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GRADIENT MATERIALS WITH INTERNAL CONSTRAINTS

ALBRECHT BERTRAM AND RAINER GLÜGE

The concept of internal constraints is extended to gradient materials. Here, in-
teresting constraints can be introduced, such as pseudorigid ones. The stresses
and the hyperstresses will be given by constitutive equations only up to reactive
parts, which do no work during any compatible motion of the body. For the
inclusion of thermodynamical effects, the theory is generalized to the case of
thermomechanical constraints. Here one obtains reactive parts of the stresses,
heat flux, entropy, and energy, which do not contribute to the dissipation. Some
critical remarks on the classical concept of internal constraints are finally given.
A method to introduce internal constraints in a natural way is described to over-
come some conceptual deficiencies of the classical concept.

1. Introduction

The theory of internal constraints as it is described in, e.g., [Truesdell and Noll
1965, Section 30] is a useful tool for the description of incompressible materials,
inextensible composites, and many more material classes. It gives a conceptually
sound basis upon which both theoretical and practical investigations can be de-
veloped. Particularly, it provides a change of the structure of the basic balance
equations, which can be helpful for the construction of solutions of the field prob-
lem. This way, the only nonhomogeneous universal solutions for simple materials
are those for constrained materials [Ericksen 1955].

On the other hand, there has been an increasing interest in nonclassical exten-
sions of the concept of simple materials. Micromorphic, micropolar, and gradient
materials are examples for a blossoming variety of new theories, which go far
beyond the classical simple materials. In particular, the inclusion of the second
deformation gradient opens the door for many challenging new perspectives for
material modeling with the inclusion of internal length scales.

For gradient materials, one wants to introduce internal constraints other than the
classical ones to again benefit from such extensions. The question arises whether
such an extension is possible, or demands substantial alterations of the entire

Communicated by Francesco dell’Isola.
MSC2010: 74A30.
Keywords: internal constraints, gradient materials, pseudorigidity.
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2 ALBRECHT BERTRAM AND RAINER GLÜGE

format. It turns out, and will be shown in the sequel, that such an extension is
in fact straightforward once a theory of gradient materials has been constructed —
at least within the mechanical context.

The extension to a thermomechanical format is more complicated. This is, how-
ever, necessary not only in order to investigate the compatibility of such constraints
with the second law of thermodynamics, but also to study the temperature depen-
dence of mechanical constraints.

There has been some discussion about a sound format for the inclusion of the
thermodynamical variables into such a theory of internal constraints; see [Green
et al. 1970; Trapp 1971; Andreussi and Podio Guidugli 1973; Gurtin and Po-
dio Guidugli 1973; Bertram and Haupt 1976; Casey and Krishnaswamy 1998;
Casey 2011; Bertram 2005].

The starting point for the present approach is a suggestion by [Trapp 1971;
Bertram 2005], where a rate form of a thermomechanical constraint is assumed and
the possibility for reactive parts of the stresses, heat fluxes, and energies is given
that are not dissipative during any process that is compatible with the constraint.
Again, the extension of this theory to gradient materials is straightforward.

At the end of this contribution, some critical remarks on the standard theory of
mechanical constraints are given and a procedure to avoid these shortcomings is
suggested.

Notations. Throughout the paper, a dot will denote a scalar product between ten-
sors of arbitrary order. Vectors are denoted by small bold letters like j, m, n.
Second-order tensors are denoted by capital letters like J, S, T, and third-order
tensors by J, G, M. Since there is not yet a standard notation for odd-order tensors,
we have to introduce some operations. The first product we need is the pullback
operation of a third-order tensor G by a second-order tensor F, defined as

F−1
◦G= F−1

◦ (Gi jkei ⊗ e j ⊗ ek) := Gi jk(FT e j )⊗ (F−1e j )⊗ (F−1ek). (1)

Another useful tool is the Rayleigh product between a second-order tensor F and
a tensor of arbitrary order J, defined as

F ∗ J := J i ... j (Fe j )⊗ · · ·⊗ (Fe j ). (2)

For orthogonal tensors F both products coincide.

2. Simple and gradient materials

A simple material is defined as one for which the Cauchy stresses are given by a
history functional or a process functional of the form

T(x0, t)= F1
{
χ(x0, τ ),Grad χ(x0, τ )|

t
τ=0
}

(3)
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with χ being the motion of the body in the time interval between some initial time
τ ≡ 0 and some final time t , and x0 a material point in the reference placement. If
we submit this functional to the principle of Euclidean invariance, then we can find
reduced forms which identically fulfill this principle. One example for a reduced
form is the functional

S(x0, t)= K1
{
C(x0, τ )|

t
τ=0
}
, (4)

which assigns to each process in the right Cauchy–Green tensor C = FT F the
second Piola–Kirchhoff stress tensor S= JF−1TF−T . Here, F is the deformation
gradient and J its determinant.

If we extend this format to second gradient materials1 (see [Bertram 2015a]),
the general form of the constitutive functional is

T(x0, t)= F
{
χ(x0, τ ),Grad χ(x0, τ ),Grad Grad χ(x0, τ )|

t
τ=0
}
. (5)

However, for second gradient materials we must expect the existence of a third-
order hyperstress tensor G for which a second constitutive functional of the form

G(x0, t)= G
{
χ(x0, τ ),Grad χ(x0, τ ),Grad Grad χ(x0, τ )|

t
τ=0
}

(6)

is needed. Reduced forms of these two functionals are, among others,

S(x0, τ )= k
{
C(x0, τ ),K(x0, τ )|

t
τ=0
}
, (7)

H(x0, τ )= K
{
C(x0, τ ),K(x0, τ )|

t
τ=0
}
, (8)

with the two third-order tensors called the continuity tensor

K := F−1 Grad F (9)

and the material hyperstress tensor

H := F−1
◦ JG. (10)

Both tensors are material tensors and hence invariant under rigid body motions.
In [Bertram 2013; 2015a] examples for elastic and plastic materials within such a
format are given.

A hyperelastic gradient material would be constituted by an energy function
w(C,K) such that the stresses are given by the potential relations

S= 2ρ0 ∂Cw(C,K), (11)

H= ρ0 ∂Kw(C,K), (12)

with the density in the reference placement ρ0.

1Only these are considered here. Third- and higher-order gradients are beyond the scope of this
paper.
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3. Classical internal constraints

The classical theory of internal constraints after [Truesdell and Noll 1965] and
several authors earlier and also later is based on two assumptions.

Assumption 1a (constraint equation for simple materials). There are restrictions
upon the possible deformations of the material element such that a scalar-valued
function of the deformation gradient F equals zero for all possible deformations,

γ (F)= 0. (13)

Assumption 2a (principle of determinism for simple materials subject to internal
constraints). The stress is determined by the history of the deformation only to
within an additive part that does no work in any possible motion satisfying the
constraint.

Truesdell and Noll [1965] put these assumptions in an axiomatic way, without
giving any substantiation for them other than the plausibility of their consequences
in particular applications.

If one applies the principle of Euclidean invariance (material objectivity)2 to
the material function γ , one can show that a function γred(C) of the right Cauchy–
Green tensor C= FT F is objective and, hence, a reduced form.

Such a constraint would be considered as isotropic if it were invariant under
arbitrary rotations, that is,

γred(C)= γred(QCQT ) (14)

for all orthogonal tensors Q. In this sense, incompressibility would be an isotropic
constraint, while inextensibility in one direction is not isotropic.

By exploiting the second assumption, we start with an additive split of the
Cauchy stresses into an extra part, which is determined by a constitutive functional,
and a reactive part (for which no constitutive functional exists):

T= TE +TR (15)

so that the specific stress power of the latter,

1
ρ

TR ·D= 0 (16)

vanishes for every process that is compatible with the constraint, where D denotes
the rate of stretching. We can alternatively express this assumption in terms of a

2For a precise introduction of this controversial issue, see [Bertram and Svendsen 2001; Bertram
2005], therein called the principle of invariance under superimposed rigid body motions.
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reactive second Piola–Kirchhoff stress with S= SE +SR:

1
ρ0

SR ·C• = 0. (17)

If the constraint equation is differentiable, we can bring it into the rate form

γred(C)• = ∂Cγred(C) ·C• = 0. (18)

If we multiply this equation by a Lagrangian multiplier α, and subtract it from the
constraint equation (17), we find that the second Piola–Kirchhoff reaction stress
SR must have the representation

SR = α ∂Cγred(C) (19)

and the Cauchy reaction stress

TR = αF ∂Cγred(C)FT (20)
with some scalar field α.

As a normalization of the decomposition, we can pose the orthogonality condi-
tion

TR ·TE = 0. (21)

This makes the decomposition unique. However, this is not necessary and often
not even practical.

If there is more than one internal constraint (say N ≤ 6), one also has to allow
for N reaction stresses, which can be superimposed onto the total stress as

T= TE +

N∑
i=1

αi F ∂Cγred i (C)FT (22)

with N scalar fields αi . In the limit for six independent constraints, C is completely
constrained, the material is rigid, and the stresses are completely reactive. This case
will be discussed in the last section of this paper.

4. Nonclassical internal constraints

The question arises if one could extend this method to gradient materials. It turns
out that such a generalization is straightforward.

It has been shown in [Forest and Sievert 2003; Bertram 2013; 2015a] that the
specific stress power for a second gradient material can be brought into the Eulerian
and Lagrangian forms

1
ρ
(T · grad v+G · grad grad v)= 1

ρ0

(1
2

S ·C•+H ·K•
)
, (23)

respectively. We now generalize our two assumptions to gradient materials.



6 ALBRECHT BERTRAM AND RAINER GLÜGE

Assumption 1b (constraint equation for gradient materials). There are restrictions
upon the possible deformations of the material element such that a scalar-valued
function of the motion, the deformation gradient, and the second gradient equals
zero for all possible deformations

0(χ ,Grad χ ,Grad Grad χ)= 0. (24)

If this is understood as a constitutive equation, it must fulfill the Euclidean in-
variance requirement. This leads to the reduced form of the nonclassical internal
constraint

0red(C,K)= 0. (25)

If the constraint equation function is differentiable, we get the rate form of it as

∂C0red ·C•+ ∂K0red ·K• = 0. (26)

Assumption 2b (principle of determinism for gradient materials subject to internal
constraints). The stresses and the hyperstresses are determined by the deformation
process only to within additive parts that do no work in any possible motion satis-
fying the constraint.

Accordingly, we have the decompositions T= TE +TR and G= GE +GR for
the spatial stresses, and S= SE +SR and H=HE +HR for the material ones.

After Assumption 2b, we have

1
ρ
(TR · grad v+GR · grad grad v)= 1

ρ0

(1
2

SR ·C•+HR ·K•
)
= 0. (27)

By subtracting an α-multiple of the constraint equation in the rate form, we obtain

0=
[ 1

2ρ0
SR −α ∂C0red

]
·C•+

[ 1
ρ0

HR −α ∂K0red

]
·K•, (28)

so that the following equations must hold:

SR = α2ρ0 ∂C0red(C,K), (29)

HR = αρ0 ∂K0red(C,K) (30)

with a joint Lagrangian parameter α which couples the two reactive stresses.
As a normalization of the decomposition, one can pose the orthogonality condi-

tion
HR ·HE +

1
4 SR ·SE = 0. (31)

This is, however, not compulsory and perhaps not even practical.
A particular choice of the constraint equation would be to demand that certain

components of K must vanish. In such cases the corresponding components of F
must be constant in space.
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For F having nine independent components and the space having three linear
independent directions, 9× 3= 27 such constraints on Grad F are possible. This,
however, reduces to 18 independent constraints because of Schwarz’s commutation
law since the connection tensor has the right subsymmetry

Ki jk = Fi j,k = χi, jk = χi,k j =Kik j . (32)

In [Seppecher et al. 2011] one finds examples of materials with microstructures
with such properties.

By imposing 18 independent constraints of this kind, the deformation gradient
can only be constant in space. Bodies with this property have been investigated in
the past under the label homogeneous strains — see [Sławianowski 1974; 1975] —
or pseudorigidity — see [Cohen 1981; Cohen and Muncaster 1984; Cohen and
MacSithigh 1989; Antman and Marlow 1991; Casey 2004; 2006; 2007] — and
critically commented upon by [Steigmann 2006]. However, these approaches are
completely different from the present one, since there the homogeneity of strains is
imposed on the body as a global constraint, while in the present approach we still as-
sume local constraints as an extension of classical constraints to gradient materials.

5. Thermomechanical constraints

Not only in mechanics, but also more general in thermomechanics, the introduction
of internal constraints is reasonable. In the literature, several suggestions have
been made to generalize the mechanical concepts of constraints to thermodynamics;
see [Green et al. 1970; Trapp 1971; Andreussi and Podio Guidugli 1973; Gurtin
and Podio Guidugli 1973; Casey and Krishnaswamy 1998; Casey 2011; Bertram
2005]. For the extension of the theory of gradient materials to thermomechanics,
see [Bertram 2005; 2015b].

In what follows, we extend the concept introduced in [Trapp 1971; Bertram
2005], where one also finds examples for thermomechanical constraints like tem-
perature-dependent incompressibility or inextensibility.

Assumption 1c (constraint equation for thermomechanical gradient materials). A
thermomechanical internal constraint consists of four material functions,

J(C,K, θ), J(C,K, θ), j(C,K, θ), j (C,K, θ), (33)

of the configuration and the temperature with values in third-order tensors, second-
order tensors, vectors, and scalars, respectively, such that for all admissible thermo-
kinematical processes the constraint equation

J ·K•+ J ·C•+ j · g0+ j · θ • = 0 (34)
holds at each instant.

Here, θ denotes the temperature and g0 is the material temperature gradient.
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Since we made use of material variables, this constraint is already in a reduced
form. Note that the first two terms, to which the equation is reduced in the isother-
mal case, correspond to the mechanical constraint (26) in its rate form, which is
therefore included in this format as a special case.

Once again, we have to modify the principle of determinism. There have been
several suggestions in the literature whether the reactive parts of the dependent vari-
ables shall not produce energy or entropy [Green et al. 1970; Trapp 1971; Gurtin
and Podio Guidugli 1973], or neither of the two [Andreussi and Podio Guidugli
1973]. The following assumption is close to what Trapp [1971] suggested and
follows [Bertram 2005].

Assumption 2c (principle of determinism for gradient materials with thermome-
chanical internal constraints). The current values of the hyperstress, stress, heat
flux, internal energy, and entropy are determined by the thermokinematical process
only up to additive parts that are not dissipative during all admissible processes.

Thus, we have the decompositions of the dependent variables into reactive parts
and extra parts:

hyperstress H=HE +HR,

2nd Piola–Kirchhoff stress S= SE +SR,

material heat flux q0 = q0E +q0R,

internal energy ε = εE + εR,

entropy η = ηE + ηR,

(35)

and, consequently, also for the

free energy ψ = εE + εR − θηE − θηR =: ψE +ψR, (36)

where only the extra terms depend on the thermokinematical process.
The reactive parts shall not be dissipative in the sense of the Clausius–Duhem

inequality:

1
ρ0

(1
2

SR ·C•+HR ·K•
)
−

1
θρ0

q0R · g0−ψR
•
− ηRθ

•
= 0 (37)

for all admissible thermokinematical processes.
If we subtract from this equation an α-multiple of the constraint equation (34),

we get( 1
ρ0

1
2

SR −αJ
)
·C•+

( 1
ρ0

HR −αJ
)
·K•−

( 1
θρ0

q0R +αj
)
· g0

−ψR
•
− (ηR +α j)θ • = 0 (38)

for any real α. Because of the independence of the terms in brackets of C•, K•,
g0 and θ • in a particular material point, this is solved for all constrained materials
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only by
HR = αρ0 J(C,K, θ),

SR = 2αρ0 J(C,K, θ),

q0R =−αρ0θ J(C,K, θ),

ψ •R = 0,

ηR =−α j (C,K, θ),
(39)

or, for the spatial versions of the reactive parts,

GR = αρF ◦ J(C,K, θ) with GR = F ◦ J−1HR,

TR = 2αρF ∗ J(C,K, θ) with TR = F ∗ J−1SR,

qR =−αρθ F ∗ j(C,K, θ) with qR = F ∗ J−1q0R.

(40)

With this form, for no real α can a contradiction to the Clausius–Duhem inequality
occur if the extra terms already fulfill it alone.

As a normalization of the decomposition, one can pose the orthogonality condi-
tion

HR ·HE +
1
4

SR ·SE +q0R ·
q0E

θ2 + ρ
2
0ηR · ηE = 0. (41)

This is, however, not compulsory and perhaps not even practical. As the free energy
is only determined up to a constant, we can principally assume ψR = 0.

If more than one constraint is active, then the reactive parts are simply additive
superpositions of those resulting from each constraint alone.

6. Critical remarks

There have been some papers considering the approach of [Truesdell and Noll
1965], like [Bertram 1980; 1982; Podio Guidugli 1990; Antman and Marlow 1991;
Carlson and Tortorelli 1996; Carlson et al. 2003], and in their majority they confirm
it in the sequel. However, there is one point which needs more attention: the limit
of rigidity.

Truesdell and Noll [1965] claim that rigidity is described by C ≡ I. Since
the space of all symmetric tensors is 6-dimensional, rigidity would correspond to
6 independent constraints and the total stress would be completely reactive in this
case, since

SR =

6∑
i=1

αi ∂Cγred i (C) (42)

spans the whole space of symmetric second-order tensors. We now consider the
case of two simultaneous internal constraints:

(1) (incompressibility)

γ1(C)= det C− 1 =⇒ SR1 = α1C−1 (a hydrostatic pressure) (43)
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Figure 1. Graphical representation of the two constraint mani-
folds (43) and (44) in the space of the eigenvalues of C.

(2) (Bell-type [1973; 1985; 1996] constraint)3

γ2(C)= tr C− 3 =⇒ SR2 = α2I. (44)

It is not our intention here to comment on the physical significance of this con-
straint.4 Beatty and Hayes [1992] have investigated the geometrical properties of
these constraints.5 The constraint manifold of γ2 forms a plane triangle in the space
of the eigenvalues of C, while γ1 forms a curved hypersurface which touches the
triangle in only one point; see Figure 1. So the constraint γ2 has only one isochoric
(or unimodular) point, namely C≡ I, which describes rigidity. In this point (and
only there) they have a joint tangent plane (that coincides with the plane of γ2). In
this point with C ≡ I, both SR1 and SR2 become pressures and SE is a deviator.
However, there is no test possible to identify the constitutive law for this deviator.

An even more absurd example is given by the constraint suggested by Krawietz
(personal communication, 2015),

γ (C)= (C− I) · (C− I)= 0 =⇒ SR = 0, (45)

which also describes rigidity. In this case, the reactive stresses are zero, since
∂C γ (C) vanishes here.

So the format of [Truesdell and Noll 1965] needs some specification of the class
of admitted constraint equations to avoid such unphysical results. One has to make
sure that they really define a constraint manifold (which is not the case for (45))

3Bell uses the square root of C, which however does not make much difference here.
4See, e.g., [McMeeking 1982; Sellers and Douglas 1990].
5See also [Vianello 2014] for the geometry of the constraint manifold.
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and, in the case of multiple constraints, that the tangent spaces of these manifolds
are independent of each other.

Another remedy would be to introduce the constraints in a natural way, as we
show in the next section.

7. Introduction of internal constraints in a natural way

In [Bertram 1980; 1982] another approach to establish a theory of internal con-
straints has been suggested, claiming to be in a natural way. Here, only solids are
considered for which the stresses are (at least partly) caused by elastic deformations.
The idea there is, roughly speaking, to consider constraint material behavior as
a limit of hyperelastic behavior with increasing stiffness for certain deformation
modes. If one starts with hyperelastic behavior, one can consider a tangential stiff-
ness tensor with 6 (not necessary different) eigenvalues, called principal stiffnesses
in the case of classical (nongradient) materials. If one produces a series of such
materials by incrementing one of these eigenvalues to infinity and keeping all others
finite, one produces in the limit a material behavior that is constrained in such a way
that the deformation mode belonging to this eigenvalue tends to zero if only finite
stresses are applied. It has been shown there that for an isotropic or anisotropic
hyperelastic material, this construction exactly leads to Assumptions 1a and 2a.

The method to produce internal constraints in a natural way can also be applied
to gradient hyperelastic materials. We can linearize the elastic laws (11) and (12)
by taking their incremental forms

dS= 2ρ0
(
∂CCw(C,K)[dC] + ∂CKw(C,K)[dK]

)
, (46)

dG= ρ0
(
∂KCw(C,K)[dC] + ∂KKw(C,K)[dK]

)
, (47)

with a

• fourth-order symmetric stiffness tensor (tetradic) C〈4〉 := 2ρ0 ∂CCw(C,K),
• sixth-order symmetric stiffness tensor (hexadic) C〈6〉 := ρ0 ∂KKw(C,K),
• fifth-order stiffness tensor C〈5〉 := 2ρ0 ∂KCw(C,K).

For the linear gradient theory, see [Bertram and Forest 2014]. If we would re-
strict our attention to central symmetric behavior, the fifth-order stiffness vanishes
and the hexadic is known from [Mindlin and Eshel 1968] while the tetradic is the
usual one from classical elasticity.

Interesting for us is the stiffness hexadic C〈6〉, since it does not exist for classical
materials. We can bring the hexadic into a spectral form,

C〈6〉 =
18∑

i=1

λiP
〈6〉
i , (48)
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with 18 (not necessarily distinct) eigenvalues γi and the same number of eigenspace
projectors of sixth-order, P〈6〉i . These are related to the third-order normalized and
orthogonal eigentensors Ei of the stiffness hexadic by the sum

P〈6〉i =

Mi∑
j=1

E j ⊗E j (49)

over the multiplicity Mi of the particular eigenvalue. The construction of internal
constraints in a natural way consists of taking finite values for all of these eigen-
values except for one, say λ1.

Let us first consider an eigenvalue of multiplicity one. In the limit, one would
not be able to deform the material in the corresponding mode by applying finite
stresses. Thus, we obtain the constraint equation (in this case independent of C)

0(K) := E1 ·K= 0 (50)

and expect the reaction hyperstresses after (30) to be

HR = α ∂K0(K)= αE1 (51)

with some scalar field α.
Such a constraint would be considered as isotropic if it were invariant under

arbitrary rotations

0(K)= 0(Q ∗K) (52)

for all orthogonal tensors Q. Clearly, this is the case if and only if

E1 =Q ∗E1, (53)

i.e., for isotropic tensors. But this would be a rather drastic restriction, which
should not be made in general.

We can also superimpose the M constraints of a multiple eigenvalue in one
equation:

0(K) :=K · · ·P〈6〉1 [K] = 0. (54)

Examples and numerical computations of gradient materials with internal con-
straints will be given in a forthcoming paper by the same authors.

An alternative approach to create internal constraints was suggested by [Casey
1995; Baesu and Casey 2000] in a mechanical setting and [Casey and Krishnaswamy
1998; Casey 2011] in a thermomechanical setting, where the constrained material
is identified as an equivalence class of unconstrained ones.
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8. Example

We consider the constraint
Grad J = 0. (55)

Here, the density of the body can be altered, but only in a homogeneous way in the
three spatial directions. One may consider this as a vectorial internal constraint.
This may as well be equivalently expressed by a scalar constraint equation by
demanding the norm of the vector Grad J be zero.

After the chain rule, we can write Grad J in terms of K as

Grad J = J Ki jkek (56)

with respect to some orthogonal vector basis {ek}. The constraint (55) can be
reformulated as

Grad J ·Grad J/J 2
= Ki ik Kllk =K · · ·P〈6〉[K] = 0 (57)

with
P〈6〉 = I⊗ e j ⊗ I⊗ e j . (58)

By taking into account the right subsymmetry of the triadic K, we can impose the
index symmetries between the index pairs j , k and m, n in Pi jklmn .

The natural way to introduce this constraint is to add the projector with a penalty
parameter to the elasticity hexadic C〈6〉, or likewise to add a penalized term Ki ik Kllk

to the elastic energy. The latter corresponds to the parameter a2 in Mindlin and
Eshel’s representation [1968, Equation 2.4].

Note added in proof. One can find more results on gradient materials in the Com-
pendium on gradient materials available at http://www.ifme.ovgu.de/ifme_media/
CompendiumGradientMaterialsJan2016.pdf.
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The differential-geometric underpinnings of a unified theory of material unifor-
mity and evolution are exposed in terms of the language of groupoids subordi-
nate to geometric distributions. Both the standard theory of material uniformity
and the extended theory of functionally graded materials are included in the for-
mulation as well as their temporal counterparts in anelastic and aging processes.

1. Introduction

The delightful classical survey article by Alan Weinstein [1996] brings home the
idea that groups, considered as the main carriers of information about the symme-
tries of a physical system, are actually not sufficient to convey the generality of
the intuitive concept of symmetry. His example of the regular rectangular tiling of
a bathroom floor, as opposed to the tiling of the whole plane, is very suggestive.
Indeed, in passing from the infinite to the finite extent, while the symmetries of the
individual tiles are preserved, the translational symmetries are lost. Nevertheless,
any observer of the bathroom floor will agree that it still has a remnant of this
distant kind of symmetry. In continuum mechanics, if we replace the bathroom
floor with a material body B, each tile can be identified with the tangent space
TXB at each point X ∈ B. Any given constitutive equation at X will enjoy some
material symmetries, which are encoded in the material symmetry group GX at X .
But consider now another point Y ∈ B. What would the meaning be of a distant
symmetry between X and Y ? The clearest answer to this question is that X and Y
are thus related if they are made of the same material. In the terminology of Walter
Noll [1967/68], the points are materially isomorphic. A body all of whose points
are materially isomorphic is said to be materially uniform.
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In a philosophical sense, however, the notion of symmetry is, literally, in the
eyes of the beholder. We may choose to declare the presence of a distant sym-
metry between two points if they are made of possibly different materials while
enjoying the same symmetry type,1 a much weaker condition. In this case, the
symmetry groups GX and GY need only be conjugate. We call the equivalence
relation associated with this property unisymmetry [Epstein and de León 2000].
Unisymmetric bodies are known in engineering applications as functionally graded
materials, usually made of two components with a spatially varying composition.

Fixing attention on a particular material point and following its material response
in time, we obtain the notion of material evolution [Epstein and Elżanowski 2007].
If, as time goes on, the material response remains materially isomorphic to its
initial response, we have a case of pure remodeling or anelastic evolution [Wang
and Bloom 1973/74]. The material in an infinitesimal neighbourhood undergoes a
process of reaccommodation, but does not experience any other essential changes.
This is clearly another (timewise) manifestation of the concept of distant symmetry.
Any other change of material behaviour can be considered as a process of material
aging. A particular case is obtained when, while the material ages, the symmetry
type is preserved. In other words, the material evolves unisymmetrically. Finally,
any change in the symmetry type gives rise to a process of morphogenesis [Turing
1952].

When the spatial and temporal distant symmetries are combined, it is reasonable
to expect that the corresponding geometrical descriptor will be a properly defined
material groupoid based on the consideration of a body-time manifold, which is
the main object of consideration in the present article. Some basic definitions per-
taining to the theory of groupoids and their actions on sets are reviewed in Section 2
and extended to distinguish classes of groupoids associated with distributions in
manifolds. These ideas are applied in Section 3 to define and interpret various
cases of material groupoids.

2. Groupoids and distributions

2.1. Groupoids. Recall that a groupoid consists of a total set Z , a base set M, two
(projection) surjective maps

α : Z→M and β : Z→M (1)

called, respectively, the source and the target maps, and a binary operation (com-
position) defined only for those ordered pairs (y, z) ∈ Z ×Z such that

α(z)= β(y). (2)

1By symmetry type we mean properties such as isotropy, transverse isotropy or orthotropy.
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This operation, indicated by the reverse apposition of the operands, must be as-
sociative, that is, (xy)z = x(yz), whenever the products are defined. Moreover,
at each point m ∈M, there exists an identity idm such that z idm = z whenever
α(z)= m, and idm z = z whenever β(z)= m. Finally, for each z ∈ Z there exists
a (unique) inverse z−1 such that zz−1

= idβ(z) and z−1z = idα(z).
It follows from this definition that to each ordered pair (a, b) of elements of M

one can associate a definite subset Zab of Z, namely the subset Zab = {z ∈ Z |
β(z)= b, α(z)= a}. It is clear that these subsets (some of which may be empty) are
disjoint and that their union is equal to Z . It is also clear that the various identities
are elements of subsets of the form Zbb. It is not difficult to show that each set
of the form Zbb is actually a group. A useful way to think of a groupoid is as a
collection of symbols (a, b, c, . . . ∈M) and arrows (x, y, z, . . . ∈ Z) connecting
some of them.

One can prove that if Zab 6=∅, then the groups Zaa and Zbb are conjugate, and
the conjugation between them is achieved by any element z of Zab, namely,

Zbb = zZaa z−1. (3)

Analogously, the set Zab is spanned completely by composing any one of its ele-
ments with Zaa or with Zbb, that is,

Zab = zZaa = Zbb z. (4)

A groupoid is said to be transitive if for each pair of points a, b ∈M there exists
at least one element of the total set with a and b as the source and target points,
respectively. In other words, a groupoid is transitive if, and only if, Zab 6= ∅
∀(a, b) ∈M×M. In a transitive groupoid all the local groups Zbb are mutually
conjugate. In this case, we can consider any of the local groups as the typical group
of the transitive groupoid.

A groupoid is a topological groupoid if the total set Z and the base set M
are topological manifolds and the projections α and β are continuous, as are the
operations of composition and of inverse. It follows from the definition that each of
the sets Zbb is a topological group. If Z and M are smooth manifolds and if both
projections are surjective submersions and all operations are smooth, we obtain a
Lie groupoid.2

2.2. Groupoids subordinate to a distribution. Let C be an n-dimensional mani-
fold and let 0 < k < n be an integer. A k-dimensional distribution D in C is a
smooth assignment of a k-dimensional subspace Dc of the tangent space TcC to
each point c ∈ C. That the assignment is smooth means that each point c ∈ C has

2For a thorough treatment of Lie groupoids see [Mackenzie 1987] or [Mackenzie 2005].
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a neighbourhood within which there exist k smooth linearly independent vector
fields that span the subspaces of the distribution. In fact, a common way to specify
a k-dimensional distribution is by providing k linearly independent smooth vector
fields on C. A vector field V belongs to the distribution if, and only if, it is a linear
combination of the vector fields defining it.

A groupoid α, β : Z → C is said to be subordinate to a distribution D in C if
every element z ∈ Z is a nonsingular linear map

z : Dc1 → Dc2, (5)

with c1, c2 ∈ C.
Given a distribution D in C, all possible groupoids subordinate to the distribution

are subsets (subgroupoids) of the transitive Lie groupoid ZD obtained by consid-
ering all the possible nonsingular linear maps between all subspaces Dc in the
distribution.

A case of particular importance arises when the base manifold C is a fibre bundle
π : C→ B over an m-dimensional base manifold B, with m < n. At each point
c ∈ C the tangent space TcC has a canonically defined vertical subspace Vc, which
can be identified with the tangent space TcCπ(c) to the fibre over b = π(c) (that
is, the set π−1({b}), b ∈ B). A vector in TcC belongs to the vertical subspace Vc

(or: is vertical) if, and only if, its projection by π∗ is the zero vector of Tπ(c)B.
The existence of these vertical subspaces allows us to define the canonical (n−m)-
dimensional vertical distribution V in the bundle C. Accordingly, a groupoid Z
subordinated to V will be called a vertical groupoid.

A vertical groupoid on a fibre bundle may or may not be transitive. An inter-
mediate situation is worthy of consideration. We say that a vertical groupoid is
fibrewise transitive if

π(c1)= π(c2) =⇒ Zc1c2 6=∅. (6)

A fibrewise transitive vertical groupoid is transitive if, and only if, for every pair
a, b ∈ B there exists a pair ca, cb ∈ C, with π(ca) = a and π(cb) = b, such that
Zcacb 6=∅. The truth of this assertion follows from the associative property of the
groupoid composition.

2.3. Groupoids subordinate to an Ehresmann connection. In a fibre bundle π :
C→ B, if a vector in TcC is not vertical, there is no canonical way to assign to it a
vertical component. An Ehresmann connection provides this assignment.

Formally, an Ehresmann connection H consists of a smooth horizontal distribu-
tion in C. This is a smooth assignment to each point c ∈ C of a subspace Hc ⊂ TcC
(called the horizontal subspace at c), of the same dimension as the base manifold B,
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c1 c2

z

B

C

Figure 1. An element (arrow) in a horizontal groupoid.

such that
TcC = Hc⊕ Vc. (7)

In this equation, ⊕ denotes the direct sum of vector spaces. Each tangent vector
v ∈ TcC is, accordingly, uniquely decomposable as the sum of a horizontal part
h(v) and a vertical part v(v). A vector is horizontal if its vertical part vanishes.
The only vector that is simultaneously horizontal and vertical is the zero vector.

Given a fibre bundle π : C→ B endowed with an Ehresmann connection H, we
define a horizontal groupoid α, β : Z→ C as a groupoid whose elements z ∈ Z are
nonsingular linear maps

z : Hc1 → Hc2 . (8)

Notice that no a priori restriction is imposed on c1, c2 ∈ C, so that, in general, we
may have π(c1) 6= π(c2). Figure 1 illustrates this idea.

A horizontal groupoid is fibrewise transitive if

π(c1)= π(c2) =⇒ Zc1c2 6=∅. (9)

As in the case of a vertical groupoid, a fibrewise transitive horizontal groupoid is
transitive if, and only if, for every pair a, b ∈ B there exists a pair ca, cb ∈ C, with
π(ca)= a and π(cb)= b, such that Zcacb 6=∅.

Note. Given an Ehresmann connection, it is possible to define a particular iso-
morphism between all the horizontal spaces at points lying on one and the same
fibre. These Christoffel isomorphisms, however, may or may not belong to a given
horizontal groupoid defined on the bundle.

In a product bundle C = B×F we can always define a canonical Ehresman con-
nection in an obvious way. Moreover, as dictated by convenience in particular ap-
plications, the roles of the base manifold and the typical fibre can be interchanged.
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3. Uniformity and evolution

3.1. The body-time manifold. The concepts introduced in Section 2 can, in princi-
ple, be exploited for various applications in continuum mechanics. Material bodies
with internal structure, for example, are themselves modeled as fibre bundles. Clas-
sical space-time can be regarded as an affine bundle over the real line. General rel-
ativity provides an opportunity to regard a history as a world tube with identifiable
world lines. For our purposes, however, which aim at a unified picture of material
uniformity and evolution, we will content ourselves with a body-time manifold
consisting of the product C = R×B of the time line R with an ordinary body B.
Moreover, adopting a fixed inertial observer, we identify space-time with the prod-
uct bundle S = R×R3. In this simple setting, both time and space are admittedly
absolute, but the essence of the unified geometric picture is not greatly altered.

A history of the body can be regarded as a fibre-bundle morphism

K : C→ S

such that the map between the base manifolds is the identity. Thus, for every instant
of time t ∈ R, our morphism provides us with a map κt : B→ R3, assumed to be
an embedding, whose derivative at X ∈ B is a linear map

F = F(X, t) : TXB→ Tκt (X)R
3 ∼= R3,

called the deformation gradient at X ∈ B at time t .

3.2. Constitutive considerations. The geometrical features of a material body de-
scribed so far arise from the very nature of the body and of the physical space
as continuous entities as well as from the kinematic manifestations of the former
within the latter. An important feature of continuum mechanics is that the constitu-
tive aspects of the material medium result in additional geometric structures. This
material geometry arises essentially from a comparison of the material responses at
different body points and at different instants of time. In view of the generality of
the notion of groupoid and its ability to embrace both local and distant symmetries
under the umbrella of a single mathematical entity, it is not unreasonable to expect
that the material geometry alluded to above can be completely encapsulated within
the compass of a single material groupoid.

We have just shown how any history of the body gives rise, by differentiation, to
a collection of linear maps F between the vertical subspaces of the body manifold
and R3. In a simple or first-grade body, we assume that the constitutive response
at each body point and at each instant of time can be completely encoded in one
or more functions of F . These functions may be scalar-valued (such as the en-
ergy density of a solid) or take values in a space of tensors (such as the stress).
Without much loss of generality, we will assume the case of a single scalar-valued
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function ψ = ψc(F) for each point c = (t, X) ∈ C.3 We will assume all admissible
constitutive functions ψc(F) belong to a prespecified function space 9, such as
9 = C∞(GL(3;R)).

A useful way to look at the constitutive response of a specific body-time man-
ifold consists of considering the Cartesian product C9 = C×9. The constitutive
response is then a section σ of C9 , namely a map

σ : C→ C9, (10)

such that pr1◦σ = idC , where pr1 denotes the first projection map in a product.
In practice, this cross section is determined after choosing a particular reference
configuration, that is, an identification of B with a domain in R3. We will soon see
the influence of this choice on the resulting geometric entities. Before proceeding,
however, we need to review the notion of action of a groupoid on a set.

3.3. Action of a groupoid on a set.

3.3.1. Group actions. For the sake of clarity, we will first review the idea of right
(or left) action of a group on a set, as it is widely used in physical applications.
Since a groupoid is, in some sense, a generalization of a group, it should not be
surprising that the extended idea of groupoid action on a set can be conceived. This
extension, however, is far from trivial.

If G is a group and A is a set, we say that G acts on the right on A if for each
g ∈ G there is a map Rg : A→ A such that (i) Re(a)= a for all a ∈ A, where e is the
group identity; (ii) Rg ◦ Rh = Rhg for all g, h ∈ G. The order of the composition is
the essential difference between a right and a left action. When there is no room for
confusion, we also use the notation ag for Rg(a). With this notation, property (ii)
neatly reads a(hg)= (ah)g.

It is not difficult to show that each of the maps Rg is necessarily bijective. For
this reason, these maps are also called transformations. Moreover, the inverse
transformation is obtained as (Rg)

−1
= Rg−1 . If we select a point a in A and

follow its image ag = Rg(a) as g varies within G, we obtain a subset of A called
the orbit through a, denoted by aG. Orbits are disjoint subsets. The relation of
“belonging to the same orbit” is an equivalence relation. The orbits themselves are
the equivalence classes. An often useful concept is the quotient set, which is the
set whose elements are the orbits of A.

The action of G on A is said to be effective if the condition Rg(a)= a for every
a ∈ A implies g = e. The action is free if Rg(a)= a for some a ∈ A implies g = e.
Finally, the action is transitive if for every a, b ∈ A there exists g ∈ G such that
Rg(a)= b.

3The time dependence is often mediated by other variables which may obey additional evolution
(constitutive) equations.
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As a pertinent example of a right group action, consider the following right
action of the general linear group G = GL(3;R) on the set 9 described above. An
element of 9 is a possible constitutive equation ψ = ψ(F) for a material point.
Let P ∈ GL(3;R). We define

RP(ψ)= ψ(F P). (11)

Thus, the right action assigns to each constitutive equation another constitutive
equation that, in the parlance of continuum mechanics, differs from the original one
by the adoption of a different local reference. The orbit ψG, therefore, represents
all the constitutive equations related in this way. From the physical standpoint, ev-
ery orbit represents a different material, while the points in one orbit are different
manifestations of the same constitutive law in different reference configurations.
The symmetry group Gψ of a constitutive equation ψ is defined as the largest sub-
group of G that leaves ψ invariant. In other words,

G ∈ Gψ ⇐⇒ RG(ψ)= ψ. (12)

3.3.2. Groupoid actions. A (left) action of a groupoid α, β : Z → B on a set A
consists of two maps. The first map,

ρ : A→ B, (13)

is known as an anchor map, assumed to be surjective. To introduce the second map,
representing the action itself, we consider first the subset Z ∗ A of the Cartesian
product Z × A defined as

Z ∗ A = {(z, a) ∈ Z × A | ρ(a)= α(z)}. (14)

An action map U , given by

U : Z ∗ A→ A, (15)

must satisfy the following (rather expected) conditions:

(1) Consistency:

ρ(U (z, a))= β(z) ∀(z, a) ∈ Z ∗ A. (16)

(2) Composition:
U (yz, a)=U (y,U (z, a)) (17)

whenever the operations are defined.

(3) Unit:
U (idρ(a), a)= a ∀a ∈ A. (18)

These properties are schematically represented in Figure 2.
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A

B

ρ

Figure 2. Left action of a groupoid α, β : Z→ B on a set A.

3.4. The body-time material groupoids.

3.4.1. Action of ZV on C9 . In Section 2.2 we introduced the canonical groupoid ZD
subordinate to a distribution D defined as the collection of all possible nonsingular
linear maps between all the subspaces in the distribution. We apply this notion to
the case in which the manifold C is the body-time manifold and the distribution is
identified with the vertical distribution V . The groupoid ZV has a natural action on
the set C9 defined in Section 3.2. The anchor map is simply the trivial bundle pro-
jection in C9 . The action U (z, (c, ψ)) of an element z ∈ZV on the pair (c, ψ)∈ C9
such that α(z)= c is defined as

U (z, (c, ψ))= (β(z), RP(z)(ψ)), (19)

where R is the right group action defined in (11) and P(z) is the matrix associated
with the element z in the vertical groupoid ZV . Note the apparent disagreement
between the right character of the group action and the left action of the groupoid.

3.4.2. The material groupoid. A particular material response, as we have seen, is
a particular cross section σ of the product bundle C9 . Consider a subgroupoid W
of ZV . We can certainly restrict the action U to W . The constitutive section σ
may or may not be invariant under the action U of W . We define the material
groupoid of a given body-time manifold with constitutive response σ as the largest
subgroupoid W of ZV that leaves σ invariant under the action U . This definition
makes sense because, on the one hand, the disjoint subgroupoid of the unit maps
is always available (so that there is no danger that the material groupoid will be
empty) and, on the other hand, given two subgroupoids with the desired property,
the subgroupoid generated by their union also enjoys that property.

A graphical way to visualize the material groupoid consists of drawing an arrow
between each pair of points c1 and c2 in the body-time manifold C for every ma-
terial isomorphism P between c1 and c2. The collection of all arrows thus drawn
constitutes the material groupoid. The groupoid is transitive if all point pairs are
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arrowwise connected. The typical group of a transitive material groupoid is the
symmetry group of any one of the body points.

3.4.3. The material-type groupoid. Within the set 9 we can introduce an equiva-
lence relation ∼ as follows.

ψ1 ∼ ψ2 ⇐⇒ ∃H ∈ GL(3;R) | Gψ1 = HGψ2 H−1. (20)

In other words, two constitutive equations are ∼-equivalent if, and only if, their
respective symmetry groups are mutually conjugate. Define the quotient set

9∼ =9/∼. (21)

The elements of the quotient set are equivalence classes ψ∼. Physically, two con-
stitutive equations are in the same equivalence class if they represent the same type
of material (e.g., isotropic, transversely isotropic, orthotropic).

The groupoid ZV acts on C×9∼ in an obvious way. Moreover, the constitutive
section σ induces uniquely a section σ∼ : C→ C×9∼ via the map ∼: ψ→ ψ∼.
We define the material-type groupoid as the largest subgroupoid of ZV that leaves
the section σ∼ invariant.

As we have suggested for the case of the material groupoid, we may visualize
the material-type groupoid by drawing an arrow between each pair of points c1

and c2 in the body-time manifold C for every conjugation H between the symmetry
groups Gc1 and Gc2 . The collection of all arrows thus drawn constitutes the material-
type groupoid. Clearly, the material groupoid is a subgroupoid of the material-
type groupoid, since materially isomorphic points have conjugate symmetry groups.
The typical group of a transitive material-type groupoid is given by the normalizer
of the symmetry group of any of the body points.

3.5. Physical interpretation.

3.5.1. The body-time material groupoid. The terminology used to describe various
kinds of distant symmetries, relevant to, among other areas, the theories of contin-
uous distributions of defects and the theories of biological growth and remodeling,
is not completely standardized. We thus start by fixing a terminological scheme to
interpret the differential-geometric picture in physically meaningful terms.

In the introduction, we referred to the concepts of material isomorphism and uni-
formity as they pertain to the purely spatial (as opposed to temporal) component of
the body-time description. Two points a and b of a material body B are materially
isomorphic if there exists a nonsingular linear map P : TaB→ TbB such that their
respective constitutive functions, ψa(F) and ψb(F), are related by the identity

ψb(F)= ψa(F P) (22)
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for all deformation gradients F . Points a and b are, therefore, made of the same
material. Within this context, a local material symmetry G at point a ∈ B can
be regarded as a material endomorphism G : TaB → TaB. The collection of
symmetries at a forms a group Ga . If a and b are materially isomorphic, their
respective symmetry groups are conjugate. More specifically, if P is a material
isomorphism, then Gb = PGa P−1. Conversely, if a and b are materially isomorphic,
the cardinality of the set P of all possible material isomorphisms between a and b
is the same as the cardinality of the respective (conjugate) symmetry groups. In
fact, P can be generated from a given P according to the formula

P = PGa = Gb P = Gb PGa.

A body is called materially uniform if all of its points are materially isomorphic.
Since material isomorphism is an equivalence relation, a body is materially uniform
if and only if all its points are materially isomorphic to a fixed reference body point.

The temporal counterpart of uniformity is a special kind of material evolution,
whereby a material point remains materially isomorphic to a reference material
point with the passage of time. This special kind of material evolution is common
in the realm of biological tissues, with their natural tendency to adapt to their chang-
ing environments. A classical example is Wolff’s law of trabecular bone, whose
trabeculae are thought to change their orientations to follow the principal directions
of stress. The fact that the material remains materially isomorphic to its initial state
does not preclude the possibility of growth and resorption, whereby material of the
same kind is added or removed volumetrically to the material neighbourhood. But
material isomorphism does preclude the transformation of the underlying material
in terms of variation of its intrinsic material properties and chemical composition.
In a simplified model, we may imagine a constitutive response idealized as an
elastic spring with a characteristic rest length and a given stiffness constant. Mate-
rial isomorphism would imply that, while the rest length may change in time, the
stiffness constant must remain unchanged. We call this special type of material
evolution remodeling. Any other kind of evolution we call aging. We will later
identify a particular kind of aging as worthy of further attention.

If we consider a transitive body-time material groupoid, its physical meaning
is a body that is initially materially uniform and that evolves by pure remodeling
(with no aging). In particular, it remains always materially uniform. Classical
plastic evolution belongs to this material class and so does the model of tissue
growth pioneered in [Rodriguez et al. 1994].

Assume, on the other hand, that the material groupoid is only fibrewise transitive,
a concept introduced in Section 2.2. The meaning of this situation is that, while
the body is materially uniform at all times, there is a process of aging taking place
at all points at the same pace. In constitutive terms, this will be the case if the
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dependence of the constitutive equation ψ = ψ(F; t, X) is expressed explicitly in
terms of the observer time t , rather than mediated by some internal variable subject
to evolution conditions. In other words, the material degradation takes place by the
mere passage of time, without any coupling to other observable phenomena (such
as the state of stress).

Since the body-time manifold has been defined as a Cartesian product R×B,
we may exchange the role of the base and the typical fibre and consider instead the
product manifold B×R. In this product bundle, we have a natural horizontal dis-
tribution (Ehresmann connection) induced by the constant sections. The material
groupoid can now be regarded, in the terminology of Section 2.3, as a horizontal
groupoid. If this new material groupoid happens to be fibrewise transitive, we ob-
tain the representation of a body that, without necessarily being materially uniform,
evolves by pure remodeling, without aging. Notice that under these conditions if
the body is initially nonuniform, it will never attain uniformity.

3.5.2. The body-time material-type groupoid. We want to explore now the phys-
ical meaning of the material-type groupoid. Recall that the “arrows” of this groupoid
represent only conjugation maps between the material symmetry groups of the
source and target points. Put differently, the elements of this groupoid are not
sensitive to any constitutive property, except the symmetries of the constitutive law.
If the material-type groupoid is transitive, all that this implies is that the different
material points are of the same symmetry type (isotropic, say). For all we know,
part of the body may be made of cement and the rest of rubber. Moreover, as time
goes on, the cement may be undergoing a process of curing and change its elastic
properties. A functionally graded material obtained by varying the relative concen-
tration of the components of a mixture belongs to the same category, even if the
components undergo chemical reactions, as long as the symmetry type is preserved.

If the material-type groupoid is only fibrewise transitive, we have a phenome-
non of morphogenesis or symmetry breaking. In this instance, all the body points
undergo a change of symmetry type simultaneously. In solid materials, where
the collection of all possible symmetry groups is countable, this transition is, of
necessity, abrupt. In some cases of phase transition these changes may be directly
observable with the naked eye and be manifest as pattern formations. Reversing
the role of the base and the fibre manifolds, a fibrewise transitive material-type
groupoid represents a body with initially demarcated portions obeying different
symmetry types and remaining so with the passage of time.
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ELECTROMECHANICS OF POLARIZED LIPID BILAYERS

DAVID J. STEIGMANN AND ASHUTOSH AGRAWAL

A model for the electromechanics of lipid bilayers, accounting for flexoelec-
tricity, is obtained as the thin-film limit of the continuum electrodynamics of
nematic liquid crystals. A priori restrictions on the polarization field consis-
tent with minimum energy considerations effectively decouple the leading-order
membrane problem from the computation of the self field, yielding a substantial
simplification vis a vis the three-dimensional theory. Examples illustrate the
strong interplay between the electric field and membrane geometry.

1. Introduction

The idea that lipid bilayers can be regarded as thin liquid crystal films apparently
originated in the work of Helfrich [1973]. This point of view gave rise to an as-
sociated body of work that has been thoroughly documented in [Ou-Yang et al.
1999]. The liquid-crystal framework provides a clear conceptual foundation for
extensions of the basic purely mechanical theory to coupled-field problems. In the
present work, we use this foundation to develop an electromechanical theory of
lipid bilayers. This framework may be used to gain physical insight into various
phenomena. For example, lipid vesicles have been shown to deform in the presence
of applied electric fields [Winterhalter and Helfrich 1988; Kummrow and Helfrich
1991; Dimova et al. 2007; 2009; Vlahovska 2010]. The creation of nanopores
in lipid membranes by external electric fields is a standard technique — known as
electroporation — to deliver genes into cells [Neumann et al. 1982; Aihara and
Miyazaki 1998; Weaver 2000] and in some cancer treatments [Davalos et al. 2005;
Rubinsky et al. 2007]. The role of coupled electromechanical interactions is well
recognized in the context of cochlear outer hair cells [Brownell et al. 1985; Raphael
et al. 2000; Harland et al. 2015]. Electromechanical interactions also play a fun-
damental role in electrically active cells such as neurons. Further, experimental
studies have revealed that voltage-gated ion channels exhibit sensitivity to both
electrostatic and mechanical forces [Schmidt et al. 2012].
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Here we adapt the three-dimensional liquid crystal theory advanced in [de Gennes
and Prost 1992; Ericksen 1961; 1962; 1976; Virga 1994] to derive a two-dimensional
model for the response of electrically polarized lipid bilayers to applied electric
fields generated by a remote source. In this respect our approach differs substan-
tially from recent efforts directed at modeling electromechanical interactions in
lipid membranes [Gao et al. 2008; Mohammadi et al. 2014]. For definiteness and
for the sake of simplicity, we base our model on the general theory for nematics
[Virga 1994], incorporating modifications associated with the so-called flexoelec-
tric effect [Meyer 1969; de Gennes and Prost 1992].

In Section 2 we summarize those aspects of the basic three-dimensional theory
that are required for our purpose. This is based on an extension to liquid-crystal
theory of an expression for the potential energy of a polarized material, subject to
a remotely generated applied electric field regarded as an assigned function of po-
sition in the ambient space [Toupin 1956; Truesdell and Toupin 1960; Bustamante
et al. 2009; Dorfmann and Ogden 2014]. Insofar as electrical interactions are
concerned, we confine attention in this preliminary work to the effects of polariza-
tion and assume free charges to be absent. The relevant three-dimensional energy
is used, in Section 3, to derive the leading-order-in-thickness expression for the
energy of the two-dimensional model. The operative equilibrium equations and
edge conditions are derived from this via a variational procedure in Sections 4 and
5, respectively, and the theory is illustrated through numerical solution of several
examples involving axisymmetry in Section 6. We freely use the standard notation
of the classical differential geometry of surfaces. The text by Sokolnikoff [1964]
is recommended for mechanicians seeking a comprehensive treatment.

2. Energetics of three-dimensional liquid crystals in the presence of a
stationary applied field

Numerous variational formulations of electromechanical interactions in deformable
media are available in the literature. These have been extensively examined and
correlated in [Bustamante et al. 2009; Dorfmann and Ogden 2014], to which the
interested reader is referred for fuller expositions. There it is shown that Maxwell’s
equations and the equilibrium equations for a polarized medium in the presence of
an applied electric field that is fixed in space, in the absence of applied loads or
free electric charges, render stationary the energy functional

E =
∫

R

(
U − 1

2 es · p− ea · p
)

dv, (1)

where R is the volume currently occupied by the material in three-space, U is the
relevant energy density, p is the polarization per unit volume, es is the electric
self field generated by the polarized material, and ea is the applied electric field,
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assumed to be assigned as a smooth function in all of three-space, including R.
The net electric field is

e= es + ea. (2)

Further, the applied field is a fixed function of position y in the enveloping three-
space. Its variational derivative, associated with a fixed material point (a fixed lipid
molecule in the present context), is thus purely convective; i.e.,

ėa = (grad ea) ẏ, (3)

where grad is the (spatial) gradient with respect to y; and, here and henceforth,
superposed dots are used to denote variational — or Gateaux — derivatives. The
field ea is curl-free; accordingly, its gradient is symmetric: grad ea = (grad ea)

t .
The self field is also curl-free; it is obtained from

es =− grad Vs, (4)

where the self field potential Vs is given by [Kovetz 2000]

4πε0Vs( y)=
∫
∂R

p′ · n′

| y− y′|
da−

∫
R

div′ p′

| y− y′|
dv, (5)

in which ε0 is the free-space permittivity; n′ is the exterior unit normal to ∂R,
expressed as a function of the integration variable y′; p′ is likewise the polarization
in terms of y′; and div′ is the divergence with respect to y′. This is defined by
div p= tr(grad p), where tr( · ) is the trace.

The energy density U is a function of the polarization and appropriate deforma-
tion variables. In the conventional theory of electroelasticity the relevant deforma-
tion variable is the deformation gradient, the gradient of y = χ(x) with respect to
position x in some fixed reference configuration. Here χ( · ) is a field describing
the deformation of material points. In the present application to liquid crystals,
the relevant variables are a director field d( y)— describing the orientation of the
liquid crystal molecules — and its spatial gradient

D = grad d. (6)

We follow the conventional theory and impose |d( y)| = 1.
The electric field is given in terms of the polarization by the partial derivative

[Toupin 1956; Bustamante et al. 2009]

e=U p(d, D, p). (7)

In applications U is typically assumed to be a quadratic function of D. This re-
flects the notion that the length scale for spatial variations of the director is typically
much larger than the local length scale: the molecular length; the dimensionless
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gradient is then sufficiently small to justify the termination of the Taylor expansion
of U (d, · , p) at second order. Thus,

U = l(d, p)+ L(d, p) · D+ 1
2 D ·L(d, p)[D], (8)

in which l, L and L are scalar, second-order tensor and fourth-order tensor valued
functions, respectively, with L= Lt .

Guided by [Virga 1994], we adopt the specific forms

l(d, p)= 1
2χ⊥| p|

2
+

1
2χa( p · d)2, (9)

where χ⊥ and χa are the anisotropic dielectric constants, and

D ·L(d, p)[D]
= k1(div d)2+ k2(d · curl d)2+ k3|Dd|2+ (k2+ k4)[tr(D2)− (div d)2], (10)

in which the latter is independent of p, and k1−k4 are constants with 2k1 ≥ k2+k4,
k2 ≥ |k4| and k3 ≥ 0, in accordance with the presumed positive-definiteness of
L [Virga 1994]. The second expression is the Frank energy for nematic liquid
crystals.

To model the flexoelectric effect, we adopt Meyer’s proposal [1969] in a form
similar to that used by Ou-Yang et al. [1999]. Thus,

L(d, p) · D=− p · f (d, D), with f (d, D)= c1(div d)d+ c2 curl d× d, (11)

where c1 and c2 are the flexoelectric constants. The relationship (7) then furnishes
an expression for the electric field

e= χ⊥ p+χa( p · d)d− f (d, D). (12)

This coincides, in the specialization χa = χ⊥, with Equation (2.153) in [Ou-Yang
et al. 1999] in the case when the electric field vanishes.

In the absence of polarization (8) reduces precisely to the conventional liquid-
crystal energy. The stationarity of this energy is equivalent, under appropriate
regularity conditions, to the well-known equilibrium equations and natural bound-
ary conditions of liquid-crystal theory [de Gennes and Prost 1992; Ericksen 1976;
Virga 1994; Steigmann 2013].

Our objective in the present work is to derive the leading-order small thickness
limit of the energy (1). This limit is taken to be the energy of a polarized lipid
membrane. Stationarity conditions for the limit energy are then identified with the
equilibrium equations of a polarized lipid membrane in the presence of an applied
field generated by a remote source.

We have in mind a lipid bilayer constituting a membrane structure in a typical
animal cell. Because such a membrane is only one or two molecules across, its
thickness is on the order of the local length scale embodied in the constitutive
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response of the liquid crystal. Accordingly, this is the only relevant length scale
in the dimension reduction procedure. In contrast, in recent work on thin films
of nematic elastomers [Cesana et al. 2015], the local length scale is always much
smaller than the values of film thickness deemed to be relevant. The local scale
therefore vanishes with thickness, leading to a reduced theory in which the director
gradient ultimately plays no role. Of course it may be argued that reliance on three-
dimensional liquid crystal theory to effect a dimension reduction procedure may
not be justified if the thickness is comparable to molecular dimensions. In this
instance our procedure nevertheless furnishes guidance for the construction of a
direct two-dimensional field theory.

3. Liquid crystal films

In the purely mechanical theory of thin liquid crystal films the leading-order strain
energy density W is associated with the limit [Steigmann 2013]

lim
t→0

t−1
∫

R
U dv =

∫
ω

W da, (13)

where ω is the interior midsurface of the film, t is the (uniform) thickness of the
film, and

W =U|ω (14)

is the leading-order energy density on ω. This follows by using the volume measure
dv = µ dςda [Naghdi 1972], where ς is a linear coordinate in the direction of the
unit surface normal n, regarded as the restriction of d to ω, and µ= 1−2ςH+ς2K ,
where H and K respectively are the mean and Gaussian curvatures of ω. In effect,
then, we suppress misalignment of the lipid molecules with the surface normal —
the so-called lipid tilt — as in the classical Canham–Helfrich theory. This is ap-
propriate if the surface density of the lipids is sufficiently high. Generalizations to
accommodate tilt are described in [Steigmann 2013]. We have [Steigmann 2013]

n= d |ω and D|ω =∇n+ η⊗ n, (15)

where ∇( · ) is the (two-dimensional) surface gradient on ω and η is the restriction
to ω of the derivative of d in the direction of d. Accordingly,

n · η = 0 on ω. (16)

The extension to the case of polarizable films in the presence of an applied field
is immediate. Thus,

lim
t→0

t−1E = E, (17)

with
E =

∫
ω

W da, (18)
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where W is now given by

W =
(
U − 1

2 es · p− ea · p
)
|ω
. (19)

Remark 1. Quantum mechanical considerations and molecular dynamics simula-
tions in respect of polarized lipid membranes [Seelig 1978; Frischleder and Peinel
1982; Warshaviak et al. 2011] indicate that the polarization vector is essentially
tangential to the film surface. In this case an estimate based on (5) — derived
in the mathematically identical context of magnetostatics [Barham et al. 2012] —
indicates that the magnitude |es | of the self field is of order O(t ln t); for small t
this is negligible compared to unity. It follows that the leading-order energy, i.e.,
the limit of E/t as t→ 0, is given by (18) but with W simplified to

W =U|ω− ea(r) ·π , (20)

where π = p|ω, r = y|ω is the position field on ω, and

n ·π = 0 on ω. (21)

Remark 2. The estimate on the self field effectively decouples its computation
from the problem of rendering E stationary, implying, in particular, that it may be
evaluated a posteriori. This feature affords a major simplification of the theory for
thin films vis a vis that for bulk continua. Further, in the analogous magnetostatic
setting, the condition (21), with polarization replaced by magnetization, is known
to furnish energetically optimal states of magnetization in thin films [Gioia and
James 1997]. Thus our approach via dimension reduction provides justification
for the suppression of the self field, in the leading order two-dimensional model,
under conditions in which the polarization field is tangential to the membrane. In
contrast, in [Gao et al. 2008; Mohammadi et al. 2014] no analysis is offered to
justify the suppression of the self field.

The self field at points in space remote from the membrane may be evaluated a
posteriori by applying the divergence theorem to (5), for points y not in the closure
of R. This furnishes

4πε0Vs( y)=
∫

R
p′ ·

y− y′

| y− y′|3
dv = t

[ ∫
ω

π ·
y− r
| y− r|3

da+ o(t)/t
]
, (22)

in which r is the membrane position field. The self field then follows by computing
the gradient with respect to y (cf. (4)), yielding

4πε0 lim
t→0

(t−1es)=

∫
ω

Gπ da, (23)

where
G = 3
| y−r|5

( y− r)⊗ ( y− r)− 1
| y−r|3

I . (24)
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The leading-order self field in space is thus delivered by a quadrature over ω after
membrane shape has been determined.

In the expression (20) we have

U|ω =U (n,−b+ η⊗ n,π), (25)

where
b=−∇n (26)

is the (symmetric) curvature tensor on ω; at any particular point of ω this maps the
tangent plane Tω to itself.

The explicit form used here follows from (8)–(11). For example, the restriction
to ω of the function f (d, D) in (11) is given by

f |ω = c1(n · η− 2H)n+ c2η, (27)

where
H = 1

2 tr b (28)

is the mean curvature of ω. This expression may be simplified by imposing (16)
but we refrain from doing so for reasons to be discussed later. Here use has been
made of (15) and the formula curl d× d = Dd, which follows from the fact that d
is a field of unit vectors [Virga 1994].

To reduce (10) we first introduce a coordinate parametrization r(θα) of ω. This
induces the natural tangent basis aα = r ,α ∈ Tω and associated dual basis aα ∈ Tω,
where ( · ),α = ∂( · )/∂θα . Then, the restriction of curl d to ω is [Steigmann 2013]

(curl d)|ω = aα × n,α + n× η, (29)

where aα × n,α = −bαβaα × aβ , with bαβ = aα · baβ , vanishes by virtue of the
symmetry of b; accordingly, (d · curl d)|ω = 0.

Using (26) with bn= 0 we also derive

tr(D2)|ω = tr(b2)+ (n · η)2. (30)

Applying the Cayley–Hamilton formula

b2
= 2H b+ K 1, (31)

where
K = det b (32)

is the Gaussian curvature of ω and 1 is the identity transformation on Tω, we then
obtain

[tr(D2)− (div d)2]|ω = 2H n · η− 2K , (33)

which again may be simplified by imposing (16).
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Remark 3. It is well known [Virga 1994] that the combination tr(D2)− (div d)2

is a null Lagrangian in the three-dimensional theory. It is also well known that
the Gaussian curvature is a null Lagrangian in the surface theory; in particular, the
total curvature of a closed surface is fixed by its genus and thus contributes only
a disposable constant to the energy if the latter is invariant, as we assume in the
present work. Accordingly, (16) implies that the same combination of terms also
furnishes a null Lagrangian in the two-dimensional theory.

Altogether, the surface energy reduces to (cf. (8))

U|ω = 1
2χ⊥|π |

2
+

1
2χa(π · n)2− c1(n · η− 2H)n ·π − c2η ·π

+
1
2 k1(n · η− 2H)2+ 1

2 k3|η|
2
+ (k2+ k4)(H n · η− K ), (34)

yielding the net energy density in the form

W = k H 2
+ k̄K + 1

2 k3|η|
2
+

1
2χ⊥|π |

2
−c2η ·π+ ϕ̃n ·π+ ψ̃n ·η− ea(r) ·π , (35)

where
k = 2k1, k̄ =−(k2+ k4) (36)

and ϕ̃, ψ̃ are certain scalars which will prove to be irrelevant. Accordingly, W may
be regarded as a function of the list

{H, K , r, n, η,π}, (37)

subject to the constraints (16) and (21), in which it is understood that H , K and
n are determined by the parametrization r(θα). Henceforth we require the dou-
blet {θα} to maintain a fixed correspondence with a material point; i.e., a lipid
molecule. Thus the coordinates are convected with the lipids in the course of any
configurational variation.

4. Variational problem and equilibrium equations

It is convenient to adopt an extended variational formulation in which the con-
straints are relaxed. In this formulation we do not impose (16) or (21), but instead
consider the auxiliary energy

E∗ =
∫
�

[J W + λ(J − 1)+ϕn ·π +ψn · η] dA, (38)

where W is given by (35), with r , η and π regarded as independent fields, and where
ϕ and ψ are Lagrange-multiplier fields associated with the constraints (16) and (21).
Here � is the preimage of ω in a fixed reference placement, with da = J dA. In
terms of the convected-coordinate surface parametrization we have J =

√
a/A,

where a = det(aαβ), aαβ = aα · aβ is the surface metric, and A is the value of a
on �. Further, λ is a Lagrange-multiplier field associated with the constraint that
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the map from any configuration to another preserves local surface area; and, hence,
that J = 1. This restriction is appropriate in the absence of lipid distension, as in the
classical Canham–Helfrich theory; the bulk incompressibility of the liquid crystal
then implies that area is preserved locally [Steigmann 2013]. Generalizations to
account for distension in a purely mechanical setting are discussed in [Steigmann
2013; Kim and Steigmann 2015].

We observe that ϕ̃ and ψ̃ in (35) may be absorbed into the Lagrange multipliers
and conclude that no generality is lost if (35) is replaced by

W =U − ea(r) ·π (39)

in (38), where U is now given by

U = k H 2
+ k̄K + 1

2 k3|η|
2
+

1
2χ⊥|π |

2
− c2η ·π . (40)

We note that the quadratic form involving η and π is positive definite if and only
if k3 > 0, χ⊥ > 0 and c2

2 < k3χ⊥.
The expression (38) reduces to the actual energy when the constraints (16) and

(21) are operative, and is well defined when they are not; it therefore furnishes
an extension of the actual energy to arbitrary (unconstrained) states. Stationar-
ity with respect to the multipliers simply returns the constraints as the relevant
Euler–Lagrange equations. Moreover, stationarity of E∗ with respect to arbitrary
variations implies stationarity with respect to constrained variations in particular,
and hence stationarity of the actual energy E . We use this observation to derive
equilibrium equations for the actual constrained system. We note that while the
replacement of E by E∗ is permissible for the purpose of extracting stationarity
(i.e., equilibrium) conditions, it may not be used to study energy minimizers. This is
a consequence of the fact that inf E∗≤ inf E , this following trivially from constraint
relaxation.

The variational derivative of the extended energy, modulo the variations of the
Lagrange multipliers, is

Ė∗ =
∫
ω

[
Ẇ + (W + λ) J̇/J +ϕ(ṅ ·π + n · π̇)+ψ(ṅ · η+ n · η̇)

]
da, (41)

where ϕ=ϕ/J and ψ =ψ/J , and it is understood, having suppressed the variations
of the multipliers, that all terms in this expression are to be evaluated, post facto,
at states satisfying the constraints (16) and (21). In the presence of a net lateral
pressure p in the direction of the surface normal n, the virtual-work statement is
given by Agrawal and Steigmann [2009] as

Ė∗ =
∫
ω

pn · ṙ da+
∫
∂ω

χ ds, (42)
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where χ is the density of edge power, the form of which will be made explicit
below. We remark that because of the definition (14), the energy in this expres-
sion is actually the energy divided by the thickness t ; the dimensions of p and χ
are affected accordingly. Thus, for example, the actual pressure is tp, and with
p = O(1) this is of order t .

We consider the consequences of (42) with respect to variations of each variable
in turn. The simplest are those associated with the variations π̇ and η̇. They are
given respectively by

ea =Uπ +ϕn (43)

and
Uη+ψn= 0, (44)

(cf. (7) and (15)), with

Uπ = χ⊥π − c2η and Uη = k3η− c2π . (45)

Accordingly, with the constraints (16) and (21) in effect it follows that

ψ = 0 and η = (c2/k3)π; (46)

and that
ϕ = n · ea and Uπ = Pea, (47)

where P= I − n⊗ n is the projection onto Tω, with I the identity for 3-space. We
note that P= 1, the identity on Tω. Then, from (45)1,

Dπ = Pea(r), where D = χ⊥− c2
2/k3, (48)

which furnishes the polarization uniquely in terms of the surface parametrization,
provided that D 6= 0 and the applied field is assigned as a function in space. When
χ⊥ > 0, the sign of D is controlled by the strength of the flexoelectric effect; thus
D is positive or negative according as |c2| is small or large, respectively. These
alternatives correspond to the relevant quadratic form in the energy being positive
definite or indefinite, respectively.

These results imply that the equilibrium value of the energy (40) may be re-
garded as a function of H , K and π ; on combining (46) and (48), the explicit
expression is found to be

U = k H 2
+ k̄K + 1

2 D|π |2. (49)

Necessary conditions for minimum energy states in the absence of polarization,
derived in [Agrawal and Steigmann 2008], require k > 0 but do not impose any
restriction on k̄.



ELECTROMECHANICS OF POLARIZED LIPID BILAYERS 41

With the foregoing in effect, (41) and (42) furnish the residual virtual-work
statement∫

ω

[
Ẇ + (W + λ) J̇/J +ϕπ · ṅ

]
da =

∫
ω

pn · ṙ da+
∫
∂ω

χ ds, (50)

in which all variations are induced by the virtual velocity

u = ṙ (51)

with π̇ = 0. In particular [Steigmann 2013],

J̇/J = aα · u,α (52)
and

ṅ= εβαaβ × u,α − ( J̇/J )n, (53)

where εβα is the contravariant Levi-Civita permutation tensor (εβα = eβα/
√

a, with
e12
=−e21

= 1 and e11
= e22

= 0); and

Ẇ = U̇ − ėa(r) ·π , (54)
with

ėa = (grad ea)|ω u and U̇ =UH Ḣ +UK K̇ , (55)

in which we have invoked Uη = 0 (cf. (44) and (46)1); and, from (49),

UH = 2k H and UK = k̄. (56)

Expressions for the variations Ḣ and K̇ are known [Steigmann et al. 2003] and
will be recalled in the next subsection. To facilitate their representation we use the
decomposition

u = uαaα +wn, (57)

where uα and w respectively are the tangential and normal variations of the position
field.

4.1. Tangential variations. For tangential variations we have w = 0 and

J̇/J = uα
;α, Ḣ = uαH,α and K̇ = uαK,α (58)

[Steigmann et al. 2003]. Thus,

(W + λ) J̇/J = [(W + λ)uα];α − uα(W + λ),α, (59)
where

W,α =U,α − aα · (grad ea)|ωπ − ea ·π ,α; (60)

whereas, with π̇ = 0,

Ẇ = uα[UH H,α +UK K,α − aα · (grad ea)|ωπ ]. (61)
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We thus reach

Ẇ + (W + λ) J̇/J

= [(W + λ)uα];α + uα(UH H,α +UK K,α −U,α − λ,α + ea ·π ,α). (62)

Here we use the fact that Uη vanishes in equilibrium, together with (48) and the
symmetry of P, to derive

U,α =UH H,α +UK K,α + ea ·Pπ ,α, (63)

which furnishes

Ẇ + (W + λ) J̇/J = [(W + λ)uα];α + uα[(ea · n)(n ·π ,α)− λ,α]. (64)

To reduce the term in (50) involving ϕ, we use (53) to obtain [Steigmann 2013]

ṅ= εβαbλαuλaβ × n, (65)

where εβλ is the covariant permutation tensor, together with εβαεβλ = δαλ (the
Kronecker delta). This and

n× aβ = εβγ aγ (66)

yield
ṅ=−bλαuλaα, (67)

which combines with (47) to deliver

ϕπ · ṅ=−(n · ea)bαβπβuα. (68)

On the other hand, the constraint (21) implies that

π ,α = π
β

;αaβ + bαβπβn, (69)

where ( · );α is the covariant derivative on ω. Accordingly,

Ẇ + (W + λ) J̇/J +ϕπ · ṅ= [(W + λ)uα];α − uαλ,α. (70)

Using Stokes’ theorem, the surface integral over ω of the first term on the right-hand
side may be represented as an integral over the edge ∂ω. Remarkably, the Euler
equations emerging from (42) under tangential variations are then given simply
by λ,α = 0; i.e.,

λ is constant on ω, (71)

as in the classical Canham–Helfrich theory for uniform lipid bilayers in the absence
of electromagnetic effects [Steigmann et al. 2003; Dharmavaram and Healey 2015].
Edge conditions are discussed below.
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4.2. Normal variations. In this case u = wn, yielding [Steigmann et al. 2003]

J̇/J =−2Hw,

2Ḣ =1w+w(4H 2
− 2K ),

K̇ = 2K Hw+ (b̃αβw,α);β,

(72)

where, for any scalar field ξ ,

1ξ =
1
√

a

(√
aaαβξ,β

)
,α

(73)

is the surface Laplacian in which aαβ is the dual metric.
Recalling that Uη vanishes at equilibrium and noting that π is fixed in the present

class of variations, after a lengthy calculation presented explicitly in [Steigmann
et al. 2003] we reach

Ẇ + (W + λ) J̇/J = w
[
1
( 1

2UH
)
+ (UK );αβ b̃αβ +UH (2H 2

− K )

+ 2H(KUK −W )− 2Hλ− n · (grad ea)|ωπ
]

+
[(1

2UH aαβ +UK b̃αβ
)
w,α

]
;β

−
{[
(UH ),βaαβ + (UK ),β b̃αβ

]
w
}
;α
. (74)

Here ( · );αβ is the second covariant derivative on ω and

b̃= 2H1− b (75)

is the cofactor of the curvature tensor.
Further, (53) now gives [Steigmann 2013]

ṅ=−aαw,α, (76)
yielding

ϕπ · ṅ= w(ϕπα);α − (ϕπαw);α. (77)

Combining this with (41) and writing the integrals of the divergences as bound-
ary integrals, from (42) the relevant Euler–Lagrange equation is found to be

1
( 1

2UH
)
+ (UK );αβ b̃αβ +UH (2H 2

− K )

+ 2H(π · ea + KUK −U )− 2Hλ+ (ϕπα);α
= p+ n · (grad ea)|ωπ , (78)

where
(ϕπα);α =

1
√

a

(√
aϕπα

)
,α
. (79)

This generalizes the well-known shape equation of the conventional theory [Ou-
Yang et al. 1999; Agrawal and Steigmann 2009]. For the particular energy given
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by (49) it reduces to

k[1H + 2H(H 2
− K )] − D|π |2 H + 2H(π · ea − λ)+ (ϕπ

α);α

= p+ n · (grad ea)|ωπ , (80)

with ϕ = n · ea . This may be simplified by using (47) and (48) to reach

Dπ · ea = Pea · ea = |Pea|
2
= |ea|

2
−ϕ2. (81)

Then,
2Hπ · ea − D|π |2 H = D−1 H(|ea|

2
−ϕ2). (82)

5. Edge conditions

With (71) and (78) satisfied the residual virtual-work statement (42) is∫
∂ω

χ ds = Bt + Bn, (83)

with

Bt =

∫
∂ω

(W + λ)uανα ds (84)

and

Bn =

∫
∂ω

( 1
2UH aαβ +UK b̃αβ

)
νβw,α ds

−

∫
∂ω

[ 1
2(UH ),βaαβ + (UK ),β b̃αβ +ϕπα

]
ναw ds. (85)

The part Bn of the boundary working given above is exactly as in [Agrawal and
Steigmann 2009]. The part Bt may be reduced to a more convenient form by using
uα = u · aα with aα = ναν+ τατ , where τ = n× ν is the unit tangent to ∂ω. This
satisfies τ = d r(θα(s))/ds = ταaα, where τα = dθα/ds. Thus,

uα = ναu · ν+ ταu · τ , (86)

yielding

Bt =

∫
∂ω

(W + λ)ν · u ds. (87)

For smooth edges the foregoing may be combined with Bn to reduce the edge-
power density to the compact form [Agrawal and Steigmann 2009]

χ = f · u−Mτ ·ω, (88)

where ω is the variation of the surface orientation (ṅ= ω× n),

M = 1
2UH + κτUK (89)
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is the bending couple per unit length on ∂ω (divided by t in accordance with the
remarks following (42)),

f = Fνν+ Fττ + Fnn (90)

and is the edge traction (force per unit length, divided by t) on ∂ω, with

Fν =W + λ− κνM, Fτ =−τM and

Fn = (τUK ),s −
( 1

2UH
)
,ν
− (UK ),β b̃αβνα −ϕπανα. (91)

Here ( · ),ν = να( · ),α and ( · ),s = τα( · ),α = d( · )/ds are the normal and tangential
derivatives on the boundary.

Further,
τ = bαβτανβ (92)

is the twist of the surface ω on the ν, τ -axes, whereas

κν = bαβνανβ and κτ = bαβτατβ, (93)

respectively, are the normal curvatures of ω in the directions of ν and τ .
For the energy defined by (39) and (49) the bending moment and edge forces

are
M = k H + k̄τ (94)

and
Fν = k H 2

+ k̄K + 1
2 D|π |2− ea ·π + λ− κνM,

Fτ =−τM and Fn = k̄τ,s − k H,ν −ϕπανα. (95)

The force and moment are assigned on parts of the boundary that are complemen-
tary with respect to ∂ω, respectively, to those parts where position r and surface
orientation n are assigned.

6. Examples: axisymmetric states

6.1. Uniform applied field. We assume the length scale for the spatial variation of
the applied field to be much larger than that of the overall dimensions of the lipid
membrane, so that the applied field in the vicinity of the membrane is sensibly
constant; we take

ea = E k, (96)

with E constant and k a fixed unit vector.
We seek an axisymmetric solution in the class of closed surfaces of revolu-

tion with the axis of symmetry parallel to the applied field. This is parametrized
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by meridianal arclength s, measured from the north pole, and azimuthal angle
θ ∈ [0, 2π). Thus,

r(s, θ)= r(s)er (θ)+ z(s)k, (97)

where r(s) is the radius from the axis of symmetry, z(s) is the elevation above a
base plane and {er , eθ , k}, with eθ = k× er , is the usual polar orthonormal basis.
Meridians and parallels of latitude are the curves on which θ and s, respectively,
are constant. Because s measures arclength along meridians, we have

(r ′)2+ (z′)2 = 1, (98)

where ( · )′ = d( · )/ds; therefore there is ψ(s) such that

r ′(s)= cosψ and z′(s)= sinψ. (99)

Proceeding as in [Agrawal and Steigmann 2009] we have

ν =− cosψer − sinψk, τ =−eθ , n= cosψk− sinψer , (100)

and
κν = ψ

′, κτ = r−1 sinψ, τ = 0. (101)

The sum of the normal curvatures is twice the mean curvature H(s); hence the
differential equation

rψ ′ = 2r H − sinψ. (102)

Their product yields the Gaussian curvature K (s); thus,

K = H 2
− (H − r−1 sinψ)2. (103)

Following the procedure outlined in Section 4.1 of [Agrawal and Steigmann 2009]
and noting that the spatial gradient of ea vanishes, with some labor we reduce the
shape equation (80) to

L ′ = r
{

p/k+ (2λ/k)H − (E2/Dk)[H(1+ cos2 ψ)−ψ ′ sin2 ψ]

− 2H(H − r−1 sinψ)2
}
, (104)

with
H ′ = r−1L . (105)

We omit the details of the straightforward but lengthy derivation. The system to
be solved thus consists of (99), (102), (104) and (105), for the functions r , z, ψ ,
H and L . To render the number of differential equations consistent with the total
number of side conditions, we append (cf. (71))

λ′ = 0. (106)
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Consider the equilibrium of a subsurface ω̃ ⊂ ω containing the pole, bounded
by a parallel of latitude defined by s = s̃, where s measures meridianal arclength
from the pole. The force balance (modulo the multiplicative factor t−1) is∫

ω̃

[pn+ (grad ea)|ωπ ] da+
∫
∂ω̃

f du+ F k = 0, (107)

where u = r(s̃)θ measures arclength around the perimeter of the parallel, f is
the force per unit length exerted on ω̃ by the part ω \ ω̃ of the membrane, and F
is a point load acting at the pole and directed along the symmetry axis. Because
parallels of latitude are lines of curvature on the membrane, the twist τ vanishes
on ∂ω̃ and (cf. (90) and (101)3)

f = Fν ν̃+ Fnn, (108)

where ν̃ is the exterior unit normal to ω̃ (the opposite of ν in (100)1) and Fν , Fn

are defined in (91). Thus,

f = (Fν cosψ − Fn sinψ)er + (Fν sinψ + Fn cosψ)k, (109)

and the periodicity of er (θ) yields∫
∂ω̃

f du = 2πr(s̃)(Fν sinψ + Fn cosψ)k. (110)

The presumed boundedness of the integrand of the first term in (107), together with
the conditions

r(0)= 0, ψ(0)= 0 (111)

at the pole, imply that
F/2π + lim

s̃→0
(r Fn)= 0. (112)

According to (48), the polarization at the pole is proportional to the projection of
the applied field onto the plane with unit normal k. This vanishes by virtue of (96),
and (112) reduces to

F/2π + k lim
s̃→0

(r H ′)= 0, yielding L(0)=−F/2πk. (113)

A similar condition applies at the opposite pole of the membrane.
To solve the equations it is convenient to convert the independent variable from

the meridianal arclength s to the surface area a(s) of the sector [0, s], defined by

a(s)= 2π
∫ s

0
r(t) dt. (114)

We have a′(s) = 2πr(s), which is positive on the domain, implying that a and
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s are in one-to-one correspondence and hence that the former may replace the
latter as the independent variable. The constraint on surface area is then enforced
simply by integrating the equations over the domain [0, A], where A is the assigned
membrane area. The conversion of the equations is discussed in detail in [Agrawal
and Steigmann 2009] and thus not presented here. To treat the equations numer-
ically we adopt an assigned length scale R, say, which we take to be the radius
of a spherical reference vesicle. This is equilibrated in the absence of pressure
and applied electric field, provided that the associated value of lambda vanishes.
This radius and the modulus k are the parameters used to nondimensionalize the
equations. The electric field enters the resulting system via the combination

E = E2 R2/Dk, (115)

which is positive if the flexoelectric effect is weak, and negative if it is strong.
Figure 1 depicts membrane shapes obtained using the MATLAB boundary value

problem solver applied to the foregoing differential equations. The boundary con-
ditions are: zero radius and angle ψ , and vanishing point load, at the north pole;
and zero radius and elevation, with ψ =−π , at the south pole. The reaction force
at the south pole is given a posteriori by an appropriate adjustment to (120), if
desired, and we impose zero lateral pressure. The effect of flexoelectricity at a
given field strength manifests itself as a vertical elongation or compression of the
membrane along the field direction, corresponding respectively to weak or strong
flexoelectricity.
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−1.5 −1 −0.5 0
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Figure 1. Vesicle subjected to uniform electric field. Black curve:
original spherical vesicle. Blue curve: vesicle subjected to E = 2.5.
Magenta solid curve: vesicle subjected to E =−2.5.



ELECTROMECHANICS OF POLARIZED LIPID BILAYERS 49

6.2. Remote point charge. We model the response of the membrane to a remote
point charge located on the axis of symmetry, situated at the position

yc = zck. (116)

The associated electric potential and field are

Va( y)= E
4πε0| y− yc|

and ea( y)=− grad Va =
E

4πε0| y− yc|
2 u( y), (117)

respectively, where E is the charge, ε0 is the free-space permittivity, and

u( y)= ( y− yc)/| y− yc|. (118)

The induced polarization is given by

Dπ = ea −ϕn, (119)
where

ϕ = n · ea =
E

4πε0

[
(z− zc) cosψ − r sinψ

]
/
[
r2
+ (z− zc)

2]3/2. (120)

Thus,
π = δ(cosψer + sinψk), (121)

with
δ =

E
4πε0 D

[
r cosψ + (z− zc) sinψ

]
/
[
r2
+ (z− zc)

2]3/2. (122)

This is used in (80), in the combination

(ϕπα);α =
1
r (rϕδ)

′. (123)

From (116)2 we derive

4πε0
E

grad ea|ω =
1

|r− yc|
3 I − 3

|r− yc|
5 (r − yc)⊗ (r − yc), (124)

and with a bit of effort we then obtain the loading term

n · (grad ea|ω)π =
−3E

4πε0|r− yc|
5 [n · (r − yc)][π · (r − yc)], (125)

with
n · (r − yc)= (z− zc) cosψ − r sinψ,

π · (r − yc)= δ[r cosψ + (z− zc) sinψ].
(126)

We substitute these results into the shape equation (80), obtaining

L ′ = r
{
[p+ n · (grad ea)|ωπ −

1
r (rϕδ)

′
]/k

+ (2λ/k)H − D−1 H(|ea|
2
−ϕ2)− 2H(H − r−1 sinψ)2

}
. (127)

Further, the condition (113)2, connecting L to the point load at a pole, remains
valid in the present circumstances. The equations are nondimensionalized as before.
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In this case the charge intensity enters the resulting system in the combination

E =
( E

4πε0

)2
/Dk, (128)

the sign of which depends on the strength of the flexoelectric effect, as before.
We present two examples. In the first the spherical vesicle of the previous exam-

ple is subjected to a point charge located at the dimensionless position z̄c =−0.75
below the membrane. The boundary conditions are unchanged, the pressure van-
ishes, and we consider only the case of weak flexoelectricity (E > 0). The point
charge is seen to attract the membrane against the support reaction at the south
pole. Figure 2 depicts the associated membrane equilibria.

The second example concerns a flat disc acted upon by a point charge at position
z̄c =−0.50, again situated below the membrane. This is equilibrated at vanishing
charge and pressure. The areal incompressibility constraint is still operative, but
here, simply for the sake of illustration, we solve the problem on the dimensionless
arclength interval s/R ∈ [0, 0.5], with R as in the previous examples. Accordingly,
as the membrane deforms, the model accommodates areal incompressibility im-
plicitly via recruitment of lipids through the boundary, so that the computational
domain does not correspond in this instance to a fixed set of lipids. The boundary
conditions are: zero radius, angle and point load at the pole (i.e., at s/R = 0); and
zero elevation and angle at the remote edge. We impose zero pressure and take the
Lagrange multiplier λ to be zero everywhere. The latter condition renders (106)
redundant, and gives rise to a state-dependent force Fν and moment M (cf. (94)
and (95)1) at the edge of the (nonmaterial) domain.
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Figure 2. Effect of a point charge on the shape of a vesicle. Black
curve: original spherical vesicle. Blue curve: vesicle subjected to
E = 1.75. Magenta curve: vesicle subjected to E = 2.08.
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Figure 3. A flat patch of membrane with a nearby point charge.
At E = 0.5 there is an instability. The patch goes from the green
curve to the magenta curve. On increasing E further, the patch
begins to flatten out. The maximum E used is 0.83.

Figures 3 and 4 depict a sequence of predicted shapes arising in response to
an increasing sequence of charge intensities in the case of weak flexoelectricity
(E > 0). At low values of the charge intensity the membrane is attracted to the
charge, as in the previous example. We observe a sudden transition, at E = 0.50,
from a slightly curved membrane to a strongly curved one. This trend, as indicated
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Figure 4. A flat patch of membrane with a nearby point charge.
The arrow indicates the direction of increasing E . The innermost
shape corresponds to E = 2.0 and the outermost shape corresponds
to E = 2.5.
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by the arrows in Figure 3, is reversed upon a further increase of the charge intensity,
yielding ever flatter membranes, up to the value E = 0.83 (Figure 3).

We are unable to find equilibria for E ∈ (0.83, 2.0) and thus offer the conjec-
ture that no axisymmetric equilibria exist for charges in this interval. On further
increase of the charge, however, we find the equilibria displayed in Figure 4, in
which the arrow again indicates the trend under increasing charge intensity. These
results support a conjecture to the effect that equilibria associated with the disjoint
intervals of charge intensity are connected by a dynamic transition. On the sec-
ond branch of equilibria, the membranes have formed a sequence of buds with
ever-narrowing necks, situated, remarkably, above the initial disc shape, of a kind
reminiscent of those observed in the process of endocytosis. This suggests that
important biological processes such as endocytosis may be controlled, to some de-
gree, by the action of suitable electric fields. We find the shapes displayed in these
figures to be quite robust under shape perturbations in the setting of MATLAB,
but we have not analyzed their stability. To study stability one should work with
simulations carried out on a fixed material domain; i.e., on a patch of fixed area.

7. Conclusions

In this work, we formulate a generalized electromechanical theory of lipid mem-
branes systematically from the three-dimensional liquid crystal theory. We de-
rive the Euler–Lagrange equations and edge conditions required to solve boundary
value problems in a coupled electromechanical setting. In contrast to earlier studies,
we find that the lipid dipoles are primarily oriented in the tangent plane, as in the
analogous magnetostatic setting. This has the effect of eliminating the self field
from the leading-order two-dimensional model, and yields the important simplifica-
tion that the self field can be computed a posteriori. Further, it provides justification
for the widespread practice of suppressing the self field on an ad hoc basis. We also
find that a spatially varying electric field does not lead to a spatial variation of the
Lagrange multiplier associated with areal incompressibility. Numerical examples
highlight the strong interplay between electric fields and membrane geometry.
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ORTHOGONAL POLYNOMIALS AND RIESZ BASES
APPLIED TO THE SOLUTION OF LOVE’S EQUATION

PIERLUIGI VELLUCCI AND ALBERTO MARIA BERSANI

In this paper we reinvestigate the structure of the solution of a well-known Love’s
problem, related to the electrostatic field generated by two circular coaxial con-
ducting disks, in terms of orthogonal polynomial expansions, enlightening the
role of the recently introduced class of the Lucas–Lehmer polynomials. More-
over we show that the solution can be expanded more conveniently with respect
to a Riesz basis obtained starting from Chebyshev polynomials.

1. Introduction

In 1949, E. R. Love [1949] considered the electrostatic field generated by two
identical circular coaxial conducting disks at equal, and at equal and opposite,
potentials, the potential at infinity being taken equal to zero. He established a
celebrated expression for the potential, involving the solution of an integral equa-
tion of well-known type, much simpler than that considered by other authors in
previous works.

Love’s integral equation is a Fredholm equation of the second kind. It has found
applications in several applied physics fields such as polymer structures, aerody-
namics, fracture mechanics, hydrodynamics, and elasticity engineering. Recently,
a polynomial expansion scheme was proposed by M. Agida and A. S. Kumar [2010]
as an analytical method for solving Love’s integral equation in the case of a rational
kernel. Their study is concerned with the calculation of the normalized field created
conjointly by two similar plates of radius R, separated by a distance k R, where k is
a positive real parameter, and at equal or opposite potential, with zero potential at
infinity; the solution of this problem solves a Love’s second kind integral equation;
see also [Love 1990; Ren et al. 1999].

We propose two different approaches to this problem. In Section 2, starting
from a classical technique, based on the expansion of the solution in orthogonal
polynomials, we employ a class of polynomials introduced in [Vellucci and Bersani
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2016], in order to solve a modified version of the original Love’s equation. In
Section 3, we recall a work by M. Norgren and B. L. G. Jonsson [2009], and we
show that their results are still valid, expanding the solution of Love’s integral
equation with respect to a nonharmonic Fourier cosine series, which is a particular
case of a Riesz basis [Sun and Zhou 1999].

For literature related to the numerical solutions of singular integral equations of
the deterministic type, we refer to the fundamental book by L. Fox and I. B. Parker
[1968], where different analytical methods for the solution of random integral equa-
tions were investigated.

2. Chebyshev polynomials approach

2.1. Preliminaries. In the following, we introduce the mathematical tools to em-
ploy an analytical method for solving Love’s integral equation in the case of a
rational kernel. Afterwards, we recall a short summary on Love’s original problem.

2.1.1. Chebyshev and Lucas–Lehmer polynomials. The Chebyshev polynomials
of the first kind [Chebyshev 1858; Chebyshev 1875; Erdélyi et al. 1953; Gatteschi
1973; Rivlin 1990] satisfy the recurrence relation

T0(x)= 1,
T1(x)= x,
Tn(x)= 2xTn−1(x)− Tn−2(x), n ≥ 2.

The polynomials Tn(x) are orthogonal with respect to the weight function 1/
√

1− x2

defined on x ∈ (−1, 1). In a previous paper [Vellucci and Bersani 2016], we studied
a class of polynomials Ln(x)= L2

n−1(x)−2, created by means of the same iterative
formula used to build the well-known Lucas–Lehmer sequence, employed in pri-
mality tests [Lucas 1878; Lehmer 1930; Ribenboim 1988; Bressoud 1989; Koshy
2001]. It is clearly crucial to choose the first term of the polynomial sequence. In
[Vellucci and Bersani 2016], we showed that the Lucas–Lehmer polynomials are
orthogonal in the interval (−2, 2) with respect to the weight w(x)= 1/

(
4
√

4− x2
)

and such that their zeros belong to the interval (−2, 2), that is to their orthogonality
interval. From now on we will consider L0 = x .

Let us first recall some important properties of these polynomials.

Proposition 1. For each n ≥ 1,

Ln(x)= 2T2n−1
( 1

2 x2
− 1

)
(1)

Proposition 2. The polynomials Ln(x) are orthogonal with respect to the weight
function 1/

(
4
√

4− x2
)

defined on x ∈ (−2, 2).
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Corollary 3. With x = 2 cos θ , the polynomials Ln(x) admit the representation

Ln(2 cos θ)= 2 cos(2nθ) (2)

For |x | ≤ 2 we can show another formula for Ln:

Ln(x)=
(

1
2 x2
−1−

√( 1
2 x2−1

)2
−1

)2n−1

+

(
1
2 x2
−1+

√( 1
2 x2−1

)2
−1

)2n−1

. (3)

We change the sign inside the radical, factoring out the imaginary unit:

Ln(x)=
(

1
2 x2
−1−ı

√
1−

( 1
2 x2−1

)2
)2n−1

+

(
1
2 x2
−1+ı

√
1−

( 1
2 x2−1

)2
)2n−1

. (4)

We then calculate the powers of the complex conjugate numbers L+n and L−n , de-
pending on the variable x . Let

Ln(x)=
(

1
2 x2
− 1+

√( 1
2 x2− 1

)2
− 1

)2n−1

+

(
1
2 x2
− 1−

√( 1
2 x2− 1

)2
− 1

)2n−1

= L+n (x)+ L−n (x). (5)

The absolute value of both complex numbers is unitary, since

|L−n | =
∣∣∣ 1

2 x2
− 1− ı

√
1−

( 1
2 x2− 1

)2
∣∣∣2n−1

,

|L+n | =
∣∣∣ 1

2 x2
− 1+ ı

√
1−

( 1
2 x2− 1

)2
∣∣∣2n−1

,

and

|L+n | = |L
−

n | =

√(1
2 x2− 1

)2
+ 1−

( 1
2 x2− 1

)2
= 1. (6)

Moreover, since L1(±
√

2)= 0, L2(±
√

2)=−2, and Ln(±
√

2)= 2 for all n≥ 3,
the argument of Ln(±

√
2) is 0 for every n ≥ 3. In the other cases, since we can

write x = 2 cosϑ when |x | ≤ 2, it follows that 1
2 x2
−1= cos 2ϑ . Thus for |x | 6=

√
2,

we can also put

ϑ(x)= 1
2 arctan

√
1−

( 1
2 x2− 1

)2

1
2 x2− 1

+ bπ (7)

where b is a binary digit. Finally, using (2), we obtain Ln(x)= 2 cos(2nϑ(x)).
By further setting

θ(x)= 1
2 arctan

√
1−

( 1
2 x2− 1

)2

1
2 x2− 1

, (8)

we can write

Ln(x)= 2 cos(2nθ(x)+ 2nbπ)= 2 cos(2nθ(x)). (9)
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On the other hand, the Chebyshev polynomials of the first kind can be defined as
the unique polynomials satisfying

Tn(t)= cos(n arccos t)

or, in other words, as the unique polynomials satisfying

Tn(cos(ϑ))= cos(nϑ)

for n = 0, 1, 2, 3, . . . . Therefore, by Proposition 1,

Ln(x)= 2T2n−1
( 1

2 x2
− 1

)
= 2 cos

(
2n−1 arccos

(1
2 x2
− 1

))
.

2.1.2. Love’s problem. Two leading cases of the problem are considered here: to
specify the field generated by two identical circular coaxial conducting disks (a) at
equal potentials and (b) at equal and opposite potentials, the potential at infinity
being taken as zero. The results established by Love are as follows: the upper sign
referring to the case of equally charged disks and the lower to that of oppositely
charged disks. For Theorem 4 we refer to [Love 1949, Figures 1 and 2].

Theorem 4 [Love 1949]. In the two leading cases described above, the potential
at any point (p, ζ, ζ ′), specified by its distance r = ρa from the axis of the disks
and its axial distances z = ζa and z′ = ζ ′a from their planes, is

V0

π

∫ 1

−1

(
1√

ρ2+ (ζ + i t)2
±

1√
ρ2+ (ζ ′+ i t)2

)
f (t) dt, (10)

where V0 is potential of the disks, a is the radius of the disks, each square root has
positive real part, and f (t) is the solution of the integral equation

f (x)±
1
π

∫ 1

−1

k
k2+ (x − t)2

f (t) dt = 1, |x | ≤ 1 (11)

where k is the spacing parameter.

Theorem 5 [Love 1949]. For every positive k, (11) has a continuous solution, and
no other solution: it is real and even, and is specifiable by the Neumann series

f (x)= 1+
∞∑

n=1

(∓1)n
∫ 1

−1
Kn(x, t) dt, (12)

where the iterated kernels Kn(x, t), for n ∈ N, n > 1, are given by

K1(x, t)=
1
π

k
k2+ (x − t)2

and Kn(x, t)=
∫ 1

−1
Kn−1(x, s)K1(s, t) ds.
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Theorem 6 [Love 1949]. The capacitance of each disk in the two cases is

a
π

∫ 1

−1
f (t) dt,

and the components of the field at all points not on the disks are given by the
appropriate formal differentiations of (10).

2.2. The classical approach to the problem in terms of orthogonal polynomials.
For the solution of the problems we will refer to [Fox and Parker 1968]. When the
upper and lower disks are at potentials V0 and ±V0, the potential V at any point
whose spheroidal coordinates are (µ, η) with respect to the upper disk and (µ′, η′)
with respect to the lower one is expressed in terms of Legendre functions. The
upper disk, specified in cylindrical polar coordinates (r, θ, z) by r ≤ a and z = 0, is
taken as “focal disk” η = 0 of spheroidal coordinates (µ, η); in actual study these
are such that −2≤ µ≤ 2, η ≥ 0.

Then (10) can be rewritten in the form

V0

2π

∫ 2

−2

(
1√

ρ2+ (ζ + i t/2)2
±

1√
ρ2+ (ζ ′+ i t/2)2

)
f (t/2) dt, (13)

where each square root has positive real part, and f (t) is the solution of the integral
equation

f (x)±
1

2π

∫ 2

−2

k
k2+ (x − t/2)2

f (t/2) dt = 1, |x | ≤ 2. (14)

By the linear transformation t = 2y, both equations can be reduced to Love’s
original form. In (14) we put k = 1 and consider positive sign, so

f (x)+
1

2π

∫ 2

−2

1
1+ (x − t/2)2

f (t/2) dt = 1, |x | ≤ 2. (15)

We make the substitution x 7→ 1
2 x2
− 1 in (15), yielding

f
( 1

2 x2
− 1

)
+

1
2π

∫ 2

−2

1

1+
( 1

2(x
2− t)− 1

)2 f
( 1

2 t
)

dt = 1.

We can find a Chebyshev series solution as follows: write

f (x)=
∞∑

r=0

ar Tr (x),
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substitute it into (15), interchange the order of integration and summation in the
first term. Then we arrive at the equation

∞∑
r=0

ar Tr
( 1

2 x2
− 1

)
+

1
2π

∞∑
s=0

as

∫ 2

−2

Ts
( 1

2 t
)

1+
( 1

2(x
2− t)− 1

)2 dt = 1 (16)

for |x | ≤ 2. If we can now determine the expansion

1
2

∫ 2

−2

Ts
( 1

2 t
)

1+
( 1

2(x
2− t)− 1

)2 dt =
∞∑

r=0

bsr Tr
( 1

2 x2
− 1

)
,

we can equate the corresponding coefficients of each Tr (x) on both sides of (15),
which is legitimate since the Chebyshev polynomials form a complete set of inde-
pendent functions, to produce an infinite set of algebraic equations for the required
coefficients ar , given by

ar +

∞∑
s=0

asbsr = 0, r = 1, 2, . . . (17)

and, for r = 0,

a0+

∞∑
s=0

asbs,0 = 1.

The ar will decrease rapidly for sufficiently large r , so that in a convenient method
of solving (17) we select the first n+ 1 rows and columns, perform Gaussian elim-
ination and back-substitution for the last few coefficients — an , an−1, an−2, say —
decide by inspection whether convergence is sufficiently rapid for the required
precision with this selected value of n, and if necessary add some extra rows and
columns with only a small additional amount of work.

Let’s go back to (16). Let

J = {1, 2, 4, . . . } = {2r−1
| r ∈ N},

and rewrite (16) in this way:
∞∑

r=0

ar Tr
( 1

2 x2
− 1

)
+

∞∑
s=0

as

∞∑
r=0

csr Tr
( 1

2 x2
− 1

)
= 1,

where csr = bsr/π . Then∑
r∈J

ar Tr
( 1

2 x2
− 1

)
+

∑
r /∈J

ar Tr
( 1

2 x2
− 1

)
+

∞∑
s=0

as

(∑
r∈J

csr Tr
( 1

2 x2
− 1

)
+

∑
r /∈J

csr Tr
( 1

2 x2
− 1

))
= 1.
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By (1),

1
2

∞∑
r=1

ar Lr (x)+
∑
r /∈J

ar Tr
( 1

2 x2
− 1

)
+

1
2

∞∑
s=0

as

∞∑
r=1

csr Lr (x)+
∞∑

s=0

as

∑
r /∈J

csr Tr
( 1

2 x2
− 1

)
= 1

By Proposition 1, we note that solving (17), a subset of first n+1 rows and columns
selected to perform Gaussian elimination, is due to Lucas–Lehmer polynomials.
They not only cannot by themselves guarantee the convergence to the solution, but
also their contributions can be neglected. In fact, by above reasoning, since

f (x)=
∑
r /∈J

ar Tr
( 1

2 x2
− 1

)
+

1
2

∑
r∈J

ar Lr (x),

we have ∣∣∣∣ f (x)−
∑
r /∈J

ar Tr
( 1

2 x2
− 1

)∣∣∣∣≤ 1
2

∑
r∈J

|ar | =
1
2

∞∑
r=1

|a2r−1 |.

Accordingly, when the term on the right hand side can be considered “small” with
respect to other contributions, a convenient method of solving (17) should be to
select the first n+ 1 rows and columns, perform Gaussian elimination and back-
substitution for the last few coefficients — an , an−1, an−2, say — and delete terms
due to Lucas–Lehmer polynomials.

3. An alternative approach: nonharmonic Fourier series

The capacitance of a circular parallel plate capacitor can be calculated by expanding
the solution of the Love’s integral equation in terms of a Fourier cosine series. In
previous literature, this kind of expansion was carried out numerically, leading to
accuracy problems at small plate separations. Norgren and Jonsson [2009] calcu-
lated analytically all expansion integrals in terms of the sine and cosine integrals.
Hence, they approximated the kernel using considerably large matrices, resulting
in improved numerical accuracy for the capacitance. Previously, G. T. Carlson
and B. L. Illman [1994], solved the Love’s equation through an expansion of the
kernel into a Fourier cosine series. To calculate the expansion coefficients of the
kernel, they use numerical integration. Hence, as noted in [Norgren and Jonsson
2009], their method is limited by a combination of the accuracy of the integration
and the large number of terms needed. The accumulated errors effectively limit
the expansion to about 100 terms, which is insufficient for the convergence at very
small separations. Let us observe that both the methods recalled here make use of
orthogonal expansions.
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In this section we will use some basic facts about nonharmonic Fourier series,
and we recall them below.

It is well known that the family of exponentials {eint
}n∈Z forms an orthonormal

basis in L2(−π, π). The natural question that arises is: what happens if we replace
it by a classical system of exponentials {eiλn t

}n∈Z; these bases are very useful for
the study of the so-called almost periodic functions. See, for example, [Andres
et al. 2006; Besicovitch 1932].

The celebrated work of Paley and Wiener [1934] kicked off studies on classical
systems of exponentials {eiλn t

}n∈Z in L2(0, T ), where T > 0. They proved that
if λn ∈ R, n ∈ Z, and

|λn − n| ≤ L < π−2, n ∈ Z

then the system {eiλn t
}n∈Z forms a Riesz basis in L2

[−π, π], i.e., a family of
the form {Uek}

∞

k=1, where {ek}
∞

k=1 is an orthonormal basis for a separable infinite-
dimensional Hilbert space H and U :H→H is a bounded bijective operator.

M. I. Kadec [1964] extended this result to the case L < 1
4 . This is the so-

called Kadec- 1
4 theorem, which over the following 50 years has been extensively

generalized; see, for example [Avdonin 1974; Bailey 2010; Pavlov 1979; Sedletskii
2003; Sun and Zhou 1999; Vellucci 2015]. Let us recall Kadec’s original result:

Theorem 7. If {λn}n∈Z is a sequence of real numbers for which

sup
n
|λn − n|< 1

4 , n = 0,±1, . . .

then the system {eiλn t
}n∈Z is a Riesz basis for L2

[−π, π].

Therefore, if L = supn|λn − n|< 1
4 , then the sine system {sin λnt}∞1 as well as

the cosine system 1∪ {cos λnt}∞1 is a Riesz basis in L2(0, π).
We now approach the problem described in [Norgren and Jonsson 2009]. The

circular parallel plate capacitor is depicted in Figure 1.
The distance between the circular plates is here put equal to their common radius.

Accordingly, the normalized separation between the plates, a constant k, is set for

ka

a

x

y

z

Figure 1. A circular parallel plate capacitor can be viewed as a
cylindrical volume whose bases are the capacitor’s plates.
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the sake of simplicity equal to 1. The model is idealized in the sense that the plates
have zero thickness.

The capacitance of the parallel plate capacitor is [Carlos and Illman 1994]

C = 4ε0 a
∫ 1

0
f (s) ds, (18)

where a is the radius of the circular plate and the function f (s) is the solution of
the modified Love’s integral equation

f (s)−
∫ 1

0
K (s, t) f (t) dt = 1, 0≤ s ≤ 1, (19)

with kernel

K (s, t)=
1
π

(
1

1+ (s− t)2
+

1
1+ (s+ t)2

)
. (20)

To solve (19) numerically, we follow the approach in [loc. cit.] and expand the
kernel and the unknown function into the (nonharmonic) Fourier cosine expansion
in terms of the functions

ψ̃n(s)=
√

2− δn,0 cos(λns), n = 0, 1, . . .

which in our study have been orthonormalized to fulfill the orthogonality relation∫ π

0
ψn(s)ψm(s) ds = δm,n

and satisfy Kadec’s assumption on L = supn|λn − n|< 1
4 . Here, δm,n denotes the

Kronecker delta function.
This orthonormalization process is shown in the following

Theorem 8 (orthonormalization process). Consider L2(−π, π) and a sequence
{λn}n∈Z ⊂ R which satisfies Kadec’s assumption. Let P = (I − S)−1

=
∑
∞

m=0 Sm,
where

S( f )(x)=
∞∑

n=−∞

f̂ (n)(einx
− eiλn x)

and { f̂ (n)} are the Fourier coefficients of f . Then P(eiλn x)= einx for each n ∈ Z.

Proof. By Kadec’s theorem, we have that ‖S‖ < 1. Hence, P = (I − S)−1
=∑

∞

m=0 Sm. To show that P(eiλn x)= einx , we write

eiλn x
= (I − S)einx

= einx
−

∑
k

ck(eikx
− eiλk x)

where ck = 〈einx , eikx
〉. Thus

einx
− eiλn x

=

∑
k

δn,k(eikx
− eiλk x). �
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In this way we have orthonormalized the Riesz basis {eiλn x
}, in an easy way.

Further results on the orthonormalization of more complex Riesz bases, such as
{φ(t − n)}n∈Z, applied for example to the study of a “digital filter,” can be found
in [Meyer 1989]. For our purposes it is sufficient to consider the basis introduced
at the beginning of Section 3 and used in Theorem 7.

Carrying out the expansions of f (s) and K (s, t) in terms of {ψn}, we obtain

f (s)=
∞∑

m=0

fmψm(s), where fm =

∫ π

0
f (s)ψm(s) ds (21)

and
K (s, t)=

∞∑
m=0

∞∑
n=0

Kmnψm(s)ψn(t), (22)

where

Kmn =

∫ π

0

∫ π

0
K (s, t)ψn(t)ψm(s) ds dt.

These equations yield the infinite linear system of equations for the coefficients
{ fn}

∞

n=0:
∞∑

n=0

(δm,n − Kmn) fn = δm,0, m = 0, 1, . . . . (23)

From (18), (21), and from the orthonormalization process described in Theorem 8
and guaranteed by Kadec’s assumption, which allows to us expand the kernel and
the unknown function into the (nonharmonic) Fourier cosine expansion in terms
of the functions {cos(λns)}, the capacitance reduces to C = 4ε0 a f0, where f0 is
simply the (0, 0)-element in the inverse of the matrix with elements δm,n − Kmn ,
as obtained in [Norgren and Jonsson 2009].

Furthermore, Norgren and Jonsson derive analytical expressions for the expan-
sion of the kernel K (s, t). Proceeding as in [loc. cit.], it is easy to prove that, in
the general case when m 6= n and m, n > 0,

Kmn =
2
π

Ĩ3(nπ,mπ), (24)

where Ĩ3(nπ,mπ)= P I3(λnπ, λmπ), with P as in Theorem 8 and I3 as defined in
[loc. cit.]. The application of the operator P denotes here the orthonormalization
process performed on the set of functions {cos(λns)}n∈Z.

We have extended the results of [Carlos and Illman 1994; Norgren and Jonsson
2009] to a (nonharmonic) Fourier cosine expansion in terms of the set of functions
{cos(λns)}n∈Z, employing a simple procedure, due to Theorem 8, to orthonormalize
the Riesz basis {eiλn x

} under Kadec’s assumption. Therefore, we have found a
further expansion of the solution that it is not in terms of orthogonal polynomials,
but in terms of nonharmonic functions cos(λns), s ∈ R.
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4. Conclusion and perspectives

Orthogonal functions, other classes of polynomials, and Riesz bases have shown to
be very powerful for the search of solutions of several problems in disparate fields,
from physics to engineering, from economics to biology, and so on. In this paper
we applied a new class of orthogonal polynomials, called Lucas–Lehmer polyno-
mials [Vellucci and Bersani 2016] and the tool of Riesz bases [Paley and Wiener
1934] in order to reinvestigate a classical problem, due to Love [1949], obtaining a
further expansion of the solution that it is not in terms of orthogonal polynomials,
but in terms of nonharmonic functions cos(λns), s ∈ R, suitably orthonormalized,
thanks to Theorem 8 which uses the celebrated result due to Kadec [1964]. Many
other applications can be investigated in the future, mainly in the field of mechanics.
In particular, great attention has been recently paid to peridynamics and fracture
mechanics, which are approached in terms of integral equations. In this framework
our researches will be addressed to apply our techniques to the study of some
integral equations of the type introduced by Piola in 1848, recently rediscovered in
the framework of peridynamics and fracture dynamics, and reported in the paper
[dell’Isola et al. 2015].
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MODELING CAPILLARY HYSTERESIS
IN UNSATURED POROUS MEDIA

GÉRARD GAGNEUX AND OLIVIER MILLET

This paper deals with the modeling of cyclic hysteresis phenomena for flows in un-
saturated porous media, using a dynamic regularization process of Sobolev type.
The addition of a kinematic regularizing term of third-order partial derivatives,
depending on a strictly positive, small real parameter, enables us to capture the
missing information of the ill-posed hysteresis phenomena via Rankine–Hugoniot
and “entropy” inequalities. When this parameter tends to zero, an oriented hys-
teresis loop, corresponding to the realistic problem modeled, emerges from the
flow of an associated auxiliary ordinary differential equation.

1. Introduction

The modeling of moisture transport in partially saturated porous media is of major
importance for civil engineering, soil physics, and pharmaceutical applications.
The hysteresis effects, often neglected in the modeling as they are difficult to be
taken into account, play a central role in the imbibition and drying process.

In this paper, we propose an original modeling of cyclic hysteresis phenomena
in partially saturated porous media, in the simplified case of water–air flows. The
approach used is based on the artificial introduction of an unstable spinodal inter-
val and on Sobolev’s method of dynamic regularization, inspired by the works of
P. I. Plotnikov [1996; 1994], publicized by L. C. Evans and M. Portilheiro [2004;
Evans 2004]. The hysteresis graph is replaced by Cartesian curves and an artifi-
cial spinodal interval generating instabilities, with associated attractive–repulsive
dynamics.

The additional information to describe the hysteresis effects is introduced on
the form of entropy-type inequalities. This way, the asymptotic limit of viscous
approximate solutions generates effects of irreversibility and enables us to recover
the expected hysteresis loop.

Communicated by Francesco dell’Isola.
MSC2010: primary 35K65; secondary 47J40, 76S05.
Keywords: capillary hysteresis loop, unsaturated porous media.
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Fc(Sw)

B

A

0 a b Sw

imbibition

drying

Figure 1. Graph of Fc representing the hysteresis loop during an
imbibition-drying process.

2. The physical problem

2.1. Richards equation. The flow of two fluid phases (water–air flow), isothermal
and immiscible, in an unsaturated porous medium is considered. To focus on the
study of the hysteresis effects, in particular irreversibility, the gravity is neglected
and the porous medium is assumed to be homogeneous and isotropic.1 Moreover,
the water vapor in the gas phase is neglected and the air pressure is assumed to be
constant and equal to the atmospheric pressure.2

The water saturation Sw is classically governed by a Richards equation,

ϕ
∂Sw
∂t
−12c(Sw)= 0, (1)

where ϕ denotes the porosity of the porous medium considered. We assume that
the residual saturation of each fluid is equal to zero.

Even if the mathematical analysis of this equation is now well stated [Gagneux
and Madaune-Tort 1995; Lions 1969], it ignores the hysteresis and dynamic effects
that play a major role in the behavior of unsaturated porous media.

2.2. Hysteresis modeling. The capillary hysteresis effects can be modeled with a
multivalued operator Fc whose oriented graph Fc of R2 is represented in Figure 1.
The circulation sense depends both on the values of Sw and on the sign of ∂Sw

∂t . It
characterizes the imbibition and drying phases, through the differential inclusion3

0 ∈
{
ϕ
∂Sw
∂t
−1Fc

(
Sw, sign

(
∂Sw
∂t

))}
. (Physt)

1The analysis holds also for the anisotropic case.
2It is equivalent to assume that the gas phase moves fast and is connected to outside.
3In the sense of [Aubin and Cellina 1984].
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Figure 2. The spinodal interval [a, b] and the unstable part of the
graph of 8.

It is equivalent to search a pair (Sw, qw) with qw ∈
{

Fc
(
Sw, sign

(
∂Sw
∂t

))}
which

satisfies

ϕ
∂Sw
∂t
−1qw = 0 (2)

associated to a Cauchy initial condition Sw(0) and Neumann homogeneous bound-
ary conditions. To simplify the problem without loss of generality, we will consider
in the following a normalized porosity ϕ = 1 (this is always possible using a homo-
thetical time scaling, when ϕ is constant).

In a first step, using a mathematical artifice, we replace the part of the graph Fc

representing the loop by a cubic Cartesian curve 8 (Figure 2). Then, to approach
problem (Physt), a nonlinear monotone diffusion equation with an ad hoc “spinodal”
interval ]a, b[ is introduced. The graph Fc is replaced on ]a, b[ by a cubic spline
function, denoted 80, whose slope is strictly negative everywhere on ]a, b[ and
assuring a C1 continuity at (a, B) and (b, A) with the preserved part.

The graph Fc is decomposed by splitting its domain of definition into three
distinct parts. This leads us to introduce three injective functions, 80, 81 and 82,
defined on [a, b], [0, a] and [b, 1], respectively. We denote by β0, β1 and β2 their
respective inverse functions and by 8 the numerical function of class C1 on [0, 1]
whose graph is the joining of the graphs of 80, 81 and 82.

This substitution enables us to give sense to the initial formal problem in a
suitable mathematical functional framework, via the initial–boundary value system

∂v

∂t
−18(v)= 0 in Q = ]0, T [×�,

∂8(v)

∂n
= 0 on 6 = ]0, T [×0,

v(0)= Sw(0) in �,

(P8)
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where � denotes a bounded domain of Rd , d ≥ 1, with a Lipschitz boundary 0
and an associated external unit normal vector n. The new forward–backward
problem (P8) with variable parabolicity direction is ill posed without any sup-
plementary information, because of the nonmonotonic function 8. The dynamic
regularization process that follows will enable us to regularize the problem. Note
that a problem similar to (P8) has been studied in [Smarrazzo and Tesei 2010;
2012; Smarrazzo 2008].

3. Dynamic regularization process of Sobolev type

The classical notations that follow are introduced. Let � be a bounded domain of
Rd whose boundary 0 is a Lipschitz manifold of dimension d − 1. For T > 0, we
write Q = ]0, T [×�, 6 = ]0, T [×0 and let 1 be the Laplacian operator4 of Rd.
We denote by H s(�), s ∈R, the classical Hilbert spaces [Lions and Magenes 1968].
For all ε > 0, the embedding of H s(�) into H s−ε(�) is compact. Moreover, we
identify L2(�)= H 0(�) to its dual, so that the dual of H 1(�), denoted H 1(�)′,
can be identified to an superspace of L2(�) with H 1(�) ↪→ L2(�) ↪→ H 1(�)′, the
embeddings being dense and continuous. In addition, an initial state Sw(0) ∈ L∞(�)
satisfying 0≤ Sw(0) ≤ 1 a.e. in � is given.

The dynamical regularization process of Sobolev type used is based on “artificial
viscosity”. A parameter λ > 0 is introduced in the initial ill-posed problem (P8),
which is transformed into the third order boundary problem

∂vλ
∂t
−18(vλ)− λ1

∂vλ
∂t
= 0 in Q = ]0, T [×�,

∂

∂n

(
8(vλ)+ λ

∂vλ
∂t

)
= 0 on 6 = ]0, T [×0,

vλ(0)= Sw(0) in �.

(P8)λ

We then introduce the auxiliary dynamical unknown wλ defined by

wλ =8(vλ)+ λ
∂vλ

∂t
, (3)

or equivalently
∂vλ

∂t
=
wλ−8(vλ)

λ
, t > 0. (4)

Note that the dynamics created by (4) drive the system onto stable parts of the
graph, as we will see in the sequel.

4In the sense of distributions.
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Problem (P8)λ may be rewritten as
∂vλ
∂t
−1wλ = 0 in Q = ]0, T [×�,

∂wλ
∂n
= 0 on 6 = ]0, T [×0,

vλ(0)= Sw(0) in �.

(5)

Equivalently, for nearly all t , wλ is a solution of the elliptic problem parametrized
in time5 {

wλ− λ1wλ =8(vλ) in �, t > 0,
∂wλ
∂n
= 0 on 0, t > 0.

(6)

The “−Laplacian” operator (denoted again −1) specifically associated with
homogeneous Neumann boundary conditions on 0 is obviously a nonbounded op-
erator from L2(�) into L2 (�) whose domain is H 2(�). We introduce the Yosida
regularization −1λ := −1(Jλ) = (I − Jλ)/λ and its resolvent Jλ = (I − λ1)−1.
According to (6), it follows that

wλ = Jλ8(vλ). (7)

Problem (P8)λ can be formulated again in a well-posed form6 for the operator
−1λ8 in L2(�):{∂vλ

∂t
−1λ8(vλ)= 0, t ∈ ]0, T [,

vλ(0)= Sw(0) in L2(�) and a.e. in �.
(Pλ)

The following proposition summarizes the properties of the solutions of (Pλ):

Proposition 1. Let us denote by g : R→ R a Lipschitz nondecreasing function, a
so-called “entropy function”, and let

G(r)=
∫ r

0
g(s) ds, G8(r)=

∫ r

0
g(8(s)) ds, g1/2(r)=

∫ r

0

√
g′(s) ds, r ∈R.

(8)
From the Rademacher theorem [Evans and Gariepy 1992], g′ is a bounded Borelian
representative of the derivative of g in its class.

For all λ > 0, the solution vλ of (Pλ) associated to wλ has the following proper-
ties:

(i) Estimations using entropy inequations (for each entropy function g):

∂

∂t
G8(vλ)≤ div(g(wλ)∇wλ)− g′(wλ)|∇wλ|2 in Q. (9)

5According to an observation of [Evans and Portilheiro 2004].
6Thanks to the Cauchy–Lipschitz–Picard theorem via a first-order differential equation with given

initial condition.
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Using the function G defined in (8), the last inequality can be rewritten as

∂

∂t
G8(vλ)≤1(G(wλ))−G ′′(wλ)|∇wλ|2 in Q.

The following inequalities hold:∫
�

G8(vλ(t, x)) dx ≤
∫
�

G8(vλ(s, x)) dx ≤
∫
�

G8(Sw(0)) dx, t > s > 0,

‖g 1
2
(wλ)‖

2
L2([0,T ];H1(�))

def
=

∫
Q

g′(wλ)|∇wλ|2 dx dt ≤ Cg, Cg = C(g).

(ii) We have the following uniform a priori estimates:

‖vλ‖L∞(Q) +‖wλ‖L∞(Q) ≤ C1,

‖wλ‖L2([0,T ];H1(�))+
√
λ

∥∥∥∥∂vλ∂t

∥∥∥∥
L2(Q)

≤ C2,∥∥∥∥∂vλ∂t

∥∥∥∥
L2([0,T ];(H1(�))′)

≤ C3.

The frame constants depend on the extremum values of 8 and Sw(0).

Proof. The general principle of the proof of this proposition may be found in [Evans
2004, p. 427]. This classical computation is somewhat akin to an entropy flux
calculation for a hyperbolic conservation law, through choices of nondecreasing
functions g (see also [Gagneux and Millet 2015] for more details). We note that the
inequality (9) is straightforward from the following relation, for any function 8:

∂

∂t
G8(vλ)−div(g(wλ)∇wλ)=−g′(wλ)|∇wλ|2−

(
g(wλ)−g(8(vλ))

)wλ−8(vλ)
λ

(10)

stated in [Evans and Portilheiro 2004; Evans 2004; Plotnikov 1996]. �

4. Study of capillary effects

4.1. Generalized “entropic” solutions. It follows from the uniform estimates of
Proposition 1 that we can find subsequences {vλk } and {wλk } and a pair7 (v,w)

such that, as λk→ 0,

vλk ⇀v in L∞(Q) weakly-∗, (11)

∂vλk

∂t
⇀
∂vλ

∂t
in L2(

[0, T ]; (H 1(�))′
)

weakly, (12)

wλk ⇀w in L∞(Q) weakly- ∗ and in L2([0, T ]; H 1(�)) weakly, (13)

7A vanishing viscosity limit.
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and

wλk −8(vλk )→ 0 in L p(Q) strongly, for any finite p.

Furthermore, we can assume that8

vλk → v in C0([0, T ]; H 1(�)′) strongly. (14)

The associated Cauchy condition is given by
v(0, · )= Sw(0) in H 1(�)′, a.e. in �,
0≤ v(t, · )≤ 1 in �, t > 0,∫
�
v(t, x) dx =

∫
�

Sw(0)(x) dx, t > 0.

In addition, the pair9 (v,w) belongs to the functional frame
v ∈ L∞(Q)∩C0([0, T ]; H 1(�)′),

∂v

∂t
∈ L2([0, T ]; H 1(�)′),

w ∈ L∞(Q)∩ L2([0, T ]; H 1(�)),

and is a solution of the boundary value problem
∂v

∂t
−1w = 0 in D′(Q) and L2([0, T ]; H 1(�)′),

∂w

∂n
= 0 on 6,

v(0, · )= Sw(0) a.e. in �.

Because of the nonmonoticity of 8, the information (11)–(14) is not sufficient
to conclude that w =8(v), as we will see in what follows.

Let us denote by 4 the complementary of the set of points of Ld+1-approximate
continuity of v according to the rigorous definition of the shock wave [Evans and
Gariepy 1992; Gagneux and Madaune-Tort 1995]. The set 4 is Borelian and Ld+1-
negligible because v is in L∞(Q).

Let us assume that 4 is a countable union of smooth hypersurfaces 4i of Rd+1

which admit a unit normal vector νi
= (νi

1, . . . , ν
i
d , ν

i
d+1)= (ν̃

i , νi
d+1).

Using the usual notations for jumps in hyperbolic scalar laws and for the Haus-
dorff measure Hd , very informally, the pair (v,w) satisfies the Rankine–Hugoniot
and entropy conditions for all i , integrating by parts locally in a vicinity of a given
transition interface via appropriate smooth functions with compact support:

νi
d+1[v] = ν̃

i .[∇w] and [w] = 0 Hd -a.e. on 4i ,

νi
d+1[G8(v)] − ν̃

i .[∇w]g(w)≤ 0 Hd -a.e. on 4i .
(15)

8From a classical compactness result of J. A. Dubinskii [Lions 1969, pp. 141-142].
9The pair (v,w) is called a generalized solution of the problem (P8).
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Relation (15) may be written in the form

νi
d+1

(
[G8(v)] − g(w)[v]

)
≤ 0 Hd -a.e. on 4i (16)

with the notations (8) for the definition of g (entropy function) and G8. In this
form, relation (16) will be very useful to highlight the further developments.

4.2. Associated hysteresis effects. The analysis of hysteresis effects relies on the
following proposition:

Proposition 2. There exist three Ld+1-measurable and bounded functions, 30, 31

and 32, that are representative of the respective influence of the three branches
of the graph of 8−1 (in the sense of the set theory) through the functions β0, β1

and β2. Moreover, we have

0≤3i ≤ 1 and
2∑

i=0

3i = 1 Ld+1-a.e. in Q.

In addition, when λk tends to 0+,

µ(vλk ) converges to
2∑

i=0

3iµ(βi (w)) in L∞(Q) weakly-∗

for any numerical continuous function µ. In addition, we have the following strong
convergences:

wλk and 8(vλk ) converge to w in L p(Q) strongly for any finite p.

Finally, for any Lipschitz nondecreasing function g, we have the entropy relation
in the sense of the measures in Q

∂

∂t

( 2∑
i=0

3i G8(βi (w))

)
≤ div(g(w)∇w)− g′(w)|∇w|2 in Q. (17)

Proof. The difficult technical proof of this proposition is not detailed here and can
be found in [Evans and Portilheiro 2004; Evans 2004; Plotnikov 1996; 1994] with
some adjustments. �

When 30 is equal to zero everywhere,10 the method provides a response corre-
sponding to the initial problem, thanks to the information contained in the comple-
mentary entropy relation (17). That is the main goal of the following proposition,
based on the complementary information on the entropy given by (15)–(16), which
enables us to determine the sense of circulation of the hysteresis loop.

10That corresponds in the final result to the neutralization of the decreasing part of the cubic
introduced artificially to create a repulsive region.
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Proposition 3. In the framework of Proposition 2, we assume that

30 = 0 in Q, 31 = 1 in Q1 and 32 = 1 in Q2,

where Q1 and Q2 are two open subsets of the cylinder Q, with a Lipschitz interface
61,2 = Q1 ∩ Q2 admitting a unit normal vector ν = (ν1,...,νd , νd+1) of Rd

× R,
oriented into Q1.

Using the notations of Figure 2, the problem can be written more precisely as a
problem with free surface:v = β1(w) and ∂v

∂t
−181(v)= 0 in Q1,

v = β2(w) and ∂v

∂t
−182(v)= 0 in Q2.

(18)

As a consequence of the information contained in the Rankine–Hugoniot and en-
tropy relations (15)–(16), which are justified here along the shock wave 61,2, the
sign of the component νd+1 of the normal vector ν, i.e., its orientation during the
time, is specified by the relations

νd+1 = 0 if A <w < B,
νd+1 ≥ 0 if w = A,
νd+1 ≤ 0 if w = B.

(19)

4.3. Interpretation of the results. According to Proposition 3, the expected hys-
teresis effect is well described by the pair (v,w), the generalized solution of (P8).
The change of the expression of the state law, which governs the diffusion process
according to the values of the reduced saturation, is given by (18). Moreover,
relation (19) reveals that the interface 61,2 evolves only if w takes the value A
or B (see Figure 1).

t

t2
τ ∗1

t0

t1

τ1

0 x0 x1 x2 x

Q1

Q2

ν

νd+1

νL

νd H = 0
ν
νd+1

Figure 3. More general case illustrating Proposition 3.
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8λ(Swλ)

B

A

0 a b 1 Swλ
Figure 4. Flow of the auxiliary ordinary differential equation and
emergence of the hysteresis effects when λ→ 0.

To illustrate the resulting hysteretic behavior, let us consider the generic example
of Figure 3 on the previous page, zooming on a time interval representing three
possible states of the point x1 at three different times. We focus on the possible
states corresponding to the abscissa x1.

At the point (t1, x1), we have a jump from Q1 to Q2, w = B, and we are in the
imbibition phase (see also Figure 1). On the contrary, at the point (t2, x2), we have
a jump from Q2 to Q1, w = A, and we are in the drainage phase.

Therefore, the entropy method linked to the Sobolev regularization leads to a
hysteresis loop similar to that obtained for Stefan’s supercooling problem [Evans
2004]. The flow of the auxiliary ordinary differential equation (3) leads to hystere-
sis effects when λ→ 0 (Figure 4).

5. Conclusion

The hysteresis phenomena of flows in unsaturated porous media has been modeled
with success, using the artificial introduction of an unstable spinodal interval and
on a dynamic regularization process of Sobolev type.
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DISCRETE DOUBLE-POROSITY MODELS FOR SPIN SYSTEMS
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We consider spin systems between a finite number N of “species” or “phases”
partitioning a cubic lattice Zd . We suppose that interactions between points of
the same phase are coercive while those between points of different phases (or
possibly between points of an additional “weak phase”) are of lower order. Fol-
lowing a discrete-to-continuum approach, we characterize the limit as a contin-
uum energy defined on N -tuples of sets (corresponding to the N strong phases)
composed of a surface part, taking into account homogenization at the interface
of each strong phase, and a bulk part that describes the combined effect of lower-
order terms, weak interactions between phases, and possible oscillations in the
weak phase.

1. Introduction

In this paper, we consider lattice spin energies mixing strong ferromagnetic inter-
actions and weak (possibly antiferromagnetic) pair interactions. The geometry that
we have in mind is a periodic system of interactions such as that whose periodicity
cell is represented in Figure 1. In that picture, the strong interactions between
nodes of the lattice (circles) are represented by solid lines and weak ones by dashed
lines. In this particular case, we have two three-periodic systems of “strong sites”,
i.e., sites connected by strong interactions, and isolated “weak sites” (pictured as
white circles). Note that we may also have one or more infinite systems of con-
nected weak interactions as in Figure 2. In a discrete environment, the topological
requirements governing the interactions between the strong and weak phases char-
acteristic of continuum high-contrast models are substituted with assumptions on
long-range interactions. In particular, contrary to the continuum case, for discrete
systems with second-neighbor (or longer-range) interactions, we may have a limit
multiphase system even in dimension 1 (see the examples in Section 6).

This paper is part of a general study of spin systems by means of variational
techniques through the computation of continuum approximate energies, for which
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Figure 1. Picture of a double-porosity system.

homogenization results have been proved in the ferromagnetic case (i.e, when all
interactions are strong) [Caffarelli and de la Llave 2005; Braides and Piatnitski
2013], and a general discrete-to-continuum theory of representation and optimiza-
tion has been developed (see the survey [Braides 2014a]). In particular, a discrete-
to-continuum compactness result and an integral representation of the limit by
means of surface energies defined on sets of finite perimeter have been proved
[Alicandro and Gelli 2016]. In that result, the coercivity of energies is obtained by
assuming that nearest neighbors are always connected through a chain of strong
interactions. Double-porosity systems can be interpreted as energies for which
this condition does not hold but is satisfied separately on (finitely many) infinite
connected components.

We are going to consider energies defined on functions parametrized on the
cubic lattice Zd of the form

Fε(u)=
∑

(α,β)∈εN1∩(�×�)

εd−1aεαβ(uα − uβ)2

+

∑
(α,β)∈εN0∩(�×�)

εdaεαβ(uα − uβ)2+
∑

α∈�∩εZd

εd g(uα), (1)

where � is a regular open subset of Rd and uα ∈ {−1,+1} denote the values
of a spin function. For explanatory purposes, in this formula and the rest of the

Figure 2. A double-porosity system with an infinite connected
weak component.
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introduction, we use a simplified notation with respect to the rest of the paper,
defining u = {uα} on the nodes of �∩ εZd (instead of, equivalently, on the nodes
of (1/ε)�∩Zd). We denote by N1 the set of pairs of nodes in Zd

×Zd between
which we have strong interactions and by N0 the set of pairs in Zd

×Zd between
which we have weak interactions. The difference between these two types of in-
teractions in the energy is the scaling factor: εd−1 for strong interactions and εd

for weak interaction. We suppose that all coefficients are obtained by scaling fixed
coefficients on Zd , i.e.,

aεαβ = aα/ε,β/ε if α, β ∈ εZd , (2)

and a jk are periodic of some integer period T . Moreover, we assume that the
coefficients of the strong interactions are strictly positive, i.e., a jk > 0 if ( j, k)∈N1.
The “forcing” term containing g and depending only on the point values uα is of
lower order with respect to strong interactions but of the same order as the weak
interactions.

We suppose that there are N infinite connected components of the graph of
points linked by strong interactions, which we denote by C1, . . . ,CN . Note that
weak interactions in N0 are due either to the existence of “weak sites” or to weak
bonds between different “strong components” and, if we have more than one strong
graph, the interactions in N0 are present also in the absence of a weak component.
We will describe the asymptotic behavior of energies (1) using the notation and
techniques of 0-convergence (see, e.g., [Braides 2002; 2006]).

If we consider only the strong interactions restricted to each strong connected
component C j , we obtain energies

F j
ε (u)=

∑
(α,β)∈εN

j
1∩(�×�)

εd−1aεαβ(uα − uβ)2, (3)

where N
j
1 is the restriction to C j ×C j of the set N1. This is a discrete analog of an

energy on a perforated domain, the perforation being Zd
\C j .

We prove an extension lemma that allows us to define for each j ∈ {1, . . . , N }
a discrete-to-continuum convergence of (the restriction to C j of) a sequence of
functions uε to a function u j

∈ BV(�; {±1}), which is compact under an equi-
boundedness assumption for the energies F j

ε (uε). Thanks to this lemma, such
energies behave as ferromagnetic energies with positive coefficients on the whole
of Zd , which can be homogenized thanks to [Braides and Piatnitski 2013]; i.e., their
0-limit with respect to the convergence uε→ u j exists and is of the form

F j (u j )=

∫
S(u j )∩�

f j
hom(νu j ) dHd−1 (4)
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where S(u j ) is the set of jump points of u j , which can also be interpreted as the
interface between {u j

= 1} and {u j
=−1}.

Taking into account separately the restrictions of uε to all of the components C j ,
we define a vector-valued limit function u= (u1, . . . , uN ) and a convergence uε→ u
and consider the 0-limit of the whole energy with respect to that convergence. The
combination of the weak interactions and the forcing term gives rise to a term of
the form ∫

�

ϕ(u) dx

depending on the values of all components of u. In the case that
⋃N

j=1 C j is
all of Zd , the function ϕ(z1, . . . , zN ) is simply computed as the average of the
T -periodic function

i 7→
∑
k∈Zd

aik(ui − uk)
2
+ g(ui )

where u takes the value z j on C j . Note that with this condition only (weak) in-
teractions between different C j are taken into account. Note moreover that the
restriction of the last term g to εC j is continuously converging to

K j

∫
�

g(u j ) dx,

where K j = T−d #{i ∈ C j
: i ∈ {0, . . . , T }d} is the percentage of sites in C j . In

general, ϕ is obtained by optimizing the combined effect of weak pair interactions
and g on the free sites in the complement of all C j .

Such different interactions can be summed up to describe the 0-limit of Fε that
finally takes the form

Fhom(u)=
∫

S(u)∩�
fhom(u+, u−, νu) dHd−1

+

∫
�

ϕ(u) dx, (5)

where fhom(u+, u−, ν)= 1
2

∑N
j=1 f j

hom(ν)|u
+

j − u−j |.
We note that the presence of two terms of different dimensions in the limit high-

lights the combination of bulk homogenization effects due to periodic oscillations
besides the optimization of the interfacial structure. The effect of those oscillations
on the variational motions of such systems (in the sense of [Ambrosio et al. 2008;
Braides 2014b]) is addressed in [Braides and Solci 2015]. With respect to [Braides
et al. 2015], we remark that the case of spin systems allows a very easy proof of
an extension lemma from connected discrete sets and at the same time permits us
to highlight the possibility to include a weak phase with antiferromagnetic interac-
tions, optimized by microscopic oscillations.
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Discrete problems modeling high-contrast media in the case of elastic energies
have recently been considered in [Braides et al. 2015], but double-porosity homoge-
nization in a continuum framework is a long-standing issue. The interest in double-
porosity systems came at first from geophysics. The notion of double porosity, or
double permeability, is borne from studies carried out on naturally fractured porous
rocks such as oil fields. The benefits of describing oil flow and stock capacity
in these kinds of soils justified theoretical studies undertaken during the 1960s.
The double-porosity model was first introduced by [Barenblatt et al. 1960], and it
has been used since in a wide range of engineering specialties. The first rigorous
mathematical result on the subject was obtained in [Arbogast et al. 1990], where
a linear parabolic equation with asymptotically degenerating coefficients was con-
sidered. This result was subsequently generalized in [Panasenko 1991; Bourgeat
et al. 1996; 1998; 1999; Sandrakov 1999a; 1999b; Pankratov and Piatnitski 2002;
Marchenko and Khruslov 2006] also for nonperiodic domains and various rates of
contrast. On the physical level of rigor, double-porosity models were studied in
[Panfilov 2000]. Linear double-porosity models with thin fissures were considered
in [Pankratov and Rybalko 2003; Amaziane et al. 2009b]. The singular double-
porosity model was considered in [Bourgeat et al. 2003]. The works [Bourgeat et al.
1999; Marchenko and Khruslov 2006; Pankratov and Rybalko 2003; Amaziane
et al. 2009b] are carried out in the framework of Khruslov’s mesoscopic energy
characteristic methods. In addition, note that the double-porosity model was also
obtained using the two-scale convergence method in [Hornung 1997]. Elliptic and
parabolic nonlinear double-porosity models, including homogenization in variable
Sobolev spaces, were also obtained in [Pankratov et al. 2003; Amaziane et al. 2006;
2009a; Choquet and Pankratov 2010]. Finally, the double-porosity models of mul-
tiphase flows, including the nonequilibrium ones, were also obtained in [Choquet
2004; Yeh 2006; Amaziane and Pankratov 2016; Konyukhov and Pankratov 2015]
(see also [Hornung 1997] and the references therein). A reformulation in terms
of 0-convergence can be found in [Braides et al. 2004] with related results for
nonconvex integrands. An approach using 0-convergence and a two-scale for-
mulation at the same time is given in [Cherdantsev and Cherednichenko 2012].
Double-porosity models for interfacial energies on the continuum were previously
examined in [Solci 2009; 2012; Braides and Solci 2013].

The results in the present paper may be regarded as a geometrically simplified
model of continuum ones (but with more freedom in the lattice interactions), but the
same framework may also be useful for other discrete models actually developed
in mechanics. Among them are pantographic systems made of beams and used
for modeling of some metamaterials [Seppecher et al. 2011] and investigations of
two- and three-dimensional lattices in order to develop models used in nano- and
micromechanics.
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The plan of the paper is the following. In Section 2, we introduce the geometric
setting, identifying the “strong” and possibly “weak” phases of the lattice network,
and define the microscopic energy. In Section 3, we prove a compactness theorem
and a homogenization result for each separate strong phase. The resulting energies
will provide the interfacial energy part of the limit. In Section 4, we define the
interaction term between the strong phases by proving an asymptotic formula. The
main convergence result is stated and proved in Section 5, where the compactness
theorem in Section 3 applied to each strong phase is used to define a multiphase
limit. Finally in Section 6, some simple examples are provided, which in particular
also exhibit nontrivial limits in dimensions 1 and 2.

2. Notation

The numbers d , m, T , and N are positive integers. We introduce a T -periodic label
function J : Zd

→ {0, 1, . . . , N } and the corresponding sets of sites

A j = {k ∈ Zd
: J (k)= j}, j = 0, . . . , N .

Sites interact through possibly long- (but finite-)range interactions, whose range
is defined through a system P j

= {P j
k } of finite subsets P j

k ⊂ Zd for j = 0, . . . , N
and k ∈ A j . We suppose

• (T -periodicity) P j
k+m = P j

k for all m ∈ T Zd and

• (symmetry) if k ∈ A j for j = 1, . . . , N (hard components) and i ∈ P j
k , then

k+ i ∈ A j and −i ∈ P j
k+i , and 0 ∈ P j

k .

We say that two points k, k ′ ∈ A j are P j -connected in A j if there exists a path
{kn}n=0,...,K such that kn ∈ A j , k0 = k, kK = k ′, and kn − kn−1 ∈ P j

kn−1
.

We suppose

• (connectedness) there exists a unique infinite P j -connected component of
each A j for j = 1, . . . , N , which we denote by C j .

Clearly, the connectedness assumption is not a modeling restriction upon intro-
ducing more labeling parameters if the number of infinite connected components
is finite. Note that we do not make any assumptions on A0 and P0. In particular, if
k ∈ A j for j = 0, . . . , N and i ∈ P0

k , then k+ i may belong to any A j ′ with j ′ 6= j .
We consider the following sets of bonds between sites in Zd : for j = 1, . . . , N

N j = {(k, k ′) : k, k ′ ∈ A j , k ′− k ∈ P j
k \ {0}}

and for j = 0

N0 = {(k, k ′) : k ′− k ∈ P0
k \ {0}, J (k)J (k ′)= 0 or J (k) 6= J (k ′)}.
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Note that the set N0 takes into account interactions not only among points of the
set A0 but also among pairs of points in different A j . More refined notation could
be introduced by defining a range of interactions P i j and the corresponding sets Ni j ,
in which case the sets N j would correspond to N j j for j = 1, . . . , N and N0 to the
union of the remaining sets. However, for simplicity of presentation, we limit our
notation to a single index.

We consider interaction energy densities associated with positive numbers akk′

for k, k ′ ∈ Zd and the forcing term g. We suppose that for all k, k ′ ∈ Zd

• (coerciveness on the hard phase) there exists c > 0 such that akk′ ≥ c > 0 if
k ∈ C j and k ′− k ∈ P j

k for j ≥ 1,

• (T -periodicity) ak+m k′+m = akk′ for all m ∈ T Zd ,

• (symmetry) ak′k = akk′ , and

• (T -periodicity of the forcing term) g(k+m, 1)= g(k, 1) and g(k+m,−1)=
g(k,−1) for all m ∈ T Zd .

Note that we do not suppose that the akk′ are positive for weak interactions. They
can be negative as well, thus favoring oscillations in the weak phase.

Given �, a bounded regular open subset of Rd , for u : (1/ε)�∩Zd
→{+1,−1},

we define the energies

Fε(u)= Fε
(

u, 1
ε
�
)
=

N∑
j=1

∑
(k,k′)∈Nε

j (�)

εd−1akk′(uk − uk′)
2

+

∑
(k,k′)∈Nε

0(�)

εdakk′(uk − uk′)
2
+

∑
k∈Z ε(�)

εd g(k, uk), (6)

where

Nε
j (�)= N j ∩

1
ε
(�×�), j = 0, . . . , N , Z ε(�)= Zd

∩
1
ε
�. (7)

The first sum in the energy takes into account all interactions between points
in A j (hard phases), which are supposed to scale differently than those between
points in A0 (soft phase) or between points in different phases. The latter are
contained in the second sum. The third sum is a zero-order term taking into account
all types of phases with the same scaling.

Note that the first sum may also take into account points in A j \ C j , which
form “islands” of the hard phase P j -disconnected from the corresponding infinite
component. Furthermore, in this energy, we may have sites that do not interact at
all with hard phases.
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Remark 2.1 (choice of the parameter space). The energy is defined on discrete
functions parametrized on (1/ε)�∩Zd . The choice of this notation, rather than in-
terpreting u as defined on�∩εZd , allows a much easier notation for the coefficients,
which in this way are ε-independent rather than obtained by scaling as in (2).

3. Homogenization of perforated discrete domains

In this section, we separately consider the interactions in each infinite connected
component of the hard phases introduced above. To that end, we fix one of the
indices j , with j > 0, dropping it in the notation of this section (in particular, we
use the symbol C in place of C j , etc.), and define the energies

Fε(u)= Fε

(
u, 1
ε
�
)
=

∑
(k,k′)∈N ε

C (�)

εd−1akk′(uk − uk′)
2, (8)

where

N ε
C(�)=

{
(k, k ′) ∈ (C ×C)∩ 1

ε
(�×�) : k ′− k ∈ Pk, k 6= k ′

}
. (9)

We also introduce the notation Cε(�)= C ∩ (1/ε)�.

Definition 3.1. We define the piecewise-constant interpolation of a function u :
Zd
∩ (1/ε)�→ Rm , k 7→ uk , as

u(x)= ubx/εc,

where byc = (by1c, . . . , bydc) and bsc stands for the integer part of s. The conver-
gence of a sequence (uε) of discrete functions is understood as the L1

loc(�) con-
vergence of these piecewise-constant interpolations. Note that, since we consider
local convergence in �, the value of u(x) close to the boundary in not involved in
the convergence process.

We prove an extension and compactness lemma with respect to the convergence
of piecewise-constant interpolations.

Lemma 3.2 (extension and compactness). Let C be a T -periodic subset of Zd

P-connected in the notation of the previous section, and let uε : Zd
∩ (1/ε)�→

{+1,−1} be a sequence such that

sup
ε

εd−1 #{(k, k ′) ∈ N ε
C(�) : u

ε
k 6= uεk′}<+∞. (10)

Then there exists a sequence ũε :Zd
∩ (1/ε)�→Rm such that ũεk = uεk if k ∈Cε(�)

and dist(k,∂(1/ε)�)>c=c(P)with ũε converging to some u∈BVloc(�; {+1,−1})
up to subsequences.

Proof. For a fixed M ∈N and j ∈Zd , we consider the discrete cubes of side length M

QM( j) := j M +{0,M − 1}d .
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For each j , we also define the cube

Q′3M( j)=
⋃

‖i− j‖∞≤1

QM(i),

which is a discrete cube centered at QM( j) and with side length 3M .
For all ε, we consider the family

QεM :=
{

QM( j) : j ∈ Zd , Q′3M( j)⊂ 1
ε
�
}
.

We suppose that M is large enough such that, if k, k ′ ∈ QM( j)∩C , then there
exists a P-path connecting k and k ′ contained in Q′3M( j). The existence of such M
follows easily from the connectedness hypotheses. Indeed, we may take M as the
length of the longest shortest P-path connecting two points in C with distance not
greater than 2

√
d (in particular belonging to neighboring periodicity cubes) and

construct such a P-path by concatenating a family of those shortest paths.
We define the set of indices

Sε = { j ∈ Zd
: QM( j) ∈ QεM and uε is not constant on C ∩ QM( j)}.

By our choice of M , if j ∈ Sε, then there exist k, k ′ ∈ Q′3M( j)∩C with k ′− k ∈ P
such that uεk 6= uεk′ . Let

K := sup
ε

εd−1 #{(k, k ′) ∈ N ε
C(�) : u

ε
k 6= uεk′}.

Then we deduce that

#Sε ≤ 3d K
1
εd−1 (11)

(the factor 3d comes from the fact that k, k ′ ∈ Q′3M( j) for 3d possible j).
We define

ũε=
{

constant value of uε on QM( j)∩C on QM( j) if QM( j)∈QεM and j /∈Sε,

uε elsewhere.

This will be the required extension. However, we will prove the convergence
of ũε as a consequence of the convergence of the functions

vε =

{
ũε on QM( j) if QM( j) ∈ QεM and j /∈ Sε,

1 elsewhere.

By (11), we have that for fixed �′ b�

‖vε − ũε‖L1(�′) = O(ε)

(recall that we identify the function with its scaled interpolations in L1(�)).
If the value of vε differs on two neighboring QM( j) and QM( j ′)with ‖ j− j ′‖1=

1, then upon taking a suitable larger M , we may also suppose that there exist
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k, k ′ ∈ (Q′3M( j)∪ Q′3M( j))∩C with k− k ′ ∈ P and uεk 6= uεk′ . Arguing as for (11),
we deduce that the number of such j is O(ε1−d) so that

Hd−1(∂{vε = 1} ∩�′)= O(1),

which implies the compactness of the family (vε) in BVloc(�). �

The compactness theorem above proves that the domain of the limit is functions
u ∈ BV(�, {+1,−1}), which can be identified with the sets of finite perimeter
E = {u = 1}. In this case, the set of discontinuity points S(u) coincides, up to sets
of Hn−1-measure 0, with the reduced boundary ∂∗{u = 1}, whose inner normal we
denote by ν [Braides 1998].

Theorem 3.3 (homogenization on discrete perforated domains). The energies Fε

defined in (8) 0-converge with respect to the L1
loc(�) topology to the energy

Fhom(u)=
∫
�∩∂∗{u=1}

fhom(ν) dHd−1, (12)

defined on u ∈ BV(�, {+1,−1}), where the energy density fhom satisfies

fhom(ν)=

lim
T→+∞

1
T d−1 inf

{ ∑
(k,k′)∈ÑC (Qν

T )

akk′(uk − uk′)
2
: uk = sign〈k,ν〉 if k /∈ Qν

T

}
, (13)

where

sign x =
{

1 if x > 0,
−1 if x ≤ 0,

(14)

Qν is a cube centered at 0 and with one side orthogonal to ν, Qν
T = T Qν , and

ÑC(Qν
T ) denotes all pairs in (k, k ′) ∈ N 1

C(R
d) such that either k ∈ Qν

T or k ′ ∈ Qν
T .

Proof. In [Braides and Piatnitski 2013], this theorem is proved under the additional
assumption that the energies Fε are equicoercive with respect to the weak BV-
convergence. This assumption can be substituted with Lemma 3.2. Indeed, if uε

is a sequence converging to u in L1
loc(�) and with equibounded energies, then by

Lemma 3.2, we may find a sequence ũε coinciding with uε on Cε(�′) for every
fixed �′ b� and ε sufficiently small and converging to some ũ in BV(�; {±1}).
Since ũε=uε on Cε(�′), we have that ũ=u and Fε(ũε, (1/ε)�′)=Fε(uε, (1/ε)�′).
Then we can give a lower estimate on each �′ fixed using the proof of [Braides and
Piatnitski 2013] and hence on � by internal approximation. Note that neither the
proof of the existence of the limit in (13) therein nor the construction of the recovery
sequences depends on the coerciveness assumption, so the proof is complete. �
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4. Definition of the interaction term

The homogenization result in Theorem 3.3 will describe the contribution of the
hard phases to the limiting behavior of energies Fε. We now characterize their
interactions with the soft phase.

For all positive integers M and z1, . . . , zN ∈ {+1,−1}, we define the minimum
problem

ϕM(z1, . . . , zN )=
1

Md min
{ ∑
(k,k′)∈N0(QM )

akk′(vk−vk′)
2
+

∑
k∈Z(QM )

g(k, vk) :v∈VM

}
,

where

QM =

[
−

M
2
,

M
2

)d

, N0(QM)= N0∩(QM×QM), Z(QM)=Zd
∩QM (15)

and the minimum is taken over the set VM = VM(z1, . . . , zN ) of all v constant on
each connected component of A j ∩ QM and v = z j on C j for j = 1, . . . N .

Proposition 4.1. The limit ϕ of ϕM as M→+∞ exists.

Proof. We first show that

ϕK M ≥ ϕM for all K ∈ N. (16)

To that end, let v be a minimizer for ϕK M(z1, . . . , zN ). Then we have

K d MdϕK M(z1, . . . , zN )

=

∑
(k,k′)∈N0(QK M )

akk′(vk − vk′)
2
+

∑
k∈Z(QK M )

g(k, vk)

=

∑
l∈Zd∩QK

( ∑
(k,k′)∈N0(QM+l M)

akk′(vk − vk′)
2
+

∑
k∈Z(QM+l M)

g(k, vk)

)
+

∑
(k,k′)∈N0(QK M )\

⋃
l N0(QM+l M)

akk′(vk − vk′)
2

≥

∑
l∈Zd∩QK

( ∑
(k,k′)∈N0(QM+l M)

akk′(vk − vk′)
2
+

∑
k∈Z(QM+l M)

g(k, vk)

)
.

Let l ∈ Zd
∩ QK minimize the expression in parentheses. Then we deduce

K d MdϕK M(z1, . . . , zN )

≥ K d
( ∑
(k,k′)∈N0(QM+l M)

akk′(vk − vk′)
2
+

∑
k∈Z(QM+l M)

g(k, vk)

)
,

from which (16) follows by taking vk=vk−l M in the computation of ϕM(z1, . . . , zN ).
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We remark that for L ≥ L ′ we have

LdϕL ≥ (L ′)dϕL ′ −max|g|(Ld
− (L ′)d). (17)

Hence, fixing n, L , and M with L ≥ M2n and taking L ′ = bL/(M2n)cM2n in (17),
we have, using (16) with K = bL/(M2n)c2n

ϕL ≥
1

Ld

(⌊
L

M2n

⌋
M2n

)d

ϕbL/(M2n)cM2n −max|g|
(

1−
(⌊

L
M2n

⌋
M2n

L

)d)
≥

(⌊
L

M2n

⌋
M2n

L

)d

ϕM −max|g|
(

1−
(⌊

L
M2n

⌋
M2n

L

)d)
.

Letting L→+∞, we then obtain

lim inf
L→+∞

ϕL ≥ ϕM

and the conclusion follows by taking the upper limit in M . �

Let R be defined by

R =max{|k− k ′| : k, k ′ ∈ A j \C j that are P j -connected, j = 1, . . . , N }, (18)

and for all M positive integer, set

DM =

N⋃
j=1

⋃
{P j -connected components B of A j \C j not intersecting QM−R}.

For all z1, . . . , zN ∈ {+1,−1}, we define

ϕ̃M(z1, . . . , zN )=
1

Md min
{ ∑
(k,k′)∈N0(QM )

akk′(vk − vk′)
2
+

∑
k∈Z(QM )

g(k, vk)

: v ∈ VM , vk = 1 if k ∈ DM

}
. (19)

Proposition 4.2. There is a positive constant c independent of M such that

ϕ̃M ≥ ϕM ≥ ϕ̃M −
c
M
. (20)

Proof. The first inequality is trivial. To prove the second, let v be a minimizer for
ϕM(z1, . . . , zN ) and define v by

vk =

{
1 if k ∈ DM

vk otherwise.
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Using v as a test function for ϕ̃M(z1, . . . , zN ), we obtain

Md ϕ̃M(z1, . . . , zN )≤
∑

(k,k′)∈N0(QM ), k,k′ /∈DM

akk′(vk − vk′)
2
+

∑
k∈Z(QM )\DM

g(k, vk)

+ 2
∑

(k,k′)∈N0(QM ), k∈DM

akk′(vk − vk′)
2
+

∑
k∈Z(QM )∩DM

g(k, vk)

≤

∑
(k,k′)∈N0(QM ), k,k′ /∈DM

akk′(vk − vk′)
2
+

∑
k∈Z(QM )\DM

g(k, vk)

+

∑
(k,k′)∈N0(QM ), k∈DM

akk′ +
∑

k∈Z(QM )∩DM

g(k, 1)

≤ MdϕM(z1, . . . , zN )+ #DM #P0 max ai j + #DM 2 max|g|.

As #DM ≤ 2d Md−1 R, the result follows with c= 2d R(#P0 max ai j+2 max|g|). �

5. Statement of the convergence result

We now have all the ingredients to characterize the asymptotic behavior of Fε
defined in (6).

Definition 5.1 (multiphase discrete-to-continuum convergence). We define the con-
vergence

uε→ (u1, . . . , uN ) (21)

as the L1
loc(�;R

m) convergence ũεj → u j of the extensions of the restrictions of uε

to C j as in Lemma 3.2, which is a compact convergence as ensured by that lemma.

The total contribution of the hard phases will be given separately by the contri-
bution on the infinite connected components and the finite ones. The first one is
obtained by independently computing the limit relative to the energy restricted to
each component

F j
ε(u)=

∑
(k,k′)∈N ε

j (�)

εd−1akk′(vk − vk′)
2, (22)

where

N ε
j (�)= N ε

C j
(�)=

{
(k, k ′)∈ (C j×C j )∩

1
ε
(�×�) : k−k ′ ∈ P j

k , k 6= k ′
}
, (23)

which is characterized by Theorem 3.3 as

F
j
hom(u)=

∫
�∩∂∗{u=1}

f j
hom(ν) dHd−1. (24)

In Section 4, we introduced the energy density ϕ, which describes the interac-
tions between the hard phases. Taking all contributions into account, we may state
the following convergence result.
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Theorem 5.2 (double-porosity homogenization). Let � be a Lipschitz bounded
open set, and let Fε be defined by (6) with the notation of Section 2. Then the
0-limit of Fε with respect to the convergence (21) exists, and it equals

Fhom(u1, . . . , uN )=

N∑
j=1

∫
�∩∂∗{u j=1}

f j
hom(ν) dHd−1

+

∫
�

ϕ(u1, . . . , uN ) dx (25)

on functions u = (u1, . . . , uN ) ∈ (BV(�; {1,−1}))N , where ϕ is defined in Propo-
sition 4.1 and f j

hom are defined by (24).

Note that there is no contribution of the finite connected components of A j .

Remark 5.3 (nonhomogeneous lower-order term). In our hypotheses, the lower-
order term g depends on the fast variable k, which is integrated out in the limit. We
may easily include a measurable dependence on the slow variable εk by assuming
g = g(x, k, z) is a Carathéodory function (this covers in particular the case g =
g(x, z)) and substitute the last sum in (6) by∑

k∈Z ε(�)

εd g(εk, k, uk).

Correspondingly, in Theorem 5.2, the integrand in the last term in (25) must be
substituted by ϕ(x, u1, . . . , uN ), where the definition of this last function is the
same but taking g(x, k, z) in place of g(k, z) so that x simply acts as a parameter.

The proof of Theorem 5.2 will be subdivided into a lower and an upper bound.

Proof of the lower bound. Let uε→ (u1, . . . , uN ) be such that Fε(uε)≤ c <+∞.
Fixing M ∈ N, we introduce the notation

J εM =
{

z ∈ Zd
: QM + zM ⊂ 1

ε
�
}
,

Rε = Nε
0(�) \

⋃
z∈J εM

Nε
0(QM + zM),

Sε = Z ε(�) \
⋃

z∈J εM

Z(QM + zM)

and write

Fε(uε)=
N∑

j=1

Iεj + IIε + IIIε + IVε
+Vε,

where

Iεj = F j
ε(u),
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IIε =
N∑

j=1

∑
(k,k′)∈Nε

j (�)\(C j×C j )

εd−1akk′(vk − vk′)
2,

IIIε =
∑
z∈J εM

εd
( ∑
(k,k′)∈Nε

0(QM+zM)

akk′(vk − vk′)
2
+

∑
k∈Z(QM+zM)

g(k, vk)

)
,

IVε
=

∑
(k,k′)∈Rε

εdakk′(vk − vk′)
2,

Vε
=

∑
k∈Sε

εd g(k, vk).

Note that

IIε ≥ 0,

IVε
≥−c/M + o(1),

V ε
≥−max|g|

(∣∣∣∣� \ εd
⋃

z∈J εM

(QM + zM)
∣∣∣∣+ o(1)

)
,

(26)

where we have taken into account that the interactions in IVε may be negative and

lim inf
ε→0

N∑
j=1

Iεj ≥
N∑

j=1

lim inf
ε→0

Iεj ≥
N∑

j=1

∫
�∩∂∗{u j=1}

f j
hom(ν) dHd−1. (27)

It remains to estimate IIIε. To that end, we introduce the set of indices

3εM ={z ∈ J εM : u
ε constant on every connected component of A j ∩ (Q3M + zM),

j = 1, . . . , N }.

Note that
#(J εM \3

ε
M)≤

cM

εd−1 . (28)

We then write

IIIε =
∑

z∈3εM

εd
( ∑
(k,k′)∈Nε

0(QM+zM)

akk′(vk − vk′)
2
+

∑
k∈Z(QM+zM)

g(k, vk)

)

+

∑
z∈J εM\3

ε
M

εd
( ∑
(k,k′)∈Nε

0(QM+zM)

akk′(vk − vk′)
2
+

∑
k∈Z(QM+zM)

g(k, vk)

)
≥

∑
z∈3εM

εd MdϕM(uε1, . . . , uεN )− cεd Md max(|g| + |akk′ |) #(J εM \3
ε
M),

where uεj is the constant value taken by uε on (QM+zM)∩C j . Here we suppose M
is large enough so that the connected component of C j containing (QM+ zM)∩C j
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is connected in Q3M + zM . We set

U ε
=

∑
z∈3εM

(uε1, . . . , uεN )χQM+zM

and ϕM(0, . . . , 0)= 0. Note that U ε
→U := (u1, . . . , uN ) in L1(�)N so that

lim inf
ε→0

IIIε ≥ lim inf
ε→0

(∫
�

ϕM(U ε) dx − εmax|g|cM Md
)
=

∫
�

ϕM(U ) dx (29)

by the Lebesgue dominated convergence theorem and the estimate (28).
Summing up the inequalities (26), (27), and (29), we get

lim inf
ε→0

Fε(uε)≥
N∑

j=1

∫
�∩∂∗{u j=1}

f j
hom(ν) dHd−1

+

∫
�

ϕM(U ) dx . (30)

The lower-bound inequality then follows by taking the limit as M→+∞, using
Proposition 4.1 and the Lebesgue dominated convergence theorem. �

Proof of the upper bound. We fix U = (u1, . . . , uN ) ∈ BV(�; {1,−1})N . For every
j = 1, . . . , N , we choose u j,ε

→ u j a recovery sequence for F
j
hom(u

j ). We tacitly
extend all functions defined on Z ε(�) to all of Zd with the value +1 outside Z ε(�).
This does not affect the value of the energies but allows us to rigorously define some
sets of indices z in the sequel.

We fix M ∈ N large enough. As in Section 4, we introduce the sets of indices

J̃ εM =
{

z ∈ Zd
: (QM + zM)∩

1
ε
� 6=∅

}
,

3
j,ε
M = {z∈ J εM :u

ε constant on every connected component of A j∩(Q3M+ zM)}

and give the estimate
N∑

j=1

#( J̃ εM \3
j,ε
M )≤

cM

εd−1 . (31)

Note that, if z ∈
⋂N

j=13
j,ε
M , then u j,ε

=: u j,ε,z is constant on C j ∩ (QM + zM) for
j = 1, . . . , N . Let vε,z be a minimizer for ϕ̃M(u1,ε,z, . . . , uN ,ε,z).

We define

uεk =


u j,ε

k if k ∈ C j , j = 1, . . . , N ,
vε,z(k− zM) if k ∈ QM + zM and z ∈

⋂N
j=13

j,ε
M ,

1 otherwise.
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We first estimate the energy on the strong connections. By the definition of u j,ε,
we have for all j = 1, . . . , N

lim
ε→0

∑
(k,k′)∈Nε

j (�)∩(C j×C j )

εd−1akk′(uεk − uεk′)
2
= F

j
hom(u

j ) (32)

since uε = u j,ε on C j . On the strong connections between points not in the infinite
connected components C j ,∑

(k,k′)∈Nε
j (�)\(C j×C j )

εd−1akk′(uεk − uεk′)
2
= 0 (33)

since uε is constant on every connected component of A j \C j . Note that here we
have used the condition that vε,z = 1 on DM in the definition of ϕ̃M .

We then examine the contribution due to the interaction between weak connec-
tions and the term g. We first look at the contributions on the cubes in the sets 3 j,ε

M ,
where we can use the definition of ϕ̃M : for every z ∈

⋂N
j=13

j,ε
M ,∑

(k,k′)∈Nε
0(QM+zM)

akk′(uεk − uεk′)
2
+

∑
k∈Z(QM+zM)

g(k, uεk)= ϕ̃M(u1,ε,z, . . . , uN ,ε,z).

The contributions interior to all other cubes in J̃ εM sum up to∑
z /∈
⋂N

j=1 3
j,ε
M

εd
( ∑
(k,k′)∈Nε

0(QM+zM)

akk′(uεk − uεk′)
2
+

∑
k∈Z(QM+zM)

g(k, uεk)
)

≤ εd Md(#P0 max ail +max|g|)
N∑

j=1

#(J εM \3
j,ε
M )

≤ εMdc′M + o(1) (34)

by (31) and the fact that the boundary of � has zero measure. Finally, the contribu-
tion due to the weak connection across the boundary of neighboring cubes is given by∑
z 6=z′∈

⋂N
j=1 3

j,ε
M

εd
∑

(k,k′)∈Nε
0(�), k∈QM+zM, k′∈QM+z′M

akk′(uεk − uεk′)
2

≤ εd Md−1 #J εM #P0 max ail ≤ #P0 max ail
|�|

M
.

From the inequalities above, we obtain

lim sup
ε→0

Fε(uε)≤
N∑

j=1

F
j
hom(u

j )+

∫
�

ϕ̃M(u1, . . . , uN ) dx + #P0 max ail
|�|

M
.

Letting M→+∞ and using Propositions 4.2 and 4.1 then gives the result. �
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6. Examples

In the pictures in the following examples, weak connections are denoted by a
dashed line and strong connections by a continuous line.

6.1. One-dimensional examples. In this section, we consider easy one-dimensional
examples, highlighting the possibility of double-porosity behavior if long-range in-
teractions are allowed, contrary to the continuum case. We use a slightly different
notation than above, with the sums depending only on one index. The factor 1

4 is
just a normalization since (ui − u j )

2 is always a multiple of 4.

Example 6.1 (weak inclusions on alternating lattice). Consider a system of weak
nearest-neighbor interactions and strong next-to-nearest-neighbor interactions on
the even-odd lattice (see figure below); namely,

Fε(u)=
β

4

Nε∑
i=1

ε(ui − ui−1)
2
+
α

4

Nε/2−1∑
j=1

(u2 j+1− u2 j−1)
2
+

Nε∑
i=1

εg(ui ),

where we assume that � = [0, 1] and Nε = 1/ε ∈ 2N. In this case N = 1, A1 =

C1 = 1+ 2N, and A0 = 2N.

α

β

The 0-limit is

Fhom(u)= α #S(u)+
1
2

∫ 1

0
g(u) dx +

1
2

∫ 1

0
min{g(u), g(−u)+ 2β} dx

= α #S(u)+
∫ 1

0
g(u) dx −

1
2

∫ 1

0
max{0, g(u)− g(−u)− 2β} dx .

The last term favors states with the same value on A0 and A1 if the integrand
is 0 and of opposite sign if the integrand is positive. Note that this is always the
case if we have a strong-enough “antiferromagnetic” nearest-neighbor interaction,
i.e., β is negative and 2|β|> |g(1)− g(−1)|.

Example 6.2 (interacting sublattices). Consider a system of weak nearest-neighbor
interactions and strong next-to-nearest-neighbor interactions:

α1

α2

β
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Here

Fε(u)=
β

4

Nε∑
i=1

ε(ui − ui−1)
2
+
α1

4

Nε/2−1∑
j=1

(u2 j+1− u2 j−1)
2

+
α2

4

Nε/2−1∑
j=0

(u2 j+2− u2 j )
2
+

Nε∑
i=1

εg(ui ),

where we assume that Nε = 1/ε ∈ 2N. In this case, N = 2, A1 = C1 = 1+ 2N,
A2 = C2 = 2N, and A0 =∅.

The 0-limit is

Fhom(u1, u2)= α1 #S(u1)+α2 #S(u2)

+
1
2

∫ 1

0
g(u1) dx +

1
2

∫ 1

0
g(u2) dx +

β

4

∫ 1

0
(u2
− u1)2.

Note that, since A0 =∅, we have no optimization in the interacting term, which
then is just the pointwise limit of the nearest-neighbor interactions. Note moreover
that in the case β = 0 the interactions are completely decoupled.

Example 6.3 (interacting weak and strong sublattices). We consider the same pat-
tern of interactions as in the previous example but with only strong connections on
the odd lattice as in Example 6.1 (see figure below), i.e., with

Fε(u)=
β1

4

Nε∑
i=1

ε(ui − ui−1)
2
+
β2

4

Nε/2−1∑
j=0

ε(u2 j+2− u2 j )
2

+
α

4

Nε/2−1∑
j=1

(u2 j+1− u2 j−1)
2
+

Nε∑
i=1

εg(ui ).

α

β2

β1

In this case, we have three possibilities:

• the minimizing values on the even lattice agree with those on the odd lattice
(ferromagnetic overall behavior),

• the minimizing values on the even lattice disagree with those on the odd lattice
(antiferromagnetic overall behavior), or

• the values on the even lattice alternate (antiferromagnetic behavior on the
weak lattice).

The value of ϕ is obtained by optimizing over these three possibilities; i.e.,

ϕ(u)=min
{

g(u),
g(u)+ g(−u)

2
+β1,

3g(u)+ g(−u)
4

+
β1
+β2

2

}
,
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and we have

Fhom(u)= α #S(u)+
∫ 1

0
ϕ(u) dx .

Example 6.4 (third-neighbor hard phases). In the system described in the figure
below, involving strong third-neighbor interactions, we have two strong compo-
nents and a 0-limit obtained by minimization of the nearest and next-to-nearest
neighbors. Using the same notation of the previous examples for the coefficients,
we can write the limit as

Fhom(u1, u2)= α1 #S(u1)+α2 #S(u2)+

∫ 1

0
ϕ(u1, u2) dx,

and

ϕ(u1, u2)= 1
3(g(u

1)+ g(u2))+ 1
4β

2
12(u

2
− u1)2

+
1
3 min

{1
4((β

1
01+β

2
01)(v− u1)2+ (β1

02+β
2
02)(v− u2)2)+ g(v) : v ∈ {−1, 1}

}
.

α1

α2

β2
12

β1
12 β1

01

β2
02

β1
02

β2
01

6.2. Higher-dimensional examples. In the following examples, we go back to the
notation used in the statement of the main result. The normalization factor 1

8 takes
into account that each pair of nearest neighbors is accounted for twice.

Example 6.5 (a nearest-neighbor system with soft inclusions). Consider a nearest-
neighbor system in two dimensions in which A0 = 2Z2 and strong and weak inter-
actions are given respectively by

1
8α(uk − uk′)

2, 1
8εβ(uk − uk′)

2.

α

β



DISCRETE DOUBLE-POROSITY MODELS FOR SPIN SYSTEMS 99

In this case,

Fhom(u)= 1
2α

∫
S(u)∩�

‖νu‖1 dH1
+

∫
�

ϕ(u) dx,

where

ϕ(u)=min
{

g(u),
3g(u)+ g(−u)

4
+β

}
.

Example 6.6 (a lattice with weak nearest-neighbor interactions). Consider strong
interactions on a lattice of next-to-nearest neighbors as in the figure:

α

β

with weak nearest-neighbor interactions on the square lattice given respectively by

1
8α(uk − uk′)

2, 1
8εβ(uk − uk′)

2,

(the factor 1
8 takes into account that each pair is accounted for twice). We only

have one strong component, and with this choice of coefficients,

Fhom(u)= α
∫
�∩∂{u=1}

‖ν‖∞ dH1
+

∫
�

ϕ(u) dx,

where
ϕ(u)=min{g(u), 1

2(g(u)+ g(−u))+β}.

Example 6.7. We include just the pictorial description of two more two-dimensional
systems with a limit with two parameters (below, left) and with one limit parameter
but with the possibility of an oscillating behavior on the weak lattice (below, right),
analogous to the one-dimensional Examples 6.2 and 6.3, respectively.

α1 α2

β

α

β2

β1

Example 6.8. We finally consider a three-dimensional two-periodic geometry, with
one strong connected component pictured in Figure 3. Even in the absence of the
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Figure 3. Oscillations in the infinite weak component.

forcing term g, we may have several competing microstructures in the determina-
tion of ϕ. In Figure 3, we have represented the uniform data u =+1 on the strong
component with solid circles and a system of ferromagnetic connections between
strong and weak sites (positive coefficients) and of antiferromagnetic connections
between weak sites (a negative coefficient α). Correspondingly, the minimal states
have the value +1 on weak sites connected with the strong component (represented
by solid circles) and the value −1 on the other sites (represented by white circles).
Note that in this case the contribution of the weak phase is a constant.
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