This paper deals with the modeling of cyclic hysteresis phenomena for flows in
unsaturated porous media, using a dynamic regularization process of Sobolev
type. The addition of a kinematic regularizing term of third-order partial
derivatives, depending on a strictly positive, small real parameter, enables us to
capture the missing information of the ill-posed hysteresis phenomena via
Rankine–Hugoniot and “entropy” inequalities. When this parameter tends
to zero, an oriented hysteresis loop, corresponding to the realistic problem
modeled, emerges from the flow of an associated auxiliary ordinary differential
equation.
Keywords
capillary hysteresis loop, unsaturated porous media
Laboratoire des Sciences de
l’Ingénieur pour l’Environnement, UMR-CNRS 7356
Université de La Rochelle
avenue Michel Crépeau
17042 La Rochelle Cedex 1
France
Laboratoire des Sciences de
l’Ingénieur pour l’Environnement, UMR-CNRS 7356
Université de La Rochelle
avenue Michel Crépeau
17042 La Rochelle Cedex 1
France