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Macroscale behavior of granular media is characterized by the significant effects
of grain-pair interactions and the microstructure of each grain neighborhood. From
a continuum viewpoint, granular materials may be modeled as micromorphic me-
dia to account for their complex grain-scale (microscale) kinematics. To this end
we express the grain displacement in terms of the neighboring grain displacements
utilizing the Taylor series expansion. The introduced gradients in the Taylor se-
ries are identified in terms of the macroscale deformation measures introduced in
microstructural elasticity and micromorphic mechanics. As a result, a continuum
model of the granular media is derived enriched by nonclassical terms, including
terms that model grain displacement fluctuations and higher gradients of displace-
ments. In the derived model, the continuum stiffness tensors are obtained in terms
of grain-pair stiffness coefficients and fabric parameters defining the geometry of
grains and their contacts. To identify the elastic constants of the enhanced contin-
uum model, we perform numerical experiments on grain assemblies using discrete
simulations subjected to relevant boundary conditions. The need for additional
macroscale deformation measures for the continuum modeling of granular materi-
als becomes evident in this identification process. The obtained elastic constants
are then used to determine the microscale (or grain-pair) stiffness coefficients ap-
plicable to the continuum model. These grain-scale stiffness coefficients are found
to be affected by the heterogeneity of microstructure.

1. Introduction

Among the various forms of granular materials, the grain assemblies formed of
grains in noncohesive contacts more strongly exhibit the microstructural and mi-
cromechanical effects at the macroscale behavior. For a macroscale description
of these materials, therefore, approaches are needed that can readily represent
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Figure 1. Schematic representation of modeling length scales and
the corresponding computational demand.

the effects of grain-pair interactions. Discrete models based upon various coarse-
graining schemes as schematically depicted in Figure 1 are not desirable for many
problems in science and engineering that deal with structures that may contain
large numbers of grains (> 106). These models are not only computationally ex-
pensive, but require local constitutive laws for grain-pair interactions and simulated
microstructures, which are often not readily conceivable. Multiscale models that
seek a hybrid discrete-continuum approach also suffer from reliance on informa-
tion at various scales that is not readily available or easily conceived for complex
material systems. Nonclassical continuum models are needed that can capture the
effects of microscale mechanisms. Indeed, the necessity of modeling microscale
mechanisms within the rubric of continuum mechanics is made clear in pioneering
works such as [Cosserat and Cosserat 1909; Eringen 1999; Germain 1973; Green
and Rivlin 1964; Mindlin 1964; Toupin 1964]. The seminal developments of con-
tinuum mechanics are known to proceed from some micromechanical conception
of deformable materials, as seen from the works of Piola [Auffray et al. 2015;
dell’Isola et al. 2014], Navier [1827] and Cauchy [1826–1830].

An important aspect of deformation of grain packing is nonaffine particle move-
ment when a volume element of these materials is subjected to uniform boundary
conditions. This aspect has been observed experimentally [Misra 1998; Misra and
Jiang 1997], through many numerical simulations (see among others [Peters and
Walizer 2013]), and in models of these materials within the classical continuum me-
chanics framework [Jenkins et al. 2005; Misra and Chang 1993; Trentadue 2001].
To model the effects of fluctuations in grain motions (termed as micro-deformations
or inner motions) it is advantageous to enrich the classical continuum approach
[Maugin 2014]. To that end we combine the granular micromechanics paradigm,
which offers a robust methodology for developing continuum models of granu-
lar material systems by incorporating microscale effects [Misra and Singh 2014;
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2015; Misra and Poorsolhjouy 2015c], with the identification of grain (microscale)
motions in terms of the Mindlin–Eringen macroscale deformation measures intro-
duced in microstructural elasticity [Mindlin 1964] and micromorphic mechanics
[Eringen 1999]. As a result, an enhanced continuum model of the granular media
is obtained, enriched by nonclassical terms that model grain displacement fluc-
tuations and higher gradients of displacements [Misra and Poorsolhjouy 2015b;
2015a]. In addition, expressions are derived for effective macroscopic constitutive
coefficients corresponding to (1) the macroscale displacement gradient, (2) the
fluctuations in displacement gradient which is related to the microscale displace-
ment gradient, and (3) the macroscale gradient of microdisplacement gradient or
the second gradient of displacement. In this paper, we demonstrate a method for
identifying the elastic constants of the enhanced continuum model based upon
numerical experiments on grain assemblies using discrete simulations. Two types
of grain assemblies are analyzed: (1) regular closed-packed assembly of equal-
diameter disks with vacancy type defects, and (2) irregular assembly of disks of
three different sizes. These assemblies are treated as 2D granular media for mod-
eling purposes. Discrete simulations are performed using unit cells of these grain
assemblies to obtain deformation energies under prescribed displacement boundary
conditions compatible with uniform continuum kinematic measures. These defor-
mation energies are then analyzed to identify the continuum elastic constants. The
need for additional macroscale deformation measures for the continuum modeling
of granular materials becomes evident in this identification process. The obtained
elastic constants are used to determine the microscale (or grain-pair) stiffness coef-
ficients applicable to the continuum model. These grain-scale stiffness coefficients
are found to be affected by the heterogeneity of microstructure, indicating that they
do not represent stiffness of an isolated grain-pair; rather they represent a collective
stiffness behavior of the grain-pair and its neighbors.

2. Enhanced continuum model of granular media

2.1. Micro-macro kinematic identification. We consider a unit cell representative
of the granular assembly. In a continuum model, the unit cell plays the role of a ma-
terial point P , as depicted in Figure 2, where the macroscale coordinate system x
only distinguishes different material points. In addition, a coordinate system x′

is attached to the material point, P , at the barycenter of the unit cell with coor-
dinate axes parallel to those of the macroscale coordinate system x. Following
the methodology of microstructural elasticity described by Mindlin [1964], we
define the micro-deformation gradient, ψi j (xk)= φi, j (xk), which is decomposed
into a part representing the average or macroscale displacement gradient, φi, j , and
a second part, γi j , representing the gradient of the displacement fluctuations with
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Figure 2. Representation of material point and the global coordi-
nate system, x, and the local coordinate system, x′, located at the
material point’s center of mass.

respect to x′, as
ψi j , φi, j = φi, j − γi j . (1)

From the viewpoint of identifying constitutive relationships, we consider the con-
tinuum to be subjected to a linear macroscale displacement field. In this case, the
macroscale displacement gradient, φi, j , is independent of coordinates xk . Further,
the grain displacement fluctuations are assumed to be linear functions of the local
coordinate system x′, leading to a micromorphic theory of degree 1, in the terminol-
ogy introduced by Germain [1973]. This implies that the second-rank tensor γi j is
independent of the local coordinates (it is homogeneous within the material point)
and is a function only of xk . Throughout the paper, the subscripts follow tensor
notation and the summation convention over repeated subscripts is implied unless
explicitly noted otherwise.

We now consider the relative displacement of two contacting neighbor grains, n
and p, within the unit cell of the granular media. Displacement of grain p is written
using a Taylor series expansion of the displacement of the neighbor grain, n, with
terms up to second order, as

δ
np
i = φ

p
i −φ

n
i = φ

n
i, j l j +

1
2φ

n
i, jkl j lk + · · · , (2)

where φi is the displacement of grain centroids, and l j is the vector joining the
centroids of the two grains, n and p (denoted by the superscripts). Using (1) and
(2), the relative displacement of two neighbor grains, n and p, is derived as

δ
np
i = (φi. j −γi j )l j +

1
2φi, jkl j lk = φi, j l j −γi j l j +

1
2φi, jkl j lk = δ

M
i − δ

m
i + δ

g
i . (3)

As seen from (3), the intergranular relative displacements between two interacting
(contacting) grains is decomposed into three terms:

(1) δM
i , due to the macroscale displacement gradient, φi, j ;

(2) δm
i , due to the gradients of the fluctuation in grain displacement, γi j (x); and
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(3) δg
i , due to the second gradient term, φi, jk , which is same as the gradient of

the relative displacements, γi j,k .

The three relative displacement terms, denoted by the superscripts M , m and g, are

δM
i = φi, j l j ; δm

i = γi j l j ; δ
g
i =

1
2φi, jkl j lk = φi, jk J jk = ψi j,k J jk, (4)

and the tensor Ji j = li l j/2 represents a moment tensor introduced here for simpli-
fying further derivations.

The relative rotation of grains within the granular assembly can be related to
the rotation field within the material point, defined as the curl of displacement
field [Misra and Poorsolhjouy 2015b]. Thus, applying Taylor series expansion, the
relative rotation of two neighbor grains, n and p, denoted as θ , is obtained as

θ
np
i = κ

p
i − κ

n
i = κ

n
i,plp = (ei jkφk, j ),plp = ei jkφk, j plp. (5)

The intergranular relative rotation between two interacting grains is, thus, related
to the second gradient term, φi, jk . That grains undergo relative rotations is also
known from measurements of kinematic fields in grain assembles [Misra 1998;
Misra and Jiang 1997].

2.2. Stress and force conjugates to macro-micro kinematic measures. For fur-
ther development, we retain only the symmetric part of the macroscale displace-
ment gradient tensor, φ(i, j), as the classical small-deformation strain tensor, and
express the macroscale deformation energy density of the granular continua as a
function of the continuum kinematic measures as W = W (φ(i, j), γi j , φi, jk). The
macroscale stress components conjugate to the kinematic measures are then defined
as

τi j =
∂W

∂φ(i, j)
=
∂W
∂εi j

, σi j =
∂W
∂γi j

, µi jk =
∂W
∂γi j,k

, (6)

where τi j , σi j , and µi jk are Cauchy stress, relative stress, and double stress, respec-
tively. We note that the macroscopic strain energy density function can be obtained
as the volume average of the deformation energies of the grain-pair interactions,
written as

W = 1
V

∑
α

W α(δM
i , δ

m
i , δ

g
i , θ

u
i ), (7)

where the superscript α denotes the α-th grain-pair interaction, and it has been
intentionally dropped from the kinematic measures to simplify the equations. The
forces and moment conjugate to the microscale kinematic measures are defined as

∂W α

∂δ
αξ
i

= f αξi , where ξ = M,m, g, and ∂W α

∂θαu
i

= mαu
i . (8)



290 ANIL MISRA AND PAYAM POORSOLHJOUY

Now, substituting (8) and (7) into (6) and using (4) and (5), respectively, macro-
scopic stress tensors conjugate to the macroscale kinematic measures are obtained as

3τi j =
∂W
∂εi j
=

1
V

∑
α

∂W α

∂δM
k

∂δM
k

∂εi j
=

1
V

∑
α

f Mα
i lαj , (9)

σi j =
∂W
∂γi j
=

1
V

∑
α

∂W α

∂δm
k

∂δm
k

∂γi j
=

1
V

∑
α

f mα
i lαj , (10)

µi jk =
∂W
∂φi, jk

=
1
V

∑
α

(
∂W α

∂δ
g
l

∂δ
g
l

∂φi, jk
+
∂W α

∂θu
l

∂θu
l

∂φi, jk

)
=

1
V

(∑
α

f gα
i Jαjk +

∑
α

muα
l e j illαk

)
. (11)

Thus, the stress tensor conjugates are related to the microscale force measures and
moments. Similar expressions have been reported in literature [Chen and Lee 2003]
based upon the generalization of the virial theorem [Ganghoffer 2010]. However,
it is notable that, in the stress tensor expressions presented here, separate force
measures conjugate to the grain-pair (microscale) counterparts of the continuum
deformation measures are defined, which is clearly different from those based upon
the virial theorem.

2.3. Microscale and macroscale constitutive equations. For linear isotropic elas-
ticity, the following quadratic form of W α is formulated:

W α
=

1
2

[∑
ξ

K αξ
i j δ

αξ
i δ

αξ
j +Gαu

i j θ
αu
i θαu

j

]
, where ξ = M,m, g, (12)

where K and G represent the grain-pair stiffness parameters for forces and mo-
ments, respectively. Thus, the microscale constitutive equations that link the mi-
croscale kinematics measures to their conjugate force and moment measures take
the form

f αξi = K αξ
i j δ

αξ
j , where ξ = M,m, g,

mαu
i = Gαu

i j θ
αu
j .

(13)

The introduced grain-pair stiffness parameters define the force conjugates associ-
ated with different microscale kinematic measures that contribute to intergranular
relative displacements and rotations. These stiffness parameters do not represent
the stiffness of two isolated interacting grains. In the derived model we have
introduced four types of intergranular stiffness parameters, namely, the average,
the fluctuation, the second gradient and the rotational, distinguished by their su-
perscripts M , m, g and u, respectively. We note that in (12) and (13) the terms
that cross-link the different microscale kinematic measures have been ignored for
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simplicity. The consequence of this assumption will be that uncoupled constitutive
relationships will be obtained for the continuum model. Further, it should be noted
that the microscale stiffness coefficients in (13) represent intergranular stiffness
measures in a statistical sense. Since the total relative displacement between two
neighbor grains was previously decomposed into different terms, representing the
average and fluctuation displacement gradients and also second gradient terms, the
stiffness coefficients corresponding to them will all contribute, in a statistical sense,
to form the overall response of the interaction to the grains’ relative displacements.
Now, substituting the microscale constitutive equations, (13), into (9)–(11), and
noting that the macroscale strain measures are constant throughout the material
point, macroscale constitutive equations are derived as

τi j =
1
V

∑
α

f M
i lαj =

1
V

∑
α

K M
ik δ

M
k lαj =

(
1
V

∑
α

K M
ik lαl lαj

)
εkl = C M

i jklεkl, (14)

σi j =
1
V

∑
α

f m
i lαj =

1
V

∑
α

K m
ikδ

α
k lαj =

(
1
V

∑
α

K m
iklαl lαj

)
γkl = Cm

i jklγkl, (15)

µi jk =
1
V

∑
α

( f g
i Jαjk +mu

l e j illk)

=

(
1
V

∑
α

K g
il Jαmn Jαjk +

1
V

∑
α

Gu
pqemlqe j i plkln

)
φl,mn

= (Ag
i jklmn + Au

i jklmn)φl,mn = Ai jklmnφl,mn. (16)

Here it should be noted that the summations in (14)–(16) are performed over all
grain-pair interactions inside the material point. The quantities inside the summa-
tion (stiffness coefficients and geometric parameters li and Ji j ) are all different
for every single grain-pair interaction. It is, however, possible to conceive of
average value for all these quantities for grain-pair interactions in any given orien-
tation. Using these average values, the summation over all grain interactions can
be changed to integration over all generic orientations. To this end we define Np

as the number density of grain-pair interactions divided by the volume of the unit
cell, and ξ as the normalized directional density distribution function of contacts in
different orientations within the unit cell. Having a properly defined ξ will enable
the method to model materials with different levels of anisotropy. For modeling
isotropic materials or particle assemblies with random distribution of grains in
different orientations, the distribution function should take a constant value inde-
pendent of the direction. So, for isotropic materials (or for randomly distributed
grain assemblies), the density distribution function in 2D and 3D domains will be

ξ(θ)=
1

2π
=⇒

∫
θ

ξ dθ = 1
2π

2π = 1 (for 2D) (17a)
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and

ξ(θ, φ)=
1

4π
=⇒

∫
θ

∫
φ

ξ(sin θ dθ dφ)= 1
4π
(2π)(2)= 1 (for 3D). (17b)

In (17a), θ is the polar angle of the 2D polar coordinate system, while in (17b),
θ and φ are the polar angles measured from the vertical axis and the azimuth angle
in the 3D spherical coordinate system, respectively.

3. Identification of elastic constants using discrete simulations

Evidently, the enhanced continuum model of granular media derived in Section 2
can be characterized by either microscale or macroscale elastic constants. To
demonstrate the applicability of the derived model, we identify these constants
for specific grain assemblies using discrete simulations.

3.1. Discrete simulation methodology. For any grain within the assembly, say the
n-th grain, the variation of the total potential energy can be written as

δW n
=

∑
α

δW nα(δnα
i , θnα

i )=
∑
α

f nα
i δδnα

i +
∑
α

(mnα
i + ei jk f nα

j rn
k )δθ

nα
i , (18)

where the summation over α denotes summation over all grains which have in-
teraction with the n-th grain. In (18), f nα, mnα, δnα, and θnα are the grain-pair
force, moment, relative displacement, and relative rotation for grains n and α, re-
spectively, related through the grain-scale constitutive equations for an isolated
grain-pair as

f nα
i = K α

i jδ
nα
j , where K nα

i j = K α
n nαi nαj + K α

s sαi sαj + K α
ns(n

α
i sαj + sαi nαj ),

mnα
= Gαθnα,

(19)

where the isolated grain-pair stiffness coefficients for 2D contact of disks in the nor-
mal, tangential, and normal-tangential coupling are taken to be K n , K s , and K ns ,
respectively, and the grain-pair moment stiffness is taken to be G.

Denoting the total force exerted on the n-th grain by Fi and the total moment
by Mi , the variation of the total potential energy is written as

δW n
= Fn

i δφ
n
i +Mn

i δκ
n
i . (20)

Further, the variation of the relative kinematic measures can be derived based on
the variation of displacement and rotation fields as

δδnα
i = δ(φ

α
i −φ

n
i )=−δφ

n
i ,

δθnα
i = δ(κ

α
i − κ

n
i )=−δκ

n
i .

(21)
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Setting (18) and (20) equal and substituting (21), the following balance equations
for grain, n, is found:

Fn
i =−

∑
α

f nα
i ,

Mn
i =−

∑
α

(mnα
i + ei jk f nα

j rn
k ).

(22)

Combining (19) and (22), the total grain force and moment can be related to
the grain motions. These expressions can be assembled to form an overall force-
displacement equation governing the behavior of the assembly as a whole, written
as [Chang and Misra 1989]

{F}3M×1 = [S]3M×3M{u}3M×1, (23)

where M denotes the total number of grains within the whole assembly. For each
grain there are three kinematic measures (two displacements and one rotation),
resulting in a total number of 3M kinematic variables represented in u. Also, each
grain has three force measures (two forces and one moment), resulting in a total
number of 3M force variables represented in F . So the overall number of variables
in (23) is 6M , knowing any 3M of which the other 3M can be derived by solving
the system of equations represented in matrix form in (23).

3.2. Methodology for identification of constitutive coefficients. Using (6), the
macroscale strain energy can be written as

W = C M
i jklεi jεkl +Cm

i jklγi jγkl + Ai jklmnψi j,kψlm,n. (24)

For finding the components of the stiffness tensors, numerical experiments are
performed with 2D grain assembly using the discrete simulation method. These
numerical experiments are performed in a manner akin to physical experiments
by applying boundary conditions on the grain assemblies. Thus, to obtain the
components of the stiffness tensor, C M

i jkl , we purely apply on the boundary of the
grain assembly a specified macroscale displacement gradient while constraining
the fluctuation displacement gradient, γi j , and the second gradient term, ψi j,k , to
be zero. In order to achieve this type of displacement at the boundary, boundary
grains and their immediate neighbors are displaced by the amount compatible with
the specified macroscale displacement gradient. In this manner, the fluctuations in
the displacement gradient and the second gradient of displacement are ensured to
be zero. For the assembly loaded in this manner, the strain energy will be

W |(γi j=0,ψi j,k=0) = C M
i jklεklεi j . (25)
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Thus, by performing a sufficient number of simulations with specified combina-
tions of the strain components, the elastic constants are identified.

For finding the components of Cm
i jkl , we purely apply fluctuations in displace-

ment gradient while keeping the macroscale displacement gradient and the second
gradient of displacement to be zero. For this type of boundary condition, the bound-
ary grains are kept stationary while their immediate neighbors are moved according
to a fluctuation in displacement gradient using (3). By loading the assembly in this
manner, the strain energy of the assembly will be

W |(εi j=0,ψi j,k=0) = Cm
i jklγi jγkl . (26)

Applying a sufficient number of combinations of fluctuation strain components as
for the case of macrostrain, the components of the tensor Cm

i jkl are derived. Finally,
for finding the components of the sixth-rank stiffness tensors, second gradients of
displacement fluctuations are applied on the assembly while keeping the average
and fluctuations in displacement gradient to be equal to zero. For this purpose the
boundary grains are kept stationary while their immediate neighbors are moved in
consistence with the second gradient in the displacement fluctuations. Movements
of the neighbors of boundary grains are derived using (3) with the desired value
of ψi j,k . In this loading scheme the internal strain energy will be derived as

W |(εi j=0,γi j=0) = Ai jklmnψi j,kψlm,n. (27)

For a 2D granular system, the sixth-rank stiffness tensor Ai jklmn can be written as
an 8× 8 matrix with 36 independent components. To find all these components,
second gradient of displacement in 36 different combinations need to be applied
to the material. Eight of these combinations are indicated by the eight different
components of ψi jk and the 26 remaining ones are composed of their combinations.
Finding the energy for each one of these cases, using (18) and writing (27), result
in a system of 36 equations and 36 unknowns that, when solved, will yield all
components of the second gradient stiffness tensor.

4. Results

Two types of grain assemblies are analyzed: (1) regular closed-packed assembly
of equal-diameter disks (monodisperse) with vacancy type defects, and (2) irregu-
lar assembly of three different diameter disks (tridisperse). These assemblies are
treated as 2D granular media for modeling purposes.

4.1. Regular monodispersed grain assembly. Regular hexagonal closed-packed
assemblies from cylindrical particles (assembly A, seen in Figure 3, left) have been
analyzed. Further, defected assemblies are also made by removing grains from the
assembly once every four rows (assembly B, seen in Figure 3, middle) and once
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a b c 

Figure 3. Three regular assemblies. Left: hexagonal closed-pack
(assembly A). Middle and right: defected assemblies (assemblies
B and C, respectively).

every three rows (assembly C, seen in Figure 3, right). Thus, Assembly A is the
densest of the three, B is intermediate, and C is the loosest.

Assembly A has planes of elastic symmetry every 30 degrees. Applying the ef-
fects of elastic symmetries about horizontal and vertical planes shows that the mate-
rial behaves as an orthotropic material in 2D with four independent constants in its
first gradient stiffness tensor. Considering elastic symmetry about the plane whose
normal vector makes a 150◦ angle with the positive x-axis results in a stiffness
tensor with only two independent constants, as is the case for isotropic materials.
Defected assemblies (B and C) are also isotropic because the defects are chosen
so that the removed contacts will not disrupt the symmetry in intergranular forces.

For each assembly, a unit cell is defined. By periodically repeating the unit cell in
both horizontal and vertical directions, the complete assembly is formed. The unit
cells can be seen in Figure 3 by shaded grains. Discrete simulations of these unit
cells with periodic boundary conditions have been performed. In these simulations,
intergranular stiffness coefficients are assigned as K n = 2K s = 17.5 KN/mm and
K ns = G = 0.0. For the three assemblies, multiple simulations, as discussed in
Section 3.2, have been performed, and stiffness tensors corresponding to average
displacement gradient, fluctuations in displacement gradient, and second gradients
are derived and given in Table 1. For assembly A, since all grains in the unit
cell are in fact boundary grains, stiffness tensors corresponding to displacement
fluctuations and second gradient terms are zero. Indeed, in such grain assembly, all
grains always move according to the average displacement gradient applied on the
boundary grains. For the two other assemblies, however, not all grains inside the
unit cell are boundary grains. Thus, effects of grain displacement fluctuations and
second gradient of displacement will be nonzero. Components of the fourth-rank
stiffness tensors, C M and Cm , and the sixth-rank stiffness tensor corresponding to
second gradient terms, A= Au

+ Ag, for these regular assemblies are presented in
Table 1. It is noteworthy that the stiffness components associated with fluctuation
and second gradient increase as more defects are introduced into the assembly.



296 ANIL MISRA AND PAYAM POORSOLHJOUY

C M
i jkl and Cm

i jkl Ai jklmn

Component Assembly Assembly Assembly Component Assembly Assembly
A B C B C

C M
11 26.5 19.9 17.7 A111111 8.2 60.4

C M
22 26.5 19.9 17.7 A112112 24.7 14.6

C M
33 11.4 8.5 7.6 A122122 74.0 43.9

C M
12 3.8 2.8 2.5 A211211 11.5 56.5

C M
13 0 0.0 0.0 A212212 34.5 20.5

C M
23 0 0.0 0.0 A222222 103.6 61.4

Cm
11 0 1.6 7.6 A111112 14.2 4.2

Cm
22 0 6.6 8.8 A111122 24.7 7.3

Cm
33 0 4.7 6.3 A111211 0.0 1.7

Cm
44 0 2.2 7.6 A111212 = A112211 0.0 −1.5

Cm
12 0 0.0 −0.3 A111222 = A122211 0.0 −2.5

Cm
13 0 2.7 2.7 A112122 42.7 25.3

Cm
14 0 0.0 0.0 A211212 19.9 5.9

Cm
23 0 0.0 0.0 A211222 34.5 10.2

Cm
24 0 3.8 3.8 A212222 = A221222 59.8 59.8

Cm
34 0 0.0 −0.3 otherwise 0.0 0.0

Table 1. Components of two fourth-rank stiffness tensors (C M

and Cm), in units of GPa, and the sixth-rank second gradient stiff-
ness tensor (A= Ag

+ Au), in units of N, for the regular unit cells.

4.2. Irregular tridisperse grain assembly. Three random assemblies of grains of
three different sizes have been made and analyzed. The three assemblies are com-
posed of 288, 576, and 1152 grains, as shown in Figure 4. In all three assemblies,
52% of grains have a radius of 19µm, 26% have a radius of 22µm, and 22% have

Figure 4. Irregular grain assemblies with different numbers of
grains, with constant ratios of grains with different sizes.
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N = 288 N = 576 N = 1152

component unit RVE model unit RVE model unit RVE model
cell results cell results cell results

C M
11 17.9 17.7 17.7 18.9 19.0 19.0 18.1 18.3 18.3

C M
22 17.8 17.7 17.7 19.0 19.0 19.0 18.4 18.3 18.3

C M
33 7.4 7.4 7.4 7.9 7.9 7.9 7.6 7.6 7.6

C M
12 2.8 2.8 2.8 3.1 3.1 3.1 3.1 3.0 3.0

C M
13 0.3 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0

C M
23 0.0 0.0 0.0 0.1 0.0 0.0 −0.1 0.0 0.0

Cm
11 4.0 4.2 4.2 3.1 2.9 2.9 2.0 2.0 2.0

Cm
22 4.5 4.2 4.2 2.8 2.9 2.9 2.0 2.0 2.0

Cm
33 3.8 3.7 3.7 2.4 2.6 2.6 1.7 1.8 1.8

Cm
44 3.5 3.7 3.7 2.7 2.6 2.6 1.7 1.8 1.8

Cm
12 0.2 0.2 2.8 0.1 0.2 3.1 0.1 0.1 3.0

Cm
13 −0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0

Cm
14 −0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Cm
23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Cm
24 −0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Cm
34 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1

Table 2. Components of two fourth-rank stiffness tensors (C M

and Cm) for the irregular grain assemblies. All results have units of
GPa. The unit cells are as given in Figure 4, the RVE is taken to be
composed of randomly oriented unit cells, as in isotropic polycrys-
tals (note the unit cells are amorphous with periodic boundaries),
and model results pertain to the RVE.

a radius of 28µm. Intergranular stiffness coefficients used for discrete simulations
are K n = 2K s = 17.5 KN/mm and K ns = G = 0.0.

In Tables 2 and 3, the stiffness tensor components for the three assemblies with
different numbers of grains are presented. For each assembly, first the components
of the unit cell’s stiffness tensor are given in the column titled “unit cell”. Further,
to identify the grain-pair stiffness relevant to the isotropic enhanced continuum
model, we consider an RVE of granular media which comprises randomly oriented
unit cells, as in polycrystals. The isotropic stiffness tensor of this RVE is estimated
through the Voigt–Reuss–Hill (VRH) directional averaging process [Hill 1952].
For each assembly, in the second column in Tables 2 and 3, the components of
stiffness tensors of the resulting RVE are presented. It is noteworthy that the “unit
cell” results and the estimated RVEs have small differences. Finally, for each
assembly, in the last columns, titled “Model results”, we give the stiffness tensors
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N = 288 N = 576 N = 1152

component unit RVE model unit RVE model unit RVE model
cell results cell results cell results

A111111 206.9 257.9 257.9 97.1 100.2 100.2 33.3 33.9 33.9
A112112 146.6 130.5 81.8 53.6 48.2 31.7 19.3 16.9 10.6
A122122 247.8 233.1 233.1 82.7 90.3 90.3 25.7 29.9 29.9
A211211 182.4 233.1 233.1 84.9 90.3 90.3 28.1 29.9 29.9
A212212 143.2 130.5 81.8 52.6 48.2 31.7 19.5 16.9 10.6
A222222 287.3 257.9 257.9 96.8 100.2 100.2 30.6 33.9 33.9
A111112 −19.4 0.0 0.0 −3.7 0.5 0.5 −1.2 −0.1 −0.1
A111122 0.0 −15.4 81.8 3.0 −1.2 31.7 0.3 −1.9 10.6
A111211 −3.3 0.0 0.0 −0.9 −0.9 −0.9 0.1 0.1 0.1
A111212 4.4 6.5 6.2 2.1 2.7 2.5 0.7 1.1 1.0
A111222 −0.8 0.0 0.0 0.8 0.0 0.0 0.2 0.0 0.0
A112122 −4.1 0.0 0.0 6.4 0.5 0.5 1.4 −0.1 −0.1
A112211 3.6 5.9 6.2 1.8 2.2 2.5 0.7 0.9 1.0
A112212 −2.5 0.0 0.0 −0.4 0.0 0.0 0.0 0.0 0.0
A112222 4.9 6.5 6.2 1.7 2.7 2.5 0.8 1.1 1.0
A122211 0.1 0.0 0.0 0.8 0.0 0.0 0.2 0.0 0.0
A122212 4.6 5.9 6.2 1.0 2.2 2.5 0.7 0.9 1.0
A122222 1.0 0.0 0.0 0.6 0.9 0.9 −0.4 −0.1 −0.1
A211212 −22.8 0.0 0.0 −4.8 −0.5 −0.5 −1.2 0.1 0.1
A211222 −1.9 −15.4 81.8 4.2 −1.2 31.7 0.8 −1.9 10.6
A212222 3.7 0.0 0.0 5.4 −0.5 −0.5 1.4 0.1 0.1
A221222 3.7 0.0 0.0 5.4 −0.5 −0.5 1.4 0.1 0.1

Table 3. Components of the sixth-rank second gradient stiffness
tensor (A= Ag

+ Au) for the irregular grain assemblies. All results
have units of 10−5 KN. The unit cells are as given in Figure 4, the
RVE is taken to be composed of randomly oriented unit cells as
in isotropic polycrystals (note the unit cells are amorphous with
periodic boundaries), and model results pertain to the RVE.

derived from calculated microscale stiffness (i.e., grain-pair stiffness coefficients
corresponding to macroscale displacement gradient, fluctuations in displacement
gradients, and second gradients of displacement fluctuations). The stiffness tensors
for the macroscale displacement gradients and the fluctuations in displacement gra-
dient show a very good agreement. For the second gradient stiffness tensor, the mi-
croscale stiffness constants are found by an optimization procedure since the num-
ber of independent constants is less than the number of independent components
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in the second gradient stiffness tensors. A reasonable agreement is also found for
the second gradient constitutive coefficients, and, notably, the orders of the major
nonzero terms are in concurrence. We further note the need for nonzero coupling
terms, Kns , in the microscale constitutive relationships for replicating the fluctua-
tion and second gradient macroscopic stiffness tensors. Though the effects of these
stiffness components are of smaller order than those of the diagonal stiffness coeffi-
cients, Kn and Ks , nevertheless they conform to the relationships derived from the
present model (see Appendix I). We also note that the microscale moment stiffness
coefficients, G, are negligible (of the order 10−16 N.mm), which implies that for
the particular simulations the grain rotations have an insignificant role. However,
this is likely a result of assumed zero rotational stiffness in the discrete simulations.

4.3. Microscale constants for enhanced continuum model. Finally, we compare
the back-calculated microscale constitutive coefficients in Table 4 with those as-
signed in the discrete simulations. For the case of regular assembly, we observe
that the microscale stiffness constants, K M

n and K M
s , relevant to the macrostrain

stiffness tensor for assembly A are 13% smaller than those used in discrete simula-
tions. The grain-pair stiffness relevant to the continuum model is clearly influenced
by the strongly discrete hexagonal microstructure of the grain assembly. As the
regular assembly becomes more defective (B and C), the constants, K M

n and K M
s ,

become smaller. However, notably, the ratio K M
s /K M

n remains 2, which is the same
as that specified in discrete simulations, thus preserving the Poisson’s effect. More-
over, the microscale stiffness constants corresponding to the fluctuation and second
gradient stiffness tensors appear and increase as more defects are introduced. The
ratio K m

s /K m
n no longer remains the same as that specified in discrete simulations,

implying a different Poisson’s effect associated with the fluctuation behavior. In
addition, a coupling of the normal and shear behavior is also revealed. It is clear
that the needed microscale constitutive coefficients are significantly affected by
heterogeneity introduced by microstructure, so that the continuum modeling with

Assembly K M
n K M

s K m
n K m

s K m
ns K g

n K g
s K g

ns

A 15.2 7.6
B 10.9 5.4 2.0 1.7 2.6×10−1 0.3 0.3 4.1×10−2

C 8.4 4.2 3.3 3.0 2.3×10−1 0.4 0.4 −3.6×10−2

N = 288 16.8 7.5 3.6 2.8 −4.9×10−3 0.8 0.7 1.2×10−4

N = 576 17.1 7.5 2.3 1.9 −2.6×10−2 0.6 0.5 −7.7×10−3

N = 1152 16.8 7.2 1.7 1.3 1.1×10−2 0.4 0.3 2.5×10−3

Table 4. Microscale constitutive coefficients derived for both the
regular and irregular assemblies with K n = 2K s = 17.5 KN/mm
and K ns = G = 0.0 (K in kN/mm and G in N.mm).
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only macroscale displacement gradients is not sufficient even for the relatively
uniform system analyzed here, wherein all grain pairs are given the same stiffness
constants. Similar observations can be made from the comparison of microscale
stiffness constants of the three irregular assemblies in which smaller particle num-
bers imply greater microstructural heterogeneity. Clearly, the grain neighborhoods
affect the behavior of grain interactions significantly, so that the effective grain-
pair stiffness cannot be just estimated from the stiffness of two isolated grains.
Additional macroscale deformation measures are, therefore, necessary for the con-
tinuum modeling of granular materials. Similar observations have been made for
other material systems such as pantographic trusses [Alibert et al. 2003; Seppecher
et al. 2011], biomaterials [Andreaus et al. 2012; 2015a], and in fiber composites
[Ferretti et al. 2014]. Further, we note that the application of isolated grain-pair
potentials or stiffness functions for estimating the energies and stresses associated
with different deformation measures, as proposed in some multiscale models that
aim to bridge discrete-continuum models, need to be reconsidered in the light of
the findings of this paper.

5. Summary and conclusion

The granular micromechanics approach has been used to develop an enhanced
continuum model of grain assemblies by the identification of grain (microscale)
motions in terms of the macroscale displacement gradient, the fluctuations in dis-
placement gradient as well as their second gradient. Thus, additional stress tensors
conjugate to the strain measures as well as additional force measures that are con-
jugate to the grain-pair displacements are introduced. The expressions of stress
tensors are found in terms of the corresponding force and geometric measures,
which are different from those derived using the generalized virial theorem. Fur-
ther, defining the macroscopic strain energy density as the volume average of grain-
pair energy functions, macroscopic stiffness tensors corresponding to the kinematic
measures have been derived. The continuum stiffness tensors are obtained in terms
of grain-pair stiffness coefficients and fabric parameters defining the geometry of
grains and their contacts.

To identify the elastic constants of the enhanced continuum model, we perform
numerical experiments on grain assemblies using discrete simulations subjected
to relevant boundary conditions. The need for additional macroscale deformation
measures for the continuum modeling of granular materials becomes evident in this
identification process. The obtained elastic constants are then used to determine
the microscale (or grain-pair) stiffness coefficients applicable to the continuum
model. These grain-scale stiffness coefficients are found to be affected by the
heterogeneity of microstructure, as shown by the results for regular grain assembly
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made increasingly heterogeneous by introducing vacancy-type defects. The grain-
pair stiffness coefficients are clearly different from the isolated grain-pair stiff-
ness used in discrete simulation. These effective stiffness coefficients are unique
for each material or granular assembly, since the intergranular mechanisms are
affected not only by the two grains under consideration, but also by the grains
in the neighborhood, and, by extension, the whole assembly. We also find that
the stiffness coefficients corresponding to the average displacement gradient terms
have the largest values but the coefficients corresponding to displacement gradient
fluctuations are also significant and of a similar order.

Finally, we note that the micromorphic and second gradient terms are necessary
for modeling some frequency-dependent wave transmission/reflection phenomena
at material interfaces [Misra and Poorsolhjouy 2015b; Placidi et al. 2014; dell’Isola
et al. 2012; Madeo et al. 2015]. The micromorphic behavior of granular materials
indicates the possibility of realizing materials with alternate synthesis pathways
which show specific wave propagation behaviors that can be used for vibration
control as an alternative to piezoelectric materials [Maurini et al. 2004; 2006;
Porfiri et al. 2005; Vidoli and dell’Isola 2001; Madeo et al. 2014; dell’Isola and
Vidoli 1998; Greco et al. 2014] or for damage identification [Ferretti et al. 2014;
Andreaus and Baragatti 2011; 2012]. Alternatively, such materials can be applied
to help optimize control procedures [Andreaus et al. 2012; 2015a] or for optimal
biomaterial design in bone mechanics [Andreaus et al. 2015b]. The identification
process described herein can be used for extending the applicability of micromor-
phic models or their micropolar and second gradient simplifications to describe
post-instability macroscale behavior, such as boundary and localization layers in
microstructured media [Altenbach et al. 2010; Placidi 2015; Yang et al. 2011; Yang
and Misra 2012].

Appendix I. Expressions for elastic constants of 2D granular assemblies

For defining grain-scale constitutive equations, a local coordinate system is intro-
duced for each grain-pair interaction. This coordinate system is composed of a
unit normal vector, ni , in the direction of the branch vector joining the two grains’
centroids and another unit vector, si , lying in the direction of the tangential plane,
whose normal vector is n. Cartesian components of the unit vectors are defined as

ni = 〈cos θ, sin θ〉, si = 〈−sin θ, cos θ〉. (28)

Following the previous discussion about using an average value for the geometric
tensors li and Ji j in any given orientation, and using the 2D density distribution
function introduced in (17a), the summations in equations (14)–(16) are rewritten
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as integrals in the forms

C M
i jkl =

1
V

∑
α

K M
ik lαl lαj = l2 Np

∫ 2π

θ=0
(K M

ik n j nl)ξ dθ, (29)

Cm
i jkl =

1
V

∑
α

K m
iklαl lαj = l2 Np

∫ 2π

θ=0
(K m

ikn j nl)ξ dθ, (30)

and

Ag
i jklmn =

1
V

∑
α

K g
il Jαmn Jαjk =

l4 Np

4

∫ 2π

θ=0
(K g

iln j nknmnn)ξ dθ, (31a)

Au
i jklmn =

1
V

∑
α

Gu
pqemlqe j i plkln = l2 Np

∫ 2π

θ=0
(Gu

pqelmqei j pnknn)ξ dθ. (31b)

Note that, since the method is applied here for only 2D modeling, the indices i ,
j , k, l, m, and n take the value of either 1 or 2. It should be noted here that in
a 2D domain (with in-plane coordinate axes 1 and 2) the only possible rotation is
the rotation about the axis normal to the plane under consideration, 3 axis, denoted
as θ3, which gives rise to the moment component m3. Now, in (31b), ei j p and
elmq denote permutation symbols, and since the indices i , j , l, and m can take only
values of 1 and 2, the indices p and q should only take the value 3. So the rotational
stiffness tensor, G, can have only one component, G pq = G33 = G. Having this
in mind and considering Equation (13) defining the general constitutive equations
in intergranular scale, the moment-rotation constitutive equation in grain-scale can
thus be written simply as

m3 = Gθ3. (32)

For the force-displacement constitutive equations in microscale, intergranular force
and displacement vectors are decomposed in the local directions into two compo-
nents, one normal and one tangential. Constitutive equations in the local level are
then defined in this coordinate system as{

fn

fs

}
=

(
Kn Kns

Kns Ks

){
δn

δs

}
, (33)

where we have, for convenience, not shown the superscripts. As it is seen in
(33), in the model presented here, the interaction between normal and tangential
components of intergranular force and displacement vectors is included. In the
previous versions of the method of granular micromechanics this coupling term
was ignored, and the stiffness tensor was diagonal and was composed of one nor-
mal component, Kn , and one tangential component, Ks . It should be pointed out,
however, that the stiffness tensor is still kept symmetric. The stiffness tensor used
in (33) should then be rotated to the VE coordinate system to result in the stiffness
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tensor Ki j , which will be used in the grain-scale constitutive equation fi = Ki jδ j

and also in equations (29), (30), and (31a), and which is given by

Ki j =

(
K11 K12

K21 K22

)
=

(
n1 s1

n2 s2

)(
Kn Kns

Kns Ks

)(
n1 n2

s1 s2

)
. (34)

For isotropic materials and in the linear elastic limit, constitutive equations and
their corresponding stiffness tensors can be derived in closed form by performing
the integrations presented in (29)–(31). The 2D form of the constitutive equations
and corresponding stiffness tensors are thus derived as


τ11

τ22

τ12

=
C M

11 C M
12 0

C M
12 C M

11 0
0 0 C M

33


ε11

ε22

ε12

 , where


C M

11 =
1
8 l2 Np(3k M

n + kM
s ),

C M
33 =

1
8 l2 Np(kM

n + k M
s ),

C M
12 =

1
8 l2 Np(kM

n − k M
s ),

(35)


σ11

σ22

σ12

σ21

=


Cm
11 Cm

12 Cm
13 Cm

14
Cm

12 Cm
11 Cm

13 Cm
14

Cm
13 Cm

13 Cm
33 Cm

12
Cm

14 Cm
14 Cm

12 Cm
33



γ11

γ22

γ12

γ21

 , where


Cm

11 =
1
8 l2 Np(3km

n + km
s ),

Cm
33 =

1
8 l2 Np(km

n + 3km
s ),

Cm
12 =

1
8 l2 Np(km

n − km
s ),

Cm
13 =−Cm

14 =
1
4 − l2 Npkm

ns,

(36)

and 

µ111

µ112

µ121

µ122

µ211

µ212

µ221

µ222


= ([Ag

i jklmn]8×8+ [Au
i jklmn]8×8)



φ1,11

φ1,12

φ1,21

φ1,22

φ2,11

φ2,12

φ2,21

φ2,22


= [Ai jklmn]8×8



φ1,11

φ1,12

φ1,21

φ1,22

φ2,11

φ2,12

φ2,21

φ2,22


, (37a)

where

[Ag
i jklmn]8×8 =

1
16 l4 Np×

5kg
n + kg

s −2kg
ns −2kg

ns kg
n + kg

s 4kg
ns kg

n − kg
s kg

n − kg
s 0

−2kg
ns kg

n + kg
s kg

n + kg
s −2kg

ns kg
n − kg

s 0 0 kg
n − kg

s

−2kg
ns kg

n + kg
s kg

n + kg
s −2kg

ns kg
n − kg

s 0 0 kg
n − kg

s

kg
n + kg

s −2kg
ns −2kg

ns kg
n + 5kg

s 0 kg
n − kg

s kg
n − kg

s −4kg
ns

4kg
ns kg

n − kg
s kg

n − kg
s 0 kg

n + 5kg
s −2kg

ns −2kg
ns kg

n + kg
s

kg
n − kg

s 0 0 kg
n − kg

s −2kg
ns kg

n + kg
s kg

n + kg
s −2kg

ns

kg
n − kg

s 0 0 kg
n − kg

s −2kg
ns kg

n + kg
s kg

n + kg
s −2kg

ns

0 kg
n − kg

s kg
n − kg

s −4kg
ns kg

n + kg
s −2kg

ns −2kg
ns 5kg

n + kg
s


(37b)
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and

[Au
i jklmn]8×8 =

l2 Np

2



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 G 0 −G 0 0 0
0 0 0 G 0 −G 0 0
0 0 −G 0 G 0 0 0
0 0 0 −G 0 G 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. (37c)

It is noteworthy that the two fourth-rank stiffness tensors, C M
i jkl and Cm

i jkl , are for-
mally similar. The only difference between the two tensors is that their components
are derived based on grain-pair stiffness coefficients corresponding to different in-
tergranular phenomena. It should also be noted that since the average strain tensor
is the symmetric part of the macroscale displacement gradient, the strain and its
conjugate stress tensor have three components. Thus, the stiffness matrix linking
the average strain tensor to the Cauchy stress, C M

i jkl , is also symmetrized into a
3× 3 matrix, while Cm

i jkl is a 4× 4 matrix.

Appendix II. Variational principle and balance equations

The variation of the internal deformation energy functional in terms of the macroscale
measures is obtained as

δW=

∫
v

δW dV =
∫
v

(τi jδεi j + σi jδγi j +µi jkδφi, jk) dV

=−

∫
v

(τi j + σi j ), jδφi dV −
∫
v

(µi jk,k + σi j )δψi j dV

+

∫
s
(τi j + σi j )n jδφi d S+

∫
s
µi jknkδψi j d S, (38)

where we have used Gauss’s divergence theorem and equations (4) and (6). The
variation of external energy due to external actions on the system is written as

δWext
=

∫
v

fiδφi dV +
∫
v

8i jδψi j dV +
∫

s
tiδφi d S+

∫
s

Ti jδψi j d S, (39)

where fi is the noncontact volumic (body) force per unit volume, ti is the contact
traction, defined as a surface force per unit area, 8i j is the noncontact volumic
(body) double force per unit volume, and Ti j is the contact double traction, defined
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as double force per unit area. Combining equations (38) and (39) results in∫
v

[ fi + (τi j + σi j ), j ]δφi dV +
∫
v

[8i, j + (µi jk,k + σi j )]δψi j dV

+

∫
s
[ti − (τi j + σi j )n j ]δφi d S+

∫
s
[Ti j −µi jknk]δψi j d S = 0, (40)

which leads to the following balance equations and traction boundary conditions:{
(τi j + σi j ), j + fi = 0,
µi jk,i + σ jk +8 jk = 0,

{
(τi j + σi j )n j = ti ,

µi jknk = T jk .
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