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THE WORK OF LUCIO RUSSO ON PERCOLATION

GEOFFREY R. GRIMMETT

Dedicated in friendship to Lucio Russo

The contributions of Lucio Russo to the mathematics of percolation and disor-
dered systems are outlined. The context of his work is explained, and its ongoing
impact on current work is described and amplified.

1. A personal appreciation

Prior to his mid-career move to the history of science in the early 1990s, Lucio
Russo enjoyed a very successful and influential career in the theory of probabil-
ity and disordered systems, in particular of percolation and the Ising model. His
ideas have shaped these significant fields of science, and his name will always be
associated with a number of fundamental techniques of enduring importance.

The author of this memoir is proud to have known Lucio in those days, and to
have profited from his work, ideas, and company. He hopes that this brief account
of some of Lucio’s results will stand as testament to the beauty and impact of his
ideas.

2. Scientific summary

Lucio Russo has worked principally on the mathematics of percolation, that is,
of the existence (or not) of infinite connected clusters within a disordered spatial
network. The principal model in this field is the so called percolation model, intro-
duced to mathematicians by Broadbent and Hammersley in 1957, [14]. Consider,
for definiteness, the hypercubic lattice Zd with d ≥ 2, and let p ∈ [0, 1]. We declare
each edge to be open with probability p and closed otherwise, and different edges
receive independent states. The main questions are centred around the existence
(or not) of an infinite open component in Zd . It turns out that there exists a critical
probability pc = pc(d) such that no infinite open cluster exists when p < pc, and
there exists a unique such cluster when p> pc. (It is not still known which of these
two occurs when p = pc for general d , specifically when 3≤ d ≤ 10. See [20].)
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Let C be the open cluster of Zd containing the origin. Two functions that play
important roles in the theory are the percolation probability θ and the mean cluster
size χ given by

θ(p)= Pp(|C | =∞), χ(p)= E p|C |,

where Pp and E p are the appropriate product measure and expectation. The above
model is the bond percolation model; the site percolation model is defined similarly,
with sites being open/closed. A fairly recent account of percolation may be found
in [25].

The question was raised in 1960 (by Harris, [31]) of whether or not pc(2)= 1
2 ,

and the search for a rigorous proof attracted a number of fine mathematicians into
the field, including Lucio. Several important partial results were proved, culminat-
ing in 1980 with Kesten’s complete proof that pc(2)= 1

2 , [37]. The interest of the
community then migrated towards the case d ≥ 3, before returning firmly to d = 2
with the 2001 proof by Smirnov, [44; 45], of Cardy’s formula.

Lucio contributed a number of fundamental techniques to percolation theory
during the period 1978–1988, and the main purpose of the current paper is to
describe these and to explore their significance. We mention Russo’s formula, the
Russo–Seymour–Welsh (RSW) inequalities, his study of percolation surfaces in
three dimensions, and of the uniqueness of the infinite open cluster, and finally
Russo’s approximate zero–one law. Russo’s formula and RSW theory have proved
of especially lasting value in, for example, recent developments concerning con-
formal invariance for critical percolation.

In Section 8, we mention some of Lucio’s results concerning percolation of +/−
spins in the two-dimensional Ising model. It was quite a novelty in the 1970s to
use percolation as a tool to understand long-range order in the Ising model. Indeed,
Lucio’s work on the percolation model was motivated in part by his search for
rigorous results in statistical mechanics. His approach to the Ising model has been
valuable in two dimensions. In more general situations, the correct geometrical
model has been recognised since to be the random-cluster model of Fortuin and
Kasteleyn (see [26]).

This short account is confined to Lucio’s contributions to percolation, and does
not touch on his work lying closer to ergodic theory and dynamical systems, namely
[R2; R6; R8; R11], and neither does it refer to the paper [R7]. A comprehensive
list of Lucio’s mathematical publications, taken from MathSciNet, may be found
at the end of this paper.

Results from Lucio’s work will be described here using ‘modern’ notation. No
serious attempt is made to include comprehensive citations of the related work of
others.
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3. Russo’s formula

Let �= {0, 1}E where E is finite, and let Pp be product measure on the partially
ordered set � with density p ∈ [0, 1]. An event A ⊆� is called increasing if:

ω ∈ A, ω ≤ ω′ ⇒ ω′ ∈ A.

Let ω ∈�. An element e ∈ E is called pivotal for an increasing event A if ωe /∈ A
and ωe

∈ A, where ωe and ωe are obtained from ω by varying the state of the edge
e thus:

ωe( f )=
{

0 if f = e,
ω( f ) if f 6= e,

ωe( f )=
{

1 if f = e,
ω( f ) if f 6= e.

In other words, e is said to be pivotal for A if the occurrence of A depends on the
state of e.

Theorem 3.1 (Russo’s formula, [R14]). Let A be an increasing event. We have

d
dp

Pp(A)=
∑
e∈E

Pp(e is pivotal for A).

Similar techniques are encountered independently in related fields. For example,
Russo’s formula is essentially equation (4.4) of Barlow and Proschan’s book [7, p.
212] on reliability theory. Such a formula appeared also in the work of Margulis,
[39], in the Russian literature. A characteristic of Lucio’s work is the geometric
context of the formula when applied in situations such as percolation, and it is in
this context that Lucio’s name is prominent. In a typical application to percolation,
one uses the geometrical characteristics of the event {e is pivotal for A} to derive
differential inequalities for Pp(A).

Russo’s formula is key to the study of geometrical probability governed by a
product measure. It has so many applications that it is a challenge to single out any
one. We mention here its use in the derivation of exact values for critical exponents
in two dimensions, [38; 46].

Similarly, extensions of Russo’s formula have been central in several related
fields, including but not limited to the contact model [10, Thm 2.13], continuum
percolation [21; 34], and the random-cluster model [11, Prop. 4].

4. Russo–Seymour–Welsh inequalities

For twenty years from about 1960 to 1980, mathematicians attempted to prove that
the critical probability pc of bond percolation on the square lattice satisfies pc =

1
2 .

This prominent open problem was in the spirit of that of the critical temperature of
the Ising model, resolved in 1944 by Onsager, [42]. Harris [31] showed how to use
duality to obtain pc ≥

1
2 , but the corresponding upper bound was elusive. Then, in
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1978, a powerful technique emerged in independent and contemporaneous work of
Lucio, [R12], and Seymour and Welsh, [43]. It has come to be known simply as
‘RSW’.

Consider bond percolation with density p on the square lattice Z2. A left–right
crossing of a rectangle B is an open path in B which joins some vertex on its left
side to some vertex on its right side. For positive integers m and n, we define the
rectangle

B(m, n)= [0, 2m]× [0, 2n],

and let LR(m, n) be the event that there exists a left–right crossing of B(m, n).

Lemma 4.1 (Russo–Seymour–Welsh (RSW), [R12; 43]). Let p ∈ (0, 1). We have

Pp
(
LR(3

2 n, n)
)
≥
(
1−
√

1− τ
)3
,

where τ = Pp(LR(n, n)).

This fundamental but superficially innocuous lemma implies that, if the chance
of crossing a square is bounded from 0 uniformly in its size, then so is the chance
of crossing a rectangle with aspect ratio 3

2 . Using the self-duality of Z2, we have
as input to the RSW lemma that

P1
2
(LR(n, n))≥ 1

2 . (4.1)

Let An be the event that the annulus [−3n, 3n]2 \ [−n, n]2 contains an open
cycle with the origin in the bounded component of its complement in R2. Using
elementary geometrical arguments and the FKG inequality, it follows by the RSW
lemma and (4.1) that there exists σ > 0 such that Pp(An)≥ σ for n ≥ 1 and p ≥ 1

2 .
The RSW lemma and the ensuing annulus inequality have proved to be key to

the study of percolation in two dimensions. In common with other useful methods
of mathematics, there is now a cluster of related inequalities, see for example [12],
[27, Sect. 5.5], and [50, Chap. 5].

RSW methods were used by their discoverers to make useful but incomplete
progress towards proving that pc =

1
2 , and they played a role in Kesten’s full proof,

[37]. (The principle novelty of Kesten’s paper was a bespoke theory of sharp
threshold, see Section 5.) More precisely, they led to the following result, which
is presented in terms of site percolation on the square lattice Z2 and its matching
lattice Z2

∗
, derived by adding the two diagonals to each face of Z2.

Theorem 4.2 (Russo, [R12]). Consider site percolation on the square lattice Z2.
The critical points

pc = sup{p : θ(p)= 0}, πc = sup{p : χ(p) <∞},
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satisfy

pc+π
∗

c = 1, p∗c +πc = 1, (4.2)

where an asterisk denotes the corresponding values on the matching lattice.

The parallel work of Seymour and Welsh, [43], was directed at the bond model
on Z2, of which the dual model lies on a translate of Z2. Following Kesten’s proof
of pc(Z

2) = 1
2 for bond percolation, Lucio revisited Theorem 4.2 in [R14] with

a proof that π∗c = p∗c , and the consequent improvement of (4.2), namely pc +

p∗c = 1. He also completed the proof, begun in [R12], that θ (and, similarly, the
dual percolation probability θ∗) is a continuous function on [0, 1]. Continuity in
two dimensions has since been extended to general percolation models (see, for
example, [25, Sect. 8.3]).

RSW theory is now recognised as fundamental to rigorous proofs of conformal
invariance of critical two-dimensional percolation and all that comes with that. The
proof of Cardy’s formula, [44; 45], provides a major illustration. It was observed
by Aizenman and Burchard, [3], that certain connection probabilities belong to a
space of uniformly Hölder functions. Since this space is compact, such functions
have subsequential limits as the mesh of the lattice approaches 0. The above Hölder
property is proved using annulus inequalities.

Indeed the power of RSW arguments extends beyond percolation to a host of
problems involving two-dimensional stochastic geometry, such as the FK-Ising
model [18] and Voronoi percolation [49]. In addition, RSW theory provides one
of the main techniques for the proof by Beffara and Duminil-Copin, [9], that the
random-cluster model on Z2 with cluster-weighting parameter q ≥ 1 has critical
value pc(q)=

√
q/(1+

√
q). We retrieve Kesten’s theorem by setting q = 1.

5. Approximate zero–one law

Kolmogorov’s zero–one law may be stated as follows. Consider the infinite product
space �= {0, 1}N endowed with the product σ -algebra and the product measure
Pp. If A is an event that is independent of any finite subcollection {ω(e) : e ∈ E},
E ⊆N, |E |<∞, then Pp(A) equals either 0 or 1. It follows that, for an increasing
event A, there exists p0 ∈ [0, 1] such that

Pp(A)=
{

0 if p < p0,

1 if p > p0.

This law is intrinsically an infinite-volume effect, in that the index set is the infinite
set N. Lucio posed the farsighted question in [R15] of whether there exists a finite
volume version of this result, and this led him to his ‘approximate zero–one law’,
following.
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Let �= {0, 1}E where E is finite, and let Pp be product measure on the partially
ordered set � with density p ∈ [0, 1]. The influence IA,p(e) of e ∈ E on the event
A ⊆� is defined by

IA,p(e)= Pp
(
1A(ωe) 6= 1A(ω

e)
)
,

where 1A denotes the indicator function of A. When A is increasing, this may be
written

IA,p(e)= Pp(ωe /∈ A, ωe
∈ A)= Pp(e is pivotal for A). (5.1)

Theorem 5.1 (Russo’s approximate zero–one law, [R15]). For ε > 0, there exists
η > 0 such that, if A is an increasing event and

IA,p(e) < η, e ∈ E, p ∈ [0, 1], (5.2)

then there exists p0 ∈ [0, 1] such that

Pp(A)
{
≤ ε if p < p0− ε,

≥ 1− ε if p > p0+ ε.
(5.3)

This result was motivated by a desire to generalise certain results for box-crossing
probabilities in percolation. Its impact extends far beyond percolation, and it is
a precursor of a more recent theory, pioneered by Kahn, Kalai, Linial, [35] and
Talagrand, [47; 48], of influence and sharp threshold. It is proved at [47, Thm
1.1] that there exists an absolute constant c > 0 such that, for p ∈ (0, 1) and an
increasing event A,∑

e∈E

IA,p(e)≥
(

c
p(1− p) log[2/(p(1− p))]

)
Pp(A)(1− Pp(A)) log(1/m p),

(5.4)
where

m p =max{IA,p(e) : e ∈ E}.

It follows that, when p ∈ (0, 1) and A is increasing,∑
e∈E

IA,p(e)≥ c′Pp(A)(1− Pp(A)) log(1/m p), (5.5)

where c′ > 0 is an absolute constant.
Amongst the implications of (5.5) is a quantification of the relationship between

ε and η in Theorem 5.1. Suppose (5.2) holds with η ∈ (0, 1), so that m p ≤ η. By
(5.5) and Russo’s formula,

d
dp

Pp(A)≥ c′Pp(A)(1− Pp(A)) log(1/η). (5.6)
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Choose p0 such that Pp0(A)=
1
2 , and integrate (5.6) to obtain

Pp(A)
{
≤ εp if p < p0,

≥ 1− εp if p > p0,
(5.7)

with

εp =
1

1+ (1/η)c′|p−p0|
.

Such inequalities have found numerous applications in percolation and related
topics, see for example [12; 19; 24]. They have been extended to general product
measures, [13; 28], and to probability measures satisfying the FKG lattice condi-
tion, [23]. Recent overviews include [27, Chap. 4] and [36].

6. Percolation in dimension d ≥ 3

In 1983, Lucio spent a sabbatical at Princeton University. His work during that
period led to two significant publications [R1; R3] on aspects of percolation in
three dimensions. The first of these caused quite a stir in the community at the
time of its appearance, largely since most work until then had been for models
in only two dimensions. Whereas the dual of a bond model in two dimensions is
another bond model, the dual model in three or more dimensions is a ‘plaquette’
model. Since the topology of surfaces of plaquettes is much more complicated
that that of paths, the ensuing percolation duality poses a number of challenging
topological questions.

The authors of [R1] consider bond percolation on Z3 with density p, together
with its dual ‘plaquette’ model on Z3

∗
:= Z3

+ ( 1
2 ,

1
2 ,

1
2). A plaquette is a unit

square with vertices in Z3
∗
, and its bounding lines are edges of Z3

∗
. Each edge e of

Z3 intersects a unique plaquette 5e, and 5e is termed occupied if and only if e is
closed (and unoccupied otherwise). Thus, a plaquette is occupied with probability
1− p. For any collection F of plaquettes, the boundary ∂F is defined to be set of
edges of Z3

∗
belonging to an odd number of members of F .

Let γ be a cycle of Z3
∗
. The main results of [R1] concern the probability there

exists a set F of occupied plaquettes which spans γ in the sense that ∂F = γ . For
simplicity, we shall suppose here that γ is a m× n rectangle of the x/y plane, and
we denote the above event as Wγ . Note that γ has area mn and perimeter 2(m+n).

Theorem 6.1 (Aizenman, Chayes, Chayes, Fröhlich, Russo, [R1]). There exist
constants πc, ρc ∈ (0, 1) such that

− log Pp(Wγ )∼

{
αmn if 1− p < πc,

β(m+ n) if 1− p > ρc,

where α, β > 0 depend on p, and the asymptotic relation is as m, n→∞.
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The constants πc, ρc are the critical densities of the bond percolation model on
Z3 given by

πc = sup{p : χ(p) <∞}, ρc = lim
k→∞

p̂c(k),

where p̂c(k) is the slab critical point

p̂c(k)= sup
{

p : Pp
(
0↔∞ in [0,∞)2×[0, k]

)
= 0

}
.

It was conjectured in [R1] that πc = pc = ρc. The first equality was proved later
in [2; 41], and the second in [8; 30].

There are only few percolation models on finite-dimensional lattices for which
the numerical values of the critical probabilities are known exactly, and all such
exact results are in two dimensions only (see, for example, [29]). In contrast, quite
a lot of work has been devoted to obtaining rigorous upper and lower bounds for
critical probabilities, and there is a host of numerical estimates.

Consider site percolation on the simple cubic lattice Z3. By a comparison with
the site model on the triangular lattice, Lucio has shown (with Campanino, in
[R3]) that pc ≤

1
2 . (See also [40].) They obtained also the strict inequality, with a

distinctly more complicated argument.

Theorem 6.2 (Campanino, Russo, [R3]). The critical probability of site percola-
tion on Z3 satisfies pc <

1
2 .

The point of this work was to show that, in a neighbourhood of p = 1
2 , there is

coexistence of infinite open and infinite closed clusters in Z3. The corresponding
statement for d = 2 is, of course, false, in that coexistence occurs for no value of
p.

Theorem 6.2 may still be the best rigorous upper bound that is currently known
for pc. By examining its proof, one may calculate a small ε > 0 such that pc<

1
2−ε.

It is expected that pc ≈ 0.31.

7. Uniqueness of the infinite open cluster

Let I be the number of infinite open clusters of a percolation model in a finite-
dimensional space. For a period in the 1980s, the ‘next’ problem was to prove
that Pp(I = 1) = 1 in the supercritical phase (when p > pc). This problem was
solved by Aizenman, Kesten, and Newman [5] in 1987. Their proof seemed slightly
mysterious at the time, and it was simplified by Lucio in the jointly written paper
[R9]. The key step was to show, using a large-deviation estimate present already in
[5], that there is density 0 of sites that are adjacent to two distinct infinite clusters.

This useful argument was soon overshadowed by the beautiful proof of unique-
ness by Burton and Keane, [15], of which a key step is a novel argument to show
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there is density 0 of sites that are adjacent to three distinct infinite clusters. The
proof of [15] uses translation-invariance of the underlying measure together with
a property of so called ‘finite energy’, and may thus be extended to more general
measures than product measures. On the other hand, since the proof uses no quan-
titative estimate, it yields no ‘rate’. The methods of [5; R9] provide a missing rate,
and this has been useful in the later work [16; 17].

The question of uniqueness for dependent models is potentially harder, since
the large-deviation estimate of [5; R9] is not available. In joint work [R10] with
Gandolfi and Keane, Lucio used path-intersection arguments to show uniqueness
for ergodic, positively associated measures in two dimensions, satisfying certain
translation and reflection symmetries. Unlike the Burton–Keane proof, they needed
no finite-energy assumption. An application of this work to quantum spin systems
may be found in [6].

8. Ising model

Lucio has written three papers on the geometry of the d-dimensional Ising model,
[R4; R5; R13]. In this work, he (and his coauthors) studied the relationship be-
tween properties of the infinite-volume Gibbs measures and the existence or not of
an infinite cluster of either + or − spins (that is, of percolation in the Ising model).

The first two of these papers [R4; R5] explore a relationship between the Ising
magnetization and the above percolation probability, and yield the non-existence of
percolation in the high-temperature phase. This is complemented when d = 2 with
the proof that percolation (of the corresponding spin) exists in the low-temperature
phase for either of the pure infinite-volume limits µ+, µ−, obtained respectively
as the weak limits with +/− boundary conditions. These methods were developed
further in [R5], where a phase diagram was proposed for the existence of infinite
clusters in the two-dimensional ferromagnetic Ising model, as a function of external
field h and temperature T . The principal features of this diagram were later proved
by Higuchi, [33].

One of the central problems in two dimensions of the late 1970s was to prove
or disprove the statement that every infinite-volume Gibbs measure is a convex
combination of the two extremal measures µ+, µ−. Lucio obtained the following
important result for this problem.

Theorem 8.1 (Russo, [R13]). Any infinite-volume Gibbs measure µ, which is trans-
lation-invariant in one or both of the axial directions, is a convex combination of
µ+ and µ−.

Lucio proved this by considering the existence (or not) of infinite +/− clusters
on Z2 and its matching lattice. The full conclusion, without an assumption of
partial translation-invariance, was obtained later in independent work of Aizenman,
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[1], and Higuchi, [32] (see also [22]). Therefore, in two dimensions (unlike three
dimensions) there exists no non-translation-invariant Gibbs measure.

More recent work on the geometrical properties of the Ising model has been
centred around the random-cluster model and the random-current representation,
rather than the more fundamental percolation model. See, for example, [4; 26].
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