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CONSTRAINT REACTION AND THE PEACH–KOEHLER
FORCE FOR DISLOCATION NETWORKS

RICCARDO SCALA AND NICOLAS VAN GOETHEM

In the presence of dislocations, the elastic deformation tensor F is not a gradi-
ent but satisfies the condition Curl F = 3T

L (with the dislocation density 3L a
tensor-valued measure concentrated in the dislocation L). Then F ∈ L p with
1 ≤ p < 2. This peculiarity is at the origin of the mathematical difficulties
encountered by dislocations at the mesoscopic scale, which are here modeled by
integral 1-currents free to form complex geometries in the bulk. In this paper,
we first consider an energy-minimization problem among the couples (F,L) of
strains and dislocations, and then we exhibit a constraint reaction field arising
at minimality due to the satisfaction of the condition on the deformation curl,
hence providing explicit expressions of the Piola–Kirchhoff stress and Peach–
Koehler force. Moreover, it is shown that the Peach–Koehler force is balanced
by a defect-induced configurational force, a sort of line tension. The functional
spaces needed to mathematically represent dislocations and strains are also ana-
lyzed and described in a preliminary part of the paper.

1. Introduction

Dislocations in elastic bodies are at the origin of dissipative phenomena, and in
particular, their motion is responsible for the plastic behavior of single crystals. A
dislocation loop L is a closed curve in �. Outside the dislocation, i.e., in � \ L ,
the body is considered perfectly elastic. This scale of matter description is called
the mesoscopic or the continuum scale. Nonetheless, it is not easy to understand
the physical nature of a mesoscopic dislocation. In fact, it is not a material line
since it can be equivalently generated by an excess or a lack of lattice atoms. More-
over, contrarily to fracture, it cannot even be defined as a mere singularity in the
reference configuration where deformation fields would be unbounded. In fact, a
dislocation must be viewed as a singularity of the deformation field whose support
lies in the current configuration (see, e.g., [Acharya 2003; Scala and Van Goethem
2016]). Therefore, dislocation location and field singularity are bound notions.
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MSC2010: 49Q15, 74B20, 74G65.
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106 RICCARDO SCALA AND NICOLAS VAN GOETHEM

Figure 1. Example of a continuum dislocation cluster.

Specifically, the support of the curl of the deformation field (which in the presence
of dislocations is not a gradient) is identified with the dislocation density field.
This definition is at the basis of the present work since a constraint reaction will
be generated by the satisfaction of the latter relation between model variables.

1.1. Mathematical and physical properties of dislocations. The intrinsic math-
ematical difficulties generated by dislocations are fundamentally different from
those encountered in the mathematical modeling of fracture mechanics. In partic-
ular, the displacement is not an appropriate model variable as opposed to most of
solid mechanics problems. Furthermore, the stress and strain fields are not square-
integrable and so the less-tractable L p spaces with 1≤ p < 2 must be considered,
and bounds on the model fields are given in terms of the curl and the divergence (in
place of the full gradient) in measure spaces (instead of Sobolev spaces). Moreover,
we believe that in order to model single crystals with dislocations, where complex
geometries such as dislocation networks (see Figure 1) are observed [Zaiser 2004],
one can hardly rely on the assumption of a periodic array of straight dislocations.
Therefore, one is forced to build specific mathematical tools step by step, which
should provide

• an appropriate functional framework and

• a geometric description of the lines.

To achieve the latter, the mathematical formalism of currents as briefly described in
Section 1.2 has been proposed. In this framework, a cluster as depicted in Figure 1
is modeled as a continuum dislocation [Scala and Van Goethem 2016]. The for-
malism of currents to study and model dislocation clusters has been introduced
in the pioneering works [Hochrainer and Zaiser 2005; Hochrainer 2013] and then
adopted in more recent contributions to the theory of continuum dislocations as in
[Conti et al. 2015a; 2015b]. The notion of integral current with coefficient in a
group, also adopted in the companion paper [Scala and Van Goethem 2016; 2015],
is the main tool to treat dislocation networks. This is due, principally, to the ability
of dislocation lines to annihilate, sum, and form complex structures with specific
rules for summing the Burgers vectors, which belong to a specific group. Moreover,
the formalism of currents in general has proven to be useful in treating variational
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problems in the theory of continuum dislocations [Scala and Van Goethem 2016;
2015]. Restricting ourselves to a quasistatic regime, we assume that the optimal
networks result from minimization laws (note that such minimization states are
reached very fast in actual crystals such as pure copper, where resistance to dislo-
cation motion is negligible [Berdichevsky 2006]).

Therefore, the first purpose of this paper is to establish the functional setting
appropriate to describe mesoscopic dislocations. The main features are that, when
Sobolev spaces W 1,p are considered, exponent p is in the “bad range” 1≤ p < 3

2
and that the second grade variable is the curl instead of the gradient and the curl
must be a concentrated Radon measure. Minimization problems in this range are
considered in [Scala and Van Goethem 2016], where, aware of [Müller and Palom-
baro 2008], the main tools used are integral currents and Cartesian maps.

We shall provide elements for an analysis of the space of L p-tensors whose
curl is bounded in a measure space and in particular bring to light and study the
homeomorphism between this space and the space of solenoidal Radon measures,
which in the model application will be the space of dislocation densities. The
second purpose is to compute the first variation of the energy with respect to the
strain and the dislocation-associated density. These will allow us to determine
a configurational force, capable of driving the dislocations outside equilibrium,
which, as far as the deformation part of the energy is concerned, is the well-known
Peach–Koehler force.

1.2. A quick survey on currents and dislocations at the continuum scale. In
[Scala and Van Goethem 2016], we proposed a mathematical model for a countable
family of dislocations in an elastic body �, here considered the current (as opposed
to “reference”) configuration. Motivated by physical reasons [Hirth and Lothe
1982; Müller et al. 2004; Zaiser 2004; Zubov 1997], we consider finite elasticity
near the line with a less-than-quadratic strain energy while linear elasticity is a valid
assumption away from the dislocations. Since the dislocation loop is the singularity
set for stress and strain, the deformation gradient field F is incompatible, meaning1

−Curl F =3T
6= 0 in �, (1-1)

with F the (inverse) deformation tensor and where the dislocation density 3 is
a Radon measure in M(�,M3) concentrated on the dislocation set L . Here, L
is a dislocation network in the current (i.e., deformed) configuration. Clearly if
3 = 0, then F is a gradient and there are no dislocations in the bulk. Moreover,
conservation properties for dislocations imply that their density is solenoidal:

Div3T
= 0. (1-2)

1Componentwise, (Curl F)i j = ε jkl∂k Fil and 3i j = τi b j δL.
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The explicit formula for 3 shows a linear dependence on the line orientation τ and
on the Burgers vector b (i.e., 3 := τ ⊗bδL ), where for crystallographic reasons the
value of the Burgers vector is constrained to belong to a countable lattice in R3.

In the proposed formalism, currents (for which the main reference is [Federer
1969]) are used to describe dislocations at the mesoscopic scale. Specifically, dis-
locations are described by integer-multiplicity 1-currents, which are mathematical
objects generalizing the concept of curves and are assumed closed to account for
the property (1-2), implying that every dislocation is a loop or ends at the crystal
boundary. A brief survey of the mathematical formalism can be found in Section 3.1
while for details we refer to [Scala and Van Goethem 2016]. For a so-called dislo-
cation current L, we will denote the associated density by 3=3L. Whatever the
model may be, in this paper, we are merely concerned with variations at optimality;
thus, modeling and existence issues are not discussed.

The starting point of the present work is the minimum problem

min
(F,L)∈A

W(F,3L), (1-3)

where the energy

W(F,3L)=We(F)+Wdislo(3L) (1-4)

satisfies some appropriate convexity and coerciveness conditions while A is the
space of admissible couples of deformation and dislocation currents. Among the
properties of admissibility, we require that F and L be related by condition (1-1)
and that F be the gradient of a Cartesian map away from L . Therefore, both F
and L are represented by particular types of integral currents.

In dislocation gauge theory, an energy like (1-4) was used in [Lazar and Anas-
tassiadis 2008; Agiasofitou and Lazar 2010], where the decomposition in an elastic
and a dislocation part is given. From a mathematical viewpoint, that is, with
variational techniques in appropriate functional spaces, problem (1-3) has been
discussed and was first solved in [Müller and Palombaro 2008] with a single fixed
dislocation loop in the crystal bulk (thus implying a minimization in F only) and
later extended in [Scala and Van Goethem 2016] for an unfixed countable family of
dislocation currents satisfying certain boundary conditions. Existence of minimiz-
ers is based on the assumption (classical in fracture mechanics) that the number of
clusters is bounded.

1.3. Formal derivation of the Peach–Koehler force. From the standpoint of con-
figurational force theory (as in [Gurtin 2000]) or as a result of invariance properties
and Noether’s theorem (as proposed by [Agiasofitou and Lazar 2010]), the Eshelby
stress E = W I− FTP appears as a crucial quantity with W the energy density
and P the first Piola–Kirchhoff stress. Assuming that Div P = 0, i.e., that static
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equilibrium holds, one immediately finds that

Peach–Koehler force= Div E = 〈3T
L×P〉, (1-5)

where the brackets emphasize that the vector product takes place in a certain func-
tion space as a duality product. Equation (1-5) is known as the Peach–Koehler
force (see, e.g., [Hirth and Lothe 1982] for a straight dislocation); it is a force due
to the equilibrium between the dislocation and the adjacent elastic medium. In
particular, the functional choice is provided by the physics considered, that is, in
the case of dislocations, whether one considers the macroscale (with Sobolev fields
and no line singularity) or on the contrary the mesoscale, as in this work, where
geometric measure theory and related functional spaces must be considered. Let us
remark that the strong form Div P= 0 is classically obtained by the Euler–Lagrange
equation

∫
�

P · ∇u dx = 0 for all test functions u, provided the integration by parts
is valid. The point is that, at our scale of matter description, P turns out to belong
to a Lebesgue space, and thus, PN is not defined at the boundary, precluding the
use of the divergence theorem. For this reason, Div P= 0 must follow from another
procedure; namely, P will be defined as the curl of a constraint reaction L (in the
sense of [Fosdick and Royer-Carfagni 2004]), in appropriate function space, and
due to the satisfaction of (1-1).

On the other hand, observe that the rightmost member of (1-5) has no rigorous
meaning at the mesoscale since 3L is a measure and P a Lebesgue-integrable field.

1.4. Scope of the work. It is the goal of the present work to elucidate the functional
setting allowing one to mathematically establish (1-5). To the knowledge of the
authors, such a proof was nonexistent in the literature since the variational problem
was unsolved until [Scala and Van Goethem 2016] at the mesoscale, in finite-strain
elasticity, and for curved dislocations (i.e., loops) and dislocation networks. In this
respect, it has to be emphasized that our point of view is completely different from
that of [Agiasofitou and Lazar 2010], where the relation (1-5) is derived within the
framework of gauge field theory of dislocations using the Noether theorem.

Considering the existence of minimizers of problem (1-3), in the present paper,
we analyze the variation of W at the minimum points with respect to L , which by
a formal chain rule can be written as

δLW(F,3L)= δF W(F,3L)δL F + δ3W(F,3L)δL3L.

Note first that W can be written as the sum of a deformation and a defect part, the
first depending on F and the second on 3L=−(Curl F)T. However, both variables
are related to L in an intrinsic manner, and hence, a precise meaning must be given
to the above chain rule expression.
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The first aim of this paper is of a theoretical nature: basically, it consists of giving
a precise meaning to δL F and δL3L that will be achieved by proving a series of
preliminary results. As far as the second term is concerned, the geometric analysis
made in [Scala and Van Goethem 2016] and synthesized in Section 3.1 is used as
a basis but here completed by putting the concentrated measure 3L in duality with
a certain continuous tensor, called the constraint reaction. One difficulty is related
to the identification of the dual space of Radon measures which are concentrated
in closed lines since in general it is not true that this set is a subspace of continuous
functions. This first result will in particular require inverting the curl operator. As
far as the deformation part of the energy is concerned, we have already mentioned
that it is not a gradient since to satisfy constraint (1-1) it must read F =∇u+Curl V
(an expression recognized as a tensor Helmholtz–Weyl-type decomposition). As
a matter of fact, F will depend on L through the solution of −Curl Curl V =
3T

L, which is an equation to consider with care since it is not an elliptic PDE.
In this paper, use will also be made of Helmholtz- and Friedrich/Maxwell-type
decompositions in L p (see, e.g., [Kozono and Yanagisawa 2009; Galdi 2011]),
where by Maxwell these are intended estimates of vectors/tensors with respect to
their curl and divergence [Neff et al. 2012b; 2012a; 2015b; Yanagisawa 2007],
the crucial fact being that, by (1-1), the L p-norm of the deformation gradient is
estimated by the dislocation density norm, here intended as total variation of the
Radon measure.

A direct consequence of the results in this work, discussed in Section 4.5, is
setting the basis of a model of evolution in time of dislocations, in the sense that
computing δLW amounts to considering that a certain (configurational) force ex-
erted on the dislocations is vanishing. Therefore, a moving dislocation will evolve
with a velocity proportional to this force, as documented in dislocation theories
[Hirth and Lothe 1982; Acharya 2003], and originating from the variation of the
deformation part of the energy. In the final Theorem 26, we show that, at optimality,
there is a balance of forces, one of which is the well-known Peach–Koehler force F ,
while the other is a line-tension term, G , provided by the variation of the defect
part of the energy (see also [Conti et al. 2011]). In fact, the identity

F =−G ,

holding at minimality, might be considered a constitutive law for F since G is
given explicitly in terms of the dislocation energy density and the line curvature
and normal and tangent vectors. Let us emphasize that time evolution per se is not
considered in the present work.

1.5. Structure of the paper. In Section 2, the theoretical results required as pre-
liminaries are stated and proved, unless their proofs are found elsewhere in the
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literature. An important result is the existence of a constraint reaction, given in
Section 2.4, relying on the important result on the invertibility of the curl operator
as found in Section 2.3. Section 3 contains three subsections where the mathemat-
ical properties of a dislocation model in this setting are given and discussed. In
particular, the functional relations between the deformation and the defect variables
are given (important relations are here (3-13) and (3-14)), their admissibility is
studied, and minimization results in appropriate spaces are recalled. In Section 4,
the generic results of previous sections are applied to a more specific dislocation
model. The goal here is to compute the first variation of the energy at the minimum
points, eventually yielding the Peach–Koehler force expression in Section 4.3. In
Section 4.4, a shape-optimization view of minimality provides a balance of con-
figurational forces, which is applied to an example. All preliminary results of this
paper are required to derive this force expression, collected in Theorem 26.

1.6. A remark. This paper has been written in two parts; the first, Section 2, is
where all theoretical results are stated and proved without even referring to disloca-
tions. Indeed, the functional spaces described in this section are broader than those
needed for dislocations, and hence, the results more general. Instead, Sections 3
and 4 are specifically devoted to the study of dislocations, and hence, the previous
statements are particularized. Moreover, in order to be self-contained, the essence
of [Scala and Van Goethem 2016] is recalled in simple terms in Section 3.1.

2. Theoretical setting and preliminary results

2.1. Notation and conventions. The class of 3× 3 matrices is denoted by M3
:=

R3×3. In the following definitions, the codomain space R is either tensor-valued,
R = M3, or vector valued, R = R3. Then R′ stands for R3 or R, respectively.
The symbol M stands for finite Radon measures while D denotes the topological
vector space of smooth functions with compact support. The subset of R-valued
solenoidal finite Radon measures on an open set X ⊂ R3 reads

Mdiv(X,R) := {µ ∈M(X,R) : 〈µ, Dϕ〉 = 0 for all ϕ ∈ C 1
0 (X,R′)}, (2-1)

where the product (here intended in the sense of finite Radon measures) yields, in
the case R = M3, a real tensor whose components read (〈µi j , D jϕk〉)ik . Recall
that ϕ ∈ C 1

0 (X,R′) if it is of class C 1 and if for every ε > 0 there exists a compact
set K ⊂ X such that |ϕ(x)| and |Dϕ(x)| are smaller than ε for any x ∈ X \ K .

Observe that Mdiv(X,R) is a closed subspace of M(X,R) and hence is a Banach
space, endowed with the total variation norm |µ|(X)= sup{〈µ, ϕ〉 : ϕ ∈ C (X,R),

‖ϕ‖∞ ≤ 1} (see [Ambrosio et al. 2000] for details on vector- and tensor-valued
Radon measures on metric spaces). A particular subclass of Mdiv(X,R) will be
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the family of (the transpose of) the dislocation densities2 (3?)T ∈ Mdiv(�̂,M3),
where �̂⊃� is an open set containing only dislocation loops.

For a tensor A and vector N , we use the convention (N × A)i j =−(A× N )i j =

−ε jkl Aik Nl . Further, the curl of a tensor A is defined componentwise as (Curl A)i j=

ε jkl Dk Ail . As a consequence,

〈Curl A, ψ〉 = −〈Ail, ε jkl Dkψi j 〉 = 〈Ail, εlk j Dkψi j 〉 = 〈A,Curlψ〉, (2-2)

for every ψ ∈ D(�,M3). In general, if ψ does not have compact support,

〈Curl A, ψ〉 = 〈A,Curlψ〉+
∫
∂�

(N × A) ·ψ d S. (2-3)

Note that with this convention one has Div Curl A = 0 in the sense of distributions
since componentwise the divergence is classically defined as (Div A)i = D j Ai j .3

The following lemma characterizes the dislocation measures as a particular sub-
class of the solenoidal measures.

Lemma 1. Let µ ∈Mdiv(�,R3×3) be a measure that is absolutely continuous with
respect to the H1-measure restricted on a simple Lipschitz curve L with tangent
vector τ and such that L is either closed or ends at the boundary. Then µ is a
dislocation measure; that is, there exists a constant vector b such that

µ= b⊗ τH1
xL . (2-4)

We omit the proof, which is quite simple, and refer to [Scala and Van Goethem
2015]. Let us denote by Mdislo(�,M3) the class of the transpose of such measure
as (2-4).

Let 1≤ p<∞, and let �⊂R3 be an arbitrary open set. We introduce the vector
space of tensor-valued fields

BCp(�,R3×3) := {F ∈ L p(�,R3×3) : Curl F ∈Mdiv(�,R3×3)}, (2-5)

which, as endowed with the norm

‖F‖BCp := ‖F‖p + |Curl F |(�), (2-6)

turns out to be a Banach space.

2The transpose is taken to be consistent with Van Goethem’s references on dislocations
[Van Goethem and Dupret 2012b]. This convention was originally taken from Kröner [1981].

3In this paper, we therefore follow the transpose of Gurtin’s notation convention [Cermelli and
Gurtin 2001], but care must be payed since the curl and divergence of tensor fields are given alter-
native definitions in the literature (including [Van Goethem and Dupret 2012b; Van Goethem 2014]
where the current curl would give Curl A =−A×∇).
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Remark 2. One might define BCp(�,M3) by only specifying Curl F ∈M(�,M3)

and considering the solenoidal property of µ as a direct consequence of the distri-
butional identity Div Curl F = 0 in �.

2.2. Helmholtz decomposition for tensor fields.

Lemma 3. Let G ∈ L p(�,M3) with 1 < p <∞ and � be a bounded open and
simply connected set with C 1 boundary. There exists a unique solution (up to a
constant) φ ∈W 1,p(�,R3) of{

−1φ = Div G in �,
∂Nφ =−G N on ∂�.

(2-7)

Moreover, such a solution satisfies ‖Dφ‖p ≤ C‖G‖p.

Proof. This lemma is a direct tensor extension of the theorems of existence and
uniqueness of the Neumann problem as shown in [Simader and Sohr 1996] (see
also [Galdi 2011, Lemma III.1.2, Theorem III.1.2]). �

Note that (2-7) is a formal strong form meaning that the following weak form
is solved [Yanagisawa 2007]:

−〈∇φ,∇ϕ〉 = 〈G,∇ϕ〉 for all ϕ ∈W 1,p′(�,M3). (2-8)

In particular, observe that the trace G N is not well-defined on the domain boundary.
This issue will be addressed by Lemma 4. Let us define

L p
div(�,M3) := {F ∈ L p(�,M3) : Div F = 0}, (2-9)

L p
curl(�,M3) := {F ∈ L p(�,M3) : Curl F = 0}. (2-10)

The following result can be proven [Van Goethem 2015].

Lemma 4. Let �⊂ R3 be a bounded open set with boundary of class C 1, and let
F ∈ L p(�,R3×3) be such that Div F ∈ L p(�,R3). Let us define the distribution
F N as

〈F N , γ (ϕ)〉 := 〈Div F, ϕ〉+ 〈F, Dϕ〉 (2-11)

for all ϕ ∈ W 1,p′(�,R3), with γ (ϕ) ∈ W 1/p,p′(∂�,R3) the boundary trace of ϕ,
where 〈 · , ·〉 always means the duality product in appropriate spaces. Then F N ∈
W−1/p,p(∂�,R3) := (W 1/p,p′(∂�,R3))′.

Similarly, the following holds true:

Lemma 5. Let �⊂ R3 be a bounded open set with boundary of class C 1, and let
F ∈ L p(�,R3×3) be such that Curl F ∈ L p(�,R3×3).

Then F × N ∈W−1/p,p(∂�,R3) := (W 1/p,p′(∂�,R3))′ is defined as

〈F × N , γ (ϕ)〉 := 〈Curl F, ϕ〉− 〈F,Curlϕ〉 (2-12)

for all ϕ ∈W 1,p′(�,R3), with γ (ϕ) ∈W 1/p,p′(∂�,R3) the boundary trace of ϕ.



114 RICCARDO SCALA AND NICOLAS VAN GOETHEM

Let 1 < p < ∞. In virtue of the previous two lemmas, if V ∈ L p(�,R3)

is such that Div V ∈ L p(�,R), then it is well-defined and its normal trace V N ∈
W−1/p,p(∂�) := (W 1/p,p′(∂�))′ on ∂�. Similarly, if V ∈ L p(�,R3)with Curl V ∈
L p(�,R3), then its antinormal trace on ∂� is V × N ∈ W−1/p,p(∂�,R3) and is
defined as in (2-12). These properties can be straightforwardly applied to tensor-
valued maps V ∈ L p(�,M3) so that, if Div V ∈ L p(�,R3), it is well-defined and
its normal trace V N ∈W−1/p,p(∂�,R3) on ∂� (componentwise, (V N )i = Vi j N j ).
Similarly for the antinormal trace V × N (componentwise, ε jlpVil Np), it belongs
to W−1/p,p(∂�,M3) as soon as Curl V ∈ L p(�,M3) (see also [Kozono and Yanag-
isawa 2009] and references therein).

Let us introduce the spaces

Vp(�) := {V ∈ L p
div(�,M3) : Curl V ∈ L p(�,M3), V × N = 0 on ∂�}, (2-13)

Ṽp(�) := {V ∈ L p
div(�,M3) : Curl V ∈ L p(�,M3), V N = 0 on ∂�}. (2-14)

The following estimate can be found in [Kozono and Yanagisawa 2009].

Lemma 6. Let � ⊂ R3 be a bounded open set with boundary of class C 1, and
assume F ∈ Vp(�) or F ∈ Ṽp(�). Then F ∈ W 1,p(�,R3×3), and there exists a
positive constant C = C(�) such that

‖∇F‖p ≤ C(‖Curl F‖p +‖F‖p). (2-15)

This shows that Vp(�) and Ṽp(�) are closed subspaces in W 1,p(�,M3). By
virtue of Lemma 6 and for simply connected and bounded domains, a better esti-
mate can be found in [von Wahl 1992]. Note that the following is a classical result
for smooth functions with compact support [von Wahl 1992]:

Lemma 7. Let � be a simply connected and bounded domain, and let F ∈ Vp(�)

or F ∈ Ṽp(�). Then
‖∇F‖p ≤ C‖Curl F‖p. (2-16)

As a direct consequence, the following result holds.

Lemma 8. Let � be a simply connected and bounded domain, and let F ∈ Vp(�)

or F ∈ Ṽp(�). Then Curl F = 0 if and only if F = 0.

We remark that, when F ∈ Ṽp(�), Lemma 8 amounts to proving the unique-
ness property of Lemma 3. Moreover, in [Kozono and Yanagisawa 2009], a more
general statement is established without the simply connectedness assumption. In
general, for � a smooth and bounded subset of R3, Curl F = Div F = 0 has
a nontrivial solution. In particular, Kozono and Yanagisawa [Yanagisawa 2007]
show that the solutions belong to a subspace of C∞(�,M3) with positive finite
dimension, depending on the Betti numbers of �.
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The following result is well-known in the Hilbertian case L2 but is not classical
for the general Banach space L p. It is basically proven with the help of Lemma 3
(for a complete proof, see [Kozono and Yanagisawa 2009; Yanagisawa 2007] and
also [Galdi 2011; Neff et al. 2012a]).

Theorem 9 (Helmholtz, Weyl, Hodge, and Yanagisawa). Let 1 < p < ∞, and
let � be a bounded, simply connected, and smooth open set in R3. For every F ∈
L p(�,M3), there exist u0 ∈W 1,p

0 (�,R3) and a solenoidal V ∈ Ṽp(�) such that

F = Du0+Curl V
(
L p(�,M3)=∇W 1,p

0 (�,R3)⊕Curl Ṽp(�)
)
. (2-17)

Alternatively, there exist u ∈W 1,p(�,R3) and a solenoidal V0 ∈Vp(�) such that

F = Du+Curl V0
(
L p(�,M3)=∇W 1,p(�,R3)⊕Curl Vp(�)

)
. (2-18)

Moreover, the decompositions are unique, in the sense that u0, V , and V0 are
uniquely determined while u is unique up to a constant, and ‖Du0‖p, ‖Du‖p ≤

C‖F‖p, respectively.

Remark 10. When F is smooth with compact support, decompositions such as
(2-17) and (2-18) are classically given by the Stokes theorem and explicit formulae
involving the divergence and curl of F [von Wahl 1992; Bolik and von Wahl 1997].

Remark 11. Let F be of class C 1. In the particular case Curl F = 0, the Helmholtz
decomposition is trivial when � is a simply connected domain. Indeed it is well-
known that in such a case there exists u ∈ C 2(�,R3) satisfying F = Du. This
result extends for F ∈ L p with 1 < p < +∞ as shown in [Galdi 2011]. See
[Kozono and Yanagisawa 2009] for a complete treatment of Helmholtz decom-
position in L p, relying on the pioneering paper [Fujiwara and Morimoto 1977].
Moreover, if Div F = 0, then by Theorem 9, F = Curl V with V ∈ Ṽp(�). Note
that, for smooth functions F , this result holds for any simply connected domain
with Lipschitz boundary.

Remark 12. Smoothness of the boundary is a strong requirement which is needed
for the following reason: (2-17) and (2-18) require in principle solving a Pois-
son equation 1u = Div F with the right-hand side in some distributional (that
is, Sobolev–Besov) space for which smoothness of the boundary is needed. It is
known [Fabes et al. 1998] that for a Lipschitz boundary the solution holds for
restricted p (namely 3

2−ε ≤ p≤ 3+ε) for some ε = ε(�)> 0. Note that for p= 2
a Lipschitz boundary would be sufficient.

Lemma 13. Let �⊂ R3 be a bounded open set with boundary of class C 1, and let
V ∈ Vp(�). Then (Curl V )N = 0 in the sense of Lemma 4.
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Proof. Take any ϕ ∈W 1,p′(�,R3). With by-parts integration ((2-11) and (2-12)),
it holds that

〈(Curl V )N , ϕ〉∂� = 〈Curl V, Dϕ〉 = 〈V × N , Dϕ〉∂� = 0.

Since ϕ is arbitrary, the proof is done. �

By Lemma 13, the function u of (2-18) is found by solving (2-7) with φ = u
and G =−F . This also gives a meaning to the condition ∂N u = F N .

2.3. Invertibility of the curl.

Notation 14. Unless otherwise specified, the domains � we consider are bounded,
smooth, and simply connected subsets of R3, with outward unit normal N .

Let us introduce the following notation.

Notation 15. Given �, we denote by �̂ another domain satisfying Notation 14 and
such that �b �̂.

A key equation behind the results of this work is the system
−Curl F = µT in �̂,
Div F = 0 in �̂,
F N = 0 on ∂�̂,

(2-19)

with µT a Radon measure in Mdiv(�̂,M3). Note that the transpose is put here
for convenience. In fact, the right-hand side is a general tensor-valued solenoidal
bounded Radon measure. Existence and uniqueness of a solution is given by
Theorem 16 below, for the proof of which Lemma 3 (or Lemma 8) will be required.

The following result is first given for general solenoidal measures and then
slightly improved for dislocation measures. The existence part is a straightforward
consequence of the main result of [Bourgain and Brezis 2004], whereas some fur-
ther details can be found in [Scala and Van Goethem 2015, Appendix].

Theorem 16 (Biot and Savart). Let µ be a tensor-valued Radon measure such that
µT
∈Mdiv(�̂,M3). Then there exists a unique F in BC1

div(�̂,M3) that is a solution
of (2-19). Moreover, F belongs to BC

p
div(�̂,M3) for all p with 1≤ p < 3

2 , and for
all such p, there exists a constant C > 0 satisfying

‖F‖p ≤ C |µ|(�̂). (2-20)

Moreover, if µ = τ ⊗ bH1
xL

, for some b ∈ R3 and a C 2-closed curve L in �̂ with
unit tangent vector τ , then the solution F belongs to BC

p
div(�̂,M3) for all p < 2.

Let us remark that the regularity assumption on the curve L is necessary here
since there exist examples of a measure concentrated on a rectifiable curve such
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that the associated deformation F is not in L p with 3
2 < p < 2, as shown in [Conti

et al. 2015b].
By uniqueness, there exists a linear one-to-one and onto correspondence be-

tween the spaces Mdiv(�̂,M3) and BC
p
div(�̂,M3). Thus, the map

Curl−1
:Mdiv(�̂,M3)→BC

p
div(�̂,M3), ν 7→ F =−Curl−1(ν), (2-21)

is well-defined and linear. Therefore, we may write

BC
p
div(�̂,M3) := Curl−1(Mdiv(�̂,M3)). (2-22)

Moreover, for any F ∈BC
p
div(�̂,M3), we recover by (2-20) the L p-counterpart of

the Maxwell relation in L2 [Neff et al. 2012a], that is,

‖F‖p ≤ C |Curl F |(�̂). (2-23)

Remark 17. In case � is not simply connected, the uniqueness of the solution of
problem (2-19) does not hold. In such a case, Lemma 8 would also not hold since
the problem might exhibit nontrivial solutions, as shown in [Yanagisawa 2007].

2.4. Existence of a constraint reaction. In the next subsections, we will deal with
a linear and continuous map,

8 :BCp(�̂,M3)→ R, (2-24)

such that |8(F)| ≤ C‖F‖p for some C > 0 and satisfying

L p
curl(�̂,M3)⊂ ker8. (2-25)

An important result for maps of this kind is now stated and proved.

Theorem 18. Let 1 < p < 3
2 , and let 8 be a linear and continuous map on

L p(�̂,M3) satisfying 8(Du) = 0 for every u ∈ W 1,p(�̂,R3). Then there exist
two maps L and L̃ belonging to C(�̂,M3) ∩ W 1,p′(�̂,M3), with 3 < p′ < ∞,
1/p+ 1/p′ = 1, such that, for every F ∈BCp(�̂,M3),

8(F)= 〈Curl L̃, F〉 = 〈Curl L, F〉 = 〈L,Curl F〉 (2-26)

and satisfying Div L= Div L̃= 0 in �̂, N × L= 0, and L̃N = 0 on ∂�̂.

Proof. Since 8 is linear and continuous,

8(F)= 〈T, F〉, (2-27)

for some T ∈ L p′(�̂,M3). Now for every ϕ ∈ C∞(�̂,R3), we have 〈T, Dϕ〉 =
8(Dϕ) = 0, proving that Div T = 0 in �̂ and, integrating by parts, that TN = 0
on ∂�̂. By Theorem 9 ((2-17) or (2-18)), there exist a unique L ∈ L p′

div(�̂,M3)
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satisfying N × L = 0 on ∂�̂ and a unique L̃ ∈ L p′

div(�̂,M3) with L̃N = 0 on ∂�̂
such that

Curl L+ Du = Curl L̃+ Du0 = T, (2-28)

for some u and u0 as in Theorem 9. Since Div T= 0 in �̂, one has u0= 0 and, from
Curl LN = TN = 0 on ∂�̂, Du = 0. By the Maxwell–Friedrich-type inequality
(i.e., the generalization of (2-15) [Yanagisawa 2007]), i.e.,

‖∇L‖p′ ≤ C(‖Curl L‖p′ +‖Div L‖p′ +‖L‖p′), (2-29)

the fact that L ∈ L p′(�̂,M3) with Curl L ∈ L p′(�̂,M3) and Div L= 0, implies that
L ∈W 1,p′(�̂,M3), which since 3< p′ ≤∞ entails by Sobolev embedding that

L ∈ C (�̂,M3). (2-30)

The same is true for L̃. Integrating by parts the identities (2-26), we get, since
N × L= 0 on ∂�̂,

8(F)= 〈Curl L, F〉 = 〈L,Curl F〉,

completing the proof. �

In the applications, 8 will be the first variation of the deformation part of the
energy. In the sequel, we will restrict to those variations whose deformation curl is
concentrated in a closed curve and, specifically, is associated to some dislocation
density measure. This latter notion will be made clear in Section 3.1.

3. Energy minimization of dislocation networks

The key point of this work is to perform variations around the minima of problem
(1-3) in the largest possible functional spaces. As far as the deformation part of
the energy is concerned, this amounts to proving the existence of an appropriate
Lagrange multiplier to account for the constraint (1-1). This will be achieved
thanks to Theorem 18. In principle, variations can be made with respect to F , the
dislocation density 3, and the dislocation set L . In the first case, one recovers the
equilibrium equations, where the Piola–Kirchhoff stress is written as the curl of the
constraint reaction. The second case is more delicate since the space of variations is
not a linear space (due to the so-called crystallographic assumption), thus creating
a series of difficulties which we do not address further. Most interesting is the
variation with respect to the line, that is, with respect to infinitesimal Lipschitz
variations of the optimal dislocation cluster L?. The difficulty here is that both F
and 3 depend on L . In the case of 3, the dependence is explicit since L is in
some sense the support of 3=3L (see (3-4)). In the case of F , the dependence
is implicit since

F =∇u+ F◦, (3-1)
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where F depends on L through the relation Curl F◦ =−(3L)
T. Therefore, since

the energy consists of one term in F and another in 3, variations of the energy with
respect to L (that is, with respect to its support L) will require an appropriate ver-
sion of the chain rule. This computation is the main objective of Section 4, which
to be carried out carefully requires a series of preliminary steps, collected in the
present section. In order to be self-contained, results from [Scala and Van Goethem
2016] are first recalled while rewritten in a concise form. We refer to [Scala and
Van Goethem 2016; 2015] for a full discussion of the results and of the models.
In the next two subsections, the results from Section 2 are applied to continuum
dislocations. The main results are relations (3-13) and (3-14).

3.1. Dislocation density measures. In the sequel, we will adopt Notations 14 and
15. In order to perform variations in F and3, we introduce an appropriate subspace
of Mdiv(�,M3) called the set of dislocation density measures and based upon the
notion of integer-multiplicity (or integral) 1-currents.

In many applications, the Burgers vector is constrained by crystallographic prop-
erties to belong to a lattice. For simplicity, this lattice will be assumed isomorphic
to Z3. Let the lattice basis {b1, b2, b3} be fixed, and define the set of admissible
Burgers vectors as

B := {b ∈ R3
: there exists β ∈ Z3 such that b = βi bi }.

In the sequel, we will adopt the nonrestrictive and simple choice B = Z3, i.e.,
bi = ei , the i-th Euclidean base vector. Moreover, we write b ∈ Z3 to mean b ∈B.

Let L be an H1-rectifiable subset of �̂, τ the unit oriented tangent vector defined
H1-a.e. on L , and θ : L→ Z an H1-integrable integer-valued function. Then the
integer-multiplicity 1-current L denoted by L := {L , τ, θ} is defined as

L(ω) :=

∫
L
〈ω, τ 〉θ(x) dH1(x)

for every compactly supported and smooth 1-form ω defined in �̂. The (topological
vector) space of such forms is denoted by D1(�̂,

∧
R3), where

∧
R3 is the space

of one-dimensional covectors.
A dislocation can be described using the notion of the integer-multiplicity 1-

current. For every Burgers vector b ∈ Z3, we introduce the regular b-dislocation
in �̂ as the closed integral 1-current L̂b

:= {L̂b, τ b, θb
}, where L̂b represents the

union of a finite family of Lipschitz and closed curves in �̂, τ b its oriented unit
tangent vector, and θb an integer-valued function on L̂b called multiplicity. We
define the regular b-dislocation Lb

:= {Lb, τ b, θb
} in � as the restriction of L̂b

to �, i.e., Lb(ω) :=
∫

L̂b∩�
〈ω, τ b

〉θb(x) dH1(x) for every compactly supported and
smooth 1-form ω defined in �̂. Associated to any b-dislocation in �̂ is its density,



120 RICCARDO SCALA AND NICOLAS VAN GOETHEM

that is, the measure 3̂Lb ∈M(�̂,M3), defined by

〈3L̂b , w〉 := L̂b((wb)∗), (3-2)

for every w ∈D(�̂,M3), where in the right-hand side ω := (wb)∗ is the covector
(wb)∗ := wk j b j dxk . If we identify test functions w ∈ D(�̂,M3) with 1-forms in
D1(�̂,

∧
R3)3, then we can also identify the density 3L̂b with an integral 1-current

with coefficients in the group Z3, as in (3-2). We will use the notation

3L̂b = L̂b
⊗ b.

Its counterpart in� is the restriction of3L̂b to�, denoted by3Lb and characterized
by

3Lb = Lb
⊗ b = τ b

⊗ bθbH1
xLb .

A general dislocation L̂ is a sequence of b-dislocations {L̂b
}b∈Z3 . The associated

dislocation densities in �̂ and � are given by

3L̂ =

∑
b∈Z3

3L̂b and 3L =

∑
b∈Z3

3Lb , (3-3)

respectively. These definitions allow us to describe any dislocation showing a finite
or countable family of Burgers vectors. However, it can be shown that actually any
dislocation current L can be split in the basis of R3, as the sum of three integral
1-currents (called canonical dislocation currents) L=L1+L2+L3, in such a way
that3Li =3i =Li⊗ei for i=1, 2, 3 and that3L=31+32+33. With the notation
Li = {L i , τ

i , θi }, we call L :=
⋃

i L i the dislocation set, which corresponds to the
support of L as shown in [Scala and Van Goethem 2016].

A dislocation current α in V := �̂\� is a boundary condition if it is the restriction
to V of a closed dislocation current α in �̂. We finally define the class of admissible
dislocations in � with respect to a given boundary condition α as the set of all
dislocation currents L which are the restrictions to � of some closed dislocation
current L̂ in �̂ such that L̂xV = α. In the sequel, we will always suppose that
dislocation currents are admissible for a fixed boundary datum.

3.2. Functional space representation of dislocation networks. We will restrict
our attention to the class of continuum dislocations (c.d.), defined as follows: L

is a continuum dislocation if, for i = 1, 2, 3, there exists a 1-Lipschitz map λi
:

[0,M i
] → �̂ such that L̂i = λ

i
][[0,M i

]], the push-forward by λi of the standard
current given by integration on the interval [0,M i

]; see [Scala and Van Goethem
2016, §2] for details (note that this definition is equivalent to the original one given
in the reference thanks to Theorem 4.5 therein). Moreover, since all such currents
are boundaryless by definition, we can rescale the functions λi and suppose they are
defined on S1. These dislocations might be called clusters because their Lipschitz
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descriptions allow for the formation of complex curves. Their counterparts in �
are defined as above. In such a case, the density of a continuum dislocation in �
can be written as the sum of the three measures

3L =

3∑
i=1

3i =

3∑
i=1

λi
][[S

1
]]x�⊗ ei , (3-4)

which can be equivalently written as 3i = (λ̇i
⊗ ei )λ

i
]H

1, where λi
]H

1 is the
push-forward of the 1-dimensional Hausdorff measure on S1 through λi (see, e.g.,
[Krantz and Parks 2008] for this notion).

If L is a continuum dislocation, then there exists a set CL ⊂ �̂ containing the
support of the density 3L̂ which is a continuum, i.e., a finite union of connected
compact sets with finite 1-dimensional Hausdorff measure. Note that such a set is
not unique and that we can always take, for example, CL =

⋃3
i=1 λ

i (S1).
Let us introduce the class of dislocation density measures with compact support

in �̂ as

M3(�̂,M3) := {µ̂ ∈M(�̂,M3) : there exists L̂, c.d., with density −(3L̂)
T
= µ̂}.

(3-5)
Let λ ∈W 1,1(S1,M3), with L :=

⋃3
i=1 λ

i (S1). We introduce

θi (P) :=#
{

s∈ (λi )−1(P) :
λ̇i

|λi |
(s)=τ(P)

}
−#
{

s∈ (λi )−1(P) :
λ̇i

|λi |
(s)=−τ(P)

}
,

for every P ∈ L , which stands for the multiplicity of the dislocation with Burgers
vector ei , where the symbol # denotes the cardinality of a set (the subtraction is
due to overlapping loops with reverse orientations).

For every ϕ ∈ Cc(�̂,M3), the density µ̂λ := −(3L̂)
T which is associated to λ

satisfies

−〈µ̂λ, ϕ〉 =

3∑
k=1

∫
S1
ϕ(λk(s)) · (ek ⊗ λ̇

k(s)) dH1(s)

=

3∑
k=1

∫
S1
(ϕ ◦ λk)k j (s)(λ̇k) j (s) ds. (3-6)

The latter equality can also be seen as the integration on the image L i of the curve λi

counted with its multiplicity θi . It turns out that

−〈µ̂λ, ϕ〉 =

∫
L
ϕi j (P)τ i

j (P)θi (P) dH1(P). (3-7)

Here

τ i
jθi dH1

= (λ̇i ) j ds. (3-8)
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The counterpart of µ̂λ in � is µλ = µ̂λx�. The correspondence between the arcs λ
and the Burgers vectors of the dislocation will appear clearer in the following:

Remark 19. When we deal with a dislocation L generated by a single loop with
Burgers vector b = (β1, β2, β3) = βi ei , βi ∈ Z (b 6= 0), then we have a Lipschitz
function γ b

∈ W 1,1(S1,R3) such that L = γ b
] [[S

1
]]x� and −µT

γ b = 3L = L⊗ b,
that is, the measure such that

−〈µγ b , ϕ〉 =

∫
S1
ϕ(γ b(s)) · (b⊗ γ̇ b(s)) ds =

∫
S1
ϕi j (γ

b(s))bi γ̇
b
j (s) ds

=

∫
L
ϕi jτ

i
j biθ dH1, (3-9)

where θ(P) represents the multiplicity of the dislocation and is defined for every
P ∈ L as

θ(P) :=#
{

s∈(γ b)−1(P) :
γ̇ b

|γ b|
(s)=τ(P)

}
−#
{

s∈(γ b)−1(P) :
γ̇ b

|γ b|
(s)=−τ(P)

}
.

(3-10)

For every µ ∈M3(�̂,M3), it is easy to check that Divµ= 0 in �̂ since Li are
closed integral currents. In fact for all ψ ∈ D(�̂,R3), one has

−〈Dψ,µ〉 =
〈

Dψ,
3∑

k=1

ek ⊗ λ̇
k(λk

]H
1)

〉
=

3∑
i=1

∫
S1

D j (ψi ◦ λ
i )λ̇i

j ds

=

∫
S1

Dt(ψk ◦ λ
k) dt = 0.

We then get M3(�̂,M3)⊂Mdiv(�̂,M3). We can now identify the space M3(�̂,M3)

with W 1,1(S1, �̂3) through the map

T :W 1,1(S1, �̂3)→M3(�̂,M3) such that T (λ)=−µ̂λ defined in (3-6). (3-11)

The map T is by definition onto while, for every λ ∈W 1,1(S1, �̂3),

‖T (λ)‖M ≤ ‖λ̇‖L1, (3-12)

implying the continuity of T . In general, T is not an injective map, but it is injective
up to an equivalence relation ∼ in W 1,1(S1, �̂3) (namely, λ ∼ λ′ if and only if
T (λ)= T (λ′) as measures). As a consequence,

T (W 1,1(S1, �̂3))=M3(�̂,M3), (3-13)

T−1(M3(�̂,M3))=W 1,1(S1, �̂3). (3-14)



CONSTRAINT REACTION AND THE PEACH–KOEHLER FORCE 123

3.3. Class of admissible deformations and existence of minimizers. In this sub-
section, we exhibit an existence result for minimizers of energies W satisfying
some particular assumptions. For the proofs, we refer to [Scala and Van Goethem
2016]. Let us introduce

BCp,3(�̂,M3) := {F ∈BCp(�̂,M3) : Curl F ∈M3(�̂,M3)}, (3-15)

BCp,3(�,M3) := {F ∈BCp(�,M3)

: there exists F̂ ∈BCp,3(�̂,M3) with F = F̂x�} (3-16)

and its proper subspace

BC
p,3
div (�̂,M3) := {F ∈BC

p
div(�̂,M3) : Curl F ∈M3(�̂,M3)} (3-17)

in such a way that, by Theorem 16 and (3-13),

BC
p,3
div (�̂,M3) := Curl−1(M3(�̂,M3))= Curl−1(T (W 1,1(S1, �̂3))). (3-18)

In [Scala and Van Goethem 2016], we consider deformations F ∈BCp,3(�,M3)

which also satisfy some regularity conditions outside the continuum dislocation
set CL of the dislocation 3L ∈M3(�,M3). If F is an admissible deformation, we
assume that F satisfies the following property:

(P) For every ball B ⊂ � with B ∩ CL = ∅, there exists a Cartesian map u ∈
Cartp(B,R3) such that F = Du in B.

Let us recall the meaning of Cartp(B,R3). If U is an open set on R3, the space of
Cartesian maps on U , denoted by Cartp(U,R3), is defined as the space of maps
u :U → R3 belonging to W 1,p(U,R3) and satisfying the conditions that adj(Du)
and det(Du) belong to L1(U,M3) and ∂Gu= 0, where Gu is the rectifiable 3-current
in U ×R3 carried by the graph of u [Giaquinta et al. 1998]. We denote by

ADp(�̂) := {F ∈BCp,3(�̂,M3) : F satisfies (P) above}, (3-19)

ADp(�) := {F∈BCp(�,M3) : there exists F̂∈ADp(�̂) with F= F̂x�}. (3-20)

Notation 20. Let �̂ be the open set introduced in Notation 15, and let α be a
boundary condition in V = �̂ \� (i.e., α = L̂xV for a closed dislocation current L̂

in �̂). We then fix F̂ ∈ADp(�̂) such that −Curl F̂ = (3L̂)
T and define

Fα := {F ∈ADp(�), 1≤ p< 2 : F̃ := Fχ�+ F̂χV ∈ADp(�̂), −Curl F̃ = (3L̂)
T

in �̂ for some closed dislocation current L̂ in �̂}. (3-21)

In particular, note that the dislocation current L̂ in the above definition must
coincide with α in V . We denote by L the restriction to � of L̂.
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Assumptions on the energy. We make the assumption on the elastic energy

W(F,3L) :=We(F)+Wdislo(3L), (3-22)

with

We(F) :=
∫
�

We(F) dx . (3-23)

As for the dislocation part, we assume that

Wdislo(3L)=W1
dislo(3L)+W2

dislo(3L), (3-24)

where the precise continuity, growth properties on the bulk, and defect energies
are discussed and motivated in [Scala and Van Goethem 2016]. Let us stress
that following [Conti et al. 2015a] (where no variational problem is solved), an
expression for the line tension W1

dislo is here taken as

W1
dislo(µ)=

∫
L
ψ(θb, τ ) dH1, (3-25)

when µ= b⊗γ][[S1
]] = b⊗θτH1

xL is the dislocation density of a cluster generated
by the loop γ ∈ W 1,1(S1,R3) and Burgers vector b = βi ei , βi ∈ Z (b 6= 0), and
takes the value +∞ if µ is not of this type. Here ψ : Z3

×R3
→R is a nonnegative

function satisfying ψ(0, · )= 0 and ψ(b, t)≥ c‖b‖ for a constant c > 0.
As for the term W2

dislo(3L), it is remarkable that, under the hypotheses needed
to get existence of minimizers, it does not depend on small perturbations of the
dislocation line set L . This will be strongly used in the subsequent section.

Now the existence theorem is the following:

Theorem 21. Under Notation 20 and suitable hypotheses on the energy W in (3-22)
(see [Scala and Van Goethem 2016] for details), there exists a minimizer F? of the
problem

min
F∈Fα

W(F,3L). (3-26)

We write Curl F? =3T
L? with L? being the optimal dislocation network, whose

support is denoted by L?. It should be remarked that, due to the Dirichlet condi-
tion F = F̂ on �̂ \� for the admissible deformations gradients, the minimizer is
not trivial and must satisfy −Curl F =3L for some closed dislocation current L

coinciding with α in �̂ \ �. An explicit example showing the nontriviality of
the solution can be found in [Scala and Van Goethem 2016, §5.4]. Note that such
energies at the macroscale are considered in [Neff et al. 2015a], where a variational
problem is solved.
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4. Configurational forces at optimal dislocation networks

Certain forces apply on the dislocation clusters, solutions to the above minimiza-
tion problem. They are due to the combined effect of the deformation and defect
part of the energy. The line having no mass, these forces must be understood as
being of configurational nature. They are related to the presence of microstructure,
here dislocations, in an otherwise static elastic medium in equilibrium. All the
results of the previous sections will allow us to prove Theorem 26, which consists
of a balance of forces at minimality. Furthermore, minimality will entail Euler–
Lagrange equations which physically correspond to the balance of forces and to
the vanishing of virtual work done by the configurational force, recognized as the
Peach–Koehler force.

4.1. Shape variation at optimality. Let F? be a minimizer of W(F). By Theorem 9
and (3-13),

F? = Du?+ (Curl−1
◦T )(λ?),

where Curl−1 is the solution of (2-19), for some λ? ∈W 1,1(S1, �̂3). Let −(3?)T :=
T (λ?)=−Curl F? on �̂.

Define the linear map

S :W 1,1(S1, �̂3)→BC
p,3
div (�̂,M3), S = Curl−1

◦T . (4-1)

We first prove the following preliminary result.

Lemma 22. The map S : W 1,1(S1, �̂3) → BC
p,3
div (�̂,M3) is Gâteaux differen-

tiable at λ? in all directions λ. In particular, DS(λ?)[λ] ∈ M(�̂,M3), for every
W 1,1(S1, (R3)3)-variation λ, and

〈DS(λ?)[λ], ϕ〉 =
3∑

i=1

∫
S1
ε jkm(ϕ ◦ λ

?)im(s)(λ̇?)ik(s)λ
i
j (s) ds (4-2)

for every ϕ ∈ Cc(�,M3) such that Divϕ = 0.

Proof. Let 9 ∈D(�,M3). From (3-6) and (3-11), we infer by a Taylor expansion
of 9 that the directional derivative of T at λ? along a variation λ ∈W 1,1(S1, (R3)3)

reads

〈DT (λ?)[λ], 9〉 =
3∑

i=1

∫
S1

(
(9 ◦λ?)i j (s)λ̇i

j (s)+Dk(9 ◦λ
?)i j (s)(λ̇?)ij (s)λ

i
k(s)

)
ds.
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Integrating the last expression by parts, we get

〈DT (λ?)[λ], 9〉 =
3∑

i=1

∫
S1

(
Dk(9 ◦ λ

?)i j (s)(λ̇?)ij (s)λ
i
k(s)

− Dk(9 ◦ λ
?)i j (s)(λ̇?)ik(s)λ

i
j (s)

)
ds

=

3∑
i=1

∫
S1

(
D j (9 ◦ λ

?)ik(s)− Dk(9 ◦ λ
?)i j (s)

)
(λ̇?)ik(s)λ

i
j (s) ds

=

3∑
i=1

∫
S1
ε jkmεmpq Dp(9 ◦ λ

?)iq(s)(λ̇?)ik(s)λ
i
j (s) ds. (4-3)

Let us now compute DS. Let ϕ ∈Cc(�,M3) such that Divϕ= 0. Then ϕ=Curl9
for some 9 ∈ C1(�,M3), and hence, by Theorem 16,

1
ε
〈S(λ?+ ελ)− S(λ?),Curl9〉 =

1
ε
〈Curl−1(T (λ?+ ελ)− T (λ?)),Curl9〉

=
1
ε
〈(T (λ?+ ελ)− T (λ?)),9〉.

Letting ε→ 0 yields the result by (4-3). �

4.2. First Euler–Lagrange equation and the static equilibrium. In this subsec-
tion, we make variations of the deformation at minimality, assuming the optimal
line fixed, and derive the classical strong form of finite-strain elasticity.

Regularity assumption on the energy. We make the assumption that the energy
We : L p(�̂)→ R in (3-23) is Fréchet differentiable in L p(�̂) with the Fréchet
derivative of F 7→ W(F,3?) denoted by WF ∈ L p′(�̂). As a consequence, for
every F ∈ L p(�̂),

(A1) δW(F?)[F] := d
dεW(F?+ εF,3?)|ε=0 =

∫
�̂

W ?
F · F dx = δWe(F?)[F] with

W ?
F :=WF (F?,3?)= δWe(F?) ∈ L p′(�̂).

Note that this assumption is rather general and is about the least we can assume
on We.

Variations F of deformation F? still satisfying the constraint−Curl(F?+εF)=
(3?)T must belong to AD

p
curl(�̂) := {F ∈ ADp(�̂) : Curl F = 0}. Moreover,

such variations at the minimum points of the energy W must provide a vanishing
variation of W. Thus, F? being such a solution, for every curl-free F = Du ∈
L p(�̂), it must hold that

δW?(Du)= δWe(F?)[Du] = 0. (4-4)
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From (A1), (4-4), and Theorem 18, it follows that there exists L? continuous such
that

P? :=W ?
F = δWe(F?)= Curl L? ∈ L p′(�̂) (4-5)

satisfying the strong form {
−Div P? = 0 in �̂,
P?N = 0 on ∂�̂.

(4-6)

One could wonder why (4-6) is not immediate from the relation
∫
�

W ?
F ·∇u dx = 0,

which is Euler–Lagrange in weak form. In fact, the integration by parts which is
classically used in this context is not legitimate in the present case simply because
the divergence theorem does not hold for L p-fields since P?N has no meaning at
the boundary. This is the reason why Theorem 18 is called and P? is obtained as
the curl of constraint reaction L?, being therefore automatically divergence-free,
while P?N has a meaning by Lemma 13 and Theorem 18.

Remark 23. By (4-6), P? :=W ?
F is identified with the first Piola–Kirchhoff stress.

P? being in L p′(�̂), and recalling that F ∈ L p(�̂), means that the Kirchhoff stress
P?F is in L1(�̂).

4.3. The Peach–Koehler force as a stationary condition. In this subsection, we
derive the second Euler–Lagrange equation of the system in equilibrium.

Regularity assumption on the stress. Regularity of the minimizers is a well-known
open problem in mathematical elasticity. Indeed, almost no results exist, even with
an energy growth with p ≥ 2 (i.e., without dislocations), as reported by J. Ball
[2002]. A related problem is the regularity of the Piola–Kirchhoff stress P?. In or-
der to derive the subsequent formulae, which are well-established by physicists, we
will also appeal to an assumption, not on F?, but rather on some components of P?.

Let us consider the orthonormal curvilinear basis (τ ?, σ ?, ν?) on the optimal
dislocation set L?, with τ ? the unit tangent vector to L?. Let us decompose P? in
this basis; i.e., P? = P?τ ? ⊗ τ ? + P̃?. Physically, P?τ ? represents the force dF

exerted on a facet d S of normal τ ?, that is, on a section of the tubular neighborhood
of the dislocation L?; namely, dF = P?τ ?d S. Since all such facets are crossed
by the dislocation, they presumably correspond to singular forces, in such a way
that no regularity assumption can be made on these components. We will therefore
make a regularity assumption on the remaining components P̃?. Let us emphasize
that the optimal deformation tensor F? is smooth in � \ L?, and hence, by (4-6),
P? will also be smooth in � \ L?. Therefore, it is assumed that

(A2) P̃? is continuous in a neighborhood of L?.

In fact, lack of continuity of these components would mean that the contact
forces dF tend to infinity at L?.
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Validity of Assumption (A2). First, we remark that in linearized elasticity the stress
behaves as ∼ 1/r and following [Hirth and Lothe 1982; Van Goethem and Dupret
2012a] one has P̃?screw = 0 whereas P̃?edge → ∞ as r → 0. Hence, obviously,
one must consider finite strain elasticity to discuss Assumption (A2). Here again,
the situation is not evident since nonlinear stresses depend on the choice of the
material (i.e., of the energy We) and on the physics which takes place at the singular
line. We will thus follow L. Zubov, who has reported the current state of the
art in [Zubov 1997]. About the screw dislocation, he first points out that, for a
Mooney (and neo-Hookean) incompressible material, one has divergence of P̃?screw
at the singularity, but he discards this case as being nonphysical, i.e., not suitable
for the creation of a screw dislocation [Zubov 1997, p. 74]. Then he considers
the Bartenev–Khazanovich among two other incompressible materials and finds
P̃?screw ∼ ln r , hence again lacking continuity though showing better integrability
properties. However, incompressibility is not assumed in general and in particular
not in the present paper (indeed, it would imply another constraint reaction [Fosdick
and Royer-Carfagni 2005]). Therefore, following Zubov again, one considers a
Blatz–Ko material together with the physical observation that the creation of a
screw dislocation takes place together with a cylindrical cavity, and this implies
continuity of P̃?screw at the singularity [Zubov 1997, (3.2.12), (3.2.16), (3.2.24),
(3.2.28), p. 76], whereas P− P̃ must not be continuous [Zubov 1997, (3.2.12),
p. 76]. Because the technical difficulties are huge, Zubov does not compute in
extenso the edge dislocation with a cavitation, but nonetheless we consider the
following physical interpretation, as based on Zubov’s aforementioned results and
physical evidence of dislocation nucleation as reported by, e.g., [Cottrell 1964;
Berezhkova 1969]:

Assumption (A2) holds true for a compressible material where a cavita-
tion is found along any dislocation loop.

In practice, Assumption (A2) allows one to have a finite radius R in the reference
configuration corresponding to r = 0 in the deformed configuration �. Further-
more, Zubov shows that R(0) is proportional, on the order of 10% of the Burgers
vector.

Note that the creation of such a cavity in single crystals is due to the nucleation
process of dislocation loops resulting from the collapse of a void, i.e., a cluster of
vacancies which has become unstable.

The Peach–Koehler force. We write F = Du+Curl−1(−3T)= Du+ S(λ) for all
F ∈ BCp(�̂,R3×3) with u ∈ W 1,p(�̂,R3) (by Theorem 9 and (4-1)). Following
this formalism, it is thus assumed that the energy W depends on the dislocation
path λ ∈W 1,1(S1, �̂3) as defined in (3-11), that is,

W◦(Du, λ) :=W(Du+ S(λ),−T (λ)), (4-7)
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and then W◦(Du, λ) =W(F,3) with 3T
= −Curl F if λ ∈ T−1(−3T). Let us

consider the energy at its minimum F?:

W◦(Du?, λ?) :=W(Du?+ S(λ?),−T (λ?))

=We(Du?+ S(λ?))+Wdefect(−T (λ?))

=:W◦e(λ
?)+W◦defect(λ

?). (4-8)

Let us denote the variation of the energy We by δ◦We(F?) := δW◦e(λ
?). The ex-

pression of the variation of the energy is then given by the following main result.

Theorem 24 (work done by the Peach–Koehler force). Under the assumptions of
Theorem 21 and hypotheses (A1) and (A2), one has

〈δ◦We(F?), λ〉 =
3∑

i=1

∫
L?
(P?× τ i )Tθi · λ

i
◦ (λ?)−1 dH1, (4-9)

where we have employed notation (3-7).

Proof. We want to perform variations λ ∈W 1,1(S1, (R3)3) of W◦e(λ
?). Identifying

W ?
F with the Piola–Kirchhoff P? as in (4-5), using Lemma 22 with ϕ = P̃, one has

δW◦e(λ
?)[λ] =

3∑
i=1

∫
S1
λi

jε jkm(λ̇
?)ikP̃?im ◦ λ

? ds

=

3∑
i=1

∫
S1
λi

jε jkm(λ̇
?)ikP?im ◦ λ

? ds, (4-10)

where Assumption (A2) gives a meaning to P̃?im on L? (i.e., to P̃?im ◦ λ
? on S1) and

hence to the duality pairing

δW◦e(λ
?)[λ] = 〈W ?

F , DS(λ?)[λ]〉, (4-11)

completing the proof. �

The integrand in the right-hand side of (4-9) is recognized as the Peach–Koehler
force. Theorem 24 simply says that at minimality the virtual work done by the
Peach–Koehler force must vanish.

Remark 25. The duality pairing (4-11) holds as soon as one considers a mollifi-
cation of W ?

F , that is, if W ?
F is assumed continuous. However, this assumption is

stronger than (A2), which requires only the continuity of some physically relevant
components (related to the formation of a cavitation at the line singularity). Fur-
thermore, nothing guarantees that the variation with any mollification of W ?

F would
vanish since it is strictly speaking not the minimum point. Thus, at the mesoscopic
scale, the best assumption found is (A2) in order to be able to merely define the
Peach–Koehler force as related to minimality.
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According to Remark 25, the following subsection shows how the Peach–Koehler
force would formally be recovered.

Formal derivation of the Peach–Koehler force from the Eshelby tensor. Recalling
(3-23), we introduce the Eshelby tensor E componentwise as

Ei j = δi j We− Fki Pk j . (4-12)

Then, assuming that F and P are smooth enough,

∂ jEi j = ∂i We− ∂ j Fki Pk j − Fki∂ j Pk j . (4-13)

At minimality, one has ∂ j Pk j = 0 and hence

∂ jE
?
i j = ∂i W ?

e − ∂ j F?ki P
?
k j = ∂i W ?

e − (∂ j F?ki − ∂i F?k j )P
?
k j − ∂i F?k j (W

?
F )k j , (4-14)

where the first and last terms of the right-hand side mutually cancel, whence

∂ jE
?
i j =−(∂ j F?ki − ∂i F?k j )P

?
k j = εi jlεlmn∂m F?knP?k j = εi jl(Curl F?)klP

?
k j , (4-15)

that is
∂ jE

?
i j = 〈εil j3

?
lk,P?k j 〉. (4-16)

Note that (4-16) has no rigorous meaning in our setting, i.e., at the mesoscale, since,
3? being a Radon measure but P? not being continuous, the duality pairing (4-16)
is undefined. This is the reason why the Peach–Koehler force is established in our
work by means of Assumption (A2).

4.4. Configurational balance. Let L = γ ?(S1) be a single smooth-enough dislo-
cation loop with tangent vector τ , normal vector ν, curvature κ , and total Burgers
vector B. This is assumed for simplicity of exposition, but similar results can be
stated for general λ? ∈W 1,1(S1, �̂3). We introduce

F := (P?× τ)T BδL ,

G := κ
(
ψ(b, τ )−∇ψ(b, τ ) · τ +∇∇ψ(b, τ ) · ν⊗ ν

)
ν‖γ̇ ?‖−1δL ,

the so-called Peach–Koehler force and line tension, respectively, where ψ is the
energy density as introduced in (3-25).

Deriving strong forms of equilibrium from a variational problem is classically
done provided some regularity of the minimizers is assumed, as summarized in the
following theorem. Note that restricting to a single generating loop with Burgers
vector b is chosen for simplicity of exposition. In order to well-define tangent and
normal vectors, as well as line curvature, the following regularity assumption will
be made on the optimal dislocation set L? = γ ?(S1):

(A3) γ ? ∈W 2,1(S1, �̂).
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Theorem 26. Under the assumptions of Theorem 21, assuming ψ,ψ : Z3
×R3

→

R+ are of class C 2 and that the optimal dislocation network satisfies (A3) and
is associated to a single Burgers vector b, then minimality implies equilibrium of
configurational forces, in the sense that the Peach–Koehler force F ? is balanced
by the line tension G ? in L?, i.e.,

F ?
+G ?

= 0. (4-17)

Proof. Let us particularize (4-10) to the case where the density 3? is generated by
one single loop γ ? ∈W 1,1(S1, �̂) with Burgers vector b= βi ei , βi ∈ Z (b 6= 0) (see
Remark 19). For variations of the form γ ? + εγ with γ ∈ W 1,∞(S1, �̂), (4-10)
becomes

δW◦e(γ
?)[γ ] =

∫
S1
εk jm(P

?
◦ γ ?(s))imτkbiγ j (s)‖γ̇ ?(s)‖ ds

=

∫
L?
εk jmP?imτkbiγ j dH1

=

∫
�̂

εk jmP?imγ j d3?ki . (4-18)

Using the notation introduced in (4-8), we write

W◦(γ ?+ εγ )=W◦e(γ
?
+ εγ )+W◦defect(γ

?
+ εγ ), (4-19)

We have
δW◦(γ ?)[γ ] = δW◦e(γ

?)[γ ] + δW◦defect(γ
?)[γ ]. (4-20)

Let us now compute the variation of the defect part of the energy. For a disloca-
tion density of the form µ= b⊗ γ][[S1

]], (3-25) can be written as

W1
defect(µ)=

∫
S1
ψ

(
b,

γ̇

‖γ̇ ‖
(s)
)
‖γ̇ (s)‖ ds. (4-21)

Taking into account that the term W2
defect(µ) does not change for small perturba-

tions of the dislocation line, the first variation of (4-21) at the point γ ?∈W 1,1(S1, �̂)

can be explicitly computed and will coincide with δW◦defect(γ
?)[γ ]. It holds that

δW◦defect(γ
?)[γ ] =

∫
S1

(
Dkψ

(
b,

γ̇ ?

‖γ̇ ?‖
(s)
)(

γ̇k‖γ̇
?
‖

2
− γ̇ ?k γ̇

?
j γ̇ j

‖γ̇ ?‖2
(s)
)

+ψ

(
b,

γ̇ ?

‖γ̇ ?‖
(s)
)(

γ̇ ?j γ̇ j

‖γ̇ ?‖
(s)
))

ds, (4-22)

where Dkψ is the derivative of ψ with respect to the k-th component of its second
variable. Denoting τ = γ̇ ?/‖γ̇ ?‖, we integrate by parts to obtain

δŴdefect(γ
?)[γ ] = −

∫
S1

(
ψ(b, τ )τ̇ j − Dkψ(b, τ )τk τ̇ j

+ D j Dkψ(b, τ )τ̇k − Dp Dkψ(b, τ )τ̇kτpτ j
)
γ j ds,
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where we dropped the variable s. Equivalently, recalling that τ̇i = κνi and since
D j Dkψ(b, τ )τ̇k = τ

i
jτ

i
p Dp Dkψ(b, τ )τ̇k + ν jνp Dp Dkψ(b, τ )τ̇k ,

g?j [b] := ψ(b, τ )τ̇
i
j − Dkψ(b, τ )τk τ̇

i
j + D j Dkψ(b, τ )τ̇k − Dp Dkψ(b, τ )τ̇kτ

i
pτ

i
j

= ψ(b, τ )τ̇ i
j − Dkψ(b, τ )τk τ̇

i
j + Dp Dkψ(b, τ )τ̇kνpν j

= κ
(
ψ(b, τ )− Dkψ(b, τ )τk + Dp Dkψ(b, τ )νpνk

)
ν j . (4-23)

Plugging the last expression into (4-20) and using (4-18), we obtain

δW◦(γ ?)[γ ] =

∫
S1

(
εk jm(P

?
◦ γ ?)im(s)bi γ̇

?
k (s)− g?j [b](s)

)
γ j (s) ds. (4-24)

From the condition

δW◦(γ ?)[γ ] = 0 for all γ ∈W 1,1(S1,R3),

due to the minimality of γ ?, we then get from (4-24) F ?
j +G ?

j = 0, with

F ?
j := εk jm(P

?)im BiτkδL? and G ?
j := ρdislo(B)ν jδL?,

where
ρdislo(B) := −g?[B]ε−1 (4-25)

with g? := g?jν j , ε = ε(P) := ‖γ̇ ? ◦ γ ?
−1
(P)‖, the local deformation of the curve

at P ∈ L?,
B := θ(P)b,

the total Burgers vector, and θ(P) as defined by (3-10), the multiplicity of the dis-
location (accounting for the loops of the cluster whose Burgers vector is a multiple
of b). �

Remark 27. Actually, (4-17) holds at H1-a.e. P ∈ L and not at all P . This is due
to the fact that it might happen that a point P ∈ L is the overlapping of parts of γ
which, although having the same tangent vector τ , do not have the same curvature κ
nor the same orthogonal vector ν.

In the case where θ = 1 and the dislocation is parametrized by arc length
(|γ̇ ?| = 1), the balance of forces can be rewritten as

εk jmP?imbiτk = g?j [b] on L?.

A modeling example. Conti et al. [2015a] consider a potential W1
dislo of the form

(3-25) with
ψ(b, τ ) := |b|2+ η〈b, τ 〉2, (4-26)

where η > 0 is a constant.
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In the particular case where b = βe1, β ≥ 1, it is shown that such energy is also
lower-semicontinuous.

In such a case, the above computations entail that

G ?
j (P)= (|b|

2
− η〈b, τ 〉2+ 2η〈b, ν〉2)κν j

so that at the minimum of the energy

θ2((1− η)〈b, τ 〉2+ (1+ 2η)〈b, ν〉2
)
κν j = ε j pkP?i pθbiτk .

4.5. Some additional remarks.

Formal balance of configurational forces. Equation (4-18) yields, by (4-16) and a
slight abuse of notation,

δW◦e(γ
?)[γ ] =

∫
�̂

−∂kE
?
jkγ j dx . (4-27)

Therefore, (4-24) and (4-27) can be rewritten as the virtual configurational work
balance at minimality, i.e.,

−Div E ? = G ?, (4-28)

where E ? and G ? stand for the configurational stress and the internal configurational
force [Gurtin 2000, p. 34]. In our case, G ?

:= ρdislo[B]ν jδL? . Quoting Gurtin, such
force is “related to the material structure of the body B; to each configuration of B

there correspond a distribution of material and internal configurational forces that
act to hold the material in place in that configuration. Such forces characterize
the resistance of the material to structural changes and are basic when discussing
temporal changes associated with phenomena such as the breaking of atomic bonds
during fracture [and during dislocation motion]”.

Let us note that Agiasofitou and Lazar [2010] have also derived a relation such
as (4-28) in the framework of dislocation gauge theory by means of invariance
properties and the Noether theorem (without considering a minimization problem
as done here). These authors showed that the translational balance laws of the
elastic and dislocation parts give rise to the Peach–Koehler force and also give the
interpretation that “the Peach–Koehler force is the interaction force between the
elastic subsystem and the dislocation subsystem” (see also (5.39) in [Lazar and
Anastassiadis 2008]).

A brief glance at the dynamic problem. So far, we have identified the stationarity
condition as a balance of configurational work. This happens when minimality is
reached.

Consider now a time-evolution problem involving dislocation lines. In principle,
no variational problem drives its evolution instantaneously, but minimality might be
reached as t→∞ [Berdichevsky 2006]. So a first remark is that, before minimality
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is reached, one has Div E ?+ g? 6= 0, by definition, and hence there exists a nonzero
momentum p such that, according to [Gurtin 2000, p. 46],

−FT ṗ = Div E ?+G ?. (4-29)

Hence, one might determine the motion of the line towards equilibrium, i.e., until
ṗ = 0.

Now, Gurtin [2000, p. 11] further says that as far as ṗ = 0 the internal configura-
tional force remains “indeterminate when and only when the associated structures
are fixed in the material”. This is similar to the constraint forces in classical me-
chanics (as the line tension of the pendulum) which do not need to be determined
to establish the motion equation. In particular, no constitutive law for these forces
is required in general.

However, we would like to emphasize that we have derived a constitutive law
since (4-28) can be rewritten as

Peach–Koehler force= Div E ? =−ρdislo[B]ν jδL?, (4-30)

where ρdislo is given in extenso by (4-23) and (4-25) in terms of the dislocation
energy.

Second Euler–Lagrange equation and the dislocation equation. With the view of
establishing an equation relating dislocation density and stress, the second Euler–
Lagrange equation for our minimum problem should be derived; that is, the dif-
ferential of the total energy should be computed with respect to divergence-free
deformations G (recall that curl-free deformations were considered for the first
Euler–Lagrange equation in Section 4.2). We would like to point out serious
mathematical issues in order to give a meaning to a vanishing of such a variation,
0= δW(F?)[G]. The principal reason (and the only which we discuss here) is that
the differential d

dεWdislo(3
?
+ ε3)|ε=0 has no meaning in M3(�̂,M3), this space

not being linear, due to the fact that, as ε tends to zero, the resulting Burgers vector
might not be an integer, whereas the minimum is achieved in this class of measures,
with a crystallographic Burgers vector.

5. Concluding remarks

On the way to mathematically understanding time evolution of dislocations, the
work achieved in [Scala and Van Goethem 2016] was the first step, allowing us to
describe the geometry of dislocation clusters and to prove existence of solutions
to a general variational problem. With the present contribution, our wish was to
provide a further decisive step since the result of Theorem 26 introduces two forces
balancing each other at optimality, the first deriving from the elastic part of the en-
ergy and named after Peach and Koehler (well-known in dislocation models [Hirth
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and Lothe 1982]) and the second deriving by shape variation of the defect part of
the energy. Here crucial use has been made of the decomposition F = ∇u+ F◦

where F◦ and Curl F◦ depend on the line. Such a force and such a balance of
forces could be derived at the mesoscopic scale, without the required mathemati-
cal formalism, since there is subtle interplay between concentrated measures and
Sobolev functions.

It turns out that the sum of these two forces naturally provides an expression
of the velocity of the dislocation (for instance, a linear law is acceptable under
certain working assumptions [Acharya 2003]). Of course, a nonvanishing velocity,
i.e., a nonzero force, means that the solution does not coincide with energy mini-
mization, as is well-known for evolution problems. In future work, our task is to
determine the dissipative effects and the balance equations and to analyze in detail
the evolutionary scheme.

The force we derived here yields an important output in terms of modeling,
but to achieve a proof of Theorem 26, a series of results have appeared about
the mathematical nature of functional spaces for dislocation-induced deformations.
These should also be considered as contributions to the general aim of understand-
ing dislocation problems considered at the mesoscale in appropriate mathematical
terms. Moreover, the paper has been written with a first part containing generic
results, which are not related to dislocation models.
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STABILITY ANALYSIS OF TWO COUPLED OSCILLATORS

MICKHAIL A. GUZEV AND ALEXANDR A. DMITRIEV

We study a system of two coupled oscillators linked by a linear elastic spring
and positioned vertically in a uniform gravity field. It is demonstrated that the
system has different equilibrium configurations below and above the oscillators’
suspension centers. We obtained the relations of the string stiffness and the
distance between the suspension centers identifying the stability region of the
oscillators.

1. Introduction

Mechanical oscillators are models of various physical processes and complex phys-
ical systems as demonstrated by a vast body of literature. For example, coupled
oscillators are used to describe the lattice vibrations in crystals [Kittel 2005].

A well-known and useful oscillator system is the sympathetic oscillators [Som-
merfeld 1994], which are two linked oscillators with equal rods and masses inter-
acting through a spring. Small linear oscillations about the equilibrium point have
been studied, focusing on analyzing the physical situations depending on the spring
stiffness.

There have been many scientific studies on oscillating dynamics of mechanical
systems. However, new results still periodically appear. For instance, Maianti et al.
[2009] study the impact of symmetrical initial conditions of linked oscillators in
a uniform gravity field on the eigenoscillations and obtain the initial angle that
ensures an independent frequency spectrum. Ramachandran et al. [2011] deal with
different configurations of two pendulums connected by a rod. The results are that
there are stable equilibrium configurations that are asymmetrical with respect to
the vertical midline. An important property of the system is that there can appear
bifurcations depending on the distance between the suspension points. The ob-
tained results are useful for investigation of the pantographic structures [dell’Isola
et al. 2016]. The interest in these materials is defined by development of the three-
dimensional printing technology. They can be regarded as families of pendulums
(also called fibers) interconnected by pivots in equilibrium. Synchronization of
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two oscillators is the focus of [Koluda et al. 2014] and their chaotic dynamics is
studied in [Huynh and Chew 2010; Huynh et al. 2013].

A system of inverted oscillators also provides physically sound phenomena. Sta-
ble positions can also be attained if there is a fast perturbation frequency [Stephen-
son 1908]. This result is due to Pyotr Kapitza [Kapitza 1951a; Kapitza 1951b].
A more accurate condition of dynamical stabilization of an inverted oscillator is
introduced in [Butikov 2011]. Chelomei’s problem of the stabilization of an elas-
tic, statically unstable rod by means of a vibration is considered in [Seyranian
and Seyranian 2008]. The stability of two inverted linearly linked oscillators is
analyzed in [Markeev 2013]. The author reveals bifurcations depending on the
linking spring stiffness and single out parameters that lead to stable or unstable
equilibria. The phenomenon of stabilization by parametric excitation of an elasti-
cally restrained double inverted pendulum is considered in [Arkhipova et al. 2012].
The problem of restabilization of statically unstable linear Hamiltonian systems
is analyzed in [Arkhipova and Luongo 2014]. A comprehensive review of the
dynamics of a large number of coupled oscillators is presented in [Pikovsky and
Rosenblum 2015].

The objective of the current paper is to study the stability of the model of two
linearly interacting oscillators in a uniform gravity field. The formal analysis of
equilibrium stability is carried out in the framework of the linear stability approach.
It consists of determination of the equilibrium position and calculation of the matrix
of the second partial derivatives of potential energy in the equilibrium position. If
the matrix spectrum is positive, the equilibrium is stable. Otherwise, it is unstable.
We focus on analyzing the equilibrium solutions depending on the distance between
the suspension points and the spring stiffness. This analysis includes different
configurations of the model of coupled oscillators.

2. Basic equations

Let us consider two oscillators of length l and mass m in a uniform gravity field.
We assume that the suspension points O1 and O2 are positioned on a motionless
horizontal straight line, while the distance between the suspension points a is con-
stant. A massless elastic spring of stiffness k links the masses at points B1 and B2,
which coincide with the masses’ positions. We assume that the oscillators move in
a fixed vertical plane containing the interval O1O2 (see Figure 1). The oscillators
can be situated both below the horizontal suspension line (see the region A1 in
Figure 1, left) and above it (see the region A2 in Figure 1, right). In the region A1,
angles ϕ1 and ϕ2 lie in the interval (0, π), while transition to the region A2 implies
the transformation ϕ1, ϕ2 7→ −ϕ1,−ϕ2.
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Figure 1. Top left: the classical configuration and the region A1.
Top right: the classical configuration and the region A2. Bottom
left: the modified configuration and the region A1. Bottom right:
the modified configuration and the region A2.

Hence, in this article, we consider different configurations of the oscillator
model. Configurations presented in Figure 1, top left, correspond to the sympa-
thetic oscillators [Sommerfeld 1994], and configurations of Figure 1, top right,
describe a system of inverted oscillators. Both models are well-known in scientific
literature, so configurations presented in Figure 1, top, will be called the classical
ones.

Configurations of Figure 1, bottom, are presented in [Ramachandran et al. 2011]
(called “modified configurations” to distinguish them from Figure 1, top).

It is clear that the kinetic energy of the oscillators is

T =
ml2

2

[
(ϕ̇1)

2
+ (ϕ̇2)

2]. (1)

Potential energy U includes the energy of the oscillator interaction k(d − a)2/2
and the gravity field energy where d is the spring length. In the region A1, oscilla-
tors linked by a linear elastic spring provide

U =U (ϕ1, ϕ2)=
k(d − a)2

2
−mgl(sinϕ1+ sinϕ2) (2)

while in the region A2 there is a transformation g 7→ −g in (2). In the regions A1
and A2, the spring length is given by the formula

d =
√
[a+ l(cosϕ2− cosϕ1)]2+ l2(sinϕ2− sinϕ1)2.
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It is interesting that there is a natural geometrical condition for the configurations.
In the case of the classical configurations (Figure 1, top), the difference of the rod
length projections on the suspension axis is less then a, giving the condition

l(cosϕ1− cosϕ2) < a. (3)

In the case of the modified configurations (Figure 1, bottom), the corresponding
difference is larger than a:

l(cosϕ1− cosϕ2) > a. (4)

From (1) and (2), the Lagrangian of the system ensures

L = T −U =
ml2

2
(ϕ̇2

1 + ϕ̇
2
2)−

k(d − a)2

2
+ 2mgl sin

ϕ1+ϕ2

2
cos

ϕ1−ϕ2

2
. (5)

Now let us introduce instead of ϕ1 and ϕ2 new coordinates q1 and q2, where
q1 = (π −ϕ1−ϕ2)/2 and q2 = (ϕ1−ϕ2)/2. Introducing new dimensionless time
τ = t
√

2g/ l and Lagrangian 3= L/mgl, (5) can be rewritten as

3= 1
2(q̇

2
1 + q̇2

2 )−5(q1, q2),

5=5(q1, q2)=
(s−µ)2

2ν
− cos q1 cos q2,

s2
= sin2 q2+ 2µ cos q1 sin q2+µ

2, µ=
a
2l
, ν =

2mgl
k

.

(6)

Parameter ν characterizes the relation between the potential energy of the oscilla-
tors and the spring’s effective energy, while µ is a kinematic parameter and depends
on the metric characteristics.

Differential equations of the oscillator dynamics in the form of Lagrangian equa-
tions are

d
dτ
∂3

∂q̇i
=
∂3

∂qi
⇐⇒ q̈i =−

∂5

∂qi
, i = 1, 2. (7)

System (7) allows for solutions corresponding to both the classical and the modified
configurations. Therefore, while analyzing system (7), it is necessary to point out
the region of feasible solutions. Conditions (3)–(4) can be written as

µ+ cos q1 sin q2 > 0, (8)

µ+ cos q1 sin q2 < 0. (9)

Equilibrium configurations of the oscillator system ensue from the condition
q̈i = 0; then it follows from (7) that they are determined as the critical points of
the system’s potential energy

∂5

∂q1
= 0,

∂5

∂q2
= 0. (10)
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Figure 2. Left: the modified symmetric equilibrium configuration
for the oscillator model in the region A1. Right: the stability do-
main � for the modified configuration in the region A1.

Taking into account (6), one can rewrite (10) in the form

sin q1

[(µ
s
− 1

)
µ sin q2+ ν cos q2

]
= 0, (11)(

1−
µ

s

)
(sin q2+µ cos q1) cos q2+ ν cos q1 sin q2 = 0. (12)

Thus, by solving the system (11)–(12), one obtains a set of equilibrium configura-
tions.

3. Symmetrical equilibrium configurations

Symmetrical configurations are characterized by symmetrical positions of the pen-
dulums with respect to the vertical midline. The classical symmetric configurations
in the region A1 follow from q1 = 0, while in the region A2 from q1 = π . In this
case, (11) is satisfied identically (sin q1 = 0); then the distance (6) between the
oscillators equals s=|sin q2±µ| and the condition (8) is equivalent to µ±sin q2>0,
i.e., s = µ± sin q2. So (12) reduces to sin q2(cos q2± ν)= 0, which was studied
in [Markeev 2013].

The modified symmetrical configurations in the region A1 follow from ϕ2 =

π−ϕ1, q1= 0, and are shown in Figure 2. This allows us to rewrite the condition (9)
as µ+ sin q2 < 0, i.e., µ < 1 and |q2|< π/2; then the distance s =−(µ+ sin q2)

and (12) is equivalent to

(2µ+ sin q2) cos q2+ ν sin q2 = 0
⇐⇒ sin 2q2+ 2

√
4µ2+ ν2 sin(q2− q∗)= 0, (13)
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where q∗=− arcsin(2µ/
√

4µ2+ ν2). Let q∗∗=− arcsinµ; then inside the interval
(q∗, q∗∗), (13) has a unique solution q̃ provided the inequality

ν <
√

1−µ2, µ < 1, (14)

is true. Indeed, (13) is identical to

2µ+ sin q2 =−ν tan q2. (15)

The right-hand side of (15) decreases; it equals 2µ/ν at point q∗ and µ/
√

1−µ2 at
point q∗∗. The left-hand side increases; it is less than 2µ/ν at point q∗ and equals
2µ/ν at point q∗∗. If the inequality (14) is satisfied, the function graphs intersect
at one and only one point q̃ .

Let us analyze the type of equilibrium. The matrix of the second partial deriva-
tives of potential 5 at critical point (0, q̃) agrees with

511 =
∂25

∂q2
1

=

(µ
s
− 1

)µ
ν

sin q̃ + cos q̃,

522 =
∂25

∂q2
2

=
1
ν

[
cos2 q̃ +

(µ
s
− 1

)
(sin q̃ +µ) sin q̃

]
+ cos q̃,

512 =
∂25

∂q1 ∂q2
= 0;

i.e., the matrix is diagonal. At point q̃, since s =−(µ+ sin q̃), (13) is equivalent
to (s−µ)= ν tan q̃ , which results in

511 =
µ+ cos2 q̃ sin q̃
cos q̃(µ+ sin q̃)

, 522 =
1
ν

cos2 q̃ +
1

cos q̃
. (16)

It is straightforward that 522 > 0 and 511 > 0 if

µ+ cos2 q̃ sin q̃ < 0. (17)

To solve (17), one needs to find the roots of the cubic parabola x3
− x − µ as

x = sin q̃ . It ensures the restrictions on parameter µ

0< µ< µ∗ =
2

3
√

3
, x1(µ) < sin q̃ < x2(µ), (18)

where x1(µ) and x2(µ) are the cubic parabola’s roots:

x1(µ)=−
2
√

3
sin
(π

6
+φ(µ)

)
,

x2(µ)=−
2
√

3
sin
(π

6
−φ(µ)

)
,

φ(µ)= 1
3 arccos

(
µ

µ∗

)
. (19)
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Figure 3. Left: the modified symmetric equilibrium configuration
in the region A2. Right: the solution existence domain for the
modified symmetric equilibrium configuration in the region A2.
The region �− is the stability region.

Thus, the oscillator model in the region A1 given the condition (14) has modified
equilibrium configurations depending on the solution q̃ of (13). This equilibrium
is stable if the conditions (18) and (19) are satisfied.

Figure 2 shows that the region of solution existence is bounded by a circular
arc ν(µ)=

√
1−µ2. The shaded region � indicates parameters (µ, ν) that ensure

stable configuration. The boundary of the stability region %(µ) is determined by
511 = 0. However, this formula is rather cumbersome; thus, it is not presented. It
should be noted that %(µ) has two branches merging at point µ∗.

If a point (µ, ν) is outside the domain �, then the critical point corresponding
to the solution q̃ of (13) is a saddle.

For the modified oscillator model, the equilibrium configurations in the region A2
follow from q1 = π (ϕ1+ϕ2 =−π), the distance s = sin q2−µ > 0, i.e., q2 > 0,
and (12) takes the form

sin q2 = 2µ+ ν tan q2. (20)

The oscillator position corresponding to the region A2 is depicted in Figure 3.
Since sin q is a concave function as q ∈ (0, π/2) and tan q is convex, the number

of solutions of (20) depends on the parameters (µ, ν). Particularly, q0 exists if the
function graphs have a common tangent, i.e., cos q0 = ν/ cos2 q0. Substituting the
obtained ν into (20), we get 2µ= sin3 q0. It follows that there is a curve

ν(µ)=
[
1− (2µ)2/3

]3/2
, (21)
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whose points determine the only solution q0(µ)= arcsin(2µ)1/3 of (20). The so-
lution q0(µ) is a bifurcation point. If one slightly varies the parameters (µ, ν),
(20) has either no solution or two solutions q− and q+ (q− < q0(µ) < q+). From
convexity of tan q, concavity of sin q, and (21), it follows that the condition for
two solutions is

ν <
[
1− (2µ)2/3

]3/2
,

which leads to µ < 1
2 .

By analogy to (16), one can infer that

511 =
µ− cos2 q± sin q±
cos q±(µ− sin q±)

, 522 = cos2 q±−
ν

cos q±
.

The function 1− ν/ cos3 q decreases and equals zero at q0(µ); therefore, 522 < 0
at the root q+ of (20). Hence, the oscillators are unstable around the equilibrium
from q+.

The value of 511 is positive in the region where h(q) = µ − cos2 q sin q is
positive. This region ensures that

sin q < x1(µ), x2(µ) < sin q, 0< µ< µ∗.

Figure 3 shows a shaded region �+, where 511 < 0 at q+, and another shaded
region �−, where 511 > 0 at q−. The point µ̂ is a tangential point of curves ν(µ)
and %(µ). Calculated values of µ̂≈ 0.272166 and ν̂ ≈ 0.19245.

Thus, in the region A2, the equilibria of the modified configurations are deter-
mined by the two solutions q− and q+ of (20), which exist as the parameters (µ, ν)
comply with (21).

If the parameters (µ, ν) are inside the region �+, the critical point correspond-
ing to q+ is a maximum, while otherwise it is a saddle.

If the parameters (µ, ν) are inside the region �−, the critical point correspond-
ing to q− is stable, while otherwise it is again a saddle.

4. Asymmetric equilibrium configurations

To study the asymmetric equilibria, it is convenient to use the variables x = sin q2

and y = cos q1. Since −π/2 < q2 < π/2 and 0 < q1 < π/2 in the region A1
and −π/2< q1 < 0 in the region A2, these transformations result in a one-to-one
mapping in each of the considered regions. It is straightforward that the variables
x and y vary within the triangle 1+ = {(x, y) : −1 < x < 1, 0 < y < 1} in the
region A1 and 1− = {(x, y) : −1< x < 1, −1< y < 0} in the region A2. Using
the variables x and y, the potential 5 is given by

5(x, y)=
(s−µ)2

2ν
∓

√
1− x2 · y, s2

= x2
+ 2µxy+µ2,
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where the minus corresponds to the region A1 and the plus corresponds to A2.
Then the system (10) can be rewritten as

µ
s−µ

s
k(x)∓ ν = 0,

s−µ
s

(x +µy)± νk(x)y = 0,
k(x)=

x
√

1− x2
.

By eliminating (s−µ)/s, we obtain the relation µy+x(1−x2)= 0, which suggests
that the critical points of the potential 5 are determined from the system

h(x, µ)= µ
s−µ

s
k(x)=±ν, (22)

µy+ x(1− x2)= 0. (23)

The left-hand side of (23) differs from the cubic parabola pertaining to (17), by a
multiplicator y at µ.

Substituting (23) in the s relation, one obtains

s2
= 2x4

− x2
+µ2. (24)

The triangle 1+ intersects the cubic parabola of (23) if

−
√

1−µ≤ x ≤ x1(µ),

x2(µ)≤ x ≤ 0
as 0< µ< µ∗,

−
√

1−µ≤ x ≤ 0 as µ∗ ≤ µ < 1.

(25)

Thus, the asymmetric equilibria in the region A1 may exist only if 0<µ< 1 and are
determined by the solutions x̃ of (22) as the s follows from (24) agreeing with (25).

Condition (8) for the classical configurations takes the form

µ+ xy > 0. (26)

Inequality (26) then can be rewritten as

x2
+ y2 < 1, y ≥−x as −1< x ≤ 0. (27)

Indeed, since y < 0 and x < 0, by multiplying (26) by y and using (23), we get

y(µ+ xy)= x(x2
− 1)+ xy2

= x(x2
+ y2
− 1)≥ 0 or x2

+ y2
≤ 1.

For the modified configurations, the inequality sign in (26) changes to the opposite;
then the condition of existence is determined by

x2
+ y2 > 1, y ≥−x as −1< x ≤ 0. (28)
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On the other hand, by multiplying (26) by µ, one can determine the boundary
demarcating the classical configuration from the modified one:

µ2
− x2(1− x2)= 0.

By solving the biquadratic equation, one can find the intersection points of a unit
circle and the cubic parabola of (23):

x̂1(µ)=−

√
1
2 +

√
1
4 −µ

2, x̂2(µ)=−

√
1
2 −

√
1
4 −µ

2.

The asymmetric equilibrium is stable if the eigenvalues of the second derivative
matrix of the potential 5 are positive. It can be shown that the eigenvalues are
positive if and only if det5′′ > 0. Moreover, det5′′ coincides with the accuracy
of a multiplicator with the derivative of h(x, µ) over x , which leads to

det5′′ =
µ

−x
h′(x, µ).

By figuring out h′(x, µ) and omitting always-positive multiplicators, one can see
that the equilibrium is stable at the point x̃ , the solution of (23), if the function

3(x, µ)= µx2(4x2
− 1)(1− x2)+ s2(s−µ)

is positive.
The stability region boundary is determined by h(x, µ) = ν and h′(x, µ) = 0.

However, the condition h′(x, µ)= 0 implies that the solution x̃ is a local extremum
of the function h(x, µ) and a bifurcation point of the solution of (22), which results
in the solution x̃ dividing into the two solutions x̃− < x̃+. One of the solutions is
stable since h′(x, µ) changes its sign at the point x̃ . The solutions of 3(x, µ)= 0
taking into account the corresponding restrictions on x determine x as a function
of µ. Then by substituting it into (22), we have the function %(µ), whose graph is
the boundary of the stability region of the asymmetric equilibria.

The region A1. Equation (22) is written in the form

µ
s−µ

s
k(x)= ν. (29)

Since k(x) < 0, the function h(x, µ) is positive if s <µ. This inequality is valid
if x∗= 1/

√
2< x < 0. From this, it follows that in the region A1 the solution of (23)

lies within the intersection of the interval (x∗, 0) and the intervals determined by
the inequalities (25).

In the case of classical configuration, the inequality (27) must be satisfied, while
the modified configuration is valid given the inequality (28). The boundary of
the solution existence region is determined by the maximal and minimal values
of h(x, µ) for corresponding µ. The stability region is determined by the values
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Figure 4. Left: the asymmetric classical configuration in the re-
gion A1. Right: the stability domain � of the asymmetric classical
configuration in the region A1.

of %(µ) while 3(x, µ) must be positive. Figure 4, right, shows the solution ex-
istence region of (29) for the sympathetic oscillators (Figure 4, left). The values
µmin and µmax are determined by the condition of maximality and minimality of
µ, which ensures 3(x, µ) to be zero. Calculated values of µmin ≈ 0.452258 and
µmax ≈ 0.693692. The stable equilibrium region � is shaded and coincides with
the region of two-solution existence x̃− < x̃+ of (22) with x̃− being the stable
equilibrium. It is worth noticing that the sympathetic oscillators correspond to the
branch of the cubic parabola (23) corresponding to the x satisfying

x̂2(µ) < x < 0 as 0< µ< µ∗ and −
√

1−µ < x < 0 as µ∗ ≤ µ < 0.

The equilibrium existence region of the modified configuration (Figure 5, left,
is depicted in Figure 5, right). The condition (28) is satisfied for two branches of
the parabola (23) as 0< µ< µ∗, corresponding to the x satisfying

−
√

1−µ≤ x ≤ x1(µ) and x2(µ)≤ x ≤ x̂2(µ). (30)

Also from the condition x∗ < x , it follows that the first inequality of (30) specifies
the modified model in the region A1 as x∗< x1(µ), which is true ifµ∗ = 1/2

√
2< µ.

Given µ=µ∗, these branches coalesce and as µ∗<µ they specify the sole function
h(x, µ) within the interval (−

√
1−µ, x̂2(µ)). The condition −

√
1−µ < x̂2(µ)

results in the inequality µ< 1
2 . Therefore, the solution existence region is specified

by
x2(µ)≤ x ≤ x̂2(µ) as 0< µ< µ∗,

x∗ ≤ x < x̂2(µ) as µ∗ ≤ µ < 1
2 ,

x∗ ≤ x < x1(µ) as µ∗ ≤ µ < µ∗
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Figure 5. Left: the asymmetrical modified configuration in region
A1. Right: the stability domain of the asymmetrical configuration
is the merger of the regions � and �1.

and bounded by the curves h(x̂2(µ), µ) and h(−
√

1−µ,µ). Analogous to the
case of the sympathetic oscillators, one can determine the boundary of the local
maximum existence region for the function h(x, µ): µmin ≈ 0.378424 and µmax ≈

0.452258.
The stability region �, corresponding to the branch of the cubic parabola with

the point x2(µ), encompasses the region �2 of the two-equilibrium-solution ex-
istence. The stability region �1 corresponds to the parabola’s branch with the
point x1(µ). In the region of two-solution existence, there is a stable equilibrium
corresponding to the solution x̃−. The point Q indicates the coalescence point
between the branches and equals (2,

√
2)/3
√

3.

The region A2. In this case, we write (22) in the form

µ
s−µ

s
k(x)=−ν. (31)

The solutions of (31) exist if−1< x < x∗. Since x∗≤ x̂2(µ) and x∗≤−
√

1−µ,
the sympathetic oscillators have no asymmetric equilibria in the region A2.

The modified configurations exist if s < µ or x < x∗. This condition is satisfied
if −
√

1−µ < x < x1(µ) as 0 < µ < µ∗ and −
√

1−µ < x < x∗ as µ∗ ≤ µ < 1
2 .

Since x < − 1
2 and s < µ, the function h(x, µ) increases, i.e., h′(x, µ) > 0. The

solution existence region is specified by the inequalities h(−
√

1−µ,µ) < ν <

h(x1(µ), µ) as 0 < µ < µ∗ and h(−
√

1−µ,µ) < ν < 0 as µ∗ ≤ µ < 1
2 . Since

det5′′ = νh′(x, µ)/x and x < 0, then det5′′ < 0 and there is no stable equilibrium
in the region A2.
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5. Conclusions

The analysis of the stability of two coupled oscillators showed that the model so-
lutions significantly depend on the dimensionless parameters of varied physical
origins. We demonstrated that the natural dimensionless kinematic parameter µ
is subjected to the relation of the distance between the suspension points and the
oscillator length. The dimensionless energetic parameter ν is equal to the relation
between the potential energy of the oscillator and the spring’s effective energy.
Thus, the parameter set (µ, ν) presents the convenient variables of the model.

Though we considered a static case, dynamic stability of such systems was inves-
tigated using chains of particles connected by springs, some of which could exhibit
negative stiffness [Pasternak et al. 2014]. The necessary stability condition was
formulated: only one spring in the chain can have negative stiffness, and the value
of negative stiffness cannot exceed a certain critical value. Applying the Cosserat
theory with negative Cosserat shear modulus was proposed in [Pasternak et al.
2016]. It was shown that, when the sum of the negative Cosserat shear modulus
and the conventional shear modulus is positive, the waves can propagate.

The demonstrated phenomena of the system’s critical dynamics of the linked
oscillators are important to general understanding of the nature of different pro-
cesses. At macroscales, they play a crucial role in determining the fragility and
instability of rocks [Tarasov and Guzev 2013] whereas at microscales the dynamics
of phononic crystals that are lattices of linked oscillators is governed by the param-
eters (µ, ν) [Ghasemi Baboly et al. 2013]. In addition, an important application
is magnetic tweezers, which may permit us to handle even single micromolecules
[Lipfert et al. 2009].
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ANALYSIS OF THE ELECTROMAGNETIC REFLECTION AND
TRANSMISSION THROUGH A STRATIFIED LOSSY MEDIUM

OF AN ELLIPTICALLY POLARIZED PLANE WAVE

FABIO MANGINI AND FABRIZIO FREZZA

In this paper, a method to analyze the electromagnetic scattering of an elliptically
polarized plane wave through a stratified lossy medium is presented. The inter-
action of the electromagnetic radiation with the stratified material is taken into
account by means of the transfer-matrix approach: in this way, we can consider
the stratified medium as an effective single interface. To do that, it was neces-
sary to represent the complex plane-wave propagation vector with two different
formulations: the phase and attenuation vectors and the complex angle. Thanks
to these two formalisms, it is possible to describe the behaviors of this canonical
phenomenon in an elegant way in all the cases of presence of a stratified lossy
medium. A numerical code has been implemented to compute the field over
the whole space. Finally, to validate the presented model, comparisons with the
results presented in the literature have been provided.

1. Introduction

The determination of the Fresnel coefficients due to the presence of a layered
medium with plane interfaces has been the subject of several studies in the last
decades because of its important applications, e.g., to forward and inverse scat-
tering by buried two- and three-dimensional objects, to electromagnetic artificial
materials, to characterization of porous media and to enhancement of optical an-
tennas and photovoltaic panels [Takenaka et al. 2003; Khoo et al. 2006; Feng et al.
2003; Ziolkowski and Erentok 2006; Taminiau et al. 2008; Frezza et al. 2013;
2015]. We consider the propagation of an inhomogeneous plane wave in a lossy
medium, which impinges on the interface with another lossy medium. We assume
the media are linear, isotropic, homogeneous, dielectric and generally dispersive
and dissipative; with these exceptions, we define the problem in the most general
manner. In general, from an electromagnetic point of view, all the materials can
be subdivided into three categories: the vacuum with null conductivity (σ = 0),
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MSC2010: 78A25, 78A48.
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153

http://msp.org/memocs
http://dx.doi.org/10.2140/memocs.2016.4-2
http://dx.doi.org/10.2140/memocs.2016.4.153
http://memocs.univaq.it/


154 FABIO MANGINI AND FABRIZIO FREZZA

ε1, µ1, σ1

.

.

.

ε j , µ j , σ j

ε j+1, µ j+1, σ j+1

.

.

.

εN+1, µN+1, σN+1

k∗i1

k∗i j

k∗i j+1

k∗iN+1

...

...

ϑ∗i1

ϑ∗i j

ϑ∗i j+1

ϑ∗iN+1

ϑ∗r1

ϑ∗r j

ϑ∗r j+1

...

...

k∗r1

k∗r j

k∗r j+1

z1

z2
...
z j

z j+1...
zN

y x
z

Figure 1. Geometry of the problem with the complex-angle formulation.

absolute dielectric permittivity ε = ε0 and absolute permeabilityµ= µ0; the loss-
less dielectrics with σ = 0, ε = ε0εr and µ= µ0µr ; the lossy medium with σ 6= 0,
ε = ε0εr and µ = µ0µr ; and finally the perfect conductor with σ ' ∞. Now
we can see the lossy media are the most general materials considerable. In this
paper, the complex plane-wave propagation vectors are represented with different
formulations: the complex-angle formulation [Ivlev 1987] (Figure 1) and the phase
and attenuation vectors, i.e., the Adler–Chu–Fano formulation [Adler et al. 1960]
(Figure 2). In Figure 1, considering the j-th layer, the impinging complex wave
vectors k∗j and the transmitted one, k∗j+1, are shown. The angles that these vectors
form with the normal direction (z-axis) to the interfaces are ϑ∗j and ϑ∗j+1, respec-
tively. On the other hand, in Figure 2, the phase and attenuation vectors of the
incident, β j ,α j , and of the transmitted, β j+1,α j+1, waves are shown. The angles
that these vectors form with the normal direction to the interface are, respectively,
ξ j , η j and ξ j+1, η j+1. Moreover, we define the angles between the phase and the
attenuation vectors, in the two media, as ζ j =η j−ξ j and ζ j+1=η j+1−ξ j+1, respec-
tively. The difference between the complex angle of the transmitted wave vector
and the angle of the transmitted phase vector is well understood. However, some
confusion between these angles may occur. To emphasize the possible mistake that
can be made between these formulations, we consider the arguments in [Canning
2011], where the expressions of the Fresnel coefficients found in the literature are
questioned. The mistake has been pointed out and corrected in [Besieris 2011]
but allows us to clarify the differences between the possible representations of the
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Figure 2. Geometry of the problem with the phase and attenuation
vector representation.

complex wave vector of an inhomogeneous plane wave in a lossy medium. More-
over, the connection between these two formulations has been mentioned before,
in [Roy 2003], where a numerical result, which needs different determinations in
the solution of a polynomial equation of the fourth order and the inversion of a
cosine function, is presented.

The two possible representations of a complex wave vector in a lossy medium
are very useful to describe the most canonical scenarios about the stratified lossy
medium. The complex-angle formulation can be the best solution to represent the
transmission wave through a multilayered medium that will impinge on a buried
sphere. The actual model of the complex wave vector consists of expanding in
two different plane waves and then obtaining a single expansion involving the
Wigner 3- j symbols [Kaplan and Resnikoff 1967], i.e., using the Adler–Chu–Fano
formulation. Using the complex-angle formulation, it is possible to obtain an ex-
pansion of inhomogeneous elliptically polarized plane waves in terms of vectorial
spherical harmonics in Mie form just using the Legendre functions generalized via
hypergeometrical functions, instead of the classical Legendre functions. Hence, in
all cases where a scatterer is present below the stratified lossy medium, in which the
scattered electric field has to be represented as an expansion of vectorial harmonics,
for example when scatterers with spherical, cylindrical or ellipsoidal shape are
present, it is better to use the complex-angle formulation. Indeed, the phase and
attenuation vector formulation is indispensable to obtain an elegant model of the
classical generalized Fresnel problem.
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In this paper, we consider an elliptically polarized plane wave incident on the
stratified material, we show the two possible representations of a complex wave
vector in a lossy medium and we use the polarization vectors to calculate the real
and imaginary parts of the complex angle as functions of the phase and attenuation
vectors. The transmission through the stratified medium is determined by the well
known formalism of the transition matrix. This matrix was first introduced by
Abelès and is presented in many textbooks of optics and electromagnetics [Abelès
1950; Born and Wolf 1999; Chew 1995]. In the literature, many works have gen-
eralized the transmission-matrix method, e.g., with a polynomial expression of its
elements [Vigoureux 1991] or by considering anisotropic layers [Essinger-Hileman
2013]. Thanks to the transfer-matrix formalism, the lossy medium stratification can
be taken into account, for what concerns our problem, as an effective single inter-
face. In particular, contrary to what is present in the literature, we have obtained
an elegant matrix formulation, simply using the combination of the complex-angle
formalism and the transfer-matrix approach. Moreover, in that way, we highlight
the physical meaning of each element in the transition matrix.

Thanks to the transfer-matrix approach, we can easily extend the number of
layers to infinity so as to realize an intermediate layer with peculiar properties. In
particular, it will be possible to take into account some materials characterized by a
relative permittivity that varies, for example, linearly between two external layers.

In Section 2, the theoretical formulation of the problem is presented in detail.
In Section 3, in order to prove the correctness of our method, we show some
comparisons with the results presented in the literature. Finally, in Section 4, the
conclusions are drawn.

2. Theoretical Approach

The geometry of the problem is depicted in Figures 1 and 2. The incident monochro-
matic radiation on the first surface of the medium is a plane wave traveling from
medium 1 to medium N + 1. Let us call z the stratification direction. Considering
the j-th interface, the wave vector of the impinging radiation forms an angle ϑ j

with the z-axis, and its projection on the interface forms an angle ϕ j with the x-
axis. Let ε j , µ j and σ j be the relative permittivity, the relative permeability, and
the electrical conductivity in the j-th layer of the stratified medium. We remem-
ber that all media are linear, isotropic, homogeneous and generally dispersive and
dissipative. Then the constitutive equations are

D(r, ω)= ε0εr E(r, ω), (1)

B(r, ω)= µ0µr H(r, ω), (2)

J(r, ω)= σ E(r, ω), (3)
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where ω is the angular frequency of the incident field. Solving the Helmholtz equa-
tion for the electric field, we can write the incident elliptically polarized field as

Ei1(r)= (E
H
i1
ϑ0i + E E

i1
ϕ0i )ei ki ·r (4)

with

ki1 = k∗1(sinϑ∗i1
cosϕi1 x0+ sinϑ∗i1

sinϕi1 y0+ cosϑ∗i1
z0), (5)

ϑ0i = cosϑ∗i1
cosϕi1 x0+ cosϑ∗i1

sinϕi1 y0− sinϑ∗i1
z0, (6)

ϕ0i =− sinϕi1 x0+ cosϕi1 y0 (7)

and with x0, y0 and z0 the cartesian unit vectors. Throughout this paper, a time
dependence e−iωt is assumed and always omitted. The reflected Er (r) and trans-
mitted Et(r) waves by the stratified medium are given by

Er (r)= (RH
E E H

i1
ϑ0r + RE

E E E
i1
ϕ0r )ei kr ·r , (8)

Et(r)= (T H
E E H

i1
ϑ0t + T E

E E E
i1
ϕ0t)ei kt ·r , (9)

where RH
E , T H

E and RE
E , T E

E are the effective reflection and transmission coeffi-
cients of the stratified medium for parallel (E) and perpendicular (H) polarizations
of the electric field, respectively, relevant to the effective interface between medium
1 and medium N + 1, with the vectors kr , kt , ϑ0r , ϑ0t , ϕ0r and ϕ0t having expres-
sions similar to (5)–(7). For the sake of brevity, we work on the plane ϕ = 0;
however, the following considerations can be easily extended for each plane ϕ 6= 0.
In this case, the wave number and the complex angle in (5)–(7) can be written as

k∗ = kR+ ik I , (10)

ϑ∗ = ϑR+ iϑI (11)

[Adler et al. 1960]; i.e., it is always possible to represent the wave number and the
impinging angle as constituted by a real part and an imaginary part. At the same
time, as we can see from Figure 2, the complex wave vector can be represented as

ki = βi + iαi (12)

with

βi = βi (sin ξi x0+ cos ξi z0), (13)

αi = αi (sin ηi x0+ cos ηi z0) (14)

being the phase vector and the attenuation vector, respectively. Another represen-
tation useful for our treatment is

ki = kiτ x0+ kin z0, (15)

kr = krτ x0+ krn z0 (16)
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with

kiτ = k∗ sinϑ∗ = βi sin ξi + iαi sin ηi , (17)

kin = k∗ cosϑ∗ = βi cos ξi + iαi cos ηi ; (18)

i.e., we can prefer to divide the wave vector into two components: the tangential
one kiτ and the orthogonal one kin with respect to the separation interfaces. In order
to determine β and α, we have to impose the well known conditions

β2
−α2
= k2

R− k2
I , (19)

2βα cos(η− ξ)= 2k2
Rk2

I (20)

[Frezza and Tedeschi 2012]. Solving, we obtain

β =

√
k2

R− k2
I

2

√√√√√1+
[

kRk I

(k2
R− k2

I ) cos ζ

]2

+ 1, (21)

α =

√
k2

R− k2
I

2

√√√√√1+
[

kRk I

(k2
R− k2

I ) cos ζ

]2

− 1. (22)

Before proceeding to the study of the reflection and transmission coefficients of the
incident field, we want to determine each parameter presented so far; to do that,
we can consider the generalized Snell law on the j-th interface

β j sin ξ j = β j+1 sin ξ j+1,

α j sin η j = α j+1 sin η j+1,

β2
j+1−α

2
j+1 = k2

R j+1
− k2

I j+1
,

β j+1α j+1 cos(η j+1− ξ j+1)= 2k2
R j+1

k2
I j+1

(23)

[Adler et al. 1960]. Using the methodology adopted in [Frezza and Tedeschi 2012],
system (23) can be solved, obtaining

β j+1 =

√
|ki jτ
|2+ (k2

R j+1
− k2

I j+1
)+ |k2

j+1− k2
i jτ
|

2
, (24)

α j+1 =

√
|ki jτ
|2− (k2

R j+1
− k2

I j+1
)+ |k2

j+1− k2
i jτ
|

2
(25)
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and for the angles

sin ξ j+1 =
β j

β j+1
sin ξ j , (26)

sin η j+1 =
α j

α j+1
sin η j . (27)

Using the generalized Snell law again, we can extend (24) and (25) to the case of
stratified media. In particular, the system of equations (23) can be rewritten as

β1 = βN+1
sin ξN+1

sin ξ1
,

α1 = αN+1
sin ηN+1

sin η1
,

β2
N+1−α

2
N+1 = k2

RN+1
− k2

IN+1
,

βN+1αN+1 cos(ηN+1− ξN+1)= 2k2
RN+1

k2
IN+1

,

(28)

which once solved gives

βN+1 =

√
|ki1τ
|2+ (k2

RN+1
− k2

IN+1
)+ |k2

N+1− k2
i1τ
|

2
, (29)

αN+1 =

√
|ki1τ
|2− (k2

RN+1
− k2

IN+1
)+ |k2

N+1− k2
i1τ
|

2
. (30)

Now we can see the phase and attenuation constants are independent of the pres-
ence of the intermediate layers, as for the case of the lossless scenario. Therefore,
the real and the imaginary parts of the complex angle ϑ∗ relevant to the last layer
may be written as functions of the phase and attenuation vectors:

cosϑRN+1 =
kRN+1βN+1 cos ξN+1+ k IN+1αN+1 cos ηN+1√

k2
RN+1

β2
N+1− k2

IN+1
α2

N+1+ 2(kRN+1k IN+1)
2
, (31)

sinϑRN+1 =
kRN+1βN+1 sin ξN+1+ k IN+1αN+1 sin ηN+1√
k2

RN+1
β2

N+1− k2
IN+1

α2
N+1+ 2(kRN+1k IN+1)

2
, (32)

ϑIN+1 =
1
2 atanh

(
2βN+1αN+1

k2
N+1

)
. (33)

To determine the value assumed by ϑRN+1 , both (31) and (32) are needed.
We consider a scattering approach to solve the problem; i.e., we take into ac-

count all the fields in the different layers and recursively apply the boundary con-
ditions on each interface in order to find the effective reflection and transmission
coefficients. Referring to Figure 1, we consider N + 1 different media, separated
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by N surfaces, each of them identified by the subscript j ; i.e., we indicate with
ϑ j , ϕ j , ε j , µ j and k j the angle of the propagation vector with the z-axis, the
angle with the x-axis of its projection on the (x, y) plane, the relative permittivity,
the relative permeability and the wavenumber of the j-th medium. Moreover, each
layer has thickness h j with the exception of layers 1 and N +1, which are two half-
spaces. The j-th interface separates the j-th medium from the ( j + 1)-th medium.
Firstly, we consider the parallel (E) polarization; then we will obtain the same
result in perpendicular (H) polarization by duality. Our goal is to determine the
effective reflection and transmission coefficients for the electric and the magnetic
fields RE

E , T E
E and RE

H , T E
H , respectively, of the structure:

RE
E =

E E
r1

E E
i1

, T E
E =

E E
iN+1

E E
i1

, RE
H =

H E
r1

H E
i1

, T E
H =

H E
iN+1

H E
i1

. (34)

Looking at the problem from the point of view of multiple reflections on the in-
terfaces between the media, we expect that, in the j-th layer, two plane waves
propagate: one in the forward direction, with propagation vector ki j , that is the
superposition of all the secondary reflected waves in the forward direction and
the second one in the backward direction, with propagation vector kr j , resulting
from the superposition of all the secondary reflected waves in the backward di-
rection (see Figure 1). In the last medium, i.e., the (N + 1)-th layer, there is no
backward wave because it is an infinite layer. While the amplitudes of the waves
in each layer are our unknowns, the corresponding wave vectors are determined
from the Snell law. In fact, similarly to the case of a single dielectric interface,
the tangential components of all the wave vectors must be equal to one another:
ki jτ
= kr jτ

= ki j+1τ
= kr j+1τ

. From these equalities, we can derive the expressions of
the angles ϑ∗i j

and ϑ∗r j
in each layer. At this point, in order to obtain the coefficients,

we have to impose the boundary conditions on each interface. Imposing the conti-
nuity of the tangential components of the electric and magnetic field, we obtain

z0× (Ei j + Er j − Ei j+1 − Er j+1)= 0 for z = z j , (35)

z0× (Hi j + Hr j − Hi j+1 − Hr j+1)= 0 for z = z j . (36)

The expressions of the electric and magnetic fields for the j-th layer are

Ei j = E0i j y0ei[ki jτ
x+ki jn

(z−z j )], (37)

Er j = E0r j y0ei[kr jτ
x−kr jn

(z−z j )], (38)

Hi j =
E0i j

ωµ j
(ki jτ

z0− ki jn
x0)e

i[ki jτ
x+ki jn

(z−z j )], (39)

Hr j =
E0r j

ωµ j
(kr jτ

z0+ kr jn
x0)e

i[kr jτ
x−kr jn

(z−z j+1)]. (40)
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Replacing these expressions in the boundary conditions, we obtain{
E0i j + E0r j = E0i j+1e−iki j+1n

(z j+1−z j )
+ E0r j+1eiki j+1n

(z j+1−z j ),

E0i j − E0r j = ζ j, j+1
[
E0i j+1e−iki j+1n

(z j+1−z j )
− E0r j+1eiki j+1n

(z j+1−z j )
]
,

(41)

having put, for the sake of simplicity, ζ j, j+1 = µ j ki j+1n
/(µ j+1ki jn

). The linear
system (41) can be written in matrix form, yielding[

E0i j+1

E0r j+1

]
=
[
M j
] [E0i j

E0r j

]
(42)

with [
M j
]
=

1
2ζ j, j+1

[
(1+ ζ j, j+1)eiφ j+1 −(1− ζ j, j+1)eiφ j+1

−(1− ζ j, j+1)e−iφ j+1 (1+ ζ j, j+1)e−iφ j+1

]
, (43)

having put φ j+1 = ki j+1n
(z j+1− z j ), the phase difference between two adjacent

layers.
We can highlight the term 1+ ζ j, j+1:

[
M j
]
=

1+ ζ j, j+1

2ζ j, j+1

 eiφ j+1 −
1− ζ j, j+1

1+ ζ j, j+1
eiφ j+1

−
1− ζ j, j+1

1+ ζ j, j+1
e−iφ j+1 e−iφ j+1

 . (44)

We can note that the term 2ζ j, j+1/(1+ζ j, j+1) is the Fresnel transmission coefficient
between the j -th and ( j+1)-th layer (T E

j, j+1) and the term (1−ζ j, j+1)/(1+ζ j, j+1)

is the Fresnel reflection coefficient (RE
j, j+1). So we can rewrite the

[
M j
]

matrix as

[
M j
]
=

1
T E

j, j+1

[
eiφ j+1 −RE

j, j+1eiφ j+1

−RE
j, j+1e−iφ j+1 e−iφ j+1

]
. (45)

Now, it is trivial to analyze the transmission through all the layers; in fact, we can
write the transmitted field as[

E0iN+1

0

]
=
[
MN

] [E0iN

E0rN

]
=

N∏
`=1

[
M`

] [E0i1

E0r1

]
=
[
M
] [E0i1

E0r1

]
. (46)

About the last layer, there is no reflection to obviate this drawback; it is sufficient
to place, only for the last layer, φN+1 = 0, i.e., consider the last layer to have zero
thickness.

Once the overall matrix is obtained, the effective reflection and transmission
coefficients of the structure can be found. If we define the transmission matrix as[

M
]
=

[
M11 M12

M21 M22

]
, (47)
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we have {
M11 E0i1 +M12 E0r1 = E0iN+1

M21 E0i1 +M22 E0r1 = 0;

then the effective coefficients for the parallel polarization are

RE
E =

E E
r1

E E
i1

=−
M21

M22
, (48)

T E
E =

E E
iN+1

E E
i1

=
M11 M22−M12 M21

M22
=

det
[
M
]

M22
, (49)

RE
H =

H E
r1

H E
i1

=
E E

r1
(k∗r1

/ωµ1)

E E
i1
(k∗i1

/ωµ1)
=

E E
r1

E E
i1

= RE
E =−

M21

M22
, (50)

T E
H =

H E
iN+1

H E
i1

=
E E

iN+1
(k∗iN+1

/ωµN+1)

E E
i1
(k∗i1

/ωµ1)

=

√
εN+1/

√
µN+1

√
ε1/
√
µ1

E E
iN+1

E E
i1

=
Z∗1

Z∗N+1
T E

E =
Z∗1

Z∗N+1

det
[
M
]

M22
. (51)

It should be noticed that the matrix
[
M
]

that we derived is not the same obtained
in the literature [Born and Wolf 1999] but is its inverse: in fact, usually the relation
between the transmitted and the incident fields is considered, while we derived the
opposite relation.

About the perpendicular polarization, we can find the expression of the coeffi-
cients simply exchanging ζ j, j+1=µ j ki j+1n

/µ j+1ki jn
with χ j, j+1=ε j ki j+1n

/ε j+1ki jn
.

It means that the magnetic fields are related by matrices analogous to the ones
in (43) but where the parameters ζ j, j+1 must be substituted with χ j, j+1. In this
polarization, the transmission matrix assumes the form

[
N j
]
=

1
2χ j, j+1

[
(1+χ j, j+1)eiφ j+1 −(1−χ j, j+1)eiφ j+1

−(1−χ j, j+1)e−iφ j+1 (1+χ j, j+1)e−iφ j+1

]
(52)

=
1

T H
j, j+1

[
eiφ j+1 −RH

j, j+1eiφ j+1

−RH
j, j+1e−iφ j+1 e−iφ j+1

]
, (53)

where T H
j, j+1 = 2χ j, j+1/(1+ χ j, j+1) is the transmission coefficient between the

j-th and ( j + 1)-th layers and the term RH
j, j+1 = (1−χ j, j+1)/(1+χ j, j+1) is the

reflection coefficient, both in perpendicular polarization. Now the reflection and
transmission coefficients of the electric and magnetic fields are

RH
H =−

N21

N22
, T H

H =
det

[
N
]

N22
, RH

E =−
N21

N22
, T H

E =
Z N+1

Z1

det
[
N
]

N22
. (54)
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Figure 3. Geometry used to validate the model.

3. Validation of the model

To validate our formulation, we compared our results with those of [Curtis 2005],
which are based on [Reitz et al. 1979]: their methods exploit an algebraic series
that adds up all of the contributions to the net amplitude reflection coefficient of
the traveling field in the particular case of just three layers. As a first example,
we consider a circular plane wave incident on the stratified medium with the three
layers at a frequency of 100 MHz (see Figure 3). The first one is air (ε1 = 1 and
σ1 = 0 S/m), the second one moist soil whose relative dielectric constant is chosen
to be ε2 = 10+ i2, which results in a conductivity of σ2 = 11.1 mS/m, and the last
one dry soil with a complex dielectric constant of ε3 = 3+ i0.2, which means an
effective conductivity of σ3 = 1.1 mS/m. The thickness of the intermediate layer is
0.05 m in the first case and 0.20 m in the second one. In these conditions, we show
in Figure 4 the comparison between our results (dashed lines) and the Curtis results
(solid line) of the square amplitude of the reflection coefficient in E polarization
and H polarization as a function of the incidence angle: as we can see, the results
show a very good agreement in both cases. The second result concerns the square
amplitude of the reflection coefficient as a function of the ratio between the top-
layer thickness and the top-layer wavelength; the electromagnetic parameters and
the geometrical configuration are the same as in the previous case, but now we have
considered an incidence angle of 30 degrees (see Figure 5). From the comparisons
shown, we can see an optimum agreement, validating our procedure.
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Figure 4. Square amplitude of the reflection coefficient for the
electric field as a function of the incidence angle in both polariza-
tions. The stratified medium is located below an air half-space and
composed of a layer of moist soil 5 cm (top) and 20 cm (bottom)
thick on an infinite layer of dry soil.

4. Conclusion

In this paper, a rigorous method to solve the electromagnetic scattering problem of
an elliptically polarized plane wave by a stratified lossy medium is presented. To
determine the reflection and transmission coefficients, we considered the so-called
transfer matrix approach. In order to determine each parameter of interest, we have
adopted two formalisms: the phase and attenuation vectors and the complex-angle
formulation. With these approaches, it is possible to describe all the canonical cases
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Figure 5. Square amplitude of the reflection coefficient for the
electric field as a function of the ratio between the top-layer thick-
ness and the top-layer wavelength in both polarizations with an
incident angle of 30 degrees.

in the presence of a multilayered lossy medium, i.e., with or without the presence
of a scatterer in the stratified medium. To validate our model, some comparisons
with literature results have been presented, obtaining very good agreement in any
situation. Obviously this method enjoys the advantages of the transmission-matrix
method from which it derives; that is, it can be easily extended to an infinite number
of layers to realize an intermediate layer with exotic properties. The generality of
the presented method allows its application to several fields of engineering, such
as detection of buried or immersed objects, biomedical sensing problems, meta-
material analysis, radar systems, diagnosis of cultural heritage and microscopy; in
particular, it can be used to model the lossy medium characterized by a dielectric
constant with an anisotropy along the depth direction. Moreover, thanks to this
approach, it is possible to design an adaptive material in order to obtain, for exam-
ple, the zero-reflection and zero-transmission between two external materials: to
do this, we can interpose a medium with a relative complex permittivity linearly
dependent on the depth.
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DISLOCATION-INDUCED LINEAR-ELASTIC
STRAIN DYNAMICS BY A CAHN–HILLIARD-TYPE EQUATION

NICOLAS VAN GOETHEM

In a single crystal containing dislocations, the elastic strain defined by a linear
constitutive law from the stress tensor can be written as the sum of a symmetric
gradient and a solenoidal tensor ε0, called the dislocation strain. This latter
part of the elastic strain is related to dislocations since its incompatibility equals
the curl of the contortion. The aim of this paper is to derive a time-evolution
law for the internal thermodynamic variable ε0, arising from the second law of
thermodynamics, and to discuss its mathematical setting. This encompasses a
discussion on the functional space used and about the equation’s well-posedness.
A fourth-order time-dependent nonlinear PDE involving the incompatibility op-
erator is found, which is similar in form to the Cahn–Hilliard equation, and
represents in this respect a tensor generalization for solenoidal fields.

1. Introduction and preliminary results

Let � be a simply connected smooth and bounded subset of R3. Let L be a set of
dislocation lines in � and the dislocation density 3L ∈M(�,M3) be given by a
Radon measure concentrated in L. As soon as dislocations are present, the strain ε
cannot be a symmetric gradient as the following crucial relation, called Kröner’s
formula, shows [Van Goethem 2016b]:

inc ε = Curl κL, κL :=3L−
I2

2
tr3L,

where I2 is the second-rank identity tensor and 3L the dislocation density tensor
defined as 3L = τ ⊗ bH1

bL with τ the tangent vector to the Lipschitz curve L,
H1
bL the one-dimensional Hausdorff measure concentrated in L, and b the Burgers

vector, constant on the line. Moreover, inc is the incompatibility operator; i.e.,

inc F := Curl Curlt F,
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where the curl of a tensor is taken columnwise. This operator is at the heart of the
present work since it will be shown to drive the time evolution of the dislocation-
induced strain. Note that the evolution of the dislocations are given by the so-
called contortion tensor κL, which cannot be determined from the sole knowledge
of its curl except in particular cases in which it is divergence-free, as for pure edge
dislocations. For this reason, this work is not strictly speaking about the dynamics
of dislocations.

Classically in linear elasticity, overall equilibrium reads div Aε = 0 in � with A

the isotropic elasticity tensor. As a consequence, it is shown in [Van Goethem 2015]
that there exist two fields of interest: the displacement u and F , an auxiliary tensor
that is solenoidal and symmetric. These fields satisfy Beltrami decomposition of
the elastic strain, namely

ε =∇Su+ inc F.

In this paper, our aim is to derive an evolution law for the internal thermody-
namic variable

ε0
:= inc F,

which is called the dislocation-induced strain since it satisfies a regularized Kröner’s
relation inc ε0

= Curl κ , i.e., has a smoothed dislocation density (namely, the
macroscopic contortion κ) in the right-hand side. Furthermore, ε0 satisfies a time-
dependent evolution that turns out to be sufficient for the global mechanical dissi-
pation to be positive.

Specifically in this paper, we establish in a first step, study in a second step, and
eventually discuss the nonlinear tensor-valued equation

α∂tε
0
= inc(−M inc ε0

−G(ε0)) in �×[0, T ] (1-1)

with G a nonlinear potential, α > 0, and M a positive-definite and symmetric fourth-
order material-dependent tensor. For simplicity, and for the sake of physical inter-
pretation, we assume that G depends only on e := tr ε0, the trace of the dislocation-
induced strain, which is shown to be directly related to and hence interpreted as
a density of point defects. To achieve this goal, the mathematical nature of the
incompatibility operator must be understood, and hence, a series of mathematical
results must be recalled as preliminary steps.

Observe that evolution law (1-1) has a form similar to the Cahn–Hilliard equa-
tion but for a tensor-valued unknown ε0. Indeed, the Laplacian counterpart is
precisely the incompatibility operator since tr inc F = 1 tr F , and hence, (1-1)
appears as a tensor generalization for solenoidal tensor fields of the classical scalar
Cahn–Hilliard equation. From a physical point of view, the scalar version of our
equation is related to the dynamics of point defects, which are required for the
creation and motion of dislocations and are related to the variation of matter density.
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Furthermore, e obeys the scalar Cahn–Hilliard equation, though with nonstandard
boundary conditions. A discussion about this equation, though derived by other
means and with a different purpose, can be found in [Van Goethem 2014]. The
purpose of this paper is to show that this equation is well-posed in an appropriate
functional space; some of its important properties are given. Let us emphasize that
particular care is given to justify the equation boundary conditions, which must be
mathematically sound and at the same time have a physical interpretation.

The notion of internal variable of state. We consider F a mathematical gauge
field arising from Beltrami decomposition of symmetric tensors and without any
particular physical meaning. However, its incompatibility, ε0

:= inc F , is the
dislocation-induced strain since it is the only part of the elastic strain which appear
in Kröner’s formula. It is considered an internal variable of state (IVS) in the
sense given here by G. Maugin [2015]: “Internal variables of state are introduced
in thermomechanics in addition to the usual observable variables of state (e.g.,
deformation, temperature, electric, and magnetic fields). They are supposed to
account in a more or less crude way for the complex internal microscopic processes
that occur in the material and manifest themselves at a macroscopic scale in the
form of dissipation”.

Motivation. In our case, the observable variable of state (OVS) is the stress σ , from
which the elastic strain ε is deduced by a constitutive law (hence, the latter is also
an OVS). So far, u and F are vector and tensor fields involved in the decomposition
of ε. In some sense, u is also observable, measurable, and controllable, depending
on its boundary conditions and on the introduction of a reference configuration,
which is an uncomfortable notion in infinitesimal elasticity. As a matter of fact,
we prefer to let the identification u be the displacement field as a convenient “vue
de l’esprit”.

The crucial point is that ε0 is an internal variable that is neither observable
nor measurable or controllable, in the sense of physicists. Only its existence as a
mathematical object and its effect in the form of dissipation is observed. Therefore,
the aim of this paper is to show that it naturally obeys a PDE and thus becomes
observable, measurable, and controllable in a mathematical sense. It should be
emphasized that there exists no consensual procedure in the literature to determine
the equation governing an IVS. Our plan is to derive such an equation in the sim-
plest and most natural possible way, while not contradicting (at least) or, better,
complying with (so far as possible) thermodynamics principles.

Structure of the work. The main part of this paper is about the derivation of the
incompatibility-governed time-dependent model for the dislocation strain. To this
end, considerations about the statics problem, and in particular about the choice
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of the boundary conditions and their physical meaning, are found in Sections 3,
3.1, and 3.2, respectively. The evolution law is then found in Section 4, whose
mathematical properties, such as existence of solutions and energy bounds, are
given in Section 5. In the preliminary Section 2, the functional spaces needed to
mathematically handle the incompatibility operator are given. Several properties of
tensor-valued fields with bounded incompatibility are also recalled, without proofs,
to be found in a specifically dedicated paper [Amstutz and Van Goethem 2016]. A
discussion is given in Section 6.

Notation and conventions. Let E ∈S3 and β ∈M3, where M3 denotes the space of
square 3-matrices and S3 of symmetric 3-matrices. Note that superscript t stands
for the transpose of a tensor and superscript S for the symmetric part of a tensor.
The divergence and curl of a tensor E are defined componentwise as (div E)i :=
∂ j Ei j and (Curl E)i j := ε jkl∂k Eil , respectively. The incompatibility of a tensor E
is the symmetric tensor defined componentwise as

(inc E)i j := (Curl Curlt E)i j = εikmε jln∂k∂l Emn = (Curlt Curlt E)i j . (1-2)

Also, (E × N )i j = −(N × E)i j = −ε jkm Nk Eim . Moreover,
∫
�

Curl F · E dx =∫
�

F ·Curl E dx and
∫
�

inc F · E dx =
∫
�

F · inc E dx for smooth tensor-valued
functions E and F with compact support in �. It is a key part of this paper (see
Section 2.1) to determine appropriate boundary conditions in order for this integra-
tion by parts to be valid for more general fields. We will also use the shorthand

a | b :=
∫
�

a · b dx .

The following theorem is crucial for the developments of this work.

Theorem 1 (Beltrami decomposition [Maggiani et al. 2015]). Let � ⊆ R3 be a
simply connected domain with smooth boundary, let p ∈ (1,+∞) be a real number,
and let E ∈ L p(�,S3) be a symmetric tensor. Then there exist a vector field
u ∈ W 1,p(�,R3) and a tensor F ∈ L p(�,S3) with Curl F ∈ L p(�,S3), inc F ∈
L p(�,S3), div F = 0 in �, and F N = 0 on ∂�, where N stands for the unit
normal to ∂�, satisfying

E =∇Su+ inc F.

Moreover, u can be taken with vanishing trace on ∂�, and such a pair (u, F) is
unique.
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2. Preliminary results: functional spaces

Define
Hcurl(�;M

3) := {E ∈ L2(�;M3) : Curl E ∈ L2(�,M3)},

H(�) := {E ∈ H 2(�,S3) : div E = 0},

H0(�) := {E ∈H(�) : E = Curlt E × N = 0 on ∂�}.

(2-1)

These spaces are naturally endowed with the Hilbertian structure of H 2(�,S3).

Some identities in the local basis. Let us consider the local orthonormal basis
(τ A, τ B, N ) on ∂� (for detail on such bases and their extension in �, see [Amstutz
and Van Goethem 2016]). For a general symmetric tensor T , one has in this basis

T =

TAA TAB TAN

TB A TB B TB N

TN A TN B TN N

 , T × N =

TAB −TAA 0
TB B −TB A 0
TN B −TN A 0

 ,
(T × N )t × N =

 TB B −TAB 0
−TAB TAA 0

0 0 0

 . (2-2)

By the same token,

(T × τ A)t × τ A
=

0 0 0
0 TN N −TB N

0 −TN B TB B

 ,
(T × τ B)t × τ B

=

 TN N 0 −TAN

0 0 0
−TN A 0 TAA

 ,
(2-3)

and

(T × τ A)t × τ B
=

 0 0 0
−TN N 0 TAN

TN B 0 −TAB

 ,
(T × τ B)t × τ A

=

0 −TN N TB N

0 0 0
0 TN A −TB A

 .
(2-4)

Similarly,

(T × N )t × τ A
=

0 TN B −TB B

0 −TN A TB A

0 0 0

 ,
(T × N )t × τ B

=

−TN B 0 TAB

TN A 0 −TAA

0 0 0

 .
(2-5)
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2.1. Green formula for the incompatibility operator. Let V be a vector field de-
fined on ∂�, and let Ṽ be any extension of V in � with appropriate regularity. The
surface divergence of V is defined on ∂� by

divS V = div Ṽ − (∂N Ṽ ) · N . (2-6)

The following result holding for smooth boundaries is sufficient for our purposes
whereas, if the boundary had edges, an additional line-integral term must be added.

Lemma 2 (surface divergence [Henrot and Pierre 2005]). If V ∈ W 1,1(∂�,R3),
then ∫

∂�

divS V d S(x)=
∫
∂�

κV · N d S(x).

Lemma 3 [Amstutz and Van Goethem 2016]. For all U, V ∈ C2(�,M3),∫
�

U ·Curl V dx =
∫
�

Curl U · V dx +
∫
∂�

(U × N ) · V d S(x).

Denote by U S
= (U +U t)/2 the symmetric part of a tensor U , and recall the

definition of incompatibility (1-2). The following result is about integration by
parts.

Lemma 4 [Amstutz and Van Goethem 2016]. Suppose that T ∈ C2(�,S3) and
η ∈ H 2(�,S3). Then∫

�

T ·inc η dx =
∫
�

inc T ·η dx+
∫
∂�

T1(T )·η d S(x)+
∫
∂�

T0(T )·∂Nη d S(x) (2-7)

with the trace operators defined as

T0(T ) := (T × N )t × N , (2-8)

T1(T ) := (Curl(T × N )t)S
+ ((∂N + κ)T × N )t × N + (Curlt T × N )S. (2-9)

Remark 5. Only (∂Nη)T matters in the rightmost integral of (2-7) since it can be
equivalently rewritten as

∫
∂�

T0(T ) · T0(∂Nη) d S(x).

Remark 6. Let κ R be the two principal curvatures of ∂�. It has been proved in
[Amstutz and Van Goethem 2016] that1

Curl(T × N )t =−
∑

R

κ R(T × τ R)t × τ R
+ (Curlt T × N )t . (2-10)

Taking an η such that ηN = 0= ∂Nη on ∂�, then the boundary terms in (2-7) can
be rewritten as ∫

∂�

T1(T ) · η d S(x)=
∫
∂�

T1(T )T · ηT d S(x). (2-11)

1The coefficient ξ in [Amstutz and Van Goethem 2016] can be taken to be vanishing.
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Now, assuming that (Curlt T×N )S
=0 and that T0(T )=T0(∂N T )=0 on ∂�, taking

into account (2-3), (2-9), and (2-10), the second Neumann boundary conditions,
due to (2-11), are

T1(T )T =−TN N DN = 0 on ∂� where DN =
(
κ A 0
0 κ B

)
, (2-12)

with TN N = T N · N . In summary, we have the implication

(Curlt T×N )S
=T0(T )=T0(∂N T )=T N ·N =0 and ηN =0 on ∂�

=⇒ T1 · η(T )= 0. (2-13)

Remark 7. The following alternative expression is also established in [Amstutz
and Van Goethem 2016]:

T1(T )=−
∑

R

κ R(T × τ R)t × τ R
+ ((−∂N + κ)T × N )t × N

−

∑
R

(∂RT × N )t × τ R, (2-14)

where τR stands for the derivative along the R-th tangent vector τ R , for R = A or
B. Note that (2-14) is proved in [Amstutz and Van Goethem 2016, Lemma 3.19]
by taking ξ = 0 (since we consider smooth surfaces without umbilical points) and
noting that each term of (2-14) is symmetric.

2.2. Basic properties. The following lemma is easy to prove from the properties
of these functions.

Lemma 8. Every E ∈ H0(�) satisfies div Curlt E = 0 in � and Curlt E × N =
∂N E × N = 0 on ∂�. Moreover, inc E | F = E | inc F for every E, F ∈H0(�).

Proof. The first statement comes easily from the solenoidal property of E . As for
the second, compute componentwise (see [Amstutz and Van Goethem 2016] for
detail)

−[Curlt E×N ]mq = ((∂N E×N )t×N )mq−

((∑
R

τ R
×∂R E

)t

×N
)

mq
, (2-15)

where ∂R means the R-th tangential derivative, which here vanishes identically,
proving the result. The last statement is a direct consequence of Lemma 4 and
Remark 5, and taking into account the density of smooth functions in H0(�). �

Lemma 9. Let � ⊂ R3 be a bounded open set with boundary of class C 1 and
F ∈ Hcurl(�;M

3) such that F × N = 0 on ∂�. Then (Curl F)N = 0 on ∂�.2

Moreover, (inc E)N = 0 on ∂� as soon as E = (∂N E × N )t × N = 0 on ∂�.

2This expression is intended in a classical weak sense; see, e.g., [Van Goethem 2015].
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Proof. The first part is proven by taking an arbitrary ϕ ∈ H 2(�,R3) since by integra-
tion by parts and Lemma 3 〈(Curl F)N , ϕ〉∂�=〈Curl F, Dϕ〉=〈F×N , Dϕ〉∂�=0.
The second part follows from the first part, the definition of incompatibility, and
the identity 0= Curlt F × N = 0 from Lemma 8. �

For a proof of the next lemma, see, e.g., [Kozono and Yanagisawa 2009; von
Wahl 1992; Bolik and von Wahl 1997].

Lemma 10. Let F ∈ Hcurl(�;M
3) such that div F = 0 in � and F× N = 0 on ∂�.

Then F ∈ H 1(�,M3), and

‖∇F‖L2(�) ≤ C‖Curl F‖L2(�). (2-16)

The next result follows without major difficulty from Lemma 10.

Lemma 11. For all E ∈H0(�),

‖E‖H2(�) ≤ C
(
‖E‖L2(�)+‖Curl E‖L2(�)+‖inc E‖L2(�)

)
.

The following theorem is nonclassical but also easy to prove.

Theorem 12 (Poincaré). Let ∂�0 ⊂ ∂� be nonflat with H2(∂�0) > 0. There exists
a constant C > 0 such that, for each u ∈ H 1(�;R3),

‖u‖L2(�) ≤ C
(
‖∇u‖L2(�)+

∫
∂�0

|u× N | d S
)
. (2-17)

Theorem 13 (coercivity [Amstutz and Van Goethem 2016]). Let � be a bounded
and connected domain with C1 boundary, and let the nowhere-flat subset ∂�0 ⊂ ∂�

with H2(∂�0) > 0. There exists a constant C > 0 such that, for each E ∈H0(�),

‖E‖H2(�) ≤ C‖inc E‖L2(�). (2-18)

3. Kinematics with dislocations

First, the complete equations deriving from conservation of momentum are pro-
vided. They turn out to be nonclassical since, in the presence of dislocations, an
auxiliary tensor variable appears as well as a dislocation-induced force in the right-
hand side of the equilibrium equation. Second, we discuss the chosen boundary
conditions from a mathematical and physical standpoint. Let us emphasize here
that from now on the forces will be regularized so that all fields are assumed smooth.
This will allow us to perform a thermodynamical study in a classical manner.

3.1. Governing PDEs. The elastic strain is given from the stress tensor σ by ε :=
A−1σ , where A is the assumed constant elasticity tensor, i.e., A = 2µI4+ λI2⊗ I2,
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where I4 and I2 are the fourth- and second-rank identity tensors, respectively,3 with
µ and λ the Lamé coefficients. Conservation of linear momentum reads{

ρ
dv
dt
− div Aε = f in �,

σN = g on ∂�,
(3-1)

where ρ is the volumic mass and v the velocity and with f ∈ C∞(�,R3) and
g ∈ C∞(∂�,R3) the volume and surface forces, respectively. By Beltrami decom-
position (see Theorem 1), there exists a vector u and a symmetric and solenoidal
tensor F such that

ε =∇Su+ inc F, (3-2)

whereby, recalling the solenoidal property of

ε0
:= inc F,

conservation of linear momentum is rewritten as{
ρ

dv
dt
− div(A∇Su)= FL := f + λ∇ tr(inc F) in �,
(A∇Su)N = g− λ tr(inc F)N on ∂�.

(3-3)

Therefore, u is called the generalized displacement field since it coincides with the
displacement field in the absence of dislocations, i.e., for ε0

= inc F = 0. Moreover,
we set v := du

dt , the pointwise velocity.
The right-hand side of (3-3) depends on F , i.e., through tr ε0, for which an

equation must be found. To this end, we appeal to Kröner’s relation, proved in
[Van Goethem 2016b] and which reads inc ε = inc ε0

= Curl κL, where the right-
hand side is a concentrated first-order distribution. However, in the present work,
which deals with thermodynamic consideration, the right-hand side will be regu-
larized by convolution with a certain divergence-free mollifier ηρ (this amounts to
considering a tubular neighborhood of the line of some fixed radius ρ, which is a
common practice in the dislocation literature). Thus, by (3-2),

inc inc F = Gρ := Curl κL ? ηρ in �,
F = 0 on ∂�,

(∂N F × N )t × N = 0 on ∂�,
(3-4)

where the boundary conditions are chosen in such a way that (3-4) has a unique
solution. Indeed, (3-3) and (3-4) are well-posed as discussed in [Van Goethem
2015]. Note that well-posedness in weak form is a direct consequence of coercivity
as proved in Section 2. Other boundary conditions of Neumann or mixed type will

3Componentwise, (I4)i jkl =
1
2 (δikδ jl + δilδ jk) and (I2)i j = δi j .
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be discussed below. Furthermore, div Gρ = 0, and hence, there exists κ called the
regularized contortion such that

Gρ = Curl κ. (3-5)

Note that such a model is also discussed in [Van Goethem 2016a].

3.2. Chosen boundary conditions.

Boundary conditions for the gauge field F. The boundary conditions of (3-4) are
of essential type (i.e., Dirichlet-like). Note that the first boundary condition on F
in (3-4) is required to satisfy the boundary conditions of Beltrami decomposition
(3-2) of Theorem 1. Furthermore, it has been shown in Lemma 8 that the second
boundary condition for F implies that Curlt F × N = 0 on ∂�, which in turn
implies that (inc F)N = 0 by Lemma 9.

On the other hand, in order to determine the natural boundary conditions, a
Green formula has been computed in Section 2.1. In particular, the formula shows
that the second boundary condition on F may be replaced by a condition on the
tangential components of inc F . Specifically, the following equation with pure
Neumann boundary conditions has a solution [Amstutz and Van Goethem 2016]:

inc(M inc F)= Curl κ in �,
T0(inc F)= 0 on ∂�,
T1(inc F)= 0 on ∂�,

(3-6)

with M positive-definite and where T0 and T1 are the trace operators as defined in
Lemma 4. Note that T0(A) := (A× N )t × N stands by (2-2) for the tangential
components of tensor A (in a different order). So we will write

AT := T0(A),

with subscript T standing for tangential. To be precise, as a consequence of the
Green formula, T0(inc F) is the dual of (∂N F)T and T1(inc F) is the dual of F . This
and the above remark imply that either (inc F)N or (inc F)T might be prescribed
on the boundary but not both simultaneously.

Remark 14. Because (3-6) is given with Neumann boundary conditions, unique-
ness might only hold in a quotient space. Specifically, term

∫
∂�

Curlt F × N d S(x)
might not vanish in the right-hand side of the coercivity inequality. Hence, F is
fixed up to a gauge field F̃ satisfying

∫
∂�

Curlt F̃ × N d S(x) = 0. This kind of
detail is not of interest for the purpose of this work, but the curious reader may
refer to [Amstutz and Van Goethem 2016].

With a view of the time-evolution model, we would like to justify the chosen
boundary condition for ε0

:= inc F as derived in the next section. To this end,
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we must find a set of mixed essential/natural boundary conditions on F and its
derivatives that imply T1(inc F) = 0. First let us make a general remark. There
are six unknowns for a fourth-order operator, and hence, twelve complementary
conditions must be prescribed on the boundary (for the complete theory, we refer
to [Agmon et al. 1964]). This is the case if the symmetric F and (∂N F)T are set to
zero, for instance, as for the homogeneous Dirichlet boundary condition. For the
pure Neumann case, T0 provides three independent conditions and T1 six, whereby
there exist three degrees of freedom unprescribed (whence the quotient space).

We assume that T0(inc F) and only the normal components F N are vanishing
on the boundary. Then, referring to the Green-formula expression (2-7) and (2-9)
with T = ε0

= inc F , we observe that the central term in the right-hand side of
T1(ε

0) simplifies to T0(∂Nε
0). By (2-9) and (2-10), it remains to consider the term

((Curlt ε0)×N )S and the first term on the right of (2-10). On the one hand, the term
(Curlt ε0)× N is related to the dislocation rotation gradient since one recognizes
Curlt ε as the Frank tensor, satisfying for a general strain ε (by Mitchell–Cesaro–
Volterra decomposition and path integrations; see, e.g., [Maggiani et al. 2015])

∇ω = Curlt ε, (3-7)

where ω is the rotation field. Thus, defining the divergence-free dislocation-induced
rotation ω0 by means of ∇ω0

:= Curlt ε0, if we impose that ω0 be constant on ∂�,
then ∇ω0

× N = Curlt ε0
× N = 0 on ∂�. This is interpreted as a condition of

rigid dislocation-induced rotation of the crystal boundary.
Summarizing, by recalling (2-13), if one assumes F N = 0 (three conditions),

T0(inc F) = T0(∂N inc F) = 0 (3+ 3 = 6 conditions), and ω0
= constant on ∂�

(two conditions), then the second Neumann boundary condition will be zero for a
nonflat boundary if we also assume the additional condition (ε0)N N := ε

0 N ·N = 0
(the twelfth and last condition). Note that, as a consequence of (ε0)T = (ε

0)N N = 0
on ∂�, the trace of ε0 vanishes, i.e.,

e := tr ε0
= 0 on ∂�. (3-8)

Obviously,
∂Re = ∂R tr ε0

= 0 for R = A, B on ∂�. (3-9)

As resulting from the above considerations, from now on in this work, the fol-
lowing equation for F will be considered:

inc(inc F)= Curl κ in �,
F N = 0 on ∂�,

T0(inc F)= 0 on ∂�,
(inc F)N · N = 0 on ∂�,
T0(∂N inc F)= 0 on ∂�,

Curlt(inc F)× N = 0 on ∂�.

(3-10)
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Furthermore, by elliptic regularity4 and the smoothness of κ , the fields F and inc F
are also smooth.

Note that the third line of (3-10) implies that

ε0
× N =−ε0

AAτA⊗ τB + ε
0
B BτB ⊗ τA+ ε

0
AB(τA⊗ τA− τB ⊗ τB)= 0. (3-11)

Boundary condition for the dislocation strain ε0. We recall the following facts.
The elastic strain can be written as ε = A−1σ =∇Su+ ε0, where inc ε = inc ε0

=

Curl κ . The tensor ε0
= inc F is called the dislocation strain since it is the only

part of the elastic strain related to the dislocation density.
First note that the Neumann conditions T0(inc F) = 0 and (inc F)N · N = 0

in (3-10) exactly mean that (ε0)T = 0 and (ε0)N N = 0, respectively. Thus, they
naturally impose Dirichlet boundary conditions for ε0 though incomplete since the
components (ε0 N ) ·τ R remain unprescribed so far (with τ R the R-th tangent vector
to ∂�). We also impose (Curlt ε0)× N = 0 in (3-10).

In order to chose the remaining boundary conditions for ε0, we will require that
the following integration by parts be valid:

M inc ε0
| inc ε0

= inc(M inc ε0) | ε0. (3-12)

As a consequence of (3-10), we already know that (ε0)T = (∂Nε
0)T = (ε0)N N =0

on ∂�. Therefore, recalling that T0(M inc ε0) · ∂Nε
0
= (M inc ε0) · (∂Nε

0)T = 0 on
∂�, in order for (3-12) to hold, it suffices to impose, by referring to Green formula
(2-7) with T =M inc ε0, that the boundary integrand T1(M inc ε0) · ε0

= 0 on ∂�.
Furthermore, by (2-14), only the N R-components (for R = A, B) of T1(M inc ε0)

matter in this product since (ε0)T = (ε0)N N = 0 on ∂�. Then only the first and last
terms of (2-14) are nonvanishing, and (2-14) is equivalently rewritten by virtue of
(2-3)–(2-5) as

κ R∗(M inc ε0)RN + ∂R(M inc ε0)R∗R∗ − ∂R∗(M inc ε0)R R∗, R = A, B, (3-13)

where τR stands for the derivative along the R-th tangent vector τ R and κ R for the
R-th principal curvature, for R = A or B, and with A∗ = B and B∗ = A. Note that,
for a cylindrical boundary, the last two terms are recognized as a surface curl.

Let us remark that, by Lemma 9, (inc ε0)N = 0 since (Curlt ε0)× N = 0 on ∂�,
and hence, if one assumes that M has the same symmetry as the isotropic elasticity
tensor, then (M inc ε0)RN = 0 and the first term in (3-13) vanishes. In this case,
the boundary condition reduces to imposing a vanishing surface curl of Mε0.

4The operator inc inc is 12 for symmetric solenoidal fields, and equation well-posedness is shown
in [Van Goethem 2015]. See also Section 2.
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Summarizing, the following boundary conditions will be prescribed for ε0:
(ε0)T = (∂Nε

0)T = (ε
0)N N = 0 on ∂�,

(Curlt ε0)× N = 0 on ∂�,
κ R∗(M inc ε0)RN + ∂R(M inc ε0)R∗R∗

− ∂R∗(M inc ε0)R R∗ = 0, R = A, B, on ∂�.

(3-14)

Let us recall that the Dirichlet conditions (i.e., the first two lines in (3-14)) follow
from the chosen Neumann conditions for F , whereas the Neumann conditions are
chosen so as to permit the integration by parts (3-12). As for their physical meaning,
Curlt ε0 is the dislocation Frank tensor, i.e., the rotation gradient generated by the
dislocations. Moreover, M inc ε0

=M Curl κ is a dislocation flux as related to the
density of dislocation gradients and the crystal symmetries (given by the symme-
tries of tensor M) and material properties. The Neumann condition is satisfied if
for instance the dislocation density on the boundary is prescribed such that Curl κ
is purely tangential and constant on the boundary.

4. Evolution law for the dislocation strain

The aim of this section is to derive an evolution law for ε0 from the second prin-
ciple of thermodynamics and by assuming that the evolution of the dislocation
density (i.e., 3 and hence κ) is known (by means of transport-reaction-diffusion
PDEs5). To be precise, the model will be derived from a particular form of the
global Clausius–Duhem inequality. Let us stress that the obtained evolution law
is too simple to satisfy the principle in its full generality. In fact, our aim here
is to derive a simple model based on the principle, study its mathematical well-
posedness, and leave more elaborate models for future works. In this respect, our
aim is also to show that the incompatibility operator naturally appears in the model
as soon as high-order dislocation density terms are considered in the free energy.
Note that evolution laws are often postulated from the statics equations, but this
procedure is questionable since the resulting dynamics does not necessarily comply
with thermodynamic principles.

4.1. Model assumptions.

Assumptions on the free energy. Let the Helmholtz free energy be given by

9 := 9̂(ε, κ,Curl κ)= 9̂e(ε)+9dislo(ε
0, κ,Curl κ), (4-1)

where a quadratic law in κ and Curl κ is postulated:

9dislo(ε
0, κ,Curl κ)= 1

2 Nκ · κ + 1
2 M Curl κ ·Curl κ +ψdislo(ε

0) (4-2)

5For point defects, such a law was studied in [Van Goethem et al. 2008].
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with M and N positive-definite fourth-rank tensors. In this work, we will restrict
ourselves to symmetric tensors N of the form

N= 2βI4, (4-3)

where β ≥ 0 is a constant scalar and (I4)i jkl =
1
2(δikδ jl + δilδ jk). Note that N and

hence β have the dimensions of a force since κ , as 3, has the dimensions of an
inverse length while M has the dimensions of a force times a surface.

Let us emphasize that high-order dislocation models involving strain derivatives
in the form of ε and its curl are not new; see, e.g., [Berdichevsky 2006].

Assumption of rigid dislocation-induced rotation. We assume that the dislocation-
induced rotations are constant along ∂�, that is, ∇ω0

× N = Curlt ε0
× N = 0.

Nonetheless, variations of rotation may occur as induced by purely elastic loading
since Curlt ∇Su× N 6= 0.

Additional remark. The relation inc ε0
= Curl κ yields

κ = Curlt ε0
+∇ϕ (4-4)

for some vector ϕ satisfying, by the identity div ε0
= 0,

L0,1(ϕ)= div∇Sϕ = div κ S, (4-5)

where we have chosen ϕ = 0 on ∂�. Note that this latter choice yields that
Curlt ε0

× N = 0 on ∂� implies that κ × N = 0 and hence Curl κN = inc εN = 0
on ∂�, by Lemma 9.

4.2. Thermodynamics considerations. The notions invoked in this section are clas-
sical in thermodynamics. References can be found in, e.g., [Lemaitre and Chaboche
1988; Ottosen and Ristinmaa 2005]. The idea is to derive an evolution law that
would at least satisfy the second principle of thermodynamics globally in �. The
pointwise (otherwise termed local) isothermal Clausius–Duhem inequality reads

0≤ D = σ ·∇u̇−9̇

= σ ·(ε̇−inc Ḟ)−δε9 ·ε̇−δκ9 ·κ̇−δCurl κ9 ·Curl κ̇−δε09 ·ε̇0

=−σ ·inc Ḟ+ε̇(σ−δε9̂e)−δκ9dislo ·κ̇−δCurl κ9dislo ·Curl κ̇−δε0ψdislo ·ε̇
0

(the · symbol stands for the time derivative, i.e., ε̇ := ∂tε(x, t), and ∇u̇ for the
gradient of the velocity field). It is classically deduced that σ = δε9̂e and hence

0≤ D =−σ · inc Ḟ − (Nκ · κ̇ +M Curl κ ·Curl κ̇)− δε0ψdislo · ε̇
0. (4-6)

Introduce the global mechanical dissipation as

D :=

∫
�

D dx .
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The isothermal global form of the second law of thermodynamics (or the global
Clausius–Duhem inequality) in � reads6

D ≥ 0. (4-7)

Inequality (4-7) will allow us to derive the sought evolution equation for the dislo-
cation strain. Recall the notation

a | b :=
∫
�

a · b dx .

By the symmetry of σ , Theorem 1 yields a unique (ψ,S) satisfying σ =∇Sψ+ inc S

with ψ = 0, S = 0, and Curlt S× N = 0 on ∂� (the same remark as for (3-4)
holds for S). In particular, one has inc inc S = inc σ , where we remark that the
dependence of S upon ε0 must not be linear. Furthermore,

σ · inc Ḟ =∇Sψ · inc Ḟ + inc S · inc Ḟ, (4-8)

which by integration by parts (justified by Lemma 8) yields

σ | inc Ḟ = inc S | inc Ḟ =S | inc inc Ḟ =S | inc ε̇ =S | inc ε̇0
= inc S | ε̇0. (4-9)

Moreover, by Beltrami decomposition again, the symmetric tensor δε0ψdislo can be
decomposed as

δε0ψdislo =∇
Sη+ inc Kε0 (4-10)

for some vector-valued η (here taken with η= 0 on ∂�), where Kε0 is a symmetric
divergence-free tensor whose dependence upon ε0 must not be linear too. Hence,
recalling the solenoidal property of ε0, δε0ψdislo | ε̇

0
= inc Kε0 | ε̇0. Thus, by (4-4),

(4-6) and (4-7) can be rewritten as

0≤ D =− inc Sε0 | ε̇0
−
(
N(Curlt ε0

+∇ϕ) | (Curlt ε̇0
+∇ϕ̇)

+M inc ε0
| inc ε̇0

+ inc Kε0 | ε̇0), (4-11)

where the dependence of S upon ε0 has been emphasized by the subscript.
Let us now consider the second term of the right-hand side. By the symmetry

property of N and since ϕ = ϕ̇ = 0 on the boundary,

N Curlt ε0
| (Curlt ε̇0

+∇ϕ̇)= N Curlt ε0
| Curl ε̇0

− div(N Curlt ε0) | ϕ̇. (4-12)

Obviously, div Curlt ε0
= div Curl ε0

= 0, and hence, integrating N Curlt ε0
|Curl ε̇0

by parts by recalling (4-3) and Lemma 3 allows one to rewrite (4-12) as

(4-12)= β inc ε0
| ε̇0
+β Curl ε0

|Curl ε̇0
+2β

∫
∂�

(Curlt ε0)S
×N · ε̇0 d S, (4-13)

6The global form expressed in full generality would require a positive integral in any time-
dependent control volume in �.
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where the integrand in the boundary term can be rewritten as−(Curlt ε0)S
·(ε̇0
×N )

and hence vanishes by (3-11). Now, by definition of the Frank tensor (3-7),

β Curl ε0
| Curl ε̇0

= β Curlt ε0
| Curlt ε̇0

= β∇ω0
| ∇ω̇0.

Therefore, (4-13) can be rewritten as

β inc ε0
| ε̇0
+β∇ω0

| ∇ω̇0. (4-14)

From the right-hand side of (4-11) and by div Curlt ε0
= div Curl ε0

= 0, one is
left with

N∇ϕ | (Curlt ε̇0
+∇ϕ̇)= N∇Sϕ | ∇Sϕ̇ = 2β∇Sϕ | ∇Sϕ̇ (4-15)

with ϕ the unique solution to (4-5).7

Summarizing, (4-11) is rewritten as

0≤ D =−β∇ω0
| ∇ω̇0

−2β∇Sϕ | ∇Sϕ̇−β inc ε0
| ε̇0
− inc(M inc ε0

+Hε0) | ε̇0

=−
d
dt

Eβ(ε
0, κ)− inc(M inc ε0

+βε0
+Hε0) | ε̇0, (4-16)

where the nonlinear term with respect to ε0 is the symmetric and solenoidal tensor

Hε0 := Kε0 +Sε0

and with a stored quadratic dislocation energy Eβ defined as

Eβ(ε
0, κ) :=

β

2
(∇ω0

| ∇ω0
+ 2∇Sϕ | ∇Sϕ). (4-17)

Let us remark that, if the free energy is independent of κ , that is, if β = 0, then
Eβ = 0 and (4-16) immediately yields

− inc(M inc ε0
+βε0

+Hε0) | ε̇0
= D ≥ 0.

4.3. Time-evolution of the dislocation strain. Let us now consider a certain time
scale, which is lower than that of dissipative phenomena associated with the evolu-
tion of dislocations (the law for κ) but high enough not to invalidate the hypothesis
of local state [Lemaitre and Chaboche 1988]. We will consider a thought exper-
iment with a certain number of pure edge dislocations in such a way that ϕ = 0,
whereas the norm of ∇ω0 can reach arbitrarily high values. Thus, one can render
−

d
dt E (ε, κ) arbitrarily negative, and in order for the global dissipation D to remain

positive in (4-16), the term inc(M inc ε0
+βε0

+Hε0) | ε̇0 must be nonpositive. For
this reason, the following evolution law for ε0 is postulated:

0= αε̇0(t)+ inc(M inc ε0(t)+G(ε0(t))) (4-18)

7Thus, it linearly depends on div κS .
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for some material-dependent coefficient α≥ 0 and with the solenoidal tensor-valued
nonlinear term

G (ε0) := Hε0 +βε0
= G(ε0)− L,

where L stands for a symmetric (not necessarily divergence-free) tensor indepen-
dent of ε0. We introduce the generalized dislocation force as the symmetric and
solenoidal tensor

G := inc L.

Moreover, the boundary conditions (4-19) and the initial condition ε0(0)= ε0
0 at

t = 0 are prescribed.
Specifically, the sought time-dependent boundary-value problem for the dislo-

cation strain reads, by recalling (3-14),8

α∂tε
0
+ inc(M inc ε0

+G(ε0))−G= 0 in �×[0, T ],
(ε0)T = (∂Nε

0)T = (ε
0)N N = 0 on ∂�×[0, T ],

(Curlt ε0)× N = 0 on ∂�×[0, T ],

κ R∗(M inc ε0)RN + ∂R(M inc ε0)R∗R∗

− ∂R∗(M inc ε0)R R∗ = 0, R = A, B, on ∂�×[0, T ].

(4-19)

Furthermore, the following energy relation also holds:

d
dt

Eβ(ε, κ)≤ α|ε̇
0
|
2. (4-20)

In particular, the energy Eβ decreases in time as soon as the dislocation strain is
stationary.

5. Well-posedness of the evolution

5.1. Weak forms. Recall first the notation a | b = (a, b)2, where the right-hand
side stands for the scalar product in L2 (of scalars, vectors, tensors, etc.). The
weak form associated with (4-19) reads: for all t ∈ [0, T ], find E(t) ∈H0(�) such
that

α
d E
dt
(t) | F +M inc E(t) | inc F +G(E(t)) | inc F −G | F = 0

for all F ∈H0(�), (5-1)

where M is a fourth-rank symmetric and positive-definite tensor, G is a symmet-
ric tensor-valued nonlinear term (not necessarily divergence-free), G represents a
tensor-valued generalized force, and α > 0, and such that

E(0)= E0 ∈ L2(�;S3).

8The dot and the partial time derivative symbols are equivalent. Recall that, in linearized elasticity,
material and partial time derivatives do coincide.
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By integration by parts, and recalling Lemma 3, (5-1) can be rewritten as: find
E ∈H0(�) such that

α
d E
dt
| F +M inc E | inc F +CurlG(E) | Curlt F −G | F = 0

for all F ∈H0(�). (5-2)

The bilinear form associated with the linear part of the PDE reads

a(E, F)=M inc E | inc F. (5-3)

Its coercivity in H 2(�) is an immediate consequence of Theorem 13.
Note that in the case of the dislocation model of Section 4.3, G(ε0)=Hε0 +βε0.

Recalling (4-18) and assuming for simplicity that Hε0 =H(x) is independent of ε0,
the weak form associated to this linear model can be written as: find E ∈H0(�)

such that

α
d E
dt
| F + (M inc E +βE) | inc F − G̃ | F = 0 for all F ∈H0(�) (5-4)

with G̃ := G+ inc H. In this case, the equation is a linearization of the general
Cahn–Hilliard system.

Now, if G is assumed to be an objective tensor, it can be written in terms of its
invariants, the first of which is the trace of E .

Assumption on the nonlinearity. The nonlinear term is assumed to be written as a
polynomial in the trace of E plus an affine term in E .

Assumption 15 (nonlinear term). Let E ∈ S3. It is assumed that

G(E)= βE − 1
3ϕ(tr E)I2 (5-5)

with β > 0 a constant scalar and ϕ a scalar-valued polynomial defined as

ϕ(v)=

2p−1∑
i=1

ρiv
i , p ≥ 2, (5-6)

where ρ2p−1 > 0. In particular, G(E) is a symmetric second-rank tensor.

Remark 16. The divergence of the nonlinear term in (5-5) must not be zero since
divG(E) = −1

3ϕ
′(e)∇e 6= 0 unless ϕ is trivially independent of e. However, re-

ferring to the dislocation model of Section 4.3, div G (E) = divG(E)− div L = 0
and hence div L = 1

3ϕ
′(e)∇e. Without going into details (see, e.g., [Scala and

Van Goethem 2016; Fosdick and Royer-Carfagni 2004]), L then plays the role of a
constraint reaction to ensure the condition div G (E)= 0, and one could take L of
the form L= C∇Sw for a certain elasticity kind of tensor C and w an associated
vector field.
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Furthermore, one has (CurlG(E))i j = β(Curl E)i j −
1
3εi jkϕ

′(tr E)∂k tr E . It fol-
lows that

CurlG(E) | Curlt E = β Curl E | Curlt E +ϕ′(tr E) | (∇ tr E)2. (5-7)

5.2. Energy estimates. For simplicity, the estimates will be done taking α = 1.

Theorem 17. Under Assumption 15, let E be a solution of (5-1). Then

d
dt
‖E(t)‖2L2 ≤ C‖E(t)‖2L2 (5-8)

for some C > 0. Moreover,

‖E‖L∞(0,T ;L2)+‖E‖
2
L2(0,T ;H2)

+

∥∥∥∥d E
dt

∥∥∥∥
L2(0,T ;H−2)

≤ C‖E0‖
2
L2 . (5-9)

These estimates also hold for E a solution of (5-4).

Proof. By (5-6), the polynomial
∑2p−2

i=1 ρiv
i is bounded from below by a constant.

Hence, by (5-7), there exists c̃ ≥ 0 such that

CurlG(E(t)) | Curlt E(t)≥−β‖Curl E(t)‖2L2 − c̃‖∇ tr E(t)‖2L2 .

Denoting C(E(t)) := β‖Curl E(t)‖2L2 + c̃‖∇ tr E(t)‖2L2 ≥ 0 and letting F = E in
(5-2), one has

d
dt

1
2‖E(t)‖

2
L2 +M inc E(t) | inc E − C(E(t))−G | E(t)

≤
d
dt

1
2‖E(t)‖

2
L2+M inc E(t) | inc E(t)+CurlG(E(t)) |Curlt E(t)−G | E(t)= 0,

and hence, there exists CG > 0, a constant independent of E , such that

d
dt

1
2‖E(t)‖

2
L2 +M inc E(t) | inc E(t)

≤ C(E(t))+G | E(t)≤ CG(‖∇E(t)‖2L2 +‖E(t)‖L2).

The interpolation inequality and general Cauchy inequality [Evans 2010] yield

d
dt

1
2‖E(t)‖

2
L2 +M inc E(t) | inc E(t)≤ c(‖E(t)‖L2‖E(t)‖H2 +‖E(t)‖L2)

≤ cε‖E(t)‖2H2 +
4ε+ c

4ε
‖E(t)‖2L2 (5-10)

for some constant c := cG > 0, a constant independent of E . Furthermore, positive-
definiteness and coercivity (see Theorem 13) of M yield CM‖E‖H2≤M inc E | inc E
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for some constant CM > 0. Thus, it follows from Theorem 13 and by choosing ε
small enough that

d
dt

1
2‖E(t)‖

2
L2 ≤

d
dt

1
2‖E(t)‖

2
L2 +C‖E(t)‖2H2 ≤

4ε+ c
2ε

1
2‖E(t)‖

2
L2 (5-11)

for some C(t) ≥ 0 (in the sequel, the dependencies of the constants on G and M

are omitted for conciseness). As a consequence of the differential form of the
Gronwall lemma [Evans 2010, §B.2.j] and (5-11), we deduce that

max
t∈[0,T ]

‖E(t)‖L2 ≤ C‖E0‖L2 (5-12)

for some constant C > 0. Moreover, by (5-10) and time integration in [0, T ],∫ t

0

d
ds

1
2‖E(s)‖

2
L2 ds+C

∫ t

0
‖E(s)‖2H2 ds ≤ Ĉ

∫ t

0
‖E(s)‖2L2 ds (5-13)

for some Ĉ ≥ 0. Hence, by (5-12),

1
2‖E(t)‖

2
L2 −

1
2‖E(0)‖

2
L2 +C

∫ t

0
‖E(s)‖2H2 ds ≤ CĈT ‖E0‖L2, (5-14)

and thus,

‖E‖2L2(0,T ;H2)
:=

∫ T

0
‖E(t)‖2H2 dt ≤

2ĈCT + 1

2C
‖E0‖

2
L2 . (5-15)

To conclude, take any V ∈ H 2
0 (�;M

3) and let F = V in (5-2).
Set V = V S

+ V A, the symmetric-skewsymmetric decomposition of V , and
V S
= ∇

Sv + V 0, the Beltrami decomposition of its symmetric part, with V 0
∈

H0(�). Then, by means of some integration by parts,

d E
dt
| V +M inc E | inc V +G(E) | inc V −G | V

=
d E
dt
| V 0
+M inc E | inc V 0

+G(E) | inc V 0
−G | V 0

= 0.

Thus, we have for some constants C1,C i
2 > 0∣∣∣∣d E

dt
| V
∣∣∣∣≤ C1‖E‖H2‖V ‖H2 +

2p−1∑
i=0

C i
2‖E‖

i
L2‖V ‖H2,

and hence, by (5-12) and (5-15) and with a nonrelabeled constant C > 0,∥∥∥∥d E
dt

∥∥∥∥
L2(0,T ;H−2)

:=

∫ T

0

∥∥∥∥d E
dt

∥∥∥∥
H−2

dt ≤ C
(
‖E0‖

2
L2 +

2p−1∑
i=0

‖E0‖
i
L2

)
, (5-16)
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where H−2(�) := (H 2
0 (�;M

3))′. The proof follows from (5-12), (5-14), and (5-16)
since, for the second statement, it suffices to take ϕ ≡ 0. �

5.3. Existence and uniqueness of the weak solution. It is now well-known that
the energy estimates of Theorem 17 and classical decomposition in discrete sub-
spaces of H 2, the so-called Galerkin approximation (see, e.g., [Evans 2010; Temam
1997; Roubíček 2005]), yield the following theorem. Note that compactness is
recovered in H 2(�;S3) while the divergence-free properties also pass to the limit.
Therefore, the solution belongs to H0(�) by the second statement of Lemma 8.

Theorem 18. There exists a unique weak solution E of (5-1) and (5-4) in H0(�).
Moreover, E ∈ C (0, T ; H−2).

Note that continuity in time is an immediate consequence of (5-9).

6. Discussion

6.1. Tensor version of Cahn–Hilliard. The derived equations are similar in form
to the well-known Cahn–Hilliard equations, but here the variable is a divergence-
free tensor E . Recall the strong form of (5-1) in �:

α
d E
dt
(t)+ inc(M inc E(t)+G (E(t)))= 0. (6-1)

Recall the identity tr inc A =1 tr A− div div A. Then Assumption 15 yields

tr inc G (E)=1 tr(G(E)− L)=−1 tr L+β tr E −ϕ(tr E) (6-2)

since tr inc A=1 tr A for solenoidal fields A. Assume also that M= 2µ̃I4+λ̃I2⊗I2

for some µ̃ > 0, and set β̃ := 2(µ̃+ λ̃).
Let us introduce

e := tr E

and compute the trace of (6-1). By (6-2),

αe′(t)= tr inc(−M inc E(t)−G (E(t)))
=1(−β̃1e(t)−βe(t)+ϕ(e(t))+ tr L), (6-3)

or more simply,

αe′(t)=1(−β̃1e(t)+ψ(e(t))), ψ(e) := ϕ(e)−βe+ tr L, (6-4)

which is recognized as the classical scalar version of the Cahn–Hilliard equation
for e with the nonlinear term ψ . Note that, in the classical derivation of the Cahn–
Hilliard equation, β̃ should depend on a small parameter related to a scaling in
the free energy. In terms of our model, the part of the strain that is relevant for
the variations of dislocation density, i.e., E = ε0 (by the relation Curl κ = inc ε0),
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has a trace e and therefore is interpreted as dislocation-induced variation of matter
density. It is remarkable that e obeys the law (6-4).

Regarding its boundary conditions, it is already known by (3-8) that e= 0 on ∂�.
We also assume that 1e= 0 on ∂� and the initial condition e(0)= tr E0. It is well-
known that (6-3) is well-posed (see [Elliott and Stuart 1996] for this particular
choice of boundary conditions) though the solution might only be unique up to
some gauges since ∂N e is not fixed.

Moreover, d
dt

∫
�

e dx =−
∫
∂�
β̃∂N1e d S(x)+

∫
∂�
(ϕ′(e)−β)∂N e d S(x) clearly

follows. From a physical viewpoint, this property simply reflects the inflow of point
defects. In fact, any variation of e is due to the change in interstitial and vacancy
densities. In some sense, e might be viewed as a point-defect density: positive in
the case of an excess of interstitials and negative if vacancies exceed interstitials.
Furthermore, assuming that e depends on the temperature T , one has a leading
boundary inflow proportional to the normal temperature gradient, i.e., given by
(ϕ′(e)−β)e′(T )∂N T . Hence, the point defects will be conserved: d

dt

∫
�

e dx = 0
as soon as the normal temperature gradient vanishes at the boundary. Otherwise,
point defects will be introduced or removed from the boundary. Furthermore, the
fact that e = 0 on ∂� means that point defects are only present inside �. Note
that point defects on the boundary is somewhat nonsensical since an excess/lack
of atoms indeed changes the boundary location. Recall also that dislocations are
nucleated by the collapse of point-defect clusters. Hence, determining their density
is crucial for dislocation modeling.

Note also that e is the potential yielding the bulk dislocation force ∇e in (3-3).
Therefore, the work done by this force only depends on the variation of point-defect
density at the path endpoints. Specifically, the displacement is a solution to{

ρ∂2
t u− div(A∇Su)= f + λ∇e in �×[0, T ],

(A∇Su)N = g− λeN on ∂�×[0, T ]
(6-5)

as coupled with the point-defect density
∂t e(t)+1(β̃1e(t)+ψ(e(t)))= 0 in �×[0, T ],

e =1e = 0 on ∂�×[0, T ],
e(0)= e0 in �×[0, T ],

(6-6)

where the bulk force term in the right-hand side will be explained in the next sub-
section. It represents a dissipative force related to point defects as a source or sink.

6.2. Comment about the forcing term. Note that tr L in (6-3) stands for an external
time-dependent field in Gurtin’s formalism of microforce balance [1996].

Let us rewrite (4-10) as δε0ψdislo=PC
+PD , where the symmetric gradient PC is

impactless on the mechanical dissipation. Accordingly, let ψdislo = ψ
C
dislo+ψ

D
dislo,

where the first term is a conservative contribution while the latter is dissipative.
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One has div PD
= div δε0ψD

dislo = δ
2
ε0ψ

D
dislo∇ε

0
= 0, which implies that ψD

dislo must
be affine in ε0. Hence,

ψD
dislo(ε

0)= inc K0 · ε
0
+C0

for some constant tensor C0. Now, from the expression of the dissipation term
of (4-11), inc K0 | ε̇

0
= K0 | inc ε̇0

= K0 | Curl κ̇ , one recognizes K0 as a thermo-
dynamic force.

Now, letting

ψC
dislo(ε

0)= ψC(tr ε0)+ ψ̃C(∇ tr ε0),

with ψC(e)=
∫ e

0 ϕ(v) dv− 1
2βe2
+ tr Le and ψ̃C(∇e) = 1

2 β̃∇e · ∇e, (6-6) can be
rewritten as the classical parabolic diffusion equation of the form

∂t e(t)+ div j = 0 in �×[0, T ] with j := −∇µ
and µ := δe(ψ

C(e)+ ψ̃C(∇e)),
e =1e = 0 on ∂�×[0, T ],

e(0)= e0 in �×[0, T ].

(6-7)

6.3. Gradient flow. Let us assume the existence of a scalar H such that

(inc G (ε0), F)= lim
ε→0

H (ε0
+ εF)−H (ε0)

ε

for every F ∈ H0(�). Note that, for a nonlinear term of the form (5-5), one has
H (ε0)=−(G, ε0)+ 1

2β(Curlt ε0,Curl ε0)− 1
3φ(tr ε

0)I2, where ϕ=φ′. By defining
the incompatibility energy as

E (ε0) :=

∫
�

1
2 M inc ε0

· inc ε0 dx +H (ε0),

it is obvious by integration by parts that the Gâteaux derivative of E at ε0
∈ C∞(�)

in the direction F ∈H0(�) reads

〈gradH0
L2 E (ε0),F〉=

∫
�

inc(M inc ε0
+G (ε0))·F dx=

∫
�

(M inc ε0
+G (ε0))·inc F dx .

Thus, for a general ε0
∈H(�), one defines the H−1-gradient

〈gradH0
H−1 E (ε0), F〉 :=

∫
�

(M inc ε0
+G (ε0)) · inc F dx,

where H−1
:= (H0(�))

′. Due to the Riesz theorem, the linear and continuous
map gradH0

H−1 E (ε0) is associated with a unique F0
∈H0(�) such that inc inc F0

=

inc(M inc ε0
+ G (ε0)), so 〈gradH0

H−1 E (ε0), F〉 :=
∫
�

inc F0
· inc F dx . By analogy

with the scalar Cahn–Hilliard system, let us call − inc F0 the “chemical potential”.
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Furthermore, ‖gradH0
H−1 E (ε0)‖2H−1 = ‖inc F0

‖
2
L2 = (M inc ε0

+ G (ε0), inc F0)L2 ,
and hence, our model evolution equation can be written as the H−1-gradient flow

∂tε
0
=−

1
α

gradH0
H−1 E := −

1
α

inc(M inc ε0
+G (ε0)). (6-8)

Now, (6-8) implies that

d
dt

E =〈gradH0
H−1 E , ε̇0

〉=〈inc(M inc ε0
+G (ε0)), ε̇0

〉= (M inc ε0
+G (ε0), inc ε̇0)L2

=−
1
2

(
α|ε̇0
|
2
+

1
α
‖gradH0

H−1 E ‖2H−1(�)

)
=−

1
α
‖gradH0

H−1 E ‖2H−1(�)
≤ 0,

and hence, (4-16) can be written as

0≤ D =−
d
dt
(Eβ(ε

0, κ)+ E (ε0))= Ddislo+Dincomp

with the dislocation-induced dissipation term Ddislo := −
d
dt Eβ(ε

0, κ) vanishing as
soon as the free energy is independent of κ while the incompatibility-induced dissi-
pation term Dincomp := (1/α)‖gradH0

H−1 E ‖2H−1(�)
=−

d
dt E is due to the dependence

of the free energy on Curl κ = inc ε0. Thus, the incompatibility-induced dissipated
energy in [0, T ] is decreasing since

Eincomp :=

∫ T

0
Dincomp dt = E (0)− E (T )≥ 0,

and hence, stationarity means that minimization is reached. Therefore, the system
should progress toward a stable equilibrium state, a global minimizer of E . This is
the basic justification for minimization schemes in a quasistatic setting. Note that
maximizing the incompatibility-induced dissipated energy is equivalent to minimiz-
ing the incompatibility energy E (T ). Set β = φ = 0. Then for long-time behavior,
one can simply consider the variational problem

inf
E∈H?⊂H(�)

∫
�

(1
2 M inc E · inc E −G · E) dx

as done in [Amstutz and Van Goethem 2016].

6.4. Concluding remark. This work represents the first step towards a deep under-
standing of time evolution of dislocation networks at the mesoscale. Its principal
aim was to shed light on the importance of the incompatibility operator in the study
of dislocations and to propose an evolution in time of the dislocation-induced strain.
This required first introducing and/or recalling some properties of this operator as
well as its appropriate functional space. The evolution law is based on thermo-
dynamical principles and on the postulate of maximal dissipation adopted for the
model internal variables. It turns out that, as a consequence of the second law
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of thermodynamics, the evolution takes the form of the tensor formulation of the
Cahn–Hilliard system

α∂tε
0
= incµ, (6-9)

where µ := −(M inc ε0
+G (ε0)) is called the tensor “chemical potential” with M a

positive-definite fourth-rank tensor with the dimensions of a force times a squared
distance.

Moreover, the classical scalar Cahn–Hilliard system is recovered for the trace
of the dislocation strain, called e, which is interpreted as the density of point de-
fects since it allows one to change the solid density by adding or removing single
atoms. Remark that this fourth-order equation for e is not classical at all since
point defects are classically modeled by second-order reaction-diffusion equations
[Van Goethem et al. 2008]. Furthermore, ∇e also appears to play the role of a
conservative bulk force in the displacement equation. Note also that the thermody-
namic derivation of the model equations leads to a nonlinear term whose explicit
expression is not known. For simplicity, we have considered a general polynomial
term in the trace of ε0, i.e., in e. Of course, more elaborate choices can be made
with a view of a general model, but note that the physical sense of the other two
invariants of the dislocation strain is not clear.

A crucial quantity we have introduced is the incompatibility energy

E (E) :=
∫
�

(1
2 M inc E · inc E + 1

2β inc E · E − 1
3φ(tr E)−G · E) dx

with β > 0 a scalar with the dimensions of a force and the scalar φ and solenoidal
tensor G with the dimensions of a surface force density. Furthermore, φ is a non-
linear potential depending on e = tr E and related to point defects. We have shown
that the time evolution of the incompatible strain ε0 is given by (6-9), which in
turn yields the energy equation

α
d
dt

E (ε0)+‖gradH0
H−1 E ‖2H−1(�)

= 0

for some α > 0. Therefore, solutions for large times, ε0
∞

, should approach the
minima of the incompatibility energy, namely

E (ε0
∞
)= inf

E∈H?⊂H(�)
E (E),

which may therefore be considered the associated quasistatic variational problem.
This work and the formalism introduced are expected to clear the way for more

involved, complete, and realistic models for the evolution of dislocation networks
at the mesoscale. In particular, the interface dynamics in a model of point defects
and dislocations in single crystals will be discussed in future work.
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