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GÉRARD GAGNEUX AND OLIVIER MILLET

This paper deals with the modeling of cyclic hysteresis phenomena for flows in un-
saturated porous media, using a dynamic regularization process of Sobolev type.
The addition of a kinematic regularizing term of third-order partial derivatives,
depending on a strictly positive, small real parameter, enables us to capture the
missing information of the ill-posed hysteresis phenomena via Rankine–Hugoniot
and “entropy” inequalities. When this parameter tends to zero, an oriented hys-
teresis loop, corresponding to the realistic problem modeled, emerges from the
flow of an associated auxiliary ordinary differential equation.

1. Introduction

The modeling of moisture transport in partially saturated porous media is of major
importance for civil engineering, soil physics, and pharmaceutical applications.
The hysteresis effects, often neglected in the modeling as they are difficult to be
taken into account, play a central role in the imbibition and drying process.

In this paper, we propose an original modeling of cyclic hysteresis phenomena
in partially saturated porous media, in the simplified case of water–air flows. The
approach used is based on the artificial introduction of an unstable spinodal inter-
val and on Sobolev’s method of dynamic regularization, inspired by the works of
P. I. Plotnikov [1996; 1994], publicized by L. C. Evans and M. Portilheiro [2004;
Evans 2004]. The hysteresis graph is replaced by Cartesian curves and an artifi-
cial spinodal interval generating instabilities, with associated attractive–repulsive
dynamics.

The additional information to describe the hysteresis effects is introduced on
the form of entropy-type inequalities. This way, the asymptotic limit of viscous
approximate solutions generates effects of irreversibility and enables us to recover
the expected hysteresis loop.
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Figure 1. Graph of Fc representing the hysteresis loop during an
imbibition-drying process.

2. The physical problem

2.1. Richards equation. The flow of two fluid phases (water–air flow), isothermal
and immiscible, in an unsaturated porous medium is considered. To focus on the
study of the hysteresis effects, in particular irreversibility, the gravity is neglected
and the porous medium is assumed to be homogeneous and isotropic.1 Moreover,
the water vapor in the gas phase is neglected and the air pressure is assumed to be
constant and equal to the atmospheric pressure.2

The water saturation Sw is classically governed by a Richards equation,

ϕ
∂Sw
∂t
−12c(Sw)= 0, (1)

where ϕ denotes the porosity of the porous medium considered. We assume that
the residual saturation of each fluid is equal to zero.

Even if the mathematical analysis of this equation is now well stated [Gagneux
and Madaune-Tort 1995; Lions 1969], it ignores the hysteresis and dynamic effects
that play a major role in the behavior of unsaturated porous media.

2.2. Hysteresis modeling. The capillary hysteresis effects can be modeled with a
multivalued operator Fc whose oriented graph Fc of R2 is represented in Figure 1.
The circulation sense depends both on the values of Sw and on the sign of ∂Sw

∂t . It
characterizes the imbibition and drying phases, through the differential inclusion3

0 ∈
{
ϕ
∂Sw
∂t
−1Fc

(
Sw, sign

(
∂Sw
∂t

))}
. (Physt)

1The analysis holds also for the anisotropic case.
2It is equivalent to assume that the gas phase moves fast and is connected to outside.
3In the sense of [Aubin and Cellina 1984].
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Figure 2. The spinodal interval [a, b] and the unstable part of the
graph of 8.

It is equivalent to search a pair (Sw, qw) with qw ∈
{

Fc
(
Sw, sign

(
∂Sw
∂t

))}
which

satisfies

ϕ
∂Sw
∂t
−1qw = 0 (2)

associated to a Cauchy initial condition Sw(0) and Neumann homogeneous bound-
ary conditions. To simplify the problem without loss of generality, we will consider
in the following a normalized porosity ϕ = 1 (this is always possible using a homo-
thetical time scaling, when ϕ is constant).

In a first step, using a mathematical artifice, we replace the part of the graph Fc

representing the loop by a cubic Cartesian curve 8 (Figure 2). Then, to approach
problem (Physt), a nonlinear monotone diffusion equation with an ad hoc “spinodal”
interval ]a, b[ is introduced. The graph Fc is replaced on ]a, b[ by a cubic spline
function, denoted 80, whose slope is strictly negative everywhere on ]a, b[ and
assuring a C1 continuity at (a, B) and (b, A) with the preserved part.

The graph Fc is decomposed by splitting its domain of definition into three
distinct parts. This leads us to introduce three injective functions, 80, 81 and 82,
defined on [a, b], [0, a] and [b, 1], respectively. We denote by β0, β1 and β2 their
respective inverse functions and by 8 the numerical function of class C1 on [0, 1]
whose graph is the joining of the graphs of 80, 81 and 82.

This substitution enables us to give sense to the initial formal problem in a
suitable mathematical functional framework, via the initial–boundary value system

∂v

∂t
−18(v)= 0 in Q = ]0, T [×�,

∂8(v)

∂n
= 0 on 6 = ]0, T [×0,

v(0)= Sw(0) in �,

(P8)
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where � denotes a bounded domain of Rd , d ≥ 1, with a Lipschitz boundary 0
and an associated external unit normal vector n. The new forward–backward
problem (P8) with variable parabolicity direction is ill posed without any sup-
plementary information, because of the nonmonotonic function 8. The dynamic
regularization process that follows will enable us to regularize the problem. Note
that a problem similar to (P8) has been studied in [Smarrazzo and Tesei 2010;
2012; Smarrazzo 2008].

3. Dynamic regularization process of Sobolev type

The classical notations that follow are introduced. Let � be a bounded domain of
Rd whose boundary 0 is a Lipschitz manifold of dimension d − 1. For T > 0, we
write Q = ]0, T [×�, 6 = ]0, T [×0 and let 1 be the Laplacian operator4 of Rd.
We denote by H s(�), s ∈R, the classical Hilbert spaces [Lions and Magenes 1968].
For all ε > 0, the embedding of H s(�) into H s−ε(�) is compact. Moreover, we
identify L2(�)= H 0(�) to its dual, so that the dual of H 1(�), denoted H 1(�)′,
can be identified to an superspace of L2(�) with H 1(�) ↪→ L2(�) ↪→ H 1(�)′, the
embeddings being dense and continuous. In addition, an initial state Sw(0) ∈ L∞(�)
satisfying 0≤ Sw(0) ≤ 1 a.e. in � is given.

The dynamical regularization process of Sobolev type used is based on “artificial
viscosity”. A parameter λ > 0 is introduced in the initial ill-posed problem (P8),
which is transformed into the third order boundary problem

∂vλ
∂t
−18(vλ)− λ1

∂vλ
∂t
= 0 in Q = ]0, T [×�,

∂

∂n

(
8(vλ)+ λ

∂vλ
∂t

)
= 0 on 6 = ]0, T [×0,

vλ(0)= Sw(0) in �.

(P8)λ

We then introduce the auxiliary dynamical unknown wλ defined by

wλ =8(vλ)+ λ
∂vλ

∂t
, (3)

or equivalently
∂vλ

∂t
=
wλ−8(vλ)

λ
, t > 0. (4)

Note that the dynamics created by (4) drive the system onto stable parts of the
graph, as we will see in the sequel.

4In the sense of distributions.
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Problem (P8)λ may be rewritten as
∂vλ
∂t
−1wλ = 0 in Q = ]0, T [×�,

∂wλ
∂n
= 0 on 6 = ]0, T [×0,

vλ(0)= Sw(0) in �.

(5)

Equivalently, for nearly all t , wλ is a solution of the elliptic problem parametrized
in time5 {

wλ− λ1wλ =8(vλ) in �, t > 0,
∂wλ
∂n
= 0 on 0, t > 0.

(6)

The “−Laplacian” operator (denoted again −1) specifically associated with
homogeneous Neumann boundary conditions on 0 is obviously a nonbounded op-
erator from L2(�) into L2 (�) whose domain is H 2(�). We introduce the Yosida
regularization −1λ := −1(Jλ) = (I − Jλ)/λ and its resolvent Jλ = (I − λ1)−1.
According to (6), it follows that

wλ = Jλ8(vλ). (7)

Problem (P8)λ can be formulated again in a well-posed form6 for the operator
−1λ8 in L2(�):{∂vλ

∂t
−1λ8(vλ)= 0, t ∈ ]0, T [,

vλ(0)= Sw(0) in L2(�) and a.e. in �.
(Pλ)

The following proposition summarizes the properties of the solutions of (Pλ):

Proposition 1. Let us denote by g : R→ R a Lipschitz nondecreasing function, a
so-called “entropy function”, and let

G(r)=
∫ r

0
g(s) ds, G8(r)=

∫ r

0
g(8(s)) ds, g1/2(r)=

∫ r

0

√
g′(s) ds, r ∈R.

(8)
From the Rademacher theorem [Evans and Gariepy 1992], g′ is a bounded Borelian
representative of the derivative of g in its class.

For all λ > 0, the solution vλ of (Pλ) associated to wλ has the following proper-
ties:

(i) Estimations using entropy inequations (for each entropy function g):

∂

∂t
G8(vλ)≤ div(g(wλ)∇wλ)− g′(wλ)|∇wλ|2 in Q. (9)

5According to an observation of [Evans and Portilheiro 2004].
6Thanks to the Cauchy–Lipschitz–Picard theorem via a first-order differential equation with given

initial condition.
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Using the function G defined in (8), the last inequality can be rewritten as

∂

∂t
G8(vλ)≤1(G(wλ))−G ′′(wλ)|∇wλ|2 in Q.

The following inequalities hold:∫
�

G8(vλ(t, x)) dx ≤
∫
�

G8(vλ(s, x)) dx ≤
∫
�

G8(Sw(0)) dx, t > s > 0,

‖g 1
2
(wλ)‖

2
L2([0,T ];H1(�))

def
=

∫
Q

g′(wλ)|∇wλ|2 dx dt ≤ Cg, Cg = C(g).

(ii) We have the following uniform a priori estimates:

‖vλ‖L∞(Q) +‖wλ‖L∞(Q) ≤ C1,

‖wλ‖L2([0,T ];H1(�))+
√
λ

∥∥∥∥∂vλ∂t

∥∥∥∥
L2(Q)

≤ C2,∥∥∥∥∂vλ∂t

∥∥∥∥
L2([0,T ];(H1(�))′)

≤ C3.

The frame constants depend on the extremum values of 8 and Sw(0).

Proof. The general principle of the proof of this proposition may be found in [Evans
2004, p. 427]. This classical computation is somewhat akin to an entropy flux
calculation for a hyperbolic conservation law, through choices of nondecreasing
functions g (see also [Gagneux and Millet 2015] for more details). We note that the
inequality (9) is straightforward from the following relation, for any function 8:

∂

∂t
G8(vλ)−div(g(wλ)∇wλ)=−g′(wλ)|∇wλ|2−

(
g(wλ)−g(8(vλ))

)wλ−8(vλ)
λ

(10)

stated in [Evans and Portilheiro 2004; Evans 2004; Plotnikov 1996]. �

4. Study of capillary effects

4.1. Generalized “entropic” solutions. It follows from the uniform estimates of
Proposition 1 that we can find subsequences {vλk } and {wλk } and a pair7 (v,w)

such that, as λk→ 0,

vλk ⇀v in L∞(Q) weakly-∗, (11)

∂vλk

∂t
⇀
∂vλ

∂t
in L2(

[0, T ]; (H 1(�))′
)

weakly, (12)

wλk ⇀w in L∞(Q) weakly- ∗ and in L2([0, T ]; H 1(�)) weakly, (13)

7A vanishing viscosity limit.
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and

wλk −8(vλk )→ 0 in L p(Q) strongly, for any finite p.

Furthermore, we can assume that8

vλk → v in C0([0, T ]; H 1(�)′) strongly. (14)

The associated Cauchy condition is given by
v(0, · )= Sw(0) in H 1(�)′, a.e. in �,
0≤ v(t, · )≤ 1 in �, t > 0,∫
�
v(t, x) dx =

∫
�

Sw(0)(x) dx, t > 0.

In addition, the pair9 (v,w) belongs to the functional frame
v ∈ L∞(Q)∩C0([0, T ]; H 1(�)′),

∂v

∂t
∈ L2([0, T ]; H 1(�)′),

w ∈ L∞(Q)∩ L2([0, T ]; H 1(�)),

and is a solution of the boundary value problem
∂v

∂t
−1w = 0 in D′(Q) and L2([0, T ]; H 1(�)′),

∂w

∂n
= 0 on 6,

v(0, · )= Sw(0) a.e. in �.

Because of the nonmonoticity of 8, the information (11)–(14) is not sufficient
to conclude that w =8(v), as we will see in what follows.

Let us denote by 4 the complementary of the set of points of Ld+1-approximate
continuity of v according to the rigorous definition of the shock wave [Evans and
Gariepy 1992; Gagneux and Madaune-Tort 1995]. The set 4 is Borelian and Ld+1-
negligible because v is in L∞(Q).

Let us assume that 4 is a countable union of smooth hypersurfaces 4i of Rd+1

which admit a unit normal vector νi
= (νi

1, . . . , ν
i
d , ν

i
d+1)= (ν̃

i , νi
d+1).

Using the usual notations for jumps in hyperbolic scalar laws and for the Haus-
dorff measure Hd , very informally, the pair (v,w) satisfies the Rankine–Hugoniot
and entropy conditions for all i , integrating by parts locally in a vicinity of a given
transition interface via appropriate smooth functions with compact support:

νi
d+1[v] = ν̃

i .[∇w] and [w] = 0 Hd -a.e. on 4i ,

νi
d+1[G8(v)] − ν̃

i .[∇w]g(w)≤ 0 Hd -a.e. on 4i .
(15)

8From a classical compactness result of J. A. Dubinskii [Lions 1969, pp. 141-142].
9The pair (v,w) is called a generalized solution of the problem (P8).
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Relation (15) may be written in the form

νi
d+1

(
[G8(v)] − g(w)[v]

)
≤ 0 Hd -a.e. on 4i (16)

with the notations (8) for the definition of g (entropy function) and G8. In this
form, relation (16) will be very useful to highlight the further developments.

4.2. Associated hysteresis effects. The analysis of hysteresis effects relies on the
following proposition:

Proposition 2. There exist three Ld+1-measurable and bounded functions, 30, 31

and 32, that are representative of the respective influence of the three branches
of the graph of 8−1 (in the sense of the set theory) through the functions β0, β1

and β2. Moreover, we have

0≤3i ≤ 1 and
2∑

i=0

3i = 1 Ld+1-a.e. in Q.

In addition, when λk tends to 0+,

µ(vλk ) converges to
2∑

i=0

3iµ(βi (w)) in L∞(Q) weakly-∗

for any numerical continuous function µ. In addition, we have the following strong
convergences:

wλk and 8(vλk ) converge to w in L p(Q) strongly for any finite p.

Finally, for any Lipschitz nondecreasing function g, we have the entropy relation
in the sense of the measures in Q

∂

∂t

( 2∑
i=0

3i G8(βi (w))

)
≤ div(g(w)∇w)− g′(w)|∇w|2 in Q. (17)

Proof. The difficult technical proof of this proposition is not detailed here and can
be found in [Evans and Portilheiro 2004; Evans 2004; Plotnikov 1996; 1994] with
some adjustments. �

When 30 is equal to zero everywhere,10 the method provides a response corre-
sponding to the initial problem, thanks to the information contained in the comple-
mentary entropy relation (17). That is the main goal of the following proposition,
based on the complementary information on the entropy given by (15)–(16), which
enables us to determine the sense of circulation of the hysteresis loop.

10That corresponds in the final result to the neutralization of the decreasing part of the cubic
introduced artificially to create a repulsive region.
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Proposition 3. In the framework of Proposition 2, we assume that

30 = 0 in Q, 31 = 1 in Q1 and 32 = 1 in Q2,

where Q1 and Q2 are two open subsets of the cylinder Q, with a Lipschitz interface
61,2 = Q1 ∩ Q2 admitting a unit normal vector ν = (ν1,...,νd , νd+1) of Rd

× R,
oriented into Q1.

Using the notations of Figure 2, the problem can be written more precisely as a
problem with free surface:v = β1(w) and ∂v

∂t
−181(v)= 0 in Q1,

v = β2(w) and ∂v

∂t
−182(v)= 0 in Q2.

(18)

As a consequence of the information contained in the Rankine–Hugoniot and en-
tropy relations (15)–(16), which are justified here along the shock wave 61,2, the
sign of the component νd+1 of the normal vector ν, i.e., its orientation during the
time, is specified by the relations

νd+1 = 0 if A <w < B,
νd+1 ≥ 0 if w = A,
νd+1 ≤ 0 if w = B.

(19)

4.3. Interpretation of the results. According to Proposition 3, the expected hys-
teresis effect is well described by the pair (v,w), the generalized solution of (P8).
The change of the expression of the state law, which governs the diffusion process
according to the values of the reduced saturation, is given by (18). Moreover,
relation (19) reveals that the interface 61,2 evolves only if w takes the value A
or B (see Figure 1).

t

t2
τ ∗1

t0

t1

τ1

0 x0 x1 x2 x

Q1

Q2

ν

νd+1

νL

νd H = 0
ν
νd+1

Figure 3. More general case illustrating Proposition 3.
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Figure 4. Flow of the auxiliary ordinary differential equation and
emergence of the hysteresis effects when λ→ 0.

To illustrate the resulting hysteretic behavior, let us consider the generic example
of Figure 3 on the previous page, zooming on a time interval representing three
possible states of the point x1 at three different times. We focus on the possible
states corresponding to the abscissa x1.

At the point (t1, x1), we have a jump from Q1 to Q2, w = B, and we are in the
imbibition phase (see also Figure 1). On the contrary, at the point (t2, x2), we have
a jump from Q2 to Q1, w = A, and we are in the drainage phase.

Therefore, the entropy method linked to the Sobolev regularization leads to a
hysteresis loop similar to that obtained for Stefan’s supercooling problem [Evans
2004]. The flow of the auxiliary ordinary differential equation (3) leads to hystere-
sis effects when λ→ 0 (Figure 4).

5. Conclusion

The hysteresis phenomena of flows in unsaturated porous media has been modeled
with success, using the artificial introduction of an unstable spinodal interval and
on a dynamic regularization process of Sobolev type.
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