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STABILITY ANALYSIS OF TWO COUPLED OSCILLATORS

MICKHAIL A. GUZEV AND ALEXANDR A. DMITRIEV

We study a system of two coupled oscillators linked by a linear elastic spring
and positioned vertically in a uniform gravity field. It is demonstrated that the
system has different equilibrium configurations below and above the oscillators’
suspension centers. We obtained the relations of the string stiffness and the
distance between the suspension centers identifying the stability region of the
oscillators.

1. Introduction

Mechanical oscillators are models of various physical processes and complex phys-
ical systems as demonstrated by a vast body of literature. For example, coupled
oscillators are used to describe the lattice vibrations in crystals [Kittel 2005].

A well-known and useful oscillator system is the sympathetic oscillators [Som-
merfeld 1994], which are two linked oscillators with equal rods and masses inter-
acting through a spring. Small linear oscillations about the equilibrium point have
been studied, focusing on analyzing the physical situations depending on the spring
stiffness.

There have been many scientific studies on oscillating dynamics of mechanical
systems. However, new results still periodically appear. For instance, Maianti et al.
[2009] study the impact of symmetrical initial conditions of linked oscillators in
a uniform gravity field on the eigenoscillations and obtain the initial angle that
ensures an independent frequency spectrum. Ramachandran et al. [2011] deal with
different configurations of two pendulums connected by a rod. The results are that
there are stable equilibrium configurations that are asymmetrical with respect to
the vertical midline. An important property of the system is that there can appear
bifurcations depending on the distance between the suspension points. The ob-
tained results are useful for investigation of the pantographic structures [dell’Isola
et al. 2016]. The interest in these materials is defined by development of the three-
dimensional printing technology. They can be regarded as families of pendulums
(also called fibers) interconnected by pivots in equilibrium. Synchronization of
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two oscillators is the focus of [Koluda et al. 2014] and their chaotic dynamics is
studied in [Huynh and Chew 2010; Huynh et al. 2013].

A system of inverted oscillators also provides physically sound phenomena. Sta-
ble positions can also be attained if there is a fast perturbation frequency [Stephen-
son 1908]. This result is due to Pyotr Kapitza [Kapitza 1951a; Kapitza 1951b].
A more accurate condition of dynamical stabilization of an inverted oscillator is
introduced in [Butikov 2011]. Chelomei’s problem of the stabilization of an elas-
tic, statically unstable rod by means of a vibration is considered in [Seyranian
and Seyranian 2008]. The stability of two inverted linearly linked oscillators is
analyzed in [Markeev 2013]. The author reveals bifurcations depending on the
linking spring stiffness and single out parameters that lead to stable or unstable
equilibria. The phenomenon of stabilization by parametric excitation of an elasti-
cally restrained double inverted pendulum is considered in [Arkhipova et al. 2012].
The problem of restabilization of statically unstable linear Hamiltonian systems
is analyzed in [Arkhipova and Luongo 2014]. A comprehensive review of the
dynamics of a large number of coupled oscillators is presented in [Pikovsky and
Rosenblum 2015].

The objective of the current paper is to study the stability of the model of two
linearly interacting oscillators in a uniform gravity field. The formal analysis of
equilibrium stability is carried out in the framework of the linear stability approach.
It consists of determination of the equilibrium position and calculation of the matrix
of the second partial derivatives of potential energy in the equilibrium position. If
the matrix spectrum is positive, the equilibrium is stable. Otherwise, it is unstable.
We focus on analyzing the equilibrium solutions depending on the distance between
the suspension points and the spring stiffness. This analysis includes different
configurations of the model of coupled oscillators.

2. Basic equations

Let us consider two oscillators of length l and mass m in a uniform gravity field.
We assume that the suspension points O1 and O2 are positioned on a motionless
horizontal straight line, while the distance between the suspension points a is con-
stant. A massless elastic spring of stiffness k links the masses at points B1 and B2,
which coincide with the masses’ positions. We assume that the oscillators move in
a fixed vertical plane containing the interval O1O2 (see Figure 1). The oscillators
can be situated both below the horizontal suspension line (see the region A1 in
Figure 1, left) and above it (see the region A2 in Figure 1, right). In the region A1,
angles ϕ1 and ϕ2 lie in the interval (0, π), while transition to the region A2 implies
the transformation ϕ1, ϕ2 7→ −ϕ1,−ϕ2.
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Figure 1. Top left: the classical configuration and the region A1.
Top right: the classical configuration and the region A2. Bottom
left: the modified configuration and the region A1. Bottom right:
the modified configuration and the region A2.

Hence, in this article, we consider different configurations of the oscillator
model. Configurations presented in Figure 1, top left, correspond to the sympa-
thetic oscillators [Sommerfeld 1994], and configurations of Figure 1, top right,
describe a system of inverted oscillators. Both models are well-known in scientific
literature, so configurations presented in Figure 1, top, will be called the classical
ones.

Configurations of Figure 1, bottom, are presented in [Ramachandran et al. 2011]
(called “modified configurations” to distinguish them from Figure 1, top).

It is clear that the kinetic energy of the oscillators is

T =
ml2

2

[
(ϕ̇1)

2
+ (ϕ̇2)

2]. (1)

Potential energy U includes the energy of the oscillator interaction k(d − a)2/2
and the gravity field energy where d is the spring length. In the region A1, oscilla-
tors linked by a linear elastic spring provide

U =U (ϕ1, ϕ2)=
k(d − a)2

2
−mgl(sinϕ1+ sinϕ2) (2)

while in the region A2 there is a transformation g 7→ −g in (2). In the regions A1
and A2, the spring length is given by the formula

d =
√
[a+ l(cosϕ2− cosϕ1)]2+ l2(sinϕ2− sinϕ1)2.
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It is interesting that there is a natural geometrical condition for the configurations.
In the case of the classical configurations (Figure 1, top), the difference of the rod
length projections on the suspension axis is less then a, giving the condition

l(cosϕ1− cosϕ2) < a. (3)

In the case of the modified configurations (Figure 1, bottom), the corresponding
difference is larger than a:

l(cosϕ1− cosϕ2) > a. (4)

From (1) and (2), the Lagrangian of the system ensures

L = T −U =
ml2

2
(ϕ̇2

1 + ϕ̇
2
2)−

k(d − a)2

2
+ 2mgl sin

ϕ1+ϕ2

2
cos

ϕ1−ϕ2

2
. (5)

Now let us introduce instead of ϕ1 and ϕ2 new coordinates q1 and q2, where
q1 = (π −ϕ1−ϕ2)/2 and q2 = (ϕ1−ϕ2)/2. Introducing new dimensionless time
τ = t
√

2g/ l and Lagrangian 3= L/mgl, (5) can be rewritten as

3= 1
2(q̇

2
1 + q̇2

2 )−5(q1, q2),

5=5(q1, q2)=
(s−µ)2

2ν
− cos q1 cos q2,

s2
= sin2 q2+ 2µ cos q1 sin q2+µ

2, µ=
a
2l
, ν =

2mgl
k

.

(6)

Parameter ν characterizes the relation between the potential energy of the oscilla-
tors and the spring’s effective energy, while µ is a kinematic parameter and depends
on the metric characteristics.

Differential equations of the oscillator dynamics in the form of Lagrangian equa-
tions are

d
dτ
∂3

∂q̇i
=
∂3

∂qi
⇐⇒ q̈i =−

∂5

∂qi
, i = 1, 2. (7)

System (7) allows for solutions corresponding to both the classical and the modified
configurations. Therefore, while analyzing system (7), it is necessary to point out
the region of feasible solutions. Conditions (3)–(4) can be written as

µ+ cos q1 sin q2 > 0, (8)

µ+ cos q1 sin q2 < 0. (9)

Equilibrium configurations of the oscillator system ensue from the condition
q̈i = 0; then it follows from (7) that they are determined as the critical points of
the system’s potential energy

∂5

∂q1
= 0,

∂5

∂q2
= 0. (10)
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Figure 2. Left: the modified symmetric equilibrium configuration
for the oscillator model in the region A1. Right: the stability do-
main � for the modified configuration in the region A1.

Taking into account (6), one can rewrite (10) in the form

sin q1

[(µ
s
− 1

)
µ sin q2+ ν cos q2

]
= 0, (11)(

1−
µ

s

)
(sin q2+µ cos q1) cos q2+ ν cos q1 sin q2 = 0. (12)

Thus, by solving the system (11)–(12), one obtains a set of equilibrium configura-
tions.

3. Symmetrical equilibrium configurations

Symmetrical configurations are characterized by symmetrical positions of the pen-
dulums with respect to the vertical midline. The classical symmetric configurations
in the region A1 follow from q1 = 0, while in the region A2 from q1 = π . In this
case, (11) is satisfied identically (sin q1 = 0); then the distance (6) between the
oscillators equals s=|sin q2±µ| and the condition (8) is equivalent to µ±sin q2>0,
i.e., s = µ± sin q2. So (12) reduces to sin q2(cos q2± ν)= 0, which was studied
in [Markeev 2013].

The modified symmetrical configurations in the region A1 follow from ϕ2 =

π−ϕ1, q1= 0, and are shown in Figure 2. This allows us to rewrite the condition (9)
as µ+ sin q2 < 0, i.e., µ < 1 and |q2|< π/2; then the distance s =−(µ+ sin q2)

and (12) is equivalent to

(2µ+ sin q2) cos q2+ ν sin q2 = 0
⇐⇒ sin 2q2+ 2

√
4µ2+ ν2 sin(q2− q∗)= 0, (13)
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where q∗=− arcsin(2µ/
√

4µ2+ ν2). Let q∗∗=− arcsinµ; then inside the interval
(q∗, q∗∗), (13) has a unique solution q̃ provided the inequality

ν <
√

1−µ2, µ < 1, (14)

is true. Indeed, (13) is identical to

2µ+ sin q2 =−ν tan q2. (15)

The right-hand side of (15) decreases; it equals 2µ/ν at point q∗ and µ/
√

1−µ2 at
point q∗∗. The left-hand side increases; it is less than 2µ/ν at point q∗ and equals
2µ/ν at point q∗∗. If the inequality (14) is satisfied, the function graphs intersect
at one and only one point q̃ .

Let us analyze the type of equilibrium. The matrix of the second partial deriva-
tives of potential 5 at critical point (0, q̃) agrees with

511 =
∂25

∂q2
1

=

(µ
s
− 1

)µ
ν

sin q̃ + cos q̃,

522 =
∂25

∂q2
2

=
1
ν

[
cos2 q̃ +

(µ
s
− 1

)
(sin q̃ +µ) sin q̃

]
+ cos q̃,

512 =
∂25

∂q1 ∂q2
= 0;

i.e., the matrix is diagonal. At point q̃, since s =−(µ+ sin q̃), (13) is equivalent
to (s−µ)= ν tan q̃ , which results in

511 =
µ+ cos2 q̃ sin q̃
cos q̃(µ+ sin q̃)

, 522 =
1
ν

cos2 q̃ +
1

cos q̃
. (16)

It is straightforward that 522 > 0 and 511 > 0 if

µ+ cos2 q̃ sin q̃ < 0. (17)

To solve (17), one needs to find the roots of the cubic parabola x3
− x − µ as

x = sin q̃ . It ensures the restrictions on parameter µ

0< µ< µ∗ =
2

3
√

3
, x1(µ) < sin q̃ < x2(µ), (18)

where x1(µ) and x2(µ) are the cubic parabola’s roots:

x1(µ)=−
2
√

3
sin
(π

6
+φ(µ)

)
,

x2(µ)=−
2
√

3
sin
(π

6
−φ(µ)

)
,

φ(µ)= 1
3 arccos

(
µ

µ∗

)
. (19)
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Figure 3. Left: the modified symmetric equilibrium configuration
in the region A2. Right: the solution existence domain for the
modified symmetric equilibrium configuration in the region A2.
The region �− is the stability region.

Thus, the oscillator model in the region A1 given the condition (14) has modified
equilibrium configurations depending on the solution q̃ of (13). This equilibrium
is stable if the conditions (18) and (19) are satisfied.

Figure 2 shows that the region of solution existence is bounded by a circular
arc ν(µ)=

√
1−µ2. The shaded region � indicates parameters (µ, ν) that ensure

stable configuration. The boundary of the stability region %(µ) is determined by
511 = 0. However, this formula is rather cumbersome; thus, it is not presented. It
should be noted that %(µ) has two branches merging at point µ∗.

If a point (µ, ν) is outside the domain �, then the critical point corresponding
to the solution q̃ of (13) is a saddle.

For the modified oscillator model, the equilibrium configurations in the region A2
follow from q1 = π (ϕ1+ϕ2 =−π), the distance s = sin q2−µ > 0, i.e., q2 > 0,
and (12) takes the form

sin q2 = 2µ+ ν tan q2. (20)

The oscillator position corresponding to the region A2 is depicted in Figure 3.
Since sin q is a concave function as q ∈ (0, π/2) and tan q is convex, the number

of solutions of (20) depends on the parameters (µ, ν). Particularly, q0 exists if the
function graphs have a common tangent, i.e., cos q0 = ν/ cos2 q0. Substituting the
obtained ν into (20), we get 2µ= sin3 q0. It follows that there is a curve

ν(µ)=
[
1− (2µ)2/3

]3/2
, (21)
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whose points determine the only solution q0(µ)= arcsin(2µ)1/3 of (20). The so-
lution q0(µ) is a bifurcation point. If one slightly varies the parameters (µ, ν),
(20) has either no solution or two solutions q− and q+ (q− < q0(µ) < q+). From
convexity of tan q, concavity of sin q, and (21), it follows that the condition for
two solutions is

ν <
[
1− (2µ)2/3

]3/2
,

which leads to µ < 1
2 .

By analogy to (16), one can infer that

511 =
µ− cos2 q± sin q±
cos q±(µ− sin q±)

, 522 = cos2 q±−
ν

cos q±
.

The function 1− ν/ cos3 q decreases and equals zero at q0(µ); therefore, 522 < 0
at the root q+ of (20). Hence, the oscillators are unstable around the equilibrium
from q+.

The value of 511 is positive in the region where h(q) = µ − cos2 q sin q is
positive. This region ensures that

sin q < x1(µ), x2(µ) < sin q, 0< µ< µ∗.

Figure 3 shows a shaded region �+, where 511 < 0 at q+, and another shaded
region �−, where 511 > 0 at q−. The point µ̂ is a tangential point of curves ν(µ)
and %(µ). Calculated values of µ̂≈ 0.272166 and ν̂ ≈ 0.19245.

Thus, in the region A2, the equilibria of the modified configurations are deter-
mined by the two solutions q− and q+ of (20), which exist as the parameters (µ, ν)
comply with (21).

If the parameters (µ, ν) are inside the region �+, the critical point correspond-
ing to q+ is a maximum, while otherwise it is a saddle.

If the parameters (µ, ν) are inside the region �−, the critical point correspond-
ing to q− is stable, while otherwise it is again a saddle.

4. Asymmetric equilibrium configurations

To study the asymmetric equilibria, it is convenient to use the variables x = sin q2

and y = cos q1. Since −π/2 < q2 < π/2 and 0 < q1 < π/2 in the region A1
and −π/2< q1 < 0 in the region A2, these transformations result in a one-to-one
mapping in each of the considered regions. It is straightforward that the variables
x and y vary within the triangle 1+ = {(x, y) : −1 < x < 1, 0 < y < 1} in the
region A1 and 1− = {(x, y) : −1< x < 1, −1< y < 0} in the region A2. Using
the variables x and y, the potential 5 is given by

5(x, y)=
(s−µ)2

2ν
∓

√
1− x2 · y, s2

= x2
+ 2µxy+µ2,
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where the minus corresponds to the region A1 and the plus corresponds to A2.
Then the system (10) can be rewritten as

µ
s−µ

s
k(x)∓ ν = 0,

s−µ
s

(x +µy)± νk(x)y = 0,
k(x)=

x
√

1− x2
.

By eliminating (s−µ)/s, we obtain the relation µy+x(1−x2)= 0, which suggests
that the critical points of the potential 5 are determined from the system

h(x, µ)= µ
s−µ

s
k(x)=±ν, (22)

µy+ x(1− x2)= 0. (23)

The left-hand side of (23) differs from the cubic parabola pertaining to (17), by a
multiplicator y at µ.

Substituting (23) in the s relation, one obtains

s2
= 2x4

− x2
+µ2. (24)

The triangle 1+ intersects the cubic parabola of (23) if

−
√

1−µ≤ x ≤ x1(µ),

x2(µ)≤ x ≤ 0
as 0< µ< µ∗,

−
√

1−µ≤ x ≤ 0 as µ∗ ≤ µ < 1.

(25)

Thus, the asymmetric equilibria in the region A1 may exist only if 0<µ< 1 and are
determined by the solutions x̃ of (22) as the s follows from (24) agreeing with (25).

Condition (8) for the classical configurations takes the form

µ+ xy > 0. (26)

Inequality (26) then can be rewritten as

x2
+ y2 < 1, y ≥−x as −1< x ≤ 0. (27)

Indeed, since y < 0 and x < 0, by multiplying (26) by y and using (23), we get

y(µ+ xy)= x(x2
− 1)+ xy2

= x(x2
+ y2
− 1)≥ 0 or x2

+ y2
≤ 1.

For the modified configurations, the inequality sign in (26) changes to the opposite;
then the condition of existence is determined by

x2
+ y2 > 1, y ≥−x as −1< x ≤ 0. (28)
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On the other hand, by multiplying (26) by µ, one can determine the boundary
demarcating the classical configuration from the modified one:

µ2
− x2(1− x2)= 0.

By solving the biquadratic equation, one can find the intersection points of a unit
circle and the cubic parabola of (23):

x̂1(µ)=−

√
1
2 +

√
1
4 −µ

2, x̂2(µ)=−

√
1
2 −

√
1
4 −µ

2.

The asymmetric equilibrium is stable if the eigenvalues of the second derivative
matrix of the potential 5 are positive. It can be shown that the eigenvalues are
positive if and only if det5′′ > 0. Moreover, det5′′ coincides with the accuracy
of a multiplicator with the derivative of h(x, µ) over x , which leads to

det5′′ =
µ

−x
h′(x, µ).

By figuring out h′(x, µ) and omitting always-positive multiplicators, one can see
that the equilibrium is stable at the point x̃ , the solution of (23), if the function

3(x, µ)= µx2(4x2
− 1)(1− x2)+ s2(s−µ)

is positive.
The stability region boundary is determined by h(x, µ) = ν and h′(x, µ) = 0.

However, the condition h′(x, µ)= 0 implies that the solution x̃ is a local extremum
of the function h(x, µ) and a bifurcation point of the solution of (22), which results
in the solution x̃ dividing into the two solutions x̃− < x̃+. One of the solutions is
stable since h′(x, µ) changes its sign at the point x̃ . The solutions of 3(x, µ)= 0
taking into account the corresponding restrictions on x determine x as a function
of µ. Then by substituting it into (22), we have the function %(µ), whose graph is
the boundary of the stability region of the asymmetric equilibria.

The region A1. Equation (22) is written in the form

µ
s−µ

s
k(x)= ν. (29)

Since k(x) < 0, the function h(x, µ) is positive if s <µ. This inequality is valid
if x∗= 1/

√
2< x < 0. From this, it follows that in the region A1 the solution of (23)

lies within the intersection of the interval (x∗, 0) and the intervals determined by
the inequalities (25).

In the case of classical configuration, the inequality (27) must be satisfied, while
the modified configuration is valid given the inequality (28). The boundary of
the solution existence region is determined by the maximal and minimal values
of h(x, µ) for corresponding µ. The stability region is determined by the values
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Figure 4. Left: the asymmetric classical configuration in the re-
gion A1. Right: the stability domain � of the asymmetric classical
configuration in the region A1.

of %(µ) while 3(x, µ) must be positive. Figure 4, right, shows the solution ex-
istence region of (29) for the sympathetic oscillators (Figure 4, left). The values
µmin and µmax are determined by the condition of maximality and minimality of
µ, which ensures 3(x, µ) to be zero. Calculated values of µmin ≈ 0.452258 and
µmax ≈ 0.693692. The stable equilibrium region � is shaded and coincides with
the region of two-solution existence x̃− < x̃+ of (22) with x̃− being the stable
equilibrium. It is worth noticing that the sympathetic oscillators correspond to the
branch of the cubic parabola (23) corresponding to the x satisfying

x̂2(µ) < x < 0 as 0< µ< µ∗ and −
√

1−µ < x < 0 as µ∗ ≤ µ < 0.

The equilibrium existence region of the modified configuration (Figure 5, left,
is depicted in Figure 5, right). The condition (28) is satisfied for two branches of
the parabola (23) as 0< µ< µ∗, corresponding to the x satisfying

−
√

1−µ≤ x ≤ x1(µ) and x2(µ)≤ x ≤ x̂2(µ). (30)

Also from the condition x∗ < x , it follows that the first inequality of (30) specifies
the modified model in the region A1 as x∗< x1(µ), which is true ifµ∗ = 1/2

√
2< µ.

Given µ=µ∗, these branches coalesce and as µ∗<µ they specify the sole function
h(x, µ) within the interval (−

√
1−µ, x̂2(µ)). The condition −

√
1−µ < x̂2(µ)

results in the inequality µ< 1
2 . Therefore, the solution existence region is specified

by
x2(µ)≤ x ≤ x̂2(µ) as 0< µ< µ∗,

x∗ ≤ x < x̂2(µ) as µ∗ ≤ µ < 1
2 ,

x∗ ≤ x < x1(µ) as µ∗ ≤ µ < µ∗
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Figure 5. Left: the asymmetrical modified configuration in region
A1. Right: the stability domain of the asymmetrical configuration
is the merger of the regions � and �1.

and bounded by the curves h(x̂2(µ), µ) and h(−
√

1−µ,µ). Analogous to the
case of the sympathetic oscillators, one can determine the boundary of the local
maximum existence region for the function h(x, µ): µmin ≈ 0.378424 and µmax ≈

0.452258.
The stability region �, corresponding to the branch of the cubic parabola with

the point x2(µ), encompasses the region �2 of the two-equilibrium-solution ex-
istence. The stability region �1 corresponds to the parabola’s branch with the
point x1(µ). In the region of two-solution existence, there is a stable equilibrium
corresponding to the solution x̃−. The point Q indicates the coalescence point
between the branches and equals (2,

√
2)/3
√

3.

The region A2. In this case, we write (22) in the form

µ
s−µ

s
k(x)=−ν. (31)

The solutions of (31) exist if−1< x < x∗. Since x∗≤ x̂2(µ) and x∗≤−
√

1−µ,
the sympathetic oscillators have no asymmetric equilibria in the region A2.

The modified configurations exist if s < µ or x < x∗. This condition is satisfied
if −
√

1−µ < x < x1(µ) as 0 < µ < µ∗ and −
√

1−µ < x < x∗ as µ∗ ≤ µ < 1
2 .

Since x < − 1
2 and s < µ, the function h(x, µ) increases, i.e., h′(x, µ) > 0. The

solution existence region is specified by the inequalities h(−
√

1−µ,µ) < ν <

h(x1(µ), µ) as 0 < µ < µ∗ and h(−
√

1−µ,µ) < ν < 0 as µ∗ ≤ µ < 1
2 . Since

det5′′ = νh′(x, µ)/x and x < 0, then det5′′ < 0 and there is no stable equilibrium
in the region A2.



STABILITY ANALYSIS OF TWO COUPLED OSCILLATORS 151

5. Conclusions

The analysis of the stability of two coupled oscillators showed that the model so-
lutions significantly depend on the dimensionless parameters of varied physical
origins. We demonstrated that the natural dimensionless kinematic parameter µ
is subjected to the relation of the distance between the suspension points and the
oscillator length. The dimensionless energetic parameter ν is equal to the relation
between the potential energy of the oscillator and the spring’s effective energy.
Thus, the parameter set (µ, ν) presents the convenient variables of the model.

Though we considered a static case, dynamic stability of such systems was inves-
tigated using chains of particles connected by springs, some of which could exhibit
negative stiffness [Pasternak et al. 2014]. The necessary stability condition was
formulated: only one spring in the chain can have negative stiffness, and the value
of negative stiffness cannot exceed a certain critical value. Applying the Cosserat
theory with negative Cosserat shear modulus was proposed in [Pasternak et al.
2016]. It was shown that, when the sum of the negative Cosserat shear modulus
and the conventional shear modulus is positive, the waves can propagate.

The demonstrated phenomena of the system’s critical dynamics of the linked
oscillators are important to general understanding of the nature of different pro-
cesses. At macroscales, they play a crucial role in determining the fragility and
instability of rocks [Tarasov and Guzev 2013] whereas at microscales the dynamics
of phononic crystals that are lattices of linked oscillators is governed by the param-
eters (µ, ν) [Ghasemi Baboly et al. 2013]. In addition, an important application
is magnetic tweezers, which may permit us to handle even single micromolecules
[Lipfert et al. 2009].
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