coefficient σc depends on ∇ · v according to (41) and varies as
the deformation status changes. As will be discussed later, an increase in ∇ · v
represents strain concentration and that increases the degree of energy dissipation.

Optical interferometric experiments performed on tensile-loaded metal-plate spec-
imens [Yoshida et al. 1996; 1998] indicate that from time to time the interferometric
fringe pattern shows a band structure as shown at the top of Figure 9. In this

x x +1x
1x

x

vl vh

x +1x

vl vh

Figure 9. Developed, one-dimensional charge.
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type of optical interferometry, an interferometric image of the specimen is taken
continuously with a constant interval. Here the interferometric image is formed by
illuminating the specimen with a pair of laser beams so that they interfere with each
other on the specimen surface in such a way that the relative optical phase differ-
ence is proportional to the displacement of interest. In the case of Figure 9, the inter-
ferometer is arranged to be sensitive to in-plane displacement parallel to the tensile
axis. The image taken at each time step is subtracted from the image taken at a cer-
tain time step later. The result of the subtraction yields a fringe pattern that displays
a whole-field map of the differential displacement that occurs between the two time
steps. Since this differential displacement is proportional to the average velocity of
the duration between the two time steps, this type of fringe pattern can be viewed as
representing the velocity field. Thus, hereafter, the differential displacement field
derived from the fringe pattern is referred to as the velocity field. Figure 9 is a
sample fringe pattern. The dark stripes seen in Figure 9 are called the interferomet-
ric fringes that represent the contours of the velocity field. Each contour indicates
that the velocity along the dark fringe corresponds to a relative phase change of an
integer multiple of 2π . Often a band-structured concentrated fringe pattern appears
and drifts along the length of the specimen as the bottom illustrations of Figure 9
indicate schematically. In specimens free of initial stress concentration, the banded
structure typically starts to appear near the yield point. In specimens with initial
stress concentration, the band structure can appear at any point before the specimen
yields. The higher the degree of stress concentration, the earlier it appears. It is
apparent that this band structure represents plastic deformation.

Based on the observation that it represents plastic deformation, this banded struc-
ture can be interpreted as a special case of the charge ∇ · v = dvs/dxs discussed
above where the velocity field depends only on the xs axis for the entire width
of the specimen at the band-structured region. Figure 10 illustrates the situation
schematically where a tensile load applied to a rectangular specimen generates a
field of velocity vectors to the right and forms a pattern of dvs/dxs > 0. The
three parallel lines represent the pattern of dvs/dxs where each line is a contour of
constant velocity. The xs axis is perpendicular to the contours, and in accordance
with the above argument, as the pattern drifts in the direction of xs , the mechanical
energy of the system is dissipated. The x p axis is set parallel to the velocity contour.
As the velocity field does not depend on the x p axis (dvp/dx p = 0), we call this

vp

vsz

Figure 10. Developed, one-dimensional charge.
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type of pattern the one-dimensional charge. As the contours cross over the width of
the specimen, we call it a developed charge. Thus, the pattern shown in Figure 10
is classified as a developed, one-dimensional charge.

A developed, one-dimensional charge is often observed in tensile experiments
on a low-carbon steel at the beginning of the plastic regime where the stress-
strain curve shows a plateau (the yield plateau). From the temporal behavior and
other features, the one-dimensional charge observed in the yield plateau has been
identified as representing the phenomenon known as the Lüders band [1860]. In
aluminum-alloy specimens, similar band-like interferometric fringe patterns that
can also be interpreted as a one-dimensional charge are often observed in a late
stage of plastic deformation. Previous studies [Yoshida et al. 1996; 1998; Yoshida
and Toyooka 2001] indicate that this type of pattern represent the shear band known
as the Portevin–Le Chatelier (PLC) band. A number of optical interferometric
experiments indicate that, if a one-dimensional charge appears in an early or a
middle stage of plastic deformation, it moves around the specimen continuously;
if it appears in a late stage of plastic deformation, it tends to appear intermittently
and converge its movement to a certain place of the specimen where the specimen
eventually fails. We call the former type the Lüders-band-like charge and the latter
the PLC-band-like charge.

From experimental observation of a developed, one-dimensional charge, we can
estimate the actual value of σ0 as follows. A previous series of tensile experiments
(personal communication with T. Sasaki, 2014) on an aluminum alloy indicate that
the drift velocity of the Lüders-band-like charge is proportional to the cross-head
speed. In this series of experiments, the cross-head speed was set at a constant rate
for each test in a range of 0.1 mm/min to 3.0 mm/min. Since only one Lüders-
band-like charge appeared at a time and the number of fringes inside the charge
was much greater than on the outside, we can say that the particle velocity inside the
charge is approximately equal to the cross-head speed. Thus, we can approximate
the magnitude of v appearing on the right-hand side of (39) (Wd = σ0v) by the cross-
head speed; in other words, σ0 is approximately equal to the constant of proportion-
ality between the observed velocity of the Lüders-band-like charge (Wd) and the
cross-head speed (≈ v). Based on this argument, the dimensionless parameter σ0

can be estimated as σ0 ≈ 3000.

Fracture regime. Fracture can be viewed as the final stage of plastic deformation.
The transition from a late stage of plastic deformation to fracture can be conve-
niently discussed based on the longitudinal force G j . With the use of the dimen-
sionless parameter σ0, the plastic longitudinal force expression (38) can be put in
the form

G j =Wdρ∇ · v = σ0ρ(∇ · v)v. (45)
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A number of experiments indicate that, toward the end of plastic deformation, the
one-dimensional charge decelerates and eventually becomes stationary at the loca-
tion where the specimen fails [Yoshida et al. 1996; 1998]. The deceleration of the
charge, or the corresponding decrease of the drift velocity Wd , can be understood
as follows. Toward the end of the plastic regime, the material loses its capability of
increasing the number of defects. In other words, the atomic arrangement does not
have further room to create new dislocations. This situation eventually develops to
the point where the value of σ0 becomes zero.3 If the external force is still active,
the material needs to dissipate the energy so that the total energy is conserved.
In terms of the energy-dissipative force (45), G j 6= 0 and Wd = 0. The only
possibility to make this situation to happen is ∇ · v→∞. This condition can be
interpreted as representing that particles flow out of the unit volume at an infinitely
high rate. Obviously such a condition causes the unit volume to be empty, or
the material becomes discontinuous at this location. From the viewpoint of the
gauge field, the system loses the charge of symmetry that connects (the charge of
the connecting field) the material to be a continuum. This is the field-theoretical
definition of fracture. The above-mentioned experimental observation that a one-
dimensional charge stops moving in a late stage of tensile experiment where the
specimen eventually fails can be interpreted as experimental evidence of this idea
about the fracture.

3. Wave dynamics of deformation and supporting experiments

3.1. Elastic compression wave. Substitution of (37) into (30) yields

ρ
∂2(∇ · ξ)

∂t2 =∇ ·∇(λ+ 2G)(∇ · ξ)= (λ+ 2G)∇2(∇ · ξ)). (46)

This is the equation of an elastic compression wave traveling with phase velocity

ccomp =

√
λ+ 2G
ρ

. (47)

Next, replace v with ξ , substitute (37) for G j in (28), and take the curl of the
resultant equation:

ρ
∂2(∇ × ξ)

∂t2 =−G∇ ×∇ ×ω+∇ ×∇(λ+ 2G)(∇ · ξ). (48)

With the mathematical identities ∇ × ∇ f = 0 where f = (λ+ 2G)(∇ · ξ) and

3As discussed above, σ0 is a material constant. The fact that it becomes zero means that at this
point the material is no longer the same as before.
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∇ ×∇ ×ω =∇(∇ ·ω)−∇2ω, this leads to

ρ
∂2ω

∂t2 = G∇2ω. (49)

Here ∇ ·ω= 0 (see (26)) is used to find ∇(∇ ·ω)= 0. Equation (49) is the equation
of an elastic rotational wave traveling with the phase velocity cshear (see (18)).
These arguments show that the field equations (23)–(26) reduce to the elastic wave
equations discussed in continuum mechanics. It is interesting to note that, when
the force is proportional to the differential displacement in the form of ∇(∇ · ξ)
(see (37)), the longitudinal term G j vanishes when we consider the rotational
effect by taking the curl of the equation because of the mathematical identity
∇ ×∇ f = 0. This reflects the fact that the elastic force law is essentially longitu-
dinal or orientation-preserving; longitudinal force does not contribute to rotational
dynamics under the elastic force law.

3.2. Plastic transverse decaying wave. Elimination of ω from (40) with the use of
field equation (25) leads to the following wave equation that governs the velocity
field v:

ρ
∂2v

∂t2 −G∇2v+ σc
∂v

∂t
=−G∇(∇ · v). (50)

In the pure plastic regime where the longitudinal force G j is completely energy-
dissipative (see (38) and (39)) and therefore the longitudinal restoring force mecha-
nism is absent, (50) yields decaying transverse wave solutions. The right-hand side
of (50) indicates that the spatial distribution of the deformation charge is the source
term of this differential equation. When the charge is uniformly distributed over the
entire specimen, ∇(∇ · v)= 0 and this differential equation becomes homogeneous.
In this case, we can solve it analytically and express the solution in the form

v(t, r)= v0e−(σc/2ρ)t cos
(√

G
ρ

k2
−
σ 2

c

4ρ2 t − k · r
)
. (51)

Here k is the propagation vector.
Consider the physical meaning of the condition ∇(∇ · v)= 0. In an xyz coordi-

nate system, the condition can be put as

∂

∂x

(
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z

)
=
∂2vx

∂x2 +
∂2vy

∂x∂y
+
∂2vz

∂z∂x
= 0, (52)

∂

∂y

(
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z

)
=
∂2vx

∂x∂y
+
∂2vy

∂y2 +
∂2vz

∂y∂z
= 0, (53)

∂

∂z

(
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z

)
=
∂2vx

∂z∂x
+
∂2vy

∂y∂z
+
∂2vz

∂z2 = 0. (54)
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Equations (52)–(54) indicate that under this condition the velocity field is transverse-
wave-like. Here is the explanation. As a sufficient condition for (52)–(54), we
can set each of the nine terms appearing after the first equals sign of the three
equations to zero. Under such a condition, the first column of this part indicates
that the secondary derivative of vx is zero if the differentiation involves ∂/∂x . This
leads to the following generalized statements: the secondary derivative of vi is
zero if the differentiation involves ∂/∂xi and the only surviving nonzero secondary
derivative takes the form of ∂2vi/∂x2

j , i 6= j . Note that these surviving secondary
derivative terms come from the ∇2v term of the wave equation (50) and not from
the source term. The transverse oscillatory dynamics is due to the shear mecha-
nism represented by ∇ ×ω. This argument indicates that the velocity wave in the
pure plastic regime is essentially transverse. From this standpoint, we can put the
solution (51) in the following form to express the transverse wave characteristic
in a two-dimensional case. This will be compared to an experimental observation
shortly below. Here ky is the y component of k, the interferometer has sensitivity
in y, and the constant phase is omitted:

vx(t, r)= vx0e−(σc/2ρ)t cos
(√

G
ρ

k2
−
σ 2

c

4ρ2 t − ky y
)
. (55)

The wave solution (55) indicates that, if σc is constant, the velocity field decays
exponentially with the decay constant

τc =
2ρ
σc
=

2
σ0(∇ · v)

. (56)

Based on the above argument that the dimensionless parameter σ0 is a material-
dependent constant until the solid material fractures, we can estimate the charge
density (∇ · v) from (56) if σ0 and the decay constant τc are known. As mentioned
earlier in this paper, the damping coefficient σc is proportional to the charge density
(see (41)), and the higher the charge density, the more energy-dissipative the solid
material is. Apparently, the one-dimensional, developed charge is a concentrated
charge. In the context of tensile-loading, the differential velocity between the
dynamic and static grips of the tensile machine is concentrated into the banded
region that represents a developed charge. This situation is contrastive to an early
stage of plastic deformation where the mechanical energy provided by the tensile
machine is obviously dissipated via irreversible deformation but a developed charge
is not present. It is interesting to estimate the charge density for both cases and
compare them.

Figure 11 shows the decay characteristics of the velocity (differential displace-
ment) field under a tensile experiment on an aluminum-alloy, thin-plate specimen.
The tensile load was applied at a constant cross-head speed of 5.8× 10−6 m/s, and
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Figure 11. Decaying oscillation observed in a transverse plastic
deformation wave.

the material was the same type as the above case where the dimensionless param-
eter σ0 was estimated to be 3000 based on the proportionality between the drift
velocity of the developed charge and the cross-head speed. The graph in Figure 11
plots the velocity vector component perpendicular to the tensile axis (the trans-
verse velocity) evaluated at the reference point P2 shown in the left margin of the
figure. Also plotted are the load recorded by the tensile machine and the location
of PLC-like charge that started to appear toward the end of the plastic regime. The
horizontal axis is the time elapsed from the beginning of the tensile-loading. The os-
cillatory behavior of the transverse velocity starts near the yield point. In fact, obser-
vation of the transverse velocity at the other reference points (P1 and P3) indicates
that the oscillatory behavior propagates as a transverse wave [Yoshida et al. 1999].
Thus, it is reasonable to interpret the plot in Figure 11 as the decay characteristic of
the transverse velocity wave in the plastic regime. Since the developed charge does
not appear until the oscillatory behavior fades out, it is expected that the charge den-
sity is lower than that typically observed under the existence of a PLC-like charge.

From the trend of the oscillation peaks seen in Figure 11, the decay time constant
of this case can be estimated as 6.7 min = 400 s. Substituting this value into the
left-hand side of (56) and using σ0 = 3000 for the aluminum-alloy case, we can
estimate the charge density during this decay process as (∇ ·v)= 2/(400×3000)=
1.7× 10−6 1/s. On the other hand, the charge density when the PLC-like charge
appears can be estimated as follows. Using the same logic as above that the
velocity of the leading edge (the edge closer to the dynamic grip) of the charge
is approximately equal to that of the dynamic grip and the velocity of the tail-
ing edge is zero, and using the band width of 5.2 mm along the tensile axis, we
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can evaluate the charge density dvy/dy = 5.8 × 10−6 m/s /5.2 × 10−3 mm =
1.1×10−3 1/s. As expected, this charge density is three orders of magnitude higher
than (∇ · v)= 2/(400× 3000)= 1.7× 10−6 1/s evaluated at the beginning of the
oscillatory behavior of the transverse velocity.

3.3. Solitary wave in plastic regime. In the transitional stage from the elastic
regime to the plastic regime, optical interferometric experiments often show a
band-structured, interferometric fringe pattern that can be interpreted as the one-
dimensional charge expressed by (42) and illustrated by Figures 9 and 10. From the
similarity in various behaviors, as mentioned above, this type of one-dimensional
charge can be interpreted as representing the same phenomenon as the Lüders band
[Yoshida et al. 2005]. Among these behaviors, the following two are interesting
from the viewpoint of dynamics: (a) their drift velocity is proportional to the tensile
rate and (b) the stress remains practically the same while they drift. Mertens et al.
[1997] have made detailed analyses on dynamic behaviors of the Lüders band.
They explain the mechanism of the phenomenon as the propagation of mobile
dislocations at the plastic deformation front weakens the neighboring areas and the
resultant deformation creates new dislocations. They also explain that the deforma-
tion at the front creates a strain jump that is roughly constant during the drift of the
band and therefore its drift velocity is proportional to the pulling rate. Here an at-
tempt is made to explain the behaviors (a) and (b) based on the present field theory.

Figure 10 illustrates schematically that one can characterize the velocity con-
tours inside a one-deformation charge of this type as

∂

∂xs
6= 0, (57)

∂

∂x p
= 0. (58)

In this two-dimensional picture, the one-dimensional, developed charge is expressed
as

∇ · v =
∂vp

∂x p
+
∂vs

∂xs
=

dvs

dxs
. (59)

Similarly, the volume expansion appearing in the elastic longitudinal force expres-
sion (37) is

∇ · ξ =
∂ξp

∂x p
+
∂ξs

∂xs
=

dξs

dxs
. (60)

The rotation vector has only the z component:

ω = ωz ẑ =
(
∂ξs

∂x p
−
∂ξp

∂xs

)
ẑ. (61)
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Thereby, its rotation can be expressed as

∇ ×ω =
∂ωz

∂xs
x̂ p −

∂ωz

∂x p
x̂s =

∂ωz

∂xs
x̂ p, (62)

where the z axis is perpendicular to the xs-x p plane and condition (58) is used in
going through the last equal sign.

Equations (59), (60) and (62) respectively indicate that inside the one-dimensional
charge along the xs axis both the longitudinal plastic force proportional to ∇ · v
and elastic force proportional to ∇ · ξ are potentially nonzero, and the shear force
component (G∇ × ω)s is zero. From the fact that the entire specimen is being
pulled by the tensile machine, it is apparent that this elastic longitudinal force is
tensile. The fact that the stress recorded by the tensile machine does not increase
indicates that, as this tensile force stretches the banded region, stress drops occur
presumably associated with the creation of new mobile dislocations. Thus, it is
reasonable to assume that the elastic behavior is confined within the banded region.
This argument leads to the following physical model. An elastic medium isolated to
the location of the band moves in the entire specimen due to the longitudinal elastic
force. The elastic dynamics is not transferred to outside of the banded region due
to the plastic deformation associated with the creation of dislocations at the front.
As the charge represented by the band region moves, the plastic longitudinal force
causes energy dissipation. The coexistence of the elastic and plastic deformation
makes total sense as this phenomenon takes place in the transitional stage from the
elastic regime to the plastic regime.

Based on the above explanation, we can start a quantitative argument from the
equation of motion of the elastic block (called the block) confined in the banded
region. The net elastic force acting on the block is the differential force between
the front and back surfaces of the block. At each surface, the elastic force is
proportional to the local stretch, as Figure 12 illustrates schematically:

η(xs)=
∂ξs(xs)

∂xs
δxs . (63)

Here η(xs) is the stretch at xs , ξ(xs) is the displacement at the same point, and δxs

is the infinitesimal width of the plane at xs . The displacement of the block from its
equilibrium position X is the differential displacement of its front and back ends:

X =
∂η

∂xs
1xs =

∂

∂xs

(
∂ξs

∂xs
δxs

)
1xs =

∂2ξs

∂x2
s
(δxs1xs), (64)

where 1xs is the width of the block. The corresponding elastic energy is

U = 1
2 k X2

=
1
2 k
(
∂2ξs

∂x2
s

)2

(δxs1xs)
2
=

SE
2

(
∂2ξs

∂x2
s

)2

δxs(1xs)
2, (65)
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δx 1x δx

xs ≡ x

X = ∂η
∂x
1x

X : band’s displacement from equilibrium

η(x +1x)= (∂ξ/∂x)
∣∣
x+1xδxη(x)= (∂ξ/∂x)

∣∣
xδx

η(xs): displacement from equilibrium due to elasticity

Figure 12. Elastic force acting on the isolated region that can be
identified as a one-dimensional charge.

where E is the elastic modulus associated with the longitudinal dynamics (corre-
sponding to the stiffness or the Young’s modulus in the elastic regime),4 S is the
cross-sectional area and kδxs = SE . This leads to the Lagrangian density of

Lcharge =
U

S1xs
=

E
2

(
∂2ξs

∂x2
s

)2

(δxs1xs)=
E
2
(∂2

xs
ξs)

2(δxs1xs). (66)

Thus, the corresponding term of the Euler–Lagrangian equation of motion is

∂2
xs

(
∂Lcharge

∂(∂2
xs
ξs)

)
= E∂2

xs
(∂2

xs
ξs)(δxs1xs)= E∂4

xs
ξs(δxs1xs). (67)

Writing the traveling band in the form ξ(xs, t)= ξ(xs − cwt), we can replace one
of the spatial derivatives with a temporal derivative by ∂xs =−∂tξs/cw =−vs/cw
(see (10)). With this, (67) becomes

∂2
xs

(
∂Lcharge

∂∂2
xs
ξ

)
=−

E
cw
∂3

xs
(∂tξs)(δxs1xs). (68)

When a developed charge appears, the material loses the elastic restoring force as-
sociated with (∇×ω)s , and the longitudinal energy-dissipative force σ0ρ(∇ · v)v=

σ0ρ∂vs/∂xsvs is active at the front where plastic deformation causes the stress drop.
So (40) can be written in the form

ρ
∂vs

∂t
=−σ0vsρ

∂vs

∂xs
−

Eδxs1xs

cw
∂3

xs
(∂tξs), (69)

4 E is the stiffness associated with the normal stress or the longitudinal effect. In the plastic
regime, or when the defect density is substantial, this value becomes lower than in the elastic regime.
In the present context, it should be differentiated from the Young’s modulus of the elastic regime.
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which can further be rewritten in a form more familiar as the Korteweg–de Vries
equation [Maugin 2011]:

∂tv+ σ0v∂xv+
Eδxs1xs

ρcw
∂3

x v = 0. (70)

Here, for clarity, the subscript s has been omitted from the variables. As is well
known, (70) yields the form of solution

v(x, t)= a sech2(b(x − cwt)), (71)

where

cw =
σ0a
3
, (72)

b2
=

(σ0a
3

)2 ρ

4Eδxs1xs
. (73)

In condition (72), a is the amplitude of the velocity wave v(x, t). It is reasonable
to consider that this amplitude is proportional to the pulling rate of the specimen.
This explains why the one-dimensional charge, and hence the Lüders band, drifts at
a velocity proportional to the pulling rate. Condition (73) indicates that the width of
the banded region is proportional to the square root of the elastic modulus E . This
indicates that, as the material loses its elasticity with the development of plastic
deformation, the one-dimensional charge tends to be narrower. This is consistent
with experimental observations [Yoshida et al. 1996; 1998] and can be interpreted
as the degree of stress concentration increasing with the development of plastic
deformation.

4. Conclusions

Based on the field-theoretical approach associated with the local symmetry of linear
elastic law, the dynamics of deformation and fracture has been discussed. Various
conventionally known phenomena of deformation have been explained from the
field-theoretical viewpoint. The concept of deformation charge has been introduced
based on the analogy to electrodynamics and used to explain the energy-dissipative
nature of plastic deformation. Decaying transverse wave characteristics of plastic
deformation and solitary wave characteristics of the transitional stage from the
elastic regime to the plastic regime have been discussed and compared to experi-
mental results.
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ON THE CONSTITUTIVE EQUATIONS
OF VISCOELASTIC MICROPOLAR PLATES AND SHELLS

OF DIFFERENTIAL TYPE

HOLM ALTENBACH AND VICTOR A. EREMEYEV

Within the framework of the micropolar theory of continuum we discuss the
constitutive equations of viscoelastic micropolar thin-walled structures, i.e. vis-
coelastic micropolar plates and shells. Starting from the linear viscoelastic mi-
cropolar continuum and using the correspondence principle of the linear vis-
coelasticity we extend the procedure of reduction of three-dimensional equilib-
rium equations of elastic shell-like solids to the case of viscoelastic behavior. We
restricted ourselves by constitutive equations of differential type. In other words,
we consider both 2D and 3D constitutive equations which are linear dependen-
cies between certain set of time derivatives of stress and strain measures.

1. Introduction

The model of the Cosserat or micropolar continuum has recently found new appli-
cations in the modeling of the behavior of materials and structures with complex
inner structure; see [Eremeyev et al. 2013] and references therein. Since the sem-
inal paper [Ericksen and Truesdell 1958] the Cosserat model has found numerous
applications in construction of various generalized models for beams, plates, and
shells; see the review and bibliography in [Altenbach et al. 2009]. Within the
framework of the direct approach of Ericksen and Truesdell, the shell is modeled
as a deformable surface at each point of which a set of directors additionally is
attached. In the literature are also known theories of plates and shells based on the
reduction of three-dimensional micropolar continuum equations; see for example
[Eringen 1999; Reissner 1977; Sargsyan 2011; Zubov 2009; Steinberg and Kvasov
2013; Altenbach et al. 2009], where various averaging procedures in the thickness
direction together with the approximation of the displacements and rotations or the
force and moment stresses in the thickness direction are applied. In major cases
these considerations are restricted by the elastic behavior. For the linear theory of
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MSC2010: primary 74A35; secondary 74K20, 74K25, 74D05, 74A20.
Keywords: micropolar plate, Cosserat continuum, viscoelasticity, through-the-thickness integration,
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viscoelasticity the application of the correspondence principle gives the possibility
to derive the theory of viscoelasticity in the case of thin-walled structures such as
plates and shells.

In this paper we extend the through-the thickness integration procedure applied
in [Altenbach and Eremeyev 2009] to viscoelastic micropolar plates and shells.
The interest to the theory of viscoelastic micropolar thin-walled structures is based
on prospective applications of this theory to the mechanics of plates and shells
made of materials with complex inner structure, for example cellular materials and
foams for which the micropolar model is used; see [Diebels and Steeb 2003; Lakes
1986] among others.

We consider here the variant of plates and shell theory based on six kinemati-
cally independent variables, namely translations and rotations. This theory can be
derived using a direct approach [Eremeyev et al. 2013; Eremeyev and Zubov 2008;
Rubin 2000] or based on the reduction of the three-dimensional motion equations
[Chróścielewski et al. 2004; Libai and Simmonds 1998]. The mathematical study
of boundary-value problems was performed in [Bîrsan and Neff 2013; 2014; Ere-
meyev and Lebedev 2011], while various solutions and finite-element calculations
are presented in [Chróścielewski et al. 2004; 2010; 2011; Eremeyev and Zubov
2008].

2. Basic relations of the viscoelastic Cosserat continuum.

Following [Eringen 1999] we recall the governing equations of the linear microp-
olar viscoelasticity. Let the micropolar body occupies the domain V ∈ R3. The
infinitesimal deformations of the micropolar media are described by two vectorial
fields. The first one is the vector of translation u and the second field is the vector
of microrotation ϑ given as vector-functions of the position vector x and time t .
From the physical point of view, u describes an displacement of the particle of
a micropolar body while ϑ corresponds to the particle rotation. The quasistatic
deformations of a micropolar body are described by the equilibrium equations

∇ · σ + ρ f = 0, ∇ ·µ+ σ×+ ρ`= 0, x ∈ V, (1)

where ∇ is the three-dimensional nabla operator, f and ` are the mass forces
and the mass couples vectors, ρ is the density, σ and µ are the stress tensor and
the couple stress tensor, respectively, and σ× denotes the vectorial invariant of
the second-order tensor σ , see [Lebedev et al. 2010; Wilson 1901]. Equation (1)1

represents the local form of the balance of momentum while Eq. (1)2 is the balance
of moment of momentum.

The static boundary conditions have the following form

n · σ = t0, n ·µ= m0 at S f . (2)
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Here t0 and m0 are the surface forces and the surface couples acting on the part of
the surface S f of the micropolar body, S = Su ∪ S f ≡ ∂V . The kinematic boundary
conditions consist of the following relations

u = u0, ϑ = ϑ0 at Su, (3)

where u0 and ϑ0 are given functions at Su . Let us note that since the displacements
and rotations are independent kinematic variables, Dirichlet and Neumann bound-
aries for the displacements and rotations are different, in general. As a result, the
kinematic and static boundary conditions take the form

n · σ = t0 at S f , u = u0 at Su,

n ·µ= m0 at Sm, ϑ = ϑ0 at Sθ ,
(4)

where S = Su ∪ S f = Sm ∪ Sθ are two decompositions of S. For simplicity in what
follows we use the same boundaries that is Su = Sθ and S f = Sm . Obviously, other
mixed boundary conditions are also possible [Eremeyev et al. 2013].

The linear strain measures, i.e. the linear stretch tensor ε and the linear wryness
tensor æ, are given by the relations

ε =∇u+ϑ × I, æ=∇ϑ, (5)

where I is the unit three-dimensional tensor and × the cross product.
Let us consider the viscoelastic micropolar isotropic material. For the sake of

simplicity we restrict ourselves by the constitutive equations of the differential type.
This means that the constitutive equations are

P0(∂t)σ = P1(∂t)ε+ P2(∂t)ε
T
+ P3(∂t)I tr ε, (6)

Q0(∂t)µ= Q1(∂t)æ+ Q2(∂t)æT
+ Q3(∂t)I træ. (7)

In (6) and (7) ∂t stands for the derivative with respect to time; P0, P1, P2, P3, Q0,
Q1, Q2, Q3 are the polynomials.

Using the Laplace transform of a function f (t), given by

f (p)=

∞∫
0

f (t)e−pt dt,

the constitutive equations (6) and (7) become

σ = λI tr ε+µεT
+ (µ+ κ)ε, µ= αI træ+βæT

+ γæ, (8)

where

λ=
P3(p)
P0(p)

, µ=
P2(p)
P0(p)

, κ =
P1(p)− P2(p)

P0(p)
, (9)
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α =
Q3(p)
Q0(p)

, β =
Q2(p)
Q0(p)

, γ =
Q1(p)
Q0(p)

(10)

are the Laplace transforms of the relaxation functions of the viscoelastic micropolar
material. In fact, (8) with (9), (10) coincide up to notations with the constitutive
equations of an isotropic linear micropolar solid, see [Eringen 1999].

Substituting (8) into (1) one may derive the equilibrium equations in terms of the
kinematical fields u and ϑ . For homogeneous micropolar bodies these equations
are

(λ+µ)∇∇ · u+ (µ+ κ)∇ ·∇u+ κ∇ ×ϑ + ρ f = 0,

(α+β)∇∇ ·ϑ + γ∇ ·∇ϑ + κ∇ × u− 2κϑ + ρ`= 0.
(11)

Remark. In a similar manner other linear viscoelastic constitutive equations (in-
tegral equation, complex moduli equations) can be introduced and applied to the
representation of the viscoelastic micropolar behavior.

In what follows we consider the reduction of three-dimensional equilibrium
equations to the two-dimensional ones and discuss the corresponding two-dimen-
sional constitutive equations.

3. Micropolar plate and shell equations

Within the framework of the linear theory of micropolar plates and shells, also
called the six-parameter theory of shells, we consider a micropolar shell as a
two-dimensional Cosserat continuum, i.e., as a deformable surface M with six
degrees of freedom. Each material point of the surface is kinematically similar to
an infinitesimal rigid body with three translational and three rotational degrees of
freedom. Hence, the deformations of the micropolar plate or shell are described
by the translation vector v and the rotation vector θ which are defined at the base
surface M. Using the direct approach the basics of the linear theory of micropolar
shells are summarized in [Eremeyev and Zubov 2008; Lebedev et al. 2010]; see also
Appendix D in [Eremeyev et al. 2013]. The governing equations of the micropolar
shells and plates coincide with the relations of the general 6-parameter nonlinear
shell theory presented in [Chróścielewski et al. 2004; Libai and Simmonds 1998] in
the case of small deformations derived using the through-the-thickness integration
procedure.

The balance of momentum and the balance of moment of momentum are for-
mulated as follows

∇s ·T+ q = 0, ∇s ·M+T×+ c= 0, (12)

where q and c are the surface loads (forces and moments), T and M are the resul-
tant force stress and couple stress tensors, and ∇s is the surface nabla differential
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operator. The tensors T and M have the properties

n ·T= 0, n ·M= 0, (13)

where n is the unit vector of normal to M. Hence, T and M take the form

T= Tαβ iα⊗ iβ+Tα3 iα⊗n, M=Mαβ iα⊗ iβ+Mα3 iα⊗n (α, β= 1, 2), (14)

where iα are the base vectors on the shell surface. Obviously, in this theory of shells
the action of the drilling moment Mα3 is taken into account. For example, such
possibility may be useful to describe the interaction of the shell and the rigid body
or for the description of the deformations of multifolded plates, see [Chróścielewski
et al. 2004].

The static and kinematic boundary conditions take the form

ν ·T= t∗s , ν ·M= m∗s along C f ,

v = v0, θ = θ0 along Cu .
(15)

Here ν is the vector of the unit normal to C f , ν · n = 0, t∗s and m∗s are external
force and couple vectors acting along the boundary C f , while v0 and θ0 are given
functions describing the displacements and rotations of the boundary Cu , respec-
tively, C = Cu ∪ C f ≡ ∂M. For simplicity we use here again the same boundaries
for Dirichlet and Neumann conditions for displacements and rotations.

The linear surface strain measures are

ε =∇sv+A× θ , κ =∇sθ , (16)

where A≡ I− n⊗ n is the two-dimensional or surface unit tensor.
We restrict ourselves again by the constitutive equations for T and M of differ-

ential type. We assume the following relations

A0(∂t)T= AA1(∂t) tr ε‖+ A2(∂t)ε
T
‖
+ A3(∂t)ε‖+ A4(∂t)ε · n⊗ n, (17)

B0(∂t)M= AB1(∂t) tr κ‖+ B2(∂t)κ
T
‖
+ B3(∂t)κ‖+ B4(∂t)κ · n⊗ n, (18)

Here ε‖ = ε ·A, κ‖ = κ ·A, and Ak(p), Bk(p), k = 0, 1, 2, 3, are polynomials.
We call the constitutive equations for the shell (17) and (18) the Maxwell-type,

if A0 = 1+a0 p, B0 = 1+b0 p, where 1/a0 and 1/b0 are the relaxation time for the
stress resultants and for couple stresses, respectively, and if other polynomials are
constants. We call (17) and (18) the Voigt-type constitutive equation, if A0= B0= 1
while other polynomials are linear functions of p.

Using the Laplace transform these constitutive equations become

T= α1A tr ε‖+α2ε
T
‖
+α3ε‖+α4ε · n⊗ n, (19)

M= β1A tr κ‖+β2κ
T
‖
+β3κ‖+β4κ · n⊗ n, (20)
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where

αi =
Ai (p)
A0(p)

, βi =
Bi (p)
B0(p)

, i = 1, 2, 3, 4.

The final step in the theory of micropolar viscoelastic shells is the construction
of the polynomials Ak and Bk on the base of the dimension reduction of the three-
dimensional continuum or by experiments. Further we consider the derivation
of the relaxation functions αi and βi using the through-the-thickness integration
procedure presented in [Altenbach and Eremeyev 2009; 2010].

4. Reduction of constitutive equations from three to two dimensions

For simplicity let us consider the undeformed plane geometry; i.e., we restrict
ourselves to the theory of plates. The case of shells can be discussed by similar
way. Using the correspondence principle [Christensen 1971] from [Altenbach and
Eremeyev 2009] it follows

T= 〈A · σ 〉, M= 〈A ·µ〉− 〈A · zσ × n〉, (21)

where z is the coordinate along the thickness coordinate axis. The averaging oper-
ator 〈·〉 is defined as follows

〈 f 〉 =
∫ h/2

−h/2
f (z) dz.

For derivation of (21) we refer to the Appendix.
As a result the two-dimensional material parameters are given by the relations

α1 =3h ≡
λ(2µ+κ)
λ+2µ+κ

h, α2 = µh, α3 = (µ+κ)h, α4 = (µ+κ)h, (22)

β1 = αh−µh3

12
, β2 = βh−3h3

12
, β3 = γ h+(2µ+κ+3)h

3

12
, β4 = γ h, (23)

where h is the plate thickness.
From (22) and (9) it follows the relations for the tangential relaxation functions

P3

P0

P1+ P2

P1+ P2+ P3
h =

A1

A0
,

P2

P0
h =

A2

A0
,

P1

P0
h =

A3

A0
=

A4

A0
. (24)

It is clear that determination of the polynomials Ak(p) from the latter equations
can not be performed uniquely. Solving (24) results in

A0 = P0(P1+ P2+ P3), A1 = P3(P1+ P2)h, (25)

A2 = P2(P1+ P2+ P3)h, A3 = A4 = P1(P1+ P2+ P3)h. (26)
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In a similar way from (23) and (10) we obtain the equations for the bending relax-
ation functions

B1

B0
=

Q3

Q0
h−

P2

P0

h3

12
,

B2

B0
=

Q2

Q0
h−

P3(P1+ P2)

P0(P1+ P2+ P3)

h3

12
,

B3

B0
=

Q1

Q0
h+

(P1+ P2)(P1+ P2+ 2P3)

P0(P1+ P2+ P3)

h3

12
,

B4

B0
=

Q1

Q0
h.

From this it follows that

B0 = P0 Q0(P1+ P2+ P3),

B1 =

(
Q3 P0h− P2 Q0

h3

12

)
(P1+ P2+ P3),

B2 = Q2 P0(P1+ P2+ P3)h− P3 Q0(P1+ P2)
h3

12
,

B3 = Q1 P0(P1+ P2+ P3)h+ Q0(P1+ P2)(P1+ P2+ 2P3)
h3

12
,

B4 = Q1 P0(P1+ P2+ P3)h.

Hence, the differential operators in the constitutive equation for the resultant
stress and couple stress tensors T and M are more complicated than in the three-
dimensional case because the order of derivatives of Ai and Bi is higher than the
order of Pk and Qk , in general. This means that the viscoelastic properties of
the two-dimensional structure are more complicated then their three-dimensional
counterparts.

Remark. In the case of shells the stress resultant and couple stress tensors depend
on σ as follows:

T= 〈(A− zB)−1
· σ 〉, M= 〈(A− zB)−1

·µ〉− 〈(A− zB)−1
· zσ × n〉, (27)

where B = −∇Sn is the curvature tensor of the base shell surface, and 〈 · 〉 takes
a more complex form; see [Lebedev et al. 2010] for details. This means that for a
curved surface one should obtain more complicated relaxation properties for two-
dimensional theories of shell and plate.

5. Examples

Let us consider the simple case of the viscoelastic micropolar constitutive equations
and the corresponding two-dimensional equations.

5.1. Maxwell model. For a Maxwell-type model the polynomials in (6) and (7)
have the form

P0 = 1+ p0 p, P1, P2, P3 = const,

Q0 = 1+ q0 p, Q1, Q2, Q3 = const .
(28)
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For the stress resultant tensor T we obtain the constitutive equation of Maxwell-
type, i.e. A0 is the linear polynomial only, while the A1, A2, A3, and A4 are
constants. For the couple stress tensor M we obtain more complicated form of
constitutive equations. The simplification is possible if p0 = q0 = 1/τ . In this case
we use the polynomials

B0 = P0(P1+ P2+ P3),

B1 =

(
Q3h− P2

h3

12

)
(P1+ P2+ P3),

B2 = Q2(P1+ P2+ P3)h− P3(P1+ P2)
h3

12
,

B3 = Q1(P1+ P2+ P3)h+ (P1+ P2)(P1+ P2+ 2P3)
h3

12
,

B4 = Q1(P1+ P2+ P3)h,

where B0 is a polynomial while B1, B2, B3, and B4 are constants. Thus, we obtain
the Maxwell-type two-dimensional constitutive equations in the case when the re-
laxation times for the stress and couple stress coincide, i.e., when P0 ≡ Q0, and we
have one relaxation time τ . In the general case we obtain more general constitutive
equation for M.

5.2. Voigt model. Assume the polynomials in (6) and (7) have the form

P0 = 1, P1 = P0
1 (1+ p1 p), P2 = P0

2 (1+ p2 p), P3 = P0
3 (1+ p3 p),

Q0 = 1, Q1 = Q0
1(1+q1 p), Q2 = Q0

2(1+q2 p), Q3 = Q0
3(1+q3 p).

(29)

Here the corresponding polynomials Ai , i = 1, 2, 3, 4, are linear functions of p.
This means that for T we have the viscoelastic equations which are similar to the
standard viscoelastic model [Christensen 1971]. For M we again obtain a more
complicated model because in the general case. B0 is a linear function while B1,
B2, B3, and B4 are quadratic functions of p.

A simplification of the two-dimensional constitutive equation for M is possible
if we assume p1 = p2 = p3 = p4 = q1 = q2 = q3 = q4 = 1/τ. In this case we have

B0 = (P0
1 + P0

2 + P0
3 ),

B1 =

(
Q0

3h− P0
2

h3

12

)
(P0

1 + P0
2 + P0

3 )
(

1+ p
τ

)
,

B2 =

(
Q0

2(P
0
1 + P0

2 + P0
3 )h− P0

3 (P
0
1 + P0

2 )
h3

12

)(
1+ p

τ

)
,

B3 =

(
Q0

1(P
0
1 + P0

2 + P0
3 )h+ (P

0
1 + P0

2 )(P
0
1 + P0

2 + 2P0
3 )

h3

12

)(
1+ p

τ

)
,

B4 = Q0
1(P

0
1 + P0

2 + P0
3 )h

(
1+ p

τ

)
.
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As for the Maxwell-type model, we conclude that the two-dimensional constitutive
equations of Voigt-type exists as a special case of the three-dimensional viscoelastic
behavior, i.e., with the same relaxation parameter τ .

Conclusion

We have discussed the two-dimensional constitutive equations for resultant force
stress and couple stress tensors derived from the constitutive equations of three-
dimensional viscoelastic Cosserat (micropolar) continuum. The presented results
demonstrate how the viscoelastic properties of three-dimensional continuum inherit
in the constitutive equations for plates and shells. Within the framework of the
linear micropolar viscoelasticity with constitutive equations of differential type we
show that 2D relaxation functions of shells have move complicated structures then
the relaxation function of the bulk material, in general. In particular, even for
homogeneous plates and shells the spectrum of relaxation time do not coincide
with the spectrum of the bulk material. For inhomogeneous plates and shells the
spectrum may depend also on the structure of the shell in the thickness direction
and its curvature in the case of shells.

Appendix: Through-the-thickness integration

Following [Altenbach and Eremeyev 2009] we present more details on the through-
the-thickness procedure used for the derivation of 2D governing equations of the
micropolar theory of plates. Let V = {(x, y, z) ∈ R3

: (x, y) ∈ M ⊂ R2, z ∈
[−h/2, h/2]} be the volume of a plate-like body. We denote the boundary of the
plate-like body as S= Sν

⋃
S+
⋃

S−, where S±={(x, y, z) : (x, y)∈M, z=±h/2
are the plate faces and Sν = {(x, y, z) : (x, y) ∈ C ≡ ∂M, z ∈ [−h/2, h/2]} is the
lateral surface. We consider the following boundary conditions at S±

n± · σ = t±, n± ·µ= m±, (30)

where t±, m± are given vector functions, n± =±i3, and i3 = i1× i2.

Integrating (1)1 over [−h/2, h/2] and introducing the notations

q = 〈ρ f 〉+ t++ t− (31)

we result in (12)1 with T= 〈A · σ 〉.
For the derivation of (12)2 we cross-multiply (1)2 by z i3 from the left and again

integrate the result through the thickness. Finally, we obtain (12)2 with

c= 〈ρ`〉+m++m−+ i3×〈ρz f 〉+
h
2

i3× (t+− t−)

and M= 〈A ·µ〉− 〈A · zσ × i3〉.
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In the case of linear theory the through-the-thickness integration can be applied
to the 3D constitutive relations with the linear approximation of displacements and
rotations

u(x, y, z)= v(x, y)− zφ(x, y), ϑ = φ(x, y)× i3+ϑ3(x, y)i3, (32)

where φ · i3 = 0. The approximation (32) is consistent with 2D equilibrium equa-
tions as well as with averaging through the thickness. In particular, 2D fields of
translations and rotations can be interpreted as

v =
1
h
〈u〉, θ = ϑ .

Other possible variants of 3D to 2D reduction within micropolar elasticity are
discussed in [Altenbach et al. 2009; Altenbach and Eremeyev 2009; 2010; Chróś-
cielewski et al. 2011; Sargsyan 2011; Sargsyan and Sargsyan 2014; Steinberg and
Kvasov 2013; 2015; Zubov 2009].
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IDENTIFICATION OF HIGHER-ORDER
ELASTIC CONSTANTS FOR GRAIN ASSEMBLIES
BASED UPON GRANULAR MICROMECHANICS

ANIL MISRA AND PAYAM POORSOLHJOUY

Macroscale behavior of granular media is characterized by the significant effects
of grain-pair interactions and the microstructure of each grain neighborhood. From
a continuum viewpoint, granular materials may be modeled as micromorphic me-
dia to account for their complex grain-scale (microscale) kinematics. To this end
we express the grain displacement in terms of the neighboring grain displacements
utilizing the Taylor series expansion. The introduced gradients in the Taylor se-
ries are identified in terms of the macroscale deformation measures introduced in
microstructural elasticity and micromorphic mechanics. As a result, a continuum
model of the granular media is derived enriched by nonclassical terms, including
terms that model grain displacement fluctuations and higher gradients of displace-
ments. In the derived model, the continuum stiffness tensors are obtained in terms
of grain-pair stiffness coefficients and fabric parameters defining the geometry of
grains and their contacts. To identify the elastic constants of the enhanced contin-
uum model, we perform numerical experiments on grain assemblies using discrete
simulations subjected to relevant boundary conditions. The need for additional
macroscale deformation measures for the continuum modeling of granular materi-
als becomes evident in this identification process. The obtained elastic constants
are then used to determine the microscale (or grain-pair) stiffness coefficients ap-
plicable to the continuum model. These grain-scale stiffness coefficients are found
to be affected by the heterogeneity of microstructure.

1. Introduction

Among the various forms of granular materials, the grain assemblies formed of
grains in noncohesive contacts more strongly exhibit the microstructural and mi-
cromechanical effects at the macroscale behavior. For a macroscale description
of these materials, therefore, approaches are needed that can readily represent
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Figure 1. Schematic representation of modeling length scales and
the corresponding computational demand.

the effects of grain-pair interactions. Discrete models based upon various coarse-
graining schemes as schematically depicted in Figure 1 are not desirable for many
problems in science and engineering that deal with structures that may contain
large numbers of grains (> 106). These models are not only computationally ex-
pensive, but require local constitutive laws for grain-pair interactions and simulated
microstructures, which are often not readily conceivable. Multiscale models that
seek a hybrid discrete-continuum approach also suffer from reliance on informa-
tion at various scales that is not readily available or easily conceived for complex
material systems. Nonclassical continuum models are needed that can capture the
effects of microscale mechanisms. Indeed, the necessity of modeling microscale
mechanisms within the rubric of continuum mechanics is made clear in pioneering
works such as [Cosserat and Cosserat 1909; Eringen 1999; Germain 1973; Green
and Rivlin 1964; Mindlin 1964; Toupin 1964]. The seminal developments of con-
tinuum mechanics are known to proceed from some micromechanical conception
of deformable materials, as seen from the works of Piola [Auffray et al. 2015;
dell’Isola et al. 2014], Navier [1827] and Cauchy [1826–1830].

An important aspect of deformation of grain packing is nonaffine particle move-
ment when a volume element of these materials is subjected to uniform boundary
conditions. This aspect has been observed experimentally [Misra 1998; Misra and
Jiang 1997], through many numerical simulations (see among others [Peters and
Walizer 2013]), and in models of these materials within the classical continuum me-
chanics framework [Jenkins et al. 2005; Misra and Chang 1993; Trentadue 2001].
To model the effects of fluctuations in grain motions (termed as micro-deformations
or inner motions) it is advantageous to enrich the classical continuum approach
[Maugin 2014]. To that end we combine the granular micromechanics paradigm,
which offers a robust methodology for developing continuum models of granu-
lar material systems by incorporating microscale effects [Misra and Singh 2014;
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2015; Misra and Poorsolhjouy 2015c], with the identification of grain (microscale)
motions in terms of the Mindlin–Eringen macroscale deformation measures intro-
duced in microstructural elasticity [Mindlin 1964] and micromorphic mechanics
[Eringen 1999]. As a result, an enhanced continuum model of the granular media
is obtained, enriched by nonclassical terms that model grain displacement fluc-
tuations and higher gradients of displacements [Misra and Poorsolhjouy 2015b;
2015a]. In addition, expressions are derived for effective macroscopic constitutive
coefficients corresponding to (1) the macroscale displacement gradient, (2) the
fluctuations in displacement gradient which is related to the microscale displace-
ment gradient, and (3) the macroscale gradient of microdisplacement gradient or
the second gradient of displacement. In this paper, we demonstrate a method for
identifying the elastic constants of the enhanced continuum model based upon
numerical experiments on grain assemblies using discrete simulations. Two types
of grain assemblies are analyzed: (1) regular closed-packed assembly of equal-
diameter disks with vacancy type defects, and (2) irregular assembly of disks of
three different sizes. These assemblies are treated as 2D granular media for mod-
eling purposes. Discrete simulations are performed using unit cells of these grain
assemblies to obtain deformation energies under prescribed displacement boundary
conditions compatible with uniform continuum kinematic measures. These defor-
mation energies are then analyzed to identify the continuum elastic constants. The
need for additional macroscale deformation measures for the continuum modeling
of granular materials becomes evident in this identification process. The obtained
elastic constants are used to determine the microscale (or grain-pair) stiffness coef-
ficients applicable to the continuum model. These grain-scale stiffness coefficients
are found to be affected by the heterogeneity of microstructure, indicating that they
do not represent stiffness of an isolated grain-pair; rather they represent a collective
stiffness behavior of the grain-pair and its neighbors.

2. Enhanced continuum model of granular media

2.1. Micro-macro kinematic identification. We consider a unit cell representative
of the granular assembly. In a continuum model, the unit cell plays the role of a ma-
terial point P , as depicted in Figure 2, where the macroscale coordinate system x
only distinguishes different material points. In addition, a coordinate system x′

is attached to the material point, P , at the barycenter of the unit cell with coor-
dinate axes parallel to those of the macroscale coordinate system x. Following
the methodology of microstructural elasticity described by Mindlin [1964], we
define the micro-deformation gradient, ψi j (xk)= φi, j (xk), which is decomposed
into a part representing the average or macroscale displacement gradient, φi, j , and
a second part, γi j , representing the gradient of the displacement fluctuations with
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Figure 2. Representation of material point and the global coordi-
nate system, x, and the local coordinate system, x′, located at the
material point’s center of mass.

respect to x′, as
ψi j , φi, j = φi, j − γi j . (1)

From the viewpoint of identifying constitutive relationships, we consider the con-
tinuum to be subjected to a linear macroscale displacement field. In this case, the
macroscale displacement gradient, φi, j , is independent of coordinates xk . Further,
the grain displacement fluctuations are assumed to be linear functions of the local
coordinate system x′, leading to a micromorphic theory of degree 1, in the terminol-
ogy introduced by Germain [1973]. This implies that the second-rank tensor γi j is
independent of the local coordinates (it is homogeneous within the material point)
and is a function only of xk . Throughout the paper, the subscripts follow tensor
notation and the summation convention over repeated subscripts is implied unless
explicitly noted otherwise.

We now consider the relative displacement of two contacting neighbor grains, n
and p, within the unit cell of the granular media. Displacement of grain p is written
using a Taylor series expansion of the displacement of the neighbor grain, n, with
terms up to second order, as

δ
np
i = φ

p
i −φ

n
i = φ

n
i, j l j +

1
2φ

n
i, jkl j lk + · · · , (2)

where φi is the displacement of grain centroids, and l j is the vector joining the
centroids of the two grains, n and p (denoted by the superscripts). Using (1) and
(2), the relative displacement of two neighbor grains, n and p, is derived as

δ
np
i = (φi. j −γi j )l j +

1
2φi, jkl j lk = φi, j l j −γi j l j +

1
2φi, jkl j lk = δ

M
i − δ

m
i + δ

g
i . (3)

As seen from (3), the intergranular relative displacements between two interacting
(contacting) grains is decomposed into three terms:

(1) δM
i , due to the macroscale displacement gradient, φi, j ;

(2) δm
i , due to the gradients of the fluctuation in grain displacement, γi j (x); and
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(3) δg
i , due to the second gradient term, φi, jk , which is same as the gradient of

the relative displacements, γi j,k .

The three relative displacement terms, denoted by the superscripts M , m and g, are

δM
i = φi, j l j ; δm

i = γi j l j ; δ
g
i =

1
2φi, jkl j lk = φi, jk J jk = ψi j,k J jk, (4)

and the tensor Ji j = li l j/2 represents a moment tensor introduced here for simpli-
fying further derivations.

The relative rotation of grains within the granular assembly can be related to
the rotation field within the material point, defined as the curl of displacement
field [Misra and Poorsolhjouy 2015b]. Thus, applying Taylor series expansion, the
relative rotation of two neighbor grains, n and p, denoted as θ , is obtained as

θ
np
i = κ

p
i − κ

n
i = κ

n
i,plp = (ei jkφk, j ),plp = ei jkφk, j plp. (5)

The intergranular relative rotation between two interacting grains is, thus, related
to the second gradient term, φi, jk . That grains undergo relative rotations is also
known from measurements of kinematic fields in grain assembles [Misra 1998;
Misra and Jiang 1997].

2.2. Stress and force conjugates to macro-micro kinematic measures. For fur-
ther development, we retain only the symmetric part of the macroscale displace-
ment gradient tensor, φ(i, j), as the classical small-deformation strain tensor, and
express the macroscale deformation energy density of the granular continua as a
function of the continuum kinematic measures as W = W (φ(i, j), γi j , φi, jk). The
macroscale stress components conjugate to the kinematic measures are then defined
as

τi j =
∂W

∂φ(i, j)
=
∂W
∂εi j

, σi j =
∂W
∂γi j

, µi jk =
∂W
∂γi j,k

, (6)

where τi j , σi j , and µi jk are Cauchy stress, relative stress, and double stress, respec-
tively. We note that the macroscopic strain energy density function can be obtained
as the volume average of the deformation energies of the grain-pair interactions,
written as

W = 1
V

∑
α

W α(δM
i , δ

m
i , δ

g
i , θ

u
i ), (7)

where the superscript α denotes the α-th grain-pair interaction, and it has been
intentionally dropped from the kinematic measures to simplify the equations. The
forces and moment conjugate to the microscale kinematic measures are defined as

∂W α

∂δ
αξ
i

= f αξi , where ξ = M,m, g, and ∂W α

∂θαu
i

= mαu
i . (8)
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Now, substituting (8) and (7) into (6) and using (4) and (5), respectively, macro-
scopic stress tensors conjugate to the macroscale kinematic measures are obtained as

3τi j =
∂W
∂εi j
=

1
V

∑
α

∂W α

∂δM
k

∂δM
k

∂εi j
=

1
V

∑
α

f Mα
i lαj , (9)

σi j =
∂W
∂γi j
=

1
V

∑
α

∂W α

∂δm
k

∂δm
k

∂γi j
=

1
V

∑
α

f mα
i lαj , (10)

µi jk =
∂W
∂φi, jk

=
1
V

∑
α

(
∂W α

∂δ
g
l

∂δ
g
l

∂φi, jk
+
∂W α

∂θu
l

∂θu
l

∂φi, jk

)
=

1
V

(∑
α

f gα
i Jαjk +

∑
α

muα
l e j illαk

)
. (11)

Thus, the stress tensor conjugates are related to the microscale force measures and
moments. Similar expressions have been reported in literature [Chen and Lee 2003]
based upon the generalization of the virial theorem [Ganghoffer 2010]. However,
it is notable that, in the stress tensor expressions presented here, separate force
measures conjugate to the grain-pair (microscale) counterparts of the continuum
deformation measures are defined, which is clearly different from those based upon
the virial theorem.

2.3. Microscale and macroscale constitutive equations. For linear isotropic elas-
ticity, the following quadratic form of W α is formulated:

W α
=

1
2

[∑
ξ

K αξ
i j δ

αξ
i δ

αξ
j +Gαu

i j θ
αu
i θαu

j

]
, where ξ = M,m, g, (12)

where K and G represent the grain-pair stiffness parameters for forces and mo-
ments, respectively. Thus, the microscale constitutive equations that link the mi-
croscale kinematics measures to their conjugate force and moment measures take
the form

f αξi = K αξ
i j δ

αξ
j , where ξ = M,m, g,

mαu
i = Gαu

i j θ
αu
j .

(13)

The introduced grain-pair stiffness parameters define the force conjugates associ-
ated with different microscale kinematic measures that contribute to intergranular
relative displacements and rotations. These stiffness parameters do not represent
the stiffness of two isolated interacting grains. In the derived model we have
introduced four types of intergranular stiffness parameters, namely, the average,
the fluctuation, the second gradient and the rotational, distinguished by their su-
perscripts M , m, g and u, respectively. We note that in (12) and (13) the terms
that cross-link the different microscale kinematic measures have been ignored for
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simplicity. The consequence of this assumption will be that uncoupled constitutive
relationships will be obtained for the continuum model. Further, it should be noted
that the microscale stiffness coefficients in (13) represent intergranular stiffness
measures in a statistical sense. Since the total relative displacement between two
neighbor grains was previously decomposed into different terms, representing the
average and fluctuation displacement gradients and also second gradient terms, the
stiffness coefficients corresponding to them will all contribute, in a statistical sense,
to form the overall response of the interaction to the grains’ relative displacements.
Now, substituting the microscale constitutive equations, (13), into (9)–(11), and
noting that the macroscale strain measures are constant throughout the material
point, macroscale constitutive equations are derived as

τi j =
1
V

∑
α

f M
i lαj =

1
V

∑
α

K M
ik δ

M
k lαj =

(
1
V

∑
α

K M
ik lαl lαj

)
εkl = C M

i jklεkl, (14)

σi j =
1
V

∑
α

f m
i lαj =

1
V

∑
α

K m
ikδ

α
k lαj =

(
1
V

∑
α

K m
iklαl lαj

)
γkl = Cm

i jklγkl, (15)

µi jk =
1
V

∑
α

( f g
i Jαjk +mu

l e j illk)

=

(
1
V

∑
α

K g
il Jαmn Jαjk +

1
V

∑
α

Gu
pqemlqe j i plkln

)
φl,mn

= (Ag
i jklmn + Au

i jklmn)φl,mn = Ai jklmnφl,mn. (16)

Here it should be noted that the summations in (14)–(16) are performed over all
grain-pair interactions inside the material point. The quantities inside the summa-
tion (stiffness coefficients and geometric parameters li and Ji j ) are all different
for every single grain-pair interaction. It is, however, possible to conceive of
average value for all these quantities for grain-pair interactions in any given orien-
tation. Using these average values, the summation over all grain interactions can
be changed to integration over all generic orientations. To this end we define Np

as the number density of grain-pair interactions divided by the volume of the unit
cell, and ξ as the normalized directional density distribution function of contacts in
different orientations within the unit cell. Having a properly defined ξ will enable
the method to model materials with different levels of anisotropy. For modeling
isotropic materials or particle assemblies with random distribution of grains in
different orientations, the distribution function should take a constant value inde-
pendent of the direction. So, for isotropic materials (or for randomly distributed
grain assemblies), the density distribution function in 2D and 3D domains will be

ξ(θ)=
1

2π
=⇒

∫
θ

ξ dθ = 1
2π

2π = 1 (for 2D) (17a)
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and

ξ(θ, φ)=
1

4π
=⇒

∫
θ

∫
φ

ξ(sin θ dθ dφ)= 1
4π
(2π)(2)= 1 (for 3D). (17b)

In (17a), θ is the polar angle of the 2D polar coordinate system, while in (17b),
θ and φ are the polar angles measured from the vertical axis and the azimuth angle
in the 3D spherical coordinate system, respectively.

3. Identification of elastic constants using discrete simulations

Evidently, the enhanced continuum model of granular media derived in Section 2
can be characterized by either microscale or macroscale elastic constants. To
demonstrate the applicability of the derived model, we identify these constants
for specific grain assemblies using discrete simulations.

3.1. Discrete simulation methodology. For any grain within the assembly, say the
n-th grain, the variation of the total potential energy can be written as

δW n
=

∑
α

δW nα(δnα
i , θnα

i )=
∑
α

f nα
i δδnα

i +
∑
α

(mnα
i + ei jk f nα

j rn
k )δθ

nα
i , (18)

where the summation over α denotes summation over all grains which have in-
teraction with the n-th grain. In (18), f nα, mnα, δnα, and θnα are the grain-pair
force, moment, relative displacement, and relative rotation for grains n and α, re-
spectively, related through the grain-scale constitutive equations for an isolated
grain-pair as

f nα
i = K α

i jδ
nα
j , where K nα

i j = K α
n nαi nαj + K α

s sαi sαj + K α
ns(n

α
i sαj + sαi nαj ),

mnα
= Gαθnα,

(19)

where the isolated grain-pair stiffness coefficients for 2D contact of disks in the nor-
mal, tangential, and normal-tangential coupling are taken to be K n , K s , and K ns ,
respectively, and the grain-pair moment stiffness is taken to be G.

Denoting the total force exerted on the n-th grain by Fi and the total moment
by Mi , the variation of the total potential energy is written as

δW n
= Fn

i δφ
n
i +Mn

i δκ
n
i . (20)

Further, the variation of the relative kinematic measures can be derived based on
the variation of displacement and rotation fields as

δδnα
i = δ(φ

α
i −φ

n
i )=−δφ

n
i ,

δθnα
i = δ(κ

α
i − κ

n
i )=−δκ

n
i .

(21)
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Setting (18) and (20) equal and substituting (21), the following balance equations
for grain, n, is found:

Fn
i =−

∑
α

f nα
i ,

Mn
i =−

∑
α

(mnα
i + ei jk f nα

j rn
k ).

(22)

Combining (19) and (22), the total grain force and moment can be related to
the grain motions. These expressions can be assembled to form an overall force-
displacement equation governing the behavior of the assembly as a whole, written
as [Chang and Misra 1989]

{F}3M×1 = [S]3M×3M{u}3M×1, (23)

where M denotes the total number of grains within the whole assembly. For each
grain there are three kinematic measures (two displacements and one rotation),
resulting in a total number of 3M kinematic variables represented in u. Also, each
grain has three force measures (two forces and one moment), resulting in a total
number of 3M force variables represented in F . So the overall number of variables
in (23) is 6M , knowing any 3M of which the other 3M can be derived by solving
the system of equations represented in matrix form in (23).

3.2. Methodology for identification of constitutive coefficients. Using (6), the
macroscale strain energy can be written as

W = C M
i jklεi jεkl +Cm

i jklγi jγkl + Ai jklmnψi j,kψlm,n. (24)

For finding the components of the stiffness tensors, numerical experiments are
performed with 2D grain assembly using the discrete simulation method. These
numerical experiments are performed in a manner akin to physical experiments
by applying boundary conditions on the grain assemblies. Thus, to obtain the
components of the stiffness tensor, C M

i jkl , we purely apply on the boundary of the
grain assembly a specified macroscale displacement gradient while constraining
the fluctuation displacement gradient, γi j , and the second gradient term, ψi j,k , to
be zero. In order to achieve this type of displacement at the boundary, boundary
grains and their immediate neighbors are displaced by the amount compatible with
the specified macroscale displacement gradient. In this manner, the fluctuations in
the displacement gradient and the second gradient of displacement are ensured to
be zero. For the assembly loaded in this manner, the strain energy will be

W |(γi j=0,ψi j,k=0) = C M
i jklεklεi j . (25)
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Thus, by performing a sufficient number of simulations with specified combina-
tions of the strain components, the elastic constants are identified.

For finding the components of Cm
i jkl , we purely apply fluctuations in displace-

ment gradient while keeping the macroscale displacement gradient and the second
gradient of displacement to be zero. For this type of boundary condition, the bound-
ary grains are kept stationary while their immediate neighbors are moved according
to a fluctuation in displacement gradient using (3). By loading the assembly in this
manner, the strain energy of the assembly will be

W |(εi j=0,ψi j,k=0) = Cm
i jklγi jγkl . (26)

Applying a sufficient number of combinations of fluctuation strain components as
for the case of macrostrain, the components of the tensor Cm

i jkl are derived. Finally,
for finding the components of the sixth-rank stiffness tensors, second gradients of
displacement fluctuations are applied on the assembly while keeping the average
and fluctuations in displacement gradient to be equal to zero. For this purpose the
boundary grains are kept stationary while their immediate neighbors are moved in
consistence with the second gradient in the displacement fluctuations. Movements
of the neighbors of boundary grains are derived using (3) with the desired value
of ψi j,k . In this loading scheme the internal strain energy will be derived as

W |(εi j=0,γi j=0) = Ai jklmnψi j,kψlm,n. (27)

For a 2D granular system, the sixth-rank stiffness tensor Ai jklmn can be written as
an 8× 8 matrix with 36 independent components. To find all these components,
second gradient of displacement in 36 different combinations need to be applied
to the material. Eight of these combinations are indicated by the eight different
components of ψi jk and the 26 remaining ones are composed of their combinations.
Finding the energy for each one of these cases, using (18) and writing (27), result
in a system of 36 equations and 36 unknowns that, when solved, will yield all
components of the second gradient stiffness tensor.

4. Results

Two types of grain assemblies are analyzed: (1) regular closed-packed assembly
of equal-diameter disks (monodisperse) with vacancy type defects, and (2) irregu-
lar assembly of three different diameter disks (tridisperse). These assemblies are
treated as 2D granular media for modeling purposes.

4.1. Regular monodispersed grain assembly. Regular hexagonal closed-packed
assemblies from cylindrical particles (assembly A, seen in Figure 3, left) have been
analyzed. Further, defected assemblies are also made by removing grains from the
assembly once every four rows (assembly B, seen in Figure 3, middle) and once
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a b c 

Figure 3. Three regular assemblies. Left: hexagonal closed-pack
(assembly A). Middle and right: defected assemblies (assemblies
B and C, respectively).

every three rows (assembly C, seen in Figure 3, right). Thus, Assembly A is the
densest of the three, B is intermediate, and C is the loosest.

Assembly A has planes of elastic symmetry every 30 degrees. Applying the ef-
fects of elastic symmetries about horizontal and vertical planes shows that the mate-
rial behaves as an orthotropic material in 2D with four independent constants in its
first gradient stiffness tensor. Considering elastic symmetry about the plane whose
normal vector makes a 150◦ angle with the positive x-axis results in a stiffness
tensor with only two independent constants, as is the case for isotropic materials.
Defected assemblies (B and C) are also isotropic because the defects are chosen
so that the removed contacts will not disrupt the symmetry in intergranular forces.

For each assembly, a unit cell is defined. By periodically repeating the unit cell in
both horizontal and vertical directions, the complete assembly is formed. The unit
cells can be seen in Figure 3 by shaded grains. Discrete simulations of these unit
cells with periodic boundary conditions have been performed. In these simulations,
intergranular stiffness coefficients are assigned as K n = 2K s = 17.5 KN/mm and
K ns = G = 0.0. For the three assemblies, multiple simulations, as discussed in
Section 3.2, have been performed, and stiffness tensors corresponding to average
displacement gradient, fluctuations in displacement gradient, and second gradients
are derived and given in Table 1. For assembly A, since all grains in the unit
cell are in fact boundary grains, stiffness tensors corresponding to displacement
fluctuations and second gradient terms are zero. Indeed, in such grain assembly, all
grains always move according to the average displacement gradient applied on the
boundary grains. For the two other assemblies, however, not all grains inside the
unit cell are boundary grains. Thus, effects of grain displacement fluctuations and
second gradient of displacement will be nonzero. Components of the fourth-rank
stiffness tensors, C M and Cm , and the sixth-rank stiffness tensor corresponding to
second gradient terms, A= Au

+ Ag, for these regular assemblies are presented in
Table 1. It is noteworthy that the stiffness components associated with fluctuation
and second gradient increase as more defects are introduced into the assembly.
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C M
i jkl and Cm

i jkl Ai jklmn

Component Assembly Assembly Assembly Component Assembly Assembly
A B C B C

C M
11 26.5 19.9 17.7 A111111 8.2 60.4

C M
22 26.5 19.9 17.7 A112112 24.7 14.6

C M
33 11.4 8.5 7.6 A122122 74.0 43.9

C M
12 3.8 2.8 2.5 A211211 11.5 56.5

C M
13 0 0.0 0.0 A212212 34.5 20.5

C M
23 0 0.0 0.0 A222222 103.6 61.4

Cm
11 0 1.6 7.6 A111112 14.2 4.2

Cm
22 0 6.6 8.8 A111122 24.7 7.3

Cm
33 0 4.7 6.3 A111211 0.0 1.7

Cm
44 0 2.2 7.6 A111212 = A112211 0.0 −1.5

Cm
12 0 0.0 −0.3 A111222 = A122211 0.0 −2.5

Cm
13 0 2.7 2.7 A112122 42.7 25.3

Cm
14 0 0.0 0.0 A211212 19.9 5.9

Cm
23 0 0.0 0.0 A211222 34.5 10.2

Cm
24 0 3.8 3.8 A212222 = A221222 59.8 59.8

Cm
34 0 0.0 −0.3 otherwise 0.0 0.0

Table 1. Components of two fourth-rank stiffness tensors (C M

and Cm), in units of GPa, and the sixth-rank second gradient stiff-
ness tensor (A= Ag

+ Au), in units of N, for the regular unit cells.

4.2. Irregular tridisperse grain assembly. Three random assemblies of grains of
three different sizes have been made and analyzed. The three assemblies are com-
posed of 288, 576, and 1152 grains, as shown in Figure 4. In all three assemblies,
52% of grains have a radius of 19µm, 26% have a radius of 22µm, and 22% have

Figure 4. Irregular grain assemblies with different numbers of
grains, with constant ratios of grains with different sizes.
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N = 288 N = 576 N = 1152

component unit RVE model unit RVE model unit RVE model
cell results cell results cell results

C M
11 17.9 17.7 17.7 18.9 19.0 19.0 18.1 18.3 18.3

C M
22 17.8 17.7 17.7 19.0 19.0 19.0 18.4 18.3 18.3

C M
33 7.4 7.4 7.4 7.9 7.9 7.9 7.6 7.6 7.6

C M
12 2.8 2.8 2.8 3.1 3.1 3.1 3.1 3.0 3.0

C M
13 0.3 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0

C M
23 0.0 0.0 0.0 0.1 0.0 0.0 −0.1 0.0 0.0

Cm
11 4.0 4.2 4.2 3.1 2.9 2.9 2.0 2.0 2.0

Cm
22 4.5 4.2 4.2 2.8 2.9 2.9 2.0 2.0 2.0

Cm
33 3.8 3.7 3.7 2.4 2.6 2.6 1.7 1.8 1.8

Cm
44 3.5 3.7 3.7 2.7 2.6 2.6 1.7 1.8 1.8

Cm
12 0.2 0.2 2.8 0.1 0.2 3.1 0.1 0.1 3.0

Cm
13 −0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0

Cm
14 −0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Cm
23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Cm
24 −0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Cm
34 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1

Table 2. Components of two fourth-rank stiffness tensors (C M

and Cm) for the irregular grain assemblies. All results have units of
GPa. The unit cells are as given in Figure 4, the RVE is taken to be
composed of randomly oriented unit cells, as in isotropic polycrys-
tals (note the unit cells are amorphous with periodic boundaries),
and model results pertain to the RVE.

a radius of 28µm. Intergranular stiffness coefficients used for discrete simulations
are K n = 2K s = 17.5 KN/mm and K ns = G = 0.0.

In Tables 2 and 3, the stiffness tensor components for the three assemblies with
different numbers of grains are presented. For each assembly, first the components
of the unit cell’s stiffness tensor are given in the column titled “unit cell”. Further,
to identify the grain-pair stiffness relevant to the isotropic enhanced continuum
model, we consider an RVE of granular media which comprises randomly oriented
unit cells, as in polycrystals. The isotropic stiffness tensor of this RVE is estimated
through the Voigt–Reuss–Hill (VRH) directional averaging process [Hill 1952].
For each assembly, in the second column in Tables 2 and 3, the components of
stiffness tensors of the resulting RVE are presented. It is noteworthy that the “unit
cell” results and the estimated RVEs have small differences. Finally, for each
assembly, in the last columns, titled “Model results”, we give the stiffness tensors
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N = 288 N = 576 N = 1152

component unit RVE model unit RVE model unit RVE model
cell results cell results cell results

A111111 206.9 257.9 257.9 97.1 100.2 100.2 33.3 33.9 33.9
A112112 146.6 130.5 81.8 53.6 48.2 31.7 19.3 16.9 10.6
A122122 247.8 233.1 233.1 82.7 90.3 90.3 25.7 29.9 29.9
A211211 182.4 233.1 233.1 84.9 90.3 90.3 28.1 29.9 29.9
A212212 143.2 130.5 81.8 52.6 48.2 31.7 19.5 16.9 10.6
A222222 287.3 257.9 257.9 96.8 100.2 100.2 30.6 33.9 33.9
A111112 −19.4 0.0 0.0 −3.7 0.5 0.5 −1.2 −0.1 −0.1
A111122 0.0 −15.4 81.8 3.0 −1.2 31.7 0.3 −1.9 10.6
A111211 −3.3 0.0 0.0 −0.9 −0.9 −0.9 0.1 0.1 0.1
A111212 4.4 6.5 6.2 2.1 2.7 2.5 0.7 1.1 1.0
A111222 −0.8 0.0 0.0 0.8 0.0 0.0 0.2 0.0 0.0
A112122 −4.1 0.0 0.0 6.4 0.5 0.5 1.4 −0.1 −0.1
A112211 3.6 5.9 6.2 1.8 2.2 2.5 0.7 0.9 1.0
A112212 −2.5 0.0 0.0 −0.4 0.0 0.0 0.0 0.0 0.0
A112222 4.9 6.5 6.2 1.7 2.7 2.5 0.8 1.1 1.0
A122211 0.1 0.0 0.0 0.8 0.0 0.0 0.2 0.0 0.0
A122212 4.6 5.9 6.2 1.0 2.2 2.5 0.7 0.9 1.0
A122222 1.0 0.0 0.0 0.6 0.9 0.9 −0.4 −0.1 −0.1
A211212 −22.8 0.0 0.0 −4.8 −0.5 −0.5 −1.2 0.1 0.1
A211222 −1.9 −15.4 81.8 4.2 −1.2 31.7 0.8 −1.9 10.6
A212222 3.7 0.0 0.0 5.4 −0.5 −0.5 1.4 0.1 0.1
A221222 3.7 0.0 0.0 5.4 −0.5 −0.5 1.4 0.1 0.1

Table 3. Components of the sixth-rank second gradient stiffness
tensor (A= Ag

+ Au) for the irregular grain assemblies. All results
have units of 10−5 KN. The unit cells are as given in Figure 4, the
RVE is taken to be composed of randomly oriented unit cells as
in isotropic polycrystals (note the unit cells are amorphous with
periodic boundaries), and model results pertain to the RVE.

derived from calculated microscale stiffness (i.e., grain-pair stiffness coefficients
corresponding to macroscale displacement gradient, fluctuations in displacement
gradients, and second gradients of displacement fluctuations). The stiffness tensors
for the macroscale displacement gradients and the fluctuations in displacement gra-
dient show a very good agreement. For the second gradient stiffness tensor, the mi-
croscale stiffness constants are found by an optimization procedure since the num-
ber of independent constants is less than the number of independent components
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in the second gradient stiffness tensors. A reasonable agreement is also found for
the second gradient constitutive coefficients, and, notably, the orders of the major
nonzero terms are in concurrence. We further note the need for nonzero coupling
terms, Kns , in the microscale constitutive relationships for replicating the fluctua-
tion and second gradient macroscopic stiffness tensors. Though the effects of these
stiffness components are of smaller order than those of the diagonal stiffness coeffi-
cients, Kn and Ks , nevertheless they conform to the relationships derived from the
present model (see Appendix I). We also note that the microscale moment stiffness
coefficients, G, are negligible (of the order 10−16 N.mm), which implies that for
the particular simulations the grain rotations have an insignificant role. However,
this is likely a result of assumed zero rotational stiffness in the discrete simulations.

4.3. Microscale constants for enhanced continuum model. Finally, we compare
the back-calculated microscale constitutive coefficients in Table 4 with those as-
signed in the discrete simulations. For the case of regular assembly, we observe
that the microscale stiffness constants, K M

n and K M
s , relevant to the macrostrain

stiffness tensor for assembly A are 13% smaller than those used in discrete simula-
tions. The grain-pair stiffness relevant to the continuum model is clearly influenced
by the strongly discrete hexagonal microstructure of the grain assembly. As the
regular assembly becomes more defective (B and C), the constants, K M

n and K M
s ,

become smaller. However, notably, the ratio K M
s /K M

n remains 2, which is the same
as that specified in discrete simulations, thus preserving the Poisson’s effect. More-
over, the microscale stiffness constants corresponding to the fluctuation and second
gradient stiffness tensors appear and increase as more defects are introduced. The
ratio K m

s /K m
n no longer remains the same as that specified in discrete simulations,

implying a different Poisson’s effect associated with the fluctuation behavior. In
addition, a coupling of the normal and shear behavior is also revealed. It is clear
that the needed microscale constitutive coefficients are significantly affected by
heterogeneity introduced by microstructure, so that the continuum modeling with

Assembly K M
n K M

s K m
n K m

s K m
ns K g

n K g
s K g

ns

A 15.2 7.6
B 10.9 5.4 2.0 1.7 2.6×10−1 0.3 0.3 4.1×10−2

C 8.4 4.2 3.3 3.0 2.3×10−1 0.4 0.4 −3.6×10−2

N = 288 16.8 7.5 3.6 2.8 −4.9×10−3 0.8 0.7 1.2×10−4

N = 576 17.1 7.5 2.3 1.9 −2.6×10−2 0.6 0.5 −7.7×10−3

N = 1152 16.8 7.2 1.7 1.3 1.1×10−2 0.4 0.3 2.5×10−3

Table 4. Microscale constitutive coefficients derived for both the
regular and irregular assemblies with K n = 2K s = 17.5 KN/mm
and K ns = G = 0.0 (K in kN/mm and G in N.mm).
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only macroscale displacement gradients is not sufficient even for the relatively
uniform system analyzed here, wherein all grain pairs are given the same stiffness
constants. Similar observations can be made from the comparison of microscale
stiffness constants of the three irregular assemblies in which smaller particle num-
bers imply greater microstructural heterogeneity. Clearly, the grain neighborhoods
affect the behavior of grain interactions significantly, so that the effective grain-
pair stiffness cannot be just estimated from the stiffness of two isolated grains.
Additional macroscale deformation measures are, therefore, necessary for the con-
tinuum modeling of granular materials. Similar observations have been made for
other material systems such as pantographic trusses [Alibert et al. 2003; Seppecher
et al. 2011], biomaterials [Andreaus et al. 2012; 2015a], and in fiber composites
[Ferretti et al. 2014]. Further, we note that the application of isolated grain-pair
potentials or stiffness functions for estimating the energies and stresses associated
with different deformation measures, as proposed in some multiscale models that
aim to bridge discrete-continuum models, need to be reconsidered in the light of
the findings of this paper.

5. Summary and conclusion

The granular micromechanics approach has been used to develop an enhanced
continuum model of grain assemblies by the identification of grain (microscale)
motions in terms of the macroscale displacement gradient, the fluctuations in dis-
placement gradient as well as their second gradient. Thus, additional stress tensors
conjugate to the strain measures as well as additional force measures that are con-
jugate to the grain-pair displacements are introduced. The expressions of stress
tensors are found in terms of the corresponding force and geometric measures,
which are different from those derived using the generalized virial theorem. Fur-
ther, defining the macroscopic strain energy density as the volume average of grain-
pair energy functions, macroscopic stiffness tensors corresponding to the kinematic
measures have been derived. The continuum stiffness tensors are obtained in terms
of grain-pair stiffness coefficients and fabric parameters defining the geometry of
grains and their contacts.

To identify the elastic constants of the enhanced continuum model, we perform
numerical experiments on grain assemblies using discrete simulations subjected
to relevant boundary conditions. The need for additional macroscale deformation
measures for the continuum modeling of granular materials becomes evident in this
identification process. The obtained elastic constants are then used to determine
the microscale (or grain-pair) stiffness coefficients applicable to the continuum
model. These grain-scale stiffness coefficients are found to be affected by the
heterogeneity of microstructure, as shown by the results for regular grain assembly
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made increasingly heterogeneous by introducing vacancy-type defects. The grain-
pair stiffness coefficients are clearly different from the isolated grain-pair stiff-
ness used in discrete simulation. These effective stiffness coefficients are unique
for each material or granular assembly, since the intergranular mechanisms are
affected not only by the two grains under consideration, but also by the grains
in the neighborhood, and, by extension, the whole assembly. We also find that
the stiffness coefficients corresponding to the average displacement gradient terms
have the largest values but the coefficients corresponding to displacement gradient
fluctuations are also significant and of a similar order.

Finally, we note that the micromorphic and second gradient terms are necessary
for modeling some frequency-dependent wave transmission/reflection phenomena
at material interfaces [Misra and Poorsolhjouy 2015b; Placidi et al. 2014; dell’Isola
et al. 2012; Madeo et al. 2015]. The micromorphic behavior of granular materials
indicates the possibility of realizing materials with alternate synthesis pathways
which show specific wave propagation behaviors that can be used for vibration
control as an alternative to piezoelectric materials [Maurini et al. 2004; 2006;
Porfiri et al. 2005; Vidoli and dell’Isola 2001; Madeo et al. 2014; dell’Isola and
Vidoli 1998; Greco et al. 2014] or for damage identification [Ferretti et al. 2014;
Andreaus and Baragatti 2011; 2012]. Alternatively, such materials can be applied
to help optimize control procedures [Andreaus et al. 2012; 2015a] or for optimal
biomaterial design in bone mechanics [Andreaus et al. 2015b]. The identification
process described herein can be used for extending the applicability of micromor-
phic models or their micropolar and second gradient simplifications to describe
post-instability macroscale behavior, such as boundary and localization layers in
microstructured media [Altenbach et al. 2010; Placidi 2015; Yang et al. 2011; Yang
and Misra 2012].

Appendix I. Expressions for elastic constants of 2D granular assemblies

For defining grain-scale constitutive equations, a local coordinate system is intro-
duced for each grain-pair interaction. This coordinate system is composed of a
unit normal vector, ni , in the direction of the branch vector joining the two grains’
centroids and another unit vector, si , lying in the direction of the tangential plane,
whose normal vector is n. Cartesian components of the unit vectors are defined as

ni = 〈cos θ, sin θ〉, si = 〈−sin θ, cos θ〉. (28)

Following the previous discussion about using an average value for the geometric
tensors li and Ji j in any given orientation, and using the 2D density distribution
function introduced in (17a), the summations in equations (14)–(16) are rewritten
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as integrals in the forms

C M
i jkl =

1
V

∑
α

K M
ik lαl lαj = l2 Np

∫ 2π

θ=0
(K M

ik n j nl)ξ dθ, (29)

Cm
i jkl =

1
V

∑
α

K m
iklαl lαj = l2 Np

∫ 2π

θ=0
(K m

ikn j nl)ξ dθ, (30)

and

Ag
i jklmn =

1
V

∑
α

K g
il Jαmn Jαjk =

l4 Np

4

∫ 2π

θ=0
(K g

iln j nknmnn)ξ dθ, (31a)

Au
i jklmn =

1
V

∑
α

Gu
pqemlqe j i plkln = l2 Np

∫ 2π

θ=0
(Gu

pqelmqei j pnknn)ξ dθ. (31b)

Note that, since the method is applied here for only 2D modeling, the indices i ,
j , k, l, m, and n take the value of either 1 or 2. It should be noted here that in
a 2D domain (with in-plane coordinate axes 1 and 2) the only possible rotation is
the rotation about the axis normal to the plane under consideration, 3 axis, denoted
as θ3, which gives rise to the moment component m3. Now, in (31b), ei j p and
elmq denote permutation symbols, and since the indices i , j , l, and m can take only
values of 1 and 2, the indices p and q should only take the value 3. So the rotational
stiffness tensor, G, can have only one component, G pq = G33 = G. Having this
in mind and considering Equation (13) defining the general constitutive equations
in intergranular scale, the moment-rotation constitutive equation in grain-scale can
thus be written simply as

m3 = Gθ3. (32)

For the force-displacement constitutive equations in microscale, intergranular force
and displacement vectors are decomposed in the local directions into two compo-
nents, one normal and one tangential. Constitutive equations in the local level are
then defined in this coordinate system as{

fn

fs

}
=

(
Kn Kns

Kns Ks

){
δn

δs

}
, (33)

where we have, for convenience, not shown the superscripts. As it is seen in
(33), in the model presented here, the interaction between normal and tangential
components of intergranular force and displacement vectors is included. In the
previous versions of the method of granular micromechanics this coupling term
was ignored, and the stiffness tensor was diagonal and was composed of one nor-
mal component, Kn , and one tangential component, Ks . It should be pointed out,
however, that the stiffness tensor is still kept symmetric. The stiffness tensor used
in (33) should then be rotated to the VE coordinate system to result in the stiffness



HIGHER-ORDER ELASTIC CONSTANTS FOR GRAIN ASSEMBLIES 303

tensor Ki j , which will be used in the grain-scale constitutive equation fi = Ki jδ j

and also in equations (29), (30), and (31a), and which is given by

Ki j =

(
K11 K12

K21 K22

)
=

(
n1 s1

n2 s2

)(
Kn Kns

Kns Ks

)(
n1 n2

s1 s2

)
. (34)

For isotropic materials and in the linear elastic limit, constitutive equations and
their corresponding stiffness tensors can be derived in closed form by performing
the integrations presented in (29)–(31). The 2D form of the constitutive equations
and corresponding stiffness tensors are thus derived as


τ11

τ22

τ12

=
C M

11 C M
12 0

C M
12 C M

11 0
0 0 C M

33


ε11

ε22

ε12

 , where


C M

11 =
1
8 l2 Np(3kM

n + kM
s ),

C M
33 =

1
8 l2 Np(kM

n + kM
s ),

C M
12 =

1
8 l2 Np(kM

n − kM
s ),

(35)


σ11

σ22

σ12

σ21

=


Cm
11 Cm

12 Cm
13 Cm

14
Cm

12 Cm
11 Cm

13 Cm
14

Cm
13 Cm

13 Cm
33 Cm

12
Cm

14 Cm
14 Cm

12 Cm
33



γ11

γ22

γ12

γ21

 , where


Cm

11 =
1
8 l2 Np(3km

n + km
s ),

Cm
33 =

1
8 l2 Np(km

n + 3km
s ),

Cm
12 =

1
8 l2 Np(km

n − km
s ),

Cm
13 =−Cm

14 =
1
4 − l2 Npkm

ns,

(36)

and 

µ111

µ112

µ121

µ122

µ211

µ212

µ221

µ222


= ([Ag

i jklmn]8×8+ [Au
i jklmn]8×8)



φ1,11

φ1,12

φ1,21

φ1,22

φ2,11

φ2,12

φ2,21

φ2,22


= [Ai jklmn]8×8



φ1,11

φ1,12

φ1,21

φ1,22

φ2,11

φ2,12

φ2,21

φ2,22


, (37a)

where

[Ag
i jklmn]8×8 =

1
16 l4 Np×

5kg
n + kg

s −2kg
ns −2kg

ns kg
n + kg

s 4kg
ns kg

n − kg
s kg

n − kg
s 0

−2kg
ns kg

n + kg
s kg

n + kg
s −2kg

ns kg
n − kg

s 0 0 kg
n − kg

s

−2kg
ns kg

n + kg
s kg

n + kg
s −2kg

ns kg
n − kg

s 0 0 kg
n − kg

s

kg
n + kg

s −2kg
ns −2kg

ns kg
n + 5kg

s 0 kg
n − kg

s kg
n − kg

s −4kg
ns

4kg
ns kg

n − kg
s kg

n − kg
s 0 kg

n + 5kg
s −2kg

ns −2kg
ns kg

n + kg
s

kg
n − kg

s 0 0 kg
n − kg

s −2kg
ns kg

n + kg
s kg

n + kg
s −2kg

ns

kg
n − kg

s 0 0 kg
n − kg

s −2kg
ns kg

n + kg
s kg

n + kg
s −2kg

ns

0 kg
n − kg

s kg
n − kg

s −4kg
ns kg

n + kg
s −2kg

ns −2kg
ns 5kg

n + kg
s


(37b)
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and

[Au
i jklmn]8×8 =

l2 Np

2



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 G 0 −G 0 0 0
0 0 0 G 0 −G 0 0
0 0 −G 0 G 0 0 0
0 0 0 −G 0 G 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. (37c)

It is noteworthy that the two fourth-rank stiffness tensors, C M
i jkl and Cm

i jkl , are for-
mally similar. The only difference between the two tensors is that their components
are derived based on grain-pair stiffness coefficients corresponding to different in-
tergranular phenomena. It should also be noted that since the average strain tensor
is the symmetric part of the macroscale displacement gradient, the strain and its
conjugate stress tensor have three components. Thus, the stiffness matrix linking
the average strain tensor to the Cauchy stress, C M

i jkl , is also symmetrized into a
3× 3 matrix, while Cm

i jkl is a 4× 4 matrix.

Appendix II. Variational principle and balance equations

The variation of the internal deformation energy functional in terms of the macroscale
measures is obtained as

δW=

∫
v

δW dV =
∫
v

(τi jδεi j + σi jδγi j +µi jkδφi, jk) dV

=−

∫
v

(τi j + σi j ), jδφi dV −
∫
v

(µi jk,k + σi j )δψi j dV

+

∫
s
(τi j + σi j )n jδφi d S+

∫
s
µi jknkδψi j d S, (38)

where we have used Gauss’s divergence theorem and equations (4) and (6). The
variation of external energy due to external actions on the system is written as

δWext
=

∫
v

fiδφi dV +
∫
v

8i jδψi j dV +
∫

s
tiδφi d S+

∫
s

Ti jδψi j d S, (39)

where fi is the noncontact volumic (body) force per unit volume, ti is the contact
traction, defined as a surface force per unit area, 8i j is the noncontact volumic
(body) double force per unit volume, and Ti j is the contact double traction, defined
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as double force per unit area. Combining equations (38) and (39) results in∫
v

[ fi + (τi j + σi j ), j ]δφi dV +
∫
v

[8i, j + (µi jk,k + σi j )]δψi j dV

+

∫
s
[ti − (τi j + σi j )n j ]δφi d S+

∫
s
[Ti j −µi jknk]δψi j d S = 0, (40)

which leads to the following balance equations and traction boundary conditions:{
(τi j + σi j ), j + fi = 0,
µi jk,i + σ jk +8 jk = 0,

{
(τi j + σi j )n j = ti ,

µi jknk = T jk .
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